diff --git a/current_generator/jgh_j.frm b/current_generator/jgh_j.frm index ebc06bd..71ffddf 100644 --- a/current_generator/jgh_j.frm +++ b/current_generator/jgh_j.frm @@ -1,41 +1,41 @@ */** * \brief Contraction of g -> H current with FKL current * * \authors The HEJ collaboration (see AUTHORS for details) * \date 2020 * \copyright GPLv2 or later * * The Higgs boson momentum is decomposed as pH = pH1 + pH2 * such that pH1, pH2 are both lightlike with positive energy * * See eq:S_gf_Hf in developer manual. */ #include- include/helspin.frm #include- include/write.frm -v pg,pb,pn,pH,pH1,pH2,pr; +v pa,pb,pn,pH,pH1,pH2,pr; i mu,nu; #do h1={+,-} #do h2={+,-} l [jgh_j `h1'`h2'] = ( - Eps(`h1'1, mu, pg, pr) - *VH(mu, nu, pg, pg-pH) + Eps(`h1'1, mu, pa, pr) + *VH(mu, nu, pa, pa-pH) *Current(`h2'1, pn, nu, pb) ); #enddo #enddo multiply replace_( pH, pH1 + pH2, pr, pb ); #call ContractCurrents .sort format O4; format c; #call WriteHeader(`OUTPUT') -#call WriteOptimised(`OUTPUT',jgh_j,2,pg,pb,pn,pH1,pH2,COMPLEX:,T1,T2) +#call WriteOptimised(`OUTPUT',jgh_j,2,pa,pb,pn,pH1,pH2,COMPLEX:,T1,T2) #call WriteFooter(`OUTPUT') .end diff --git a/doc/developer_manual/developer_manual.tex b/doc/developer_manual/developer_manual.tex index b075e50..7ed4965 100644 --- a/doc/developer_manual/developer_manual.tex +++ b/doc/developer_manual/developer_manual.tex @@ -1,2040 +1,2039 @@ \documentclass[a4paper,11pt]{article} \usepackage{fourier} \usepackage[T1]{fontenc} \usepackage{microtype} \usepackage{geometry} \usepackage{enumitem} \setlist[description]{leftmargin=\parindent,labelindent=\parindent} \usepackage{amsmath} \usepackage{amssymb} \usepackage[utf8x]{inputenc} \usepackage{graphicx} \usepackage{xcolor} \usepackage{todonotes} \usepackage{listings} \usepackage{xspace} \usepackage{tikz} \usepackage{slashed} \usepackage{subcaption} \usetikzlibrary{arrows.meta} \usetikzlibrary{shapes} \usetikzlibrary{calc} \usepackage[colorlinks,linkcolor={blue!50!black}]{hyperref} \graphicspath{{build/figures/}{figures/}} \usepackage[left]{showlabels} \renewcommand{\showlabelfont}{\footnotesize\color{darkgreen}} \emergencystretch \hsize \setlength{\marginparwidth}{2cm} \newcommand{\HEJ}{{\tt HEJ}\xspace} \newcommand{\HIGHEJ}{\emph{High Energy Jets}\xspace} \newcommand{\cmake}{\href{https://cmake.org/}{cmake}\xspace} \newcommand{\html}{\href{https://www.w3.org/html/}{html}\xspace} \newcommand{\YAML}{\href{http://yaml.org/}{YAML}\xspace} \newcommand{\QCDloop}{\href{https://github.com/scarrazza/qcdloop}{QCDloop}\xspace} \newcommand{\FORM}{{\tt FORM}\xspace} \newcommand\matel[4][]{\mathinner{\langle#2\vert#3\vert#4\rangle}_{#1}} \newcommand{\as}{\alpha_s} \DeclareRobustCommand{\mathgraphics}[1]{\vcenter{\hbox{\includegraphics{#1}}}} \def\spa#1.#2{\left\langle#1\,#2\right\rangle} \def\spb#1.#2{\left[#1\,#2\right]} \def\spaa#1.#2.#3{\langle\mskip-1mu{#1} | #2 | {#3}\mskip-1mu\rangle} \def\spbb#1.#2.#3{[\mskip-1mu{#1} | #2 | {#3}\mskip-1mu]} \def\spab#1.#2.#3{\langle\mskip-1mu{#1} | #2 | {#3}\mskip-1mu\rangle} \def\spba#1.#2.#3{\langle\mskip-1mu{#1}^+ | #2 | {#3}^+\mskip-1mu\rangle} \def\spav#1.#2.#3{\|\mskip-1mu{#1} | #2 | {#3}\mskip-1mu\|^2} \def\jc#1.#2.#3{j^{#1}_{#2#3}} % expectation value \newcommand{\ev}[1]{\text{E}\left[#1\right]} \definecolor{darkgreen}{rgb}{0,0.4,0} \lstset{ % backgroundcolor=\color{lightgray}, % choose the background color; you must add \usepackage{color} or \usepackage{xcolor} basicstyle=\footnotesize\usefont{T1}{DejaVuSansMono-TLF}{m}{n}, % the size of the fonts that are used for the code breakatwhitespace=false, % sets if automatic breaks should only happen at whitespace breaklines=false, % sets automatic line breaking captionpos=t, % sets the caption-position to bottom commentstyle=\color{red}, % comment style deletekeywords={...