diff --git a/config.yml b/config.yml index 410b203..83cf2e3 100644 --- a/config.yml +++ b/config.yml @@ -1,134 +1,137 @@ ## Number of attempted resummation phase space points for each input event trials: 10 resummation jets: # resummation jet properties min pt: 30 # minimum jet transverse momentum algorithm: antikt # jet clustering algorithm R: 0.4 # jet R parameter fixed order jets: # properties of input jets min pt: 20 # by default, algorithm and R are like for resummation jets ## Treatment of he various event classes ## the supported settings are: reweight, keep, discard ## non-resummable events cannot be reweighted event treatment: FKL: reweight unordered: keep extremal qqbar: keep central qqbar: keep non-resummable: keep ## Central scale choice or choices # ## multiple scales are allowed, e.g. # scales: [125, max jet pperp, H_T/2, 2*jet invariant mass, m_j1j2] scales: 91.188 ## Factors by which the central scales should be multiplied ## renormalisation and factorisation scales are varied independently # # scale factors: [0.5, 0.7071, 1, 1.41421, 2] ## Maximum ratio between renormalisation and factorisation scale # # max scale ratio: 2.0001 ## Import scale setting functions # # import scales: # lib_my_scales.so: [scale0,scale1] ## Unweighting setting ## remove to obtain weighted events # unweight: # # type of unweighting (one of 'weighted', 'resummation', 'partial') # type: partial # trials: 10000 # max deviation: 0 ## Event output files # # the supported formats are # - Les Houches (suffix .lhe) # - HepMC2 (suffix .hepmc2) # - HepMC3 (suffix .hepmc3 or .hepmc) # - HDF5 (suffix .hdf5) # ## An output file's format is deduced either automatically from the suffix ## or from an explicit specification, e.g. ## - Les Houches: outfile # event output: - HEJ.lhe # - HEJ_events.hepmc ## Analyses # # analyses: ## Rivet analysis # - rivet: MC_XS # rivet analysis name # output: HEJ # name of the yoda files, ".yoda" and scale suffix will be added ## Custom analysis # - plugin: /path/to/libmyanalysis.so # my analysis parameter: some value ## Selection of random number generator and seed ## The choices are ## - mixmax (seed is an integer) ## - ranlux64 (seed is a filename containing parameters) random generator: name: mixmax # seed: 1 ## Whether or not to include higher order logs log correction: false ## Truncate higher-order corrections at NLO NLO truncation: enabled: false # nlo order: 2 ## Vacuum expectation value vev: 246.2196508 ## Properties of the weak gauge bosons particle properties: Higgs: mass: 125 width: 0.004165 W: mass: 80.385 width: 2.085 Z: mass: 91.187 width: 2.495 ## Parameters for Higgs-gluon couplings ## This requires compilation with QCDloop # # Higgs coupling: # use impact factors: false # mt: 174 # include bottom: true # mb: 4.7 +# # Tolerance towards numerical inaccuracies in input momenta +# off-shell tolerance: 0.01 + ## ---------------------------------------------------------------------- ## ## The following settings are only intended for advanced users. ## ## Please DO NOT SET them unless you know exactly what you are doing! ## ## ---------------------------------------------------------------------- ## # ## Maximum soft transverse momentum fraction in any tagging jets, e.g. ## extremal or qqbar jet # soft pt regulator: 0.1 # ## Minimum transverse momentum of extremal partons ## deprecated: use "soft pt regulator" instead # min extparton pt: 30 # ## deprecated: this cot directly replaced by "soft pt regulator" # max ext soft pt fraction: 0.1 # # max events: -1 # Maximal number of fixed order Events to process # regulator parameter: 0.2 # The regulator lambda for the subtraction terms diff --git a/doc/sphinx/HEJ.rst b/doc/sphinx/HEJ.rst index 3198fe7..7dbd804 100644 --- a/doc/sphinx/HEJ.rst +++ b/doc/sphinx/HEJ.rst @@ -1,463 +1,472 @@ .. _`Running HEJ 2`: Running HEJ 2 ============= Quick start ----------- In order to run HEJ 2, you need a configuration file and a file containing fixed-order events. A sample configuration is given by the :file:`config.yml` file distributed together with HEJ 2. Events in the Les Houches Event File format can be generated with standard Monte Carlo generators like `MadGraph5_aMC@NLO `_ or `Sherpa `_. If HEJ 2 was compiled with `HDF5 `_ support, it can also read and write event files in the format suggested in `arXiv:1905.05120 `_. HEJ 2 assumes that the cross section is given by the sum of the event weights. Depending on the fixed-order generator it may be necessary to adjust the weights in the Les Houches Event File accordingly. The processes supported by HEJ 2 are - Pure multijet production - Production of a Higgs boson with jets - Production of a W boson with jets - Production of jets with a charged lepton-antilepton pair, via a virtual Z boson and/or photon - Production of two same-sign W bosons with jets where at least two jets are required in each case. For the time being, only leading-order input events are supported. After generating an event file :file:`events.lhe` adjust the parameters under the `fixed order jets`_ setting in :file:`config.yml` to the settings in the fixed-order generation. Resummation can then be added by running:: HEJ config.yml events.lhe Using the default settings, this will produce an output event file :file:`HEJ.lhe` with events including high-energy resummation. When using the `Docker image `_, HEJ can be run with .. code-block:: bash docker run -v $PWD:$PWD -w $PWD hejdock/hej HEJ config.yml events.lhe .. _`HEJ 2 settings`: Settings -------- HEJ 2 configuration files follow the `YAML `_ format. The following configuration parameters are supported: .. _`trials`: **trials** High-energy resummation is performed by generating a number of resummation phase space configurations corresponding to an input fixed-order event. This parameter specifies how many such configurations HEJ 2 should try to generate for each input event. Typical values vary between 10 and 100. .. _`fixed order jets`: **fixed order jets** This tag collects a number of settings specifying the jet definition in the event input. The settings should correspond to the ones used in the fixed-order Monte Carlo that generated the input events. .. _`fixed order jets: min pt`: **min pt** Minimum transverse momentum in GeV of fixed-order jets. .. _`fixed order jets: algorithm`: **algorithm** The algorithm used to define jets. Allowed settings are :code:`kt`, :code:`cambridge`, :code:`antikt`, :code:`cambridge for passive`. See the `FastJet `_ documentation for a description of these algorithms. .. _`fixed order jets: R`: **R** The R parameter used in the jet algorithm, roughly corresponding to the jet radius in the plane spanned by the rapidity and the azimuthal angle. .. _`resummation jets`: **resummation jets** This tag collects a number of settings specifying the jet definition in the observed, i.e. resummed events. These settings are optional, by default the same values as for the `fixed order jets`_ are assumed. .. _`resummation jets: min pt`: **min pt** Minimum transverse momentum in GeV of resummation jets. This should be between 25% and 50% larger than the minimum transverse momentum of fixed order jets set by `fixed order jets: min pt`_. .. _`resummation jets: algorithm`: **algorithm** The algorithm used to define jets. The HEJ 2 approach to resummation relies on properties of :code:`antikt` jets, so this value is strongly recommended. For a list of possible other values, see the `fixed order jets: algorithm`_ setting. .. _`resummation jets: R`: **R** The R parameter used in the jet algorithm. .. _`event treatment`: **event treatment** Specify how to treat different event types. The different event types contribute to different orders in the high-energy limit. The possible values are :code:`reweight` to enable resummation, :code:`keep` to keep the events as they are up to a possible change of renormalisation and factorisation scale, and :code:`discard` to discard these events. The following types are implemented for the different bosons: .. csv-table:: :header: , "FKL", "unordered", "extremal qqbar", "central qqbar" :widths: auto :align: center :stub-columns: 1 "pure jets", "Yes", "Yes", "Yes", "Yes" "Higgs + jets", "Yes", "Yes", "No", "No" "W + jets", "Yes", "Yes", "Yes", "Yes" "Z/γ + jets", "Yes", "Yes", "No", "No" "same-sign W + jets", "Yes", "No", "No", "No" Non-implemented process will always be classified as :code:`non-resummable`. The different types are: .. _`FKL`: **FKL** Specifies how to treat events respecting FKL rapidity ordering, where all but the two partons extremal in rapidity have to be gluons, e.g. :code:`u d => u g d`. These configurations are dominant in the high-energy limit. .. _`unordered`: **unordered** Specifies how to treat events with one gluon emission that does not respect FKL ordering, e.g. :code:`u d => g u d`. In the high-energy limit, such configurations are logarithmically suppressed compared to FKL configurations. .. _`extremal qqbar`: **extremal qqbar** Specifies how to treat events with a quark-antiquark pair as extremal partons in rapidity, e.g. :code:`g d => u u_bar d`. In the high-energy limit, such configurations are logarithmically suppressed compared to FKL configurations. .. _`central qqbar`: **central qqbar** Specifies how to treat events with a quark-antiquark pair central in rapidity, e.g. :code:`g g => g u u_bar g`. In the high-energy limit, such configurations are logarithmically suppressed compared to FKL configurations. .. _`non-resummable`: **non-resummable** Specifies how to treat events that do not fall into any of the above categories or that are not yet implemented. Only :code:`keep` or :code:`discard` are valid options, *not* :code:`reweight` for obvious reasons. .. _`scales`: **scales** Specifies the renormalisation and factorisation scales for the output events. This can either be a single entry or a list :code:`[scale1, scale2, ...]`. For the case of a list the first entry defines the central scale. Possible values are fixed numbers to set the scale in GeV or the following: - :code:`H_T`: The sum of the scalar transverse momenta of all final-state particles - :code:`max jet pperp`: The maximum transverse momentum of all jets - :code:`jet invariant mass`: Sum of the invariant masses of all jets - :code:`m_j1j2`: Invariant mass between the two hardest jets. Scales can be multiplied or divided by overall factors, e.g. :code:`H_T/2`. It is also possible to import scales from an external library, see :ref:`Custom scales` .. _`scale factors`: **scale factors** A list of numeric factors by which each of the `scales`_ should be multiplied. Renormalisation and factorisation scales are varied independently. For example, a list with entries :code:`[0.5, 2]` would give the four scale choices (0.5μ\ :sub:`r`, 0.5μ\ :sub:`f`); (0.5μ\ :sub:`r`, 2μ\ :sub:`f`); (2μ\ :sub:`r`, 0.5μ\ :sub:`f`); (2μ\ :sub:`r`, 2μ\ :sub:`f`) in this order. The ordering corresponds to the order of the final event weights. .. _`max scale ratio`: **max scale ratio** Specifies the maximum factor by which renormalisation and factorisation scales may difer. For a value of :code:`2` and the example given for the `scale factors`_ the scale choices (0.5μ\ :sub:`r`, 2μ\ :sub:`f`) and (2μ\ :sub:`r`, 0.5μ\ :sub:`f`) will be discarded. .. _`log correction`: **log correction** Whether to include corrections due to the evolution of the strong coupling constant in the virtual corrections. Allowed values are :code:`true` and :code:`false`. .. _`NLO truncation`: **NLO truncation** Options to truncate the HEJ resummation at next-to-leading order. Used for bin-by-bin NLO reweighting. .. _`NLO truncation: enabled`: **enabled** Enable truncation. Allowed values are :code:`true` and :code:`false` (default). .. _`NLO truncation: nlo order`: **nlo order** Set the (base) number of jets in the NLO sample. Allowed values are integers (default: 2). .. _`unweight`: **unweight** Settings for unweighting events. Unweighting can greatly reduce the number of resummation events, speeding up analyses and shrinking event file sizes. .. _`type`: **type** How to unweight events. The supported settings are - :code:`weighted`: Generate weighted events. Default, if nothing else specified. - :code:`resummation`: Unweight only resummation events. Each set of resummation events coming from *a single fixed order event* are unweighted separately according to the largest weight in the current chunk of events. - :code:`partial`: Unweight only resummation events with weights below a certain threshold. The weight threshold is determined automatically in a calibration run prior to the usual event generation. .. _`unweight: trials`: **trials** Maximum number of trial resummation events generated in the calibration run for partial unweighting. This option should only be set for partial unweighting. If possible, each trial is generated from a different input fixed-order event. If there are not sufficiently many input events, more than one trial event may be generated for each of them and the actual number of trial events may be smaller than requested. Increasing the number of trials generally leads to better unweighting calibration but increases the run time. Between 1000 and 10000 trials are usually sufficient. .. _`unweight: max deviation`: **max deviation** Controls the range of events to which unweighting is applied. This option should only be set for partial unweighting. A larger value means that a larger fraction of events are unweighted. Typical values are between -1 and 1. .. _`event output`: **event output** Specifies the name of a single event output file or a list of such files. The file format is either specified explicitly or derived from the suffix. For example, :code:`events.lhe` or, equivalently :code:`Les Houches: events.lhe` generates an output event file :code:`events.lhe` in the Les Houches format. The supported formats are - :code:`file.lhe` or :code:`Les Houches: file`: The Les Houches event file format. - :code:`file.hepmc2` or :code:`HepMC2: file`: HepMC format version 2. - :code:`file.hepmc3` or :code:`HepMC3: file`: HepMC format