}, % if you want to delete keywords from the given language escapeinside={\%*}{*)}, % if you want to add LaTeX within your code extendedchars=true, % lets you use non-ASCII characters; for 8-bits encodings only, does not work with UTF-8 frame=false, % adds a frame around the code keepspaces=true, % keeps spaces in text, useful for keeping indentation of code (possibly needs columns=flexible) keywordstyle=\color{blue}, % keyword style otherkeywords={}, % if you want to add more keywords to the set numbers=none, % where to put the line-numbers; possible values are (none, left, right) numbersep=5pt, % how far the line-numbers are from the code rulecolor=\color{black}, % if not set, the frame-color may be changed on line-breaks within not-black text (e.g. comments (green here)) showspaces=false, % show spaces everywhere adding particular underscores; it overrides 'showstringspaces' showstringspaces=false, % underline spaces within strings only showtabs=false, % show tabs within strings adding particular underscores stepnumber=2, % the step between two line-numbers. If it's 1, each line will be numbered stringstyle=\color{gray}, % string literal style tabsize=2, % sets default tabsize to 2 spaces title=\lstname, emph={}, emphstyle=\color{darkgreen} } \begin{document} \tikzstyle{mynode}=[rectangle split,rectangle split parts=2, draw,rectangle split part fill={lightgray, none}] \title{\HEJ 2 developer manual} \author{} \maketitle \tableofcontents \newpage \section{Overview} \label{sec:overview} \HEJ 2 is a C++ program and library implementing an algorithm to apply \HIGHEJ resummation~\cite{Andersen:2008ue,Andersen:2008gc} to pre-generated fixed-order events. This document is intended to give an overview over the concepts and structure of this implementation. \subsection{Project structure} \label{sec:project} \HEJ 2 is developed under the \href{https://git-scm.com/}{git} version control system. The main repository is on the IPPP \href{https://gitlab.com/}{gitlab} server under \url{https://gitlab.dur.scotgrid.ac.uk/hej/hej}. To get a local copy, get an account on the gitlab server and use \begin{lstlisting}[language=sh,caption={}] git clone git@gitlab.dur.scotgrid.ac.uk:hej/hej.git \end{lstlisting} This should create a directory \texttt{hej} with the following contents: \begin{description} \item[README.md:] Basic information concerning \HEJ. \item[doc:] Contains additional documentation, see section~\ref{sec:doc}. \item[include:] Contains the C++ header files. \item[src:] Contains the C++ source files. \item[examples:] Example analyses and scale setting code. \item[t:] Contains the source code for the automated tests. \item[CMakeLists.txt:] Configuration file for the \cmake build system. See section~\ref{sec:cmake}. \item[cmake:] Auxiliary files for \cmake. This includes modules for finding installed software in \texttt{cmake/Modules} and templates for code generation during the build process in \texttt{cmake/Templates}. \item[config.yml:] Sample configuration file for running \HEJ 2. \item[current\_generator:] Contains the code for the current generator, see section~\ref{sec:cur_gen}. \item[FixedOrderGen:] Contains the code for the fixed-order generator, see section~\ref{sec:HEJFOG}. \item[COPYING:] License file. \item[AUTHORS:] List of \HEJ authors. \item[Changes-API.md:] Change history for the \HEJ API (application programming interface). \item[Changes.md:] History of changes relevant for \HEJ users. \end{description} In the following all paths are given relative to the \texttt{hej} directory. \subsection{Documentation} \label{sec:doc} The \texttt{doc} directory contains user documentation in \texttt{doc/sphinx} and the configuration to generate source code documentation in \texttt{doc/doxygen}. The user documentation explains how to install and run \HEJ 2. The format is \href{http://docutils.sourceforge.net/rst.html}{reStructuredText}, which is mostly human-readable. Other formats, like \html, can be generated with the \href{http://www.sphinx-doc.org/en/master/}{sphinx} generator with \begin{lstlisting}[language=sh,caption={}] make sphinx \end{lstlisting} To document the source code we use \href{https://www.stack.nl/~dimitri/doxygen/}{doxygen}. To generate \html documentation, use the command \begin{lstlisting}[language=sh,caption={}] make doxygen \end{lstlisting} in your \texttt{build/} directory. \subsection{Build system} \label{sec:cmake} For the most part, \HEJ 2 is a library providing classes and functions that can be used to add resummation to fixed-order events. In addition, there is a relatively small executable program leveraging this library to read in events from an input file and produce resummation events. Both the library and the program are built and installed with the help of \cmake. Debug information can be turned on by using \begin{lstlisting}[language=sh,caption={}] cmake base/directory -DCMAKE_BUILD_TYPE=Debug make install \end{lstlisting} This facilitates the use of debuggers like \href{https://www.gnu.org/software/gdb/}{gdb}. The main \cmake configuration file is \texttt{CMakeLists.txt}. It defines the compiler flags, software prerequisites, header and source files used to build \HEJ 2, and the automated tests. \texttt{cmake/Modules} contains module files that help with the detection of the software prerequisites and \texttt{cmake/Templates} template files for the automatic generation of header and source files. For example, this allows to only keep the version information in one central location (\texttt{CMakeLists.txt}) and automatically generate a header file from the template \texttt{Version.hh.in} to propagate this to the C++ code. \subsection{General coding guidelines} \label{sec:notes} The goal is to make the \HEJ 2 code well-structured and readable. Here are a number of guidelines to this end. \begin{description} \item[Observe the boy scout rule.] Always leave the code cleaner than how you found it. Ugly hacks can be useful for testing, but shouldn't make their way into the main branch. \item[Ask if something is unclear.] Often there is a good reason why code is written the way it is. Sometimes that reason is only obvious to the original author (use \lstinline!git blame! to find them), in which case they should be poked to add a comment. Sometimes there is no good reason, but nobody has had the time to come up with something better, yet. In some places the code might just be bad. \item[Don't break tests.] There are a number of tests in the \texttt{t} directory, which can be run with \lstinline!make test!. Ideally, all tests should run successfully in each git revision. If your latest commit broke a test and you haven't pushed to the central repository yet, you can fix it with \lstinline!git commit --amend!. If an earlier local commit broke a test, you can use \lstinline!git rebase -i! if you feel confident. Additionally each \lstinline!git push! is also automatically tested via the GitLab CI (see appendix~\ref{sec:CI}). \item[Test your new code.] When you add some new functionality, also add an automated test. This can be useful even if you don't know the ``correct'' result because it prevents the code from changing its behaviour silently in the future. \href{http://www.valgrind.org/}{valgrind} is a very useful tool to detect potential memory leaks. The code coverage of all tests can be generated with \href{https://gcovr.com/en/stable/}{gcovr}. Therefore add the flag \lstinline!-DTEST_COVERAGE=True! to cmake and run \lstinline!make ctest_coverage!. \item[Stick to the coding style.] It is somewhat easier to read code that has a uniform coding and indentation style. We don't have a strict style, but it helps if your code looks similar to what is already there. \end{description} \section{Program flow} \label{sec:flow} A run of the \HEJ 2 program has three stages: initialisation, event processing, and cleanup. The following sections outline these stages and their relations to the various classes and functions in the code. Unless denoted otherwise, all classes and functions are part of the \lstinline!HEJ! namespace. The code for the \HEJ 2 program is in \texttt{src/bin/HEJ.cc}, all other code comprises the \HEJ 2 library. Classes and free functions are usually implemented in header and source files with a corresponding name, i.e. the code for \lstinline!MyClass! can usually be found in \texttt{include/HEJ/MyClass.hh} and \texttt{src/MyClass.cc}. \subsection{Initialisation} \label{sec:init} The first step is to load and parse the \YAML configuration file. The entry point for this is the \lstinline!load_config! function and the related code can be found in \texttt{include/HEJ/YAMLreader.hh}, \texttt{include/HEJ/config.hh} and the corresponding \texttt{.cc} files in the \texttt{src} directory. The implementation is based on the \href{https://github.com/jbeder/yaml-cpp}{yaml-cpp} library. The \lstinline!load_config! function returns a \lstinline!Config! object containing all settings. To detect potential mistakes as early as possible, we throw an exception whenever one of the following errors occurs: \begin{itemize} \item There is an unknown option in the \YAML file. \item A setting is invalid, for example a string is given where a number would be expected. \item An option value is not set. \end{itemize} The third rule is sometimes relaxed for ``advanced'' settings with an obvious default, like for importing custom scales or analyses. The information stored in the \lstinline!Config! object is then used to initialise various objects required for the event processing stage described in section~\ref{sec:processing}. First, the \lstinline!get_analyses! function creates a number objects that inherits from the \lstinline!Analysis! interface.\footnote{In the context of C++ the proper technical expression is ``pure abstract class''.} Using an interface allows us to decide the concrete type of the analysis at run time instead of having to make a compile-time decision. Depending on the settings, \lstinline!get_analyses! creates a number of user-defined analyses loaded from one or more external libraries and \textsc{rivet} analyses (see the user documentation \url{https://hej.web.cern.ch/HEJ/doc/current/user/}) Together with a number of further objects, whose roles are described in section~\ref{sec:processing}, we also initialise the global random number generator. We again use an interface to defer deciding the concrete type until the program is actually run. Currently, we support the \href{https://mixmax.hepforge.org/}{MIXMAX} (\texttt{include/HEJ/Mixmax.hh}) and Ranlux64 (\texttt{include/HEJ/Ranlux64.hh}) random number generators, both are provided by \href{http://proj-clhep.web.cern.ch/}{CLHEP}. We also set up a \lstinline!HEJ::EventReader! object for reading events either in the the Les Houches event file format~\cite{Alwall:2006yp} or an \href{https://www.hdfgroup.org/}{HDF5}-based format~\cite{Hoeche:2019rti}. To allow making the decision at run time, \lstinline!HEJ::EventReader! is an abstract base class defined in \texttt{include/HEJ/EventReader.hh} and the implementations of the derived classes are in \texttt{include/HEJ/LesHouchesReader.hh}, \texttt{include/HEJ/HDF5Reader.hh} and the corresponding \texttt{.cc} source files in the \texttt{src} directory. The \lstinline!LesHouchesReader! leverages \href{http://home.thep.lu.se/~leif/LHEF/}{\texttt{include/LHEF/LHEF.h}}. A small wrapper around the \href{https://www.boost.org/doc/libs/1_67_0/libs/iostreams/doc/index.html}{boost iostreams} library allows us to also read event files compressed with \href{https://www.gnu.org/software/gzip/}{gzip}. The wrapper code is in \texttt{include/HEJ/stream.hh} and the \texttt{src/stream.cc}. If unweighting is enabled, we also initialise an unweighter as defined in \texttt{include/HEJ/Unweighter.hh}. The unweighting strategies are explained in section~\ref{sec:unweight}. \subsection{Event processing} \label{sec:processing} In the second stage events are continuously read from the event file. After jet clustering, a number of corresponding resummation events are generated for each input event and fed into the analyses and a number of output files. The roles of various classes and functions are illustrated in the following flow chart: \begin{center} \begin{tikzpicture}[node distance=2cm and 5mm] \node (reader) [mynode] {\lstinline!EventReader::read_event!\nodepart{second}{read event}}; \node (data) [mynode,below=of reader] {\lstinline!Event::EventData! constructor\nodepart{second}{convert to \HEJ object}}; \node (cluster) [mynode,below=of data] {\lstinline!Event::EventData::cluster!\nodepart{second}{cluster jets \& classify \lstinline!EventType!}}; \node (resum) [mynode,below=of cluster] {\lstinline!EventReweighter::reweight!\nodepart{second}{perform resummation}}; \node (cut) [mynode,below=of resum] {\lstinline!Analysis::pass_cuts!\nodepart{second}{apply cuts}}; \node (cut) [mynode,below=of resum] {\lstinline!Analysis::pass_cuts!\nodepart{second}{apply cuts}}; \node (unweight) [mynode,below=of cut] {\lstinline!Unweighter::unweight!\nodepart{second}{unweight (optional)}}; \node (fill) [mynode,below left=of unweight] {\lstinline!Analysis::fill!\nodepart{second}{analyse event}}; \node (write) [mynode,below right=of unweight] {\lstinline!CombinedEventWriter::write!\nodepart{second}{write out event}}; \node (control) [below=of unweight] {}; \draw[-{Latex[length=3mm, width=1.5mm]}] (reader.south) -- node[left] {\lstinline!LHEF::HEPEUP!} (data.north); \draw[-{Latex[length=3mm, width=1.5mm]}] (data.south) -- node[left] {\lstinline!Event::EventData!} (cluster.north); \draw[-{Latex[length=3mm, width=1.5mm]}] (cluster.south) -- node[left] {\lstinline!Event!} (resum.north); \draw[-{Latex[length=3mm, width=1.5mm]}] (resum.south) -- (cut.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(resum.south)+(10mm, 0cm)$) -- ($(cut.north)+(10mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(resum.south)+(5mm, 0cm)$) -- ($(cut.north)+(5mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(resum.south)-(5mm, 0cm)$) -- ($(cut.north)-(5mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(resum.south)-(10mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(cut.north)-(10mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] (cut.south) -- (unweight.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cut.south)+(7mm, 0cm)$) -- ($(unweight.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cut.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(unweight.north)-(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(unweight.south)-(3mm,0mm)$) .. controls ($(control)-(3mm,0mm)$) ..node[left] {\lstinline!Event!} (fill.east); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(unweight.south)-(3mm,0mm)$) .. controls ($(control)-(3mm,0mm)$) .. (write.west); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(unweight.south)+(3mm,0mm)$) .. controls ($(control)+(3mm,0mm)$) .. (fill.east); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(unweight.south)+(3mm,0mm)$) .. controls ($(control)+(3mm,0mm)$) ..node[right] {\lstinline!Event!} (write.west); \end{tikzpicture} \end{center} \lstinline!EventData! is an intermediate container, its members are completely accessible. In contrast after jet clustering and classification the phase space inside \lstinline!Event! can not be changed any more (\href{https://wikipedia.org/wiki/Builder_pattern}{Builder design pattern}). The resummation is performed by the \lstinline!EventReweighter! class, which is described in more detail in section~\ref{sec:resum}. The \lstinline!CombinedEventWriter! writes events to zero or more output files. To this end, it contains a number of objects implementing the \lstinline!EventWriter! interface. These event writers typically write the events to a file in a given format. We currently have the \lstinline!LesHouchesWriter! for event files in the Les Houches Event File format, the \lstinline!HDF5Writer! for