version 3. - :code:`file.hepmc` or :code:`HepMC: file`: The latest supported version of the HepMC format, currently version 3. - :code:`file.hdf5` or :code:`HDF5: file`: The HDF5-based format of `arXiv:1905.05120 `_. .. _`random generator`: **random generator** Sets parameters for random number generation. .. _`random generator: name`: **name** Which random number generator to use. Currently, :code:`mixmax` and :code:`ranlux64` are supported. Mixmax is recommended. See the `CLHEP documentation `_ for details on the generators. .. _`random generator: seed`: **seed** The seed for random generation. This should be a single number for :code:`mixmax` and the name of a state file for :code:`ranlux64`. .. _`analyses`: **analyses** Names and settings for one or more custom and Rivet event analyses. Entries containing the :code:`rivet` key are interpreted as Rivet analyses; the values corresponding to this key should be the analyses names. In addition, there is a mandatory :code:`output` key which determines the prefix for the yoda output file. For a custom analysis the :code:`plugin` sub-entry should be set to the analysis file path. All further entries are passed on to the analysis. See :ref:`Writing custom analyses` for details. .. _`vev`: **vev** Higgs vacuum expectation value in GeV. All electro-weak constants are derived from this together with the `particle properties`_. .. _`particle properties`: **particle properties** Specifies various properties of the different particles (Higgs, W or Z). All electro-weak constants are derived from these together with the :ref:`vacuum expectation value`. .. _`particle properties: particle`: **Higgs, W or Z** The particle (Higgs, |W+| or |W-|, Z) for which the following properties are defined. .. |W+| replace:: W\ :sup:`+` .. |W-| replace:: W\ :sup:`-` .. _`particle properties: particle: mass`: **mass** The mass of the particle in GeV. .. _`particle properties: particle: width`: **width** The total decay width of the particle in GeV. .. _`Higgs coupling`: **Higgs coupling** This collects a number of settings concerning the effective coupling of the Higgs boson to gluons. This is only relevant for the production process of a Higgs boson with jets and only supported if HEJ 2 was compiled with `QCDLoop `_ support. .. _`Higgs coupling: use impact factors`: **use impact factors** Whether to use impact factors for the coupling to the most forward and most backward partons. Impact factors imply the infinite top-quark mass limit. .. _`Higgs coupling: mt`: **mt** The value of the top-quark mass in GeV. If this is not specified, the limit of an infinite mass is taken. .. _`Higgs coupling: include bottom`: **include bottom** Whether to include the Higgs coupling to bottom quarks. .. _`Higgs coupling: mb`: **mb** The value of the bottom-quark mass in GeV. Only used for the Higgs coupling, external bottom-quarks are always assumed to be massless. +.. _`off-shell tolerance`: + +**off-shell tolerance** + Tolerance for numerical inaccuracies in input momenta. Momenta of + massless particles with an invariant mass below the given value + are rescaled to be on-shell. Transverse momentum components of + incoming particles that are smaller than the given tolerance are + set to zero. The default value is 0, leaving input momenta unchanged. + Advanced Settings ~~~~~~~~~~~~~~~~~ All of the following settings are optional. Please **do not set** any of the following options, unless you know exactly what you are doing. The default behaviour gives the most reliable results for a wide range of observables. .. _`soft pt regulator`: **soft pt regulator** Specifies the maximum fraction that soft radiation can contribute to the transverse momentum of each the tagging jets, i.e. any jet that affects the event classification, like the most forward and most backward jet or the jets of the central qqbar pair. This setting is needed to regulate an otherwise cancelled divergence. Default is 0.1 .. _`max ext soft pt fraction`: **max ext soft pt fraction** This is the same as `soft pt regulator`_ and will be removed in future versions. .. _`min extparton pt`: **min extparton pt** Specifies the minimum transverse momentum in GeV of the most forward and the most backward parton. Its value should be slightly below the minimum transverse momentum of jets specified by `resummation jets: min pt`_. This setting got superseded by `soft pt regulator`_ and will be removed in future versions. .. _`max events`: **max events** Maximal number of (input) Fixed Order events. HEJ will stop after processing `max events` many events. Default considers all events. .. _`regulator parameter`: **regulator parameter** Slicing parameter to regularise the subtraction term, called :math:`\lambda` in `arxiv:1706.01002 `_. Default is 0.2 diff --git a/include/HEJ/Config.hh b/include/HEJ/Config.hh index d9b6ad9..73e1bf9 100644 --- a/include/HEJ/Config.hh +++ b/include/HEJ/Config.hh @@ -1,284 +1,286 @@ /** \file * \brief HEJ 2 configuration parameters * * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2022 * \copyright GPLv2 or later */ #pragma once #include #include #include #include #include #include "fastjet/JetDefinition.hh" #include "yaml-cpp/yaml.h" #include "HEJ/Constants.hh" #include "HEJ/EWConstants.hh" #include "HEJ/Fraction.hh" #include "HEJ/HiggsCouplingSettings.hh" #include "HEJ/ScaleFunction.hh" #include "HEJ/event_types.hh" #include "HEJ/output_formats.hh" namespace HEJ { //! Jet parameters struct JetParameters{ fastjet::JetDefinition def; /**< Jet Definition */ double min_pt{}; /**< Minimum Jet Transverse Momentum */ }; //! Settings for scale variation struct ScaleConfig{ //! Base scale choices std::vector base; //! Factors for multiplicative scale variation std::vector factors; //! Maximum ratio between renormalisation and factorisation scale double max_ratio{}; }; //! Settings for random number generator struct RNGConfig { //! Random number generator name std::string name; //! Optional initial seed std::optional seed; }; //! Settings for partial unweighting struct PartialUnweightConfig { //! Number of trials for training size_t trials; //! Maximum distance in standard deviations from mean logarithmic weight double max_dev; }; //! Settings for HEJ@NLO struct NLOConfig { //! Settings for HEJ@NLO Truncation bool enabled = false; //! NLO Born number of jets size_t nj = 2; }; /**! Possible treatments for fixed-order input events. * * The program will decide on how to treat an event based on * the value of this enumeration. */ enum class EventTreatment{ reweight, /**< Perform resummation */ keep, /**< Keep the event */ discard, /**< Discard the event */ }; //! Container to store the treatments for various event types using EventTreatMap = std::map; //! Possible setting for the event weight enum class WeightType{ weighted, //!< weighted events unweighted_resum, //!< unweighted only resummation part partially_unweighted //!< mixed weighted and unweighted }; /**! Input parameters. * * This struct handles stores all configuration parameters * needed in a HEJ 2 run. * * \internal To add a new option: * 1. Add a member to the Config struct. * 2. Inside "src/YAMLreader.cc": * - Add the option name to the "supported" Node in * get_supported_options. * - Initialise the new Config member in to_Config. * The functions set_from_yaml (for mandatory options) and * set_from_yaml_if_defined (non-mandatory) may be helpful. * 3. Add a new entry (with short description) to config.yaml * 4. Update the user documentation in "doc/Sphinx/" */ struct Config { //! %Parameters for scale variation ScaleConfig scales; //! Resummation jet properties JetParameters resummation_jets; //! Fixed-order jet properties JetParameters fixed_order_jets; //! Minimum transverse momentum for extremal partons //! \deprecated This will be removed in future versions. //! Use \ref soft_pt_regulator instead. double min_extparton_pt = 0.; //! \deprecated This is equivalent to\ref soft_pt_regulator //! and will be removed in future versions. std::optional> max_ext_soft_pt_fraction{}; //! @brief Maximum transverse momentum fraction from soft radiation in any //! tagging jet (e.g. extremal or qqbar jet) Fraction soft_pt_regulator{ DEFAULT_SOFT_PT_REGULATOR }; //! The regulator lambda for the subtraction terms double regulator_lambda = CLAMBDA; //! Number of resummation configurations to generate per fixed-order event size_t trials{}; //! Maximal number of events std::optional max_events; //! Whether to include the logarithmic correction from \f$\alpha_s\f$ running bool log_correction{}; //! Event output files names and formats std::vector output; //! Parameters for random number generation RNGConfig rng; //! Map to decide what to do for different event types EventTreatMap treat; //! %Parameters for custom analysis //! @deprecated use analyses_parameters instead YAML::Node analysis_parameters; //! %Parameters for custom analyses std::vector analyses_parameters; //! Settings for effective Higgs-gluon coupling HiggsCouplingSettings Higgs_coupling; //! elector weak parameters EWConstants ew_parameters; //! Type of event weight e.g. (un)weighted WeightType weight_type; //! Settings for partial unweighting std::optional unweight_config; //! HEJ@NLO settings NLOConfig nlo; + //! Tolerance towards numerical inaccuracies in input momenta + double off_shell_tolerance = 0.; }; //! Configuration options for the PhaseSpacePoint class struct PhaseSpacePointConfig { PhaseSpacePointConfig() = default; PhaseSpacePointConfig( JetParameters jet_param, NLOConfig nlo, double min_extparton_pt = 0., Fraction soft_pt_regulator = Fraction{DEFAULT_SOFT_PT_REGULATOR} ): jet_param{std::move(jet_param)}, nlo{std::move(nlo)}, min_extparton_pt{min_extparton_pt}, soft_pt_regulator{std::move(soft_pt_regulator)} {} //! Properties of resummation jets JetParameters jet_param; //! HEJ@NLO settings NLOConfig nlo; //! Minimum transverse momentum for extremal partons //! \deprecated This will be removed in future versions. //! Use \ref soft_pt_regulator instead. double min_extparton_pt = 0.; //! \deprecated This is equivalent to\ref soft_pt_regulator //! and will be removed in future versions. std::optional> max_ext_soft_pt_fraction{}; //! @brief Maximum transverse momentum fraction from soft radiation in any //! tagging jet (e.g. extremal or qqbar jet) Fraction soft_pt_regulator{ DEFAULT_SOFT_PT_REGULATOR }; }; //! Configuration options for the MatrixElement class struct MatrixElementConfig { MatrixElementConfig() = default; MatrixElementConfig( bool log_correction, HiggsCouplingSettings Higgs_coupling, EWConstants ew_parameters, NLOConfig nlo, Fraction soft_pt_regulator = Fraction{DEFAULT_SOFT_PT_REGULATOR}, double regulator_lambda = CLAMBDA ): log_correction{log_correction}, Higgs_coupling{std::move(Higgs_coupling)}, ew_parameters{std::move(ew_parameters)}, nlo{std::move(nlo)}, soft_pt_regulator{soft_pt_regulator}, regulator_lambda{regulator_lambda} {} //! Whether to include the logarithmic correction from \f$\alpha_s\f$ running bool log_correction{}; //! Settings for effective Higgs-gluon coupling HiggsCouplingSettings Higgs_coupling; //! elector weak parameters EWConstants ew_parameters; //! HEJ@NLO settings NLOConfig nlo; //! @brief Maximum transverse momentum fraction from soft radiation in any //! tagging jet (e.g. extremal or qqbar jet) Fraction soft_pt_regulator{ DEFAULT_SOFT_PT_REGULATOR }; //! The regulator lambda for the subtraction terms double regulator_lambda = CLAMBDA; }; //! Configuration options for the EventReweighter class struct EventReweighterConfig { //! Settings for phase space point generation PhaseSpacePointConfig psp_config; //! Settings for matrix element calculation MatrixElementConfig ME_config; //! Access properties of resummation jets JetParameters & jet_param() { return psp_config.jet_param;} //! Access properties of resummation jets (const version) JetParameters const & jet_param() const { return psp_config.jet_param;} //! Treatment of the various event types EventTreatMap treat; }; /**! Extract PhaseSpacePointConfig from Config * * \internal We do not provide a PhaseSpacePointConfig constructor from Config * so that PhaseSpacePointConfig remains an aggregate. * This faciliates writing client code (e.g. the HEJ fixed-order generator) * that creates a PhaseSpacePointConfig *without* a Config object. * * @see to_MatrixElementConfig, to_EventReweighterConfig */ inline PhaseSpacePointConfig to_PhaseSpacePointConfig(Config const & conf) { return { conf.resummation_jets, conf.nlo, conf.min_extparton_pt, conf.max_ext_soft_pt_fraction?*conf.max_ext_soft_pt_fraction :conf.soft_pt_regulator }; } /**! Extract MatrixElementConfig from Config * * @see to_PhaseSpacePointConfig, to_EventReweighterConfig */ inline MatrixElementConfig to_MatrixElementConfig(Config const & conf) { return { conf.log_correction, conf.Higgs_coupling, conf.ew_parameters, conf.nlo, conf.soft_pt_regulator, conf.regulator_lambda }; } /**! Extract EventReweighterConfig from Config * * @see to_PhaseSpacePointConfig, to_MatrixElementConfig */ inline EventReweighterConfig to_EventReweighterConfig(Config const & conf) { return { to_PhaseSpacePointConfig(conf), to_MatrixElementConfig(conf), conf.treat }; } } // namespace HEJ diff --git a/src/YAMLreader.cc b/src/YAMLreader.cc index bf14a98..94557d2 100644 --- a/src/YAMLreader.cc +++ b/src/YAMLreader.cc @@ -1,592 +1,597 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "HEJ/YAMLreader.hh" #include #include #include #include #include #include #include #include #include "HEJ/ConfigFlags.hh" #include "HEJ/Constants.hh" #include "HEJ/ScaleFunction.hh" #include "HEJ/event_types.hh" #include "HEJ/output_formats.hh" namespace HEJ { class Event; namespace { //! Get YAML tree of supported options /** * The configuration file is checked against this tree of options * in assert_all_options_known. */ YAML::Node const & get_supported_options(){ const static YAML::Node supported = [](){ YAML::Node supported; static const auto opts = { "trials", "min extparton pt", "max ext soft pt fraction", "soft pt regulator", "scales", "scale factors", "max scale ratio", "import scales", "log correction", "event output", "analysis", "analyses", "vev", - "regulator parameter", "max events" + "regulator parameter", "max events", "off-shell tolerance" }; // add subnodes to "supported" - the assigned value is irrelevant for(auto && opt: opts) supported[opt] = ""; for(auto && jet_opt: {"min pt", "algorithm", "R"}){ supported["resummation jets"][jet_opt] = ""; supported["fixed order jets"][jet_opt] = ""; } for(auto && opt: {"mt", "use impact factors", "include bottom", "mb"}){ supported["Higgs coupling"][opt] = ""; } for(auto && opt: {"name", "seed"}){ supported["random generator"][opt] = ""; } for(auto && opt: {"enabled", "nlo order"}){ supported["NLO truncation"][opt] = ""; } for(auto && opt: {"FKL", "unordered", "extremal qqbar", "central qqbar", "non-resummable"}){ supported["event treatment"][opt] = ""; } for(auto && particle_type: {"Higgs", "W", "Z"}){ for(auto && particle_opt: {"mass", "width"}){ supported["particle properties"][particle_type][particle_opt] = ""; } } for(auto && opt: {"type", "trials", "max deviation"}){ supported["unweight"][opt] = ""; } return supported; }(); return supported; } fastjet::JetAlgorithm to_JetAlgorithm(std::string const & algo){ using namespace fastjet; static const std::map known = { {"kt", kt_algorithm}, {"cambridge", cambridge_algorithm}, {"antikt", antikt_algorithm}, {"cambridge for passive", cambridge_for_passive_algorithm}, {"plugin", plugin_algorithm} }; const auto res = known.find(algo); if(res == known.end()){ throw std::invalid_argument("Unknown jet algorithm \"" + algo + "\""); } return res->second; } EventTreatment to_EventTreatment(std::string const & name){ static const std::map known = { {"reweight", EventTreatment::reweight}, {"keep", EventTreatment::keep}, {"discard", EventTreatment::discard} }; const auto res = known.find(name); if(res == known.end()){ throw std::invalid_argument("Unknown event treatment \"" + name + "\""); } return res->second; } WeightType to_weight_type(std::string const & setting){ if(setting == "weighted") return WeightType::weighted; if(setting =="resummation") return WeightType::unweighted_resum; if(setting =="partial") return WeightType::partially_unweighted; throw std::invalid_argument{"Unknown weight type \"" + setting + "\""}; } } // namespace namespace detail{ void set_from_yaml(fastjet::JetAlgorithm & setting, YAML::Node const & yaml){ setting = to_JetAlgorithm(yaml.as()); } void set_from_yaml(EventTreatment & setting, YAML::Node const & yaml){ setting = to_EventTreatment(yaml.as()); } void set_from_yaml(ParticleID & setting, YAML::Node const & yaml){ setting = to_ParticleID(yaml.as()); } void set_from_yaml(WeightType & setting, YAML::Node const & yaml){ setting = to_weight_type(yaml.as()); } } // namespace detail JetParameters get_jet_parameters( YAML::Node const & node, std::string const & entry ){ assert(node); JetParameters result; fastjet::JetAlgorithm jet_algo = fastjet::antikt_algorithm; double R = NAN; set_from_yaml_if_defined(jet_algo, node, entry, "algorithm"); set_from_yaml(R, node, entry, "R"); result.def = fastjet::JetDefinition{jet_algo, R}; set_from_yaml(result.min_pt, node, entry, "min pt"); return result; } RNGConfig to_RNGConfig( YAML::Node const & node, std::string const & entry ){ assert(node); RNGConfig result; set_from_yaml(result.name, node, entry, "name"); set_from_yaml_if_defined(result.seed, node, entry, "seed"); return result; } NLOConfig to_NLOConfig( YAML::Node const & node, std::string const & entry ){ assert(node); NLOConfig result; set_from_yaml_if_defined(result.enabled, node, entry, "enabled"); set_from_yaml_if_defined(result.nj, node, entry, "nlo order"); return result; } ParticleProperties get_particle_properties( YAML::Node const & node, std::string const & entry, std::string const & boson ){ ParticleProperties result{}; set_from_yaml(result.mass, node, entry, boson, "mass"); set_from_yaml(result.width, node, entry, boson, "width"); return result; } EWConstants get_ew_parameters(YAML::Node const & node){ EWConstants result; double vev = NAN; set_from_yaml(vev, node, "vev"); result.set_vevWZH(vev, get_particle_properties(node, "particle properties", "W"), get_particle_properties(node, "particle properties", "Z"), get_particle_properties(node, "particle properties", "Higgs") ); return result; } HiggsCouplingSettings get_Higgs_coupling( YAML::Node const & node, std::string const & entry ){ assert(node); static constexpr double mt_max = 2e4; #ifndef HEJ_BUILD_WITH_QCDLOOP if(node[entry].IsDefined()){ throw std::invalid_argument{ "Higgs coupling settings require building HEJ 2 " "with QCDloop support" }; } #endif HiggsCouplingSettings settings; set_from_yaml_if_defined(settings.mt, node, entry, "mt"); set_from_yaml_if_defined(settings.mb, node, entry, "mb"); set_from_yaml_if_defined(settings.include_bottom, node, entry, "include bottom"); set_from_yaml_if_defined(settings.use_impact_factors, node, entry, "use impact factors"); if(settings.use_impact_factors){ if(settings.mt != std::numeric_limits::infinity()){ throw std::invalid_argument{ "Conflicting settings: " "impact factors may only be used in the infinite top mass limit" }; } } else{ // huge values of the top mass are numerically unstable settings.mt = std::min(settings.mt, mt_max); } return settings; } FileFormat to_FileFormat(std::string const & name){ static const std::map known = { {"Les Houches", FileFormat::Les_Houches}, {"HepMC", FileFormat::HepMC}, {"HepMC2", FileFormat::HepMC2}, {"HepMC3", FileFormat::HepMC3}, {"HDF5", FileFormat::HDF5} }; const auto res = known.find(name); if(res == known.end()){ throw std::invalid_argument("Unknown file format \"" + name + "\""); } return res->second; } std::string extract_suffix(std::string const & filename){ size_t separator = filename.rfind('.'); if(separator == std::string::npos) return {}; return filename.substr(separator + 1); } FileFormat format_from_suffix(std::string const & filename){ const std::string suffix = extract_suffix(filename); if(suffix == "lhe") return FileFormat::Les_Houches; if(suffix == "hepmc") return FileFormat::HepMC; if(suffix == "hepmc3") return FileFormat::HepMC3; if(suffix == "hepmc2") return FileFormat::HepMC2; if(suffix == "hdf5") return FileFormat::HDF5; throw std::invalid_argument{ "Can't determine format for output file \"" + filename + "\"" }; } void assert_all_options_known( YAML::Node const & conf, YAML::Node const & supported ){ if(!conf.IsMap()) return; if(!supported.IsMap()) throw invalid_type{"must not have sub-entries"}; for(auto const & entry: conf){ const auto name = entry.first.as(); if(! supported[name]) throw unknown_option{name}; /* check sub-options, e.g. 'resummation jets: min pt' * we don't check analyses sub-options * those depend on the analysis being used and should be checked there * similar for "import scales" */ if(name != "analyses" && name != "analysis" && name != "import scales"){ try{ assert_all_options_known(conf[name], supported[name]); } catch(unknown_option const & ex){ throw unknown_option{name + ": " + ex.what()}; } catch(invalid_type const & ex){ throw invalid_type{name + ": " + ex.what()}; } } } } } // namespace HEJ namespace YAML { Node convert::encode(HEJ::OutputFile const & outfile) { Node node; node[to_string(outfile.format)] = outfile.name; return node; } bool convert::decode(Node const & node, HEJ::OutputFile & out) { switch(node.Type()){ case NodeType::Map: { YAML::const_iterator it = node.begin(); out.format = HEJ::to_FileFormat(it->first.as()); out.name = it->second.as(); return true; } case NodeType::Scalar: out.name = node.as(); out.format = HEJ::format_from_suffix(out.name); return true; default: return false; } } } // namespace YAML namespace HEJ { namespace detail{ void set_from_yaml(OutputFile & setting, YAML::Node const & yaml){ setting = yaml.as(); } } namespace { void update_fixed_order_jet_parameters( JetParameters & fixed_order_jets, YAML::Node const & yaml ){ if(!yaml["fixed order jets"]) return; set_from_yaml_if_defined( fixed_order_jets.min_pt, yaml, "fixed order jets", "min pt" ); fastjet::JetAlgorithm algo = fixed_order_jets.def.jet_algorithm(); set_from_yaml_if_defined(algo, yaml, "fixed order jets", "algorithm"); double R = fixed_order_jets.def.R(); set_from_yaml_if_defined(R, yaml, "fixed order jets", "R"); fixed_order_jets.def = fastjet::JetDefinition{algo, R}; } // like std::stod, but throw if not the whole string can be converted double to_double(std::string const & str){ std::size_t pos = 0; const double result = std::stod(str, &pos); if(pos < str.size()){ throw std::invalid_argument(str + " is not a valid double value"); } return result; } using EventScale = double (*)(Event const &); void import_scale_functions( std::string const & file, std::vector const & scale_names, std::unordered_map & known ) { void * handle = dlopen(file.c_str(), RTLD_NOW); char * error = dlerror(); if(error != nullptr) throw std::runtime_error{error}; for(auto const & scale: scale_names) { void * sym = dlsym(handle, scale.c_str()); error = dlerror(); if(error != nullptr) throw std::runtime_error{error}; known.emplace(scale, reinterpret_cast(sym)); // NOLINT } } auto get_scale_map( YAML::Node const & yaml ) { std::unordered_map scale_map; scale_map.emplace("H_T", H_T); scale_map.emplace("max jet pperp", max_jet_pt); scale_map.emplace("jet invariant mass", jet_invariant_mass); scale_map.emplace("m_j1j2", m_j1j2); if(yaml["import scales"].IsDefined()) { if(! yaml["import scales"].IsMap()) { throw invalid_type{"Entry 'import scales' is not a map"}; } for(auto const & import: yaml["import scales"]) { const auto file = import.first.as(); const auto scale_names = import.second.IsSequence() ?import.second.as>() :std::vector{import.second.as()}; import_scale_functions(file, scale_names, scale_map); } } return scale_map; } // simple (as in non-composite) scale functions /** * An example for a simple scale function would be H_T, * H_T/2 is then composite (take H_T and then divide by 2) */ ScaleFunction parse_simple_ScaleFunction( std::string const & scale_fun, std::unordered_map const & known ) { assert( scale_fun.empty() || (!std::isspace(scale_fun.front()) && !std::isspace(scale_fun.back())) ); const auto it = known.find(scale_fun); if(it != end(known)) return {it->first, it->second}; try{ const double scale = to_double(scale_fun); return {scale_fun, FixedScale{scale}}; } catch(std::invalid_argument const &){} throw std::invalid_argument{"Unknown scale choice: \"" + scale_fun + "\""}; } std::string trim_front(std::string const & str){ const auto new_begin = std::find_if( begin(str), end(str), [](char c){ return std::isspace(c) == 0; } ); return std::string(new_begin, end(str)); } std::string trim_back(std::string str){ size_t pos = str.size() - 1; // use guaranteed wrap-around behaviour to check whether we have // traversed the whole string for(; pos < str.size() && std::isspace(str[pos]); --pos) {} str.resize(pos + 1); // note that pos + 1 can be 0 return str; } ScaleFunction parse_ScaleFunction( std::string const & scale_fun, std::unordered_map const & known ){ assert( scale_fun.empty() || (!std::isspace(scale_fun.front()) && !std::isspace(scale_fun.back())) ); // parse from right to left => a/b/c gives (a/b)/c const size_t delim = scale_fun.find_last_of("*/"); if(delim == std::string::npos){ return parse_simple_ScaleFunction(scale_fun, known); } const std::string first = trim_back(std::string{scale_fun, 0, delim}); const std::string second = trim_front(std::string{scale_fun, delim+1}); if(scale_fun[delim] == '/'){ return parse_ScaleFunction(first, known) / parse_ScaleFunction(second, known); } assert(scale_fun[delim] == '*'); return parse_ScaleFunction(first, known) * parse_ScaleFunction(second, known); } EventTreatMap get_event_treatment( YAML::Node const & node, std::string const & entry ){ using namespace event_type; EventTreatMap treat { {not_enough_jets, EventTreatment::discard}, {bad_final_state, EventTreatment::discard}, {FKL, EventTreatment::discard}, {unob, EventTreatment::discard}, {unof, EventTreatment::discard}, {qqbar_exb, EventTreatment::discard}, {qqbar_exf, EventTreatment::discard}, {qqbar_mid, EventTreatment::discard}, {non_resummable, EventTreatment::discard} }; set_from_yaml(treat.at(FKL), node, entry, "FKL"); set_from_yaml(treat.at(unob), node, entry, "unordered"); treat.at(unof) = treat.at(unob); set_from_yaml(treat.at(qqbar_exb), node, entry, "extremal qqbar"); treat.at(qqbar_exf) = treat.at(qqbar_exb); set_from_yaml(treat.at(qqbar_mid), node, entry, "central qqbar"); set_from_yaml(treat.at(non_resummable), node, entry, "non-resummable"); if(treat[non_resummable] == EventTreatment::reweight){ throw std::invalid_argument{"Cannot reweight non-resummable events"}; } return treat; } Config to_Config(YAML::Node const & yaml){ try{ assert_all_options_known(yaml, get_supported_options()); } catch(unknown_option const & ex){ throw unknown_option{std::string{"Unknown option '"} + ex.what() + "'"}; } Config config; config.resummation_jets = get_jet_parameters(yaml, "resummation jets"); config.fixed_order_jets = config.resummation_jets; update_fixed_order_jet_parameters(config.fixed_order_jets, yaml); set_from_yaml_if_defined(config.min_extparton_pt, yaml, "min extparton pt"); if(config.min_extparton_pt!=0) std::cerr << "WARNING: \"min extparton pt\" is deprecated." << " Please remove this entry or set \"soft pt regulator\" instead.\n"; set_from_yaml_if_defined( config.max_ext_soft_pt_fraction, yaml, "max ext soft pt fraction" ); if(config.max_ext_soft_pt_fraction){ std::cerr << "WARNING: \"max ext soft pt fraction\" is deprecated." << " Please remove this entry or set \"soft pt regulator\" instead.\n"; config.soft_pt_regulator = *config.max_ext_soft_pt_fraction; } else { set_from_yaml_if_defined( config.soft_pt_regulator, yaml, "soft pt regulator" ); } // Sets the standard value, then changes this if defined config.regulator_lambda=CLAMBDA; set_from_yaml_if_defined(config.regulator_lambda, yaml, "regulator parameter"); set_from_yaml_if_defined(config.max_events, yaml, "max events"); set_from_yaml(config.trials, yaml, "trials"); config.weight_type = WeightType::weighted; set_from_yaml_if_defined(config.weight_type, yaml, "unweight", "type"); if(config.weight_type == WeightType::partially_unweighted) { config.unweight_config = PartialUnweightConfig{}; set_from_yaml( config.unweight_config->trials, yaml, "unweight", "trials" ); set_from_yaml( config.unweight_config->max_dev, yaml, "unweight", "max deviation" ); } else if(yaml["unweight"].IsDefined()) { for(auto && opt: {"trials", "max deviation"}) { if(yaml["unweight"][opt].IsDefined()) { throw std::invalid_argument{ "'unweight: " + std::string{opt} + "' " "is only supported if 'unweight: type' is set to 'partial'" }; } } } set_from_yaml(config.log_correction, yaml, "log correction"); config.treat = get_event_treatment(yaml, "event treatment"); set_from_yaml_if_defined(config.output, yaml, "event output"); config.rng = to_RNGConfig(yaml, "random generator"); set_from_yaml_if_defined(config.analyses_parameters, yaml, "analyses"); if(yaml["analysis"].IsDefined()){ std::cerr << "WARNING: Configuration entry 'analysis' is deprecated. " " Use 'analyses' instead.\n"; set_from_yaml(config.analysis_parameters, yaml, "analysis"); if(!config.analysis_parameters.IsNull()){ config.analyses_parameters.push_back(config.analysis_parameters); } } config.scales = to_ScaleConfig(yaml); config.ew_parameters = get_ew_parameters(yaml); config.Higgs_coupling = get_Higgs_coupling(yaml, "Higgs coupling"); //HEJ@NLO Truncation config.nlo = to_NLOConfig(yaml, "NLO truncation"); + set_from_yaml_if_defined( + config.off_shell_tolerance, + yaml, + "off-shell tolerance" + ); return config; } } // namespace ScaleConfig to_ScaleConfig(YAML::Node const & yaml){ ScaleConfig config; auto scale_funs = get_scale_map(yaml); std::vector scales; set_from_yaml(scales, yaml, "scales"); config.base.reserve(scales.size()); std::transform( begin(scales), end(scales), std::back_inserter(config.base), [scale_funs](auto const & entry){ return parse_ScaleFunction(entry, scale_funs); } ); set_from_yaml_if_defined(config.factors, yaml, "scale factors"); config.max_ratio = std::numeric_limits::infinity(); set_from_yaml_if_defined(config.max_ratio, yaml, "max scale ratio"); return config; } Config load_config(std::string const & config_file){ try{ return to_Config(YAML::LoadFile(config_file)); } catch(...){ std::cerr << "Error reading " << config_file << ":\n "; throw; } } } // namespace HEJ diff --git a/src/bin/HEJ.cc b/src/bin/HEJ.cc index 94478e2..42f09dc 100644 --- a/src/bin/HEJ.cc +++ b/src/bin/HEJ.cc @@ -1,410 +1,425 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include #include #include #include #include #include #include #include "yaml-cpp/yaml.h" #include "fastjet/ClusterSequence.hh" #include "HEJ/CombinedEventWriter.hh" #include "HEJ/Config.hh" #include "HEJ/CrossSectionAccumulator.hh" #include "HEJ/Event.hh" #include "HEJ/EventReader.hh" #include "HEJ/BufferedEventReader.hh" #include "HEJ/EventReweighter.hh" #include "HEJ/get_analysis.hh" #include "HEJ/make_RNG.hh" #include "HEJ/ProgressBar.hh" #include "HEJ/stream.hh" #include "HEJ/Unweighter.hh" #include "HEJ/Version.hh" #include "HEJ/YAMLreader.hh" HEJ::Config load_config(char const * filename){ try{ return HEJ::load_config(filename); } catch(std::exception const & exc){ std::cerr << "Error: " << exc.what() << '\n'; std::exit(EXIT_FAILURE); } } std::vector> get_analyses( std::vector const & parameters, LHEF::HEPRUP const & heprup ){ try{ return HEJ::get_analyses(parameters, heprup); } catch(std::exception const & exc){ std::cerr << "Failed to load analysis: " << exc.what() << '\n'; std::exit(EXIT_FAILURE); } } // unique_ptr is a workaround: // std::optional is a better fit, but gives spurious errors with g++ 7.3.0 std::unique_ptr> make_progress_bar( std::vector const & xs ) { if(xs.empty()) return {}; const double Born_xs = std::accumulate(begin(xs), end(xs), 0.); return std::make_unique>(std::cout, Born_xs); } std::string time_to_string(const time_t time){ char s[30]; struct tm * p = localtime(&time); strftime(s, 30, "%a %b %d %Y %H:%M:%S", p); return s; } void check_one_parton_per_jet(HEJ::Event const & ev) { const std::size_t npartons = std::count_if( ev.outgoing().begin(), ev.outgoing().end(), [](HEJ::Particle const & p) { return is_parton(p); } ); if(ev.jets().size() < npartons) { throw std::invalid_argument{ "Number of partons (" + std::to_string(npartons) + ") in input event" " does not match number of jets (" + std::to_string(ev.jets().size())+ ")" }; } } HEJ::Event to_event( LHEF::HEPEUP const & hepeup, HEJ::JetParameters const & fixed_order_jets, - HEJ::EWConstants const & ew_parameters + HEJ::EWConstants const & ew_parameters, + const double off_shell_tolerance ) { HEJ::Event::EventData event_data{hepeup}; event_data.reconstruct_intermediate(ew_parameters); - + event_data.repair_momenta(off_shell_tolerance); HEJ::Event ev{ std::move(event_data).cluster( fixed_order_jets.def, fixed_order_jets.min_pt ) }; check_one_parton_per_jet(ev); return ev; } void unweight( HEJ::Unweighter & unweighter, HEJ::WeightType weight_type, std::vector & events, HEJ::RNG & ran ) { if(weight_type == HEJ::WeightType::unweighted_resum){ unweighter.set_cut_to_maxwt(events); } events.erase( unweighter.unweight(begin(events), end(events), ran), end(events) ); } // peek up to nevents events from reader std::vector peek_events( HEJ::BufferedEventReader & reader, const int nevents ) { std::vector events; while( static_cast(events.size()) < nevents && reader.read_event() ) { events.emplace_back(reader.hepeup()); } // put everything back into the reader for(auto it = rbegin(events); it != rend(events); ++it) { reader.emplace(*it); } return events; } void append_resummed_events( std::vector & resummation_events, HEJ::EventReweighter & reweighter, LHEF::HEPEUP const & hepeup, const size_t trials, HEJ::JetParameters const & fixed_order_jets, - HEJ::EWConstants const & ew_parameters + HEJ::EWConstants const & ew_parameters, + const double off_shell_tolerance ) { - const HEJ::Event FO_event = to_event(hepeup, fixed_order_jets, ew_parameters); + const HEJ::Event FO_event = to_event( + hepeup, + fixed_order_jets, + ew_parameters, + off_shell_tolerance + ); if(reweighter.treatment(FO_event.type()) != HEJ::EventTreatment::reweight) { return; } const auto resummed = reweighter.reweight(FO_event, trials); resummation_events.insert( end(resummation_events), begin(resummed), end(resummed) ); } void train( HEJ::Unweighter & unweighter, HEJ::BufferedEventReader & reader, HEJ::EventReweighter & reweighter, const size_t total_trials, const double max_dev, double reweight_factor, HEJ::JetParameters const & fixed_order_jets, - HEJ::EWConstants const & ew_parameters + HEJ::EWConstants const & ew_parameters, + const double off_shell_tolerance ) { std::cout << "Reading up to " << total_trials << " training events...\n"; auto FO_events = peek_events(reader, total_trials); if(FO_events.empty()) { throw std::runtime_error{ "No events generated to calibrate the unweighting weight!" "Please increase the number \"trials\" or deactivate the unweighting." }; } const size_t trials = total_trials/FO_events.size(); // adjust reweight factor so that the overall normalisation // is the same as in the full run reweight_factor *= trials; for(auto & hepeup: FO_events) { hepeup.XWGTUP *= reweight_factor; } std::cout << "Training unweighter with " << trials << '*' << FO_events.size() << " events\n"; auto progress = HEJ::ProgressBar{ std::cout, static_cast(FO_events.size()) }; std::vector resummation_events; for(auto const & hepeup: FO_events) { append_resummed_events( resummation_events, reweighter, hepeup, trials, fixed_order_jets, - ew_parameters + ew_parameters, + off_shell_tolerance ); ++progress; } unweighter.set_cut_to_peakwt(resummation_events, max_dev); std::cout << "\nUnweighting events with weight up to " << unweighter.get_cut() << '\n'; } int main(int argn, char** argv) { using clock = std::chrono::system_clock; if (argn != 3) { std::cerr << "\n# Usage:\n."<< argv[0] <<" config_file input_file\n\n"; return EXIT_FAILURE; } const auto start_time = clock::now(); { std::cout << "Starting " << HEJ::Version::package_name_full() << ", revision " << HEJ::Version::revision() << " (" << time_to_string(clock::to_time_t(start_time)) << ")" << std::endl; } fastjet::ClusterSequence::print_banner(); // read configuration const HEJ::Config config = load_config(argv[1]); auto reader = HEJ::make_reader(argv[2]); assert(reader); auto heprup{ reader->heprup() }; heprup.generators.emplace_back(LHEF::XMLTag{}); heprup.generators.back().name = HEJ::Version::package_name(); heprup.generators.back().version = HEJ::Version::String(); auto analyses = get_analyses( config.analyses_parameters, heprup ); assert(analyses.empty() || analyses.front() != nullptr); HEJ::CombinedEventWriter writer{config.output, std::move(heprup)}; double global_reweight = 1.; auto const & max_events = config.max_events; // if we need the event number: if(std::abs(heprup.IDWTUP) == 4 || std::abs(heprup.IDWTUP) == 1 || max_events){ // try to read from LHE head auto input_events{reader->number_events()}; if(!input_events) { // else count manually auto t_reader = HEJ::make_reader(argv[2]); input_events = 0; while(t_reader->read_event()) ++(*input_events); } if(std::abs(heprup.IDWTUP) == 4 || std::abs(heprup.IDWTUP) == 1){ // IDWTUP 4 or 1 assume average(weight)=xs, but we need sum(weights)=xs std::cout << "Found IDWTUP " << heprup.IDWTUP << ": " << "assuming \"cross section = average weight\".\n" << "converting to \"cross section = sum of weights\" "; global_reweight /= *input_events; } if(max_events && (*input_events > *max_events)){ // maximal number of events given global_reweight *= *input_events/static_cast(*max_events); std::cout << "Processing " << *max_events << " out of " << *input_events << " events\n"; } } HEJ::ScaleGenerator scale_gen{ config.scales.base, config.scales.factors, config.scales.max_ratio }; std::shared_ptr ran{ HEJ::make_RNG(config.rng.name, config.rng.seed)}; assert(ran != nullptr); HEJ::EventReweighter hej{ reader->heprup(), std::move(scale_gen), to_EventReweighterConfig(config), ran }; std::optional unweighter{}; if(config.weight_type != HEJ::WeightType::weighted) { unweighter = HEJ::Unweighter{}; } if(config.weight_type == HEJ::WeightType::partially_unweighted) { HEJ::BufferedEventReader buffered_reader{std::move(reader)}; assert(config.unweight_config); train( *unweighter, buffered_reader, hej, config.unweight_config->trials, config.unweight_config->max_dev, global_reweight/config.trials, config.fixed_order_jets, - config.ew_parameters + config.ew_parameters, + config.off_shell_tolerance ); reader = std::make_unique( std::move(buffered_reader) ); } // status infos & eye candy if (config.nlo.enabled){ std::cout << "HEJ@NLO Truncation Enabled for NLO order: " << config.nlo.nj << std::endl; } size_t nevent = 0; std::array nevent_type{0}, nfailed_type{0}; auto progress = make_progress_bar(reader->heprup().XSECUP); HEJ::CrossSectionAccumulator xs; std::map status_counter; size_t total_trials = 0; size_t total_resum = 0; // Loop over the events in the input file while(reader->read_event() && (!max_events || nevent < *max_events) ){ ++nevent; // reweight events so that the total cross section is conserved auto hepeup = reader->hepeup(); hepeup.XWGTUP *= global_reweight; - const auto FO_event = to_event(hepeup, config.fixed_order_jets, config.ew_parameters); + const auto FO_event = to_event( + hepeup, + config.fixed_order_jets, + config.ew_parameters, + config.off_shell_tolerance + ); if(FO_event.central().weight == 0) { static const bool warned_once = [argv,nevent](){ std::cerr << "WARNING: event number " << nevent << " in " << argv[2] << " has zero weight. " "Ignoring this and all further events with vanishing weight.\n"; return true; }(); (void) warned_once; // shut up compiler warnings continue; } auto resummed_events{ hej.reweight(FO_event, config.trials) }; // some bookkeeping for(auto const & s: hej.status()) ++status_counter[s]; total_trials+=hej.status().size(); ++nevent_type[FO_event.type()]; if(resummed_events.empty()) ++nfailed_type[FO_event.type()]; if(unweighter) { unweight(*unweighter, config.weight_type, resummed_events, *ran); } // analysis for(auto & ev: resummed_events){ //TODO: move pass_cuts to after phase space point generation bool passed = analyses.empty(); for(auto const & analysis: analyses){ if(analysis->pass_cuts(ev, FO_event)){ passed = true; analysis->fill(ev, FO_event); }; } if(passed){ writer.write(ev); } else { ev.parameters()*=0; // do not use discarded events afterwards } } xs.fill_correlated(resummed_events); total_resum += resummed_events.size(); if(progress) progress->increment(FO_event.central().weight); } // main event loop std::cout << '\n'; for(auto const & analysis: analyses){ analysis->finalise(); } writer.finish(); using namespace HEJ::event_type; std::cout<< "Events processed: " << nevent << " (" << total_resum << " resummed)"<< '\n'; std::cout << '\t' << name(EventType::first_type) << ": " << nevent_type[EventType::first_type] << ", failed to reconstruct " << nfailed_type[EventType::first_type] << '\n'; for(auto i=EventType::first_type+1; i<=EventType::last_type; i*=2){ std::cout << '\t' << name(static_cast(i)) << ": " << nevent_type[i] << ", failed to reconstruct " << nfailed_type[i] << '\n'; } std::cout << '\n' << xs << '\n'; std::cout << "Generation statistic: " << status_counter[HEJ::StatusCode::good] << "/" << total_trials << " trials successful.\n"; for(auto && entry: status_counter){ const double fraction = static_cast(entry.second)/total_trials; const int percent = std::round(100*fraction); std::cout << std::left << std::setw(17) << (to_string(entry.first) + ":") << " ["; for(int i = 0; i < percent/2; ++i) std::cout << '#'; for(int i = percent/2; i < 50; ++i) std::cout << ' '; std::cout << "] " < run_time = (clock::now() - start_time); std::cout << "\nFinished " << HEJ::Version::package_name() << " at " << time_to_string(clock::to_time_t(clock::now())) << "\n=> Runtime: " << run_time.count() << " sec (" << nevent/run_time.count() << " Events/sec).\n"; return EXIT_SUCCESS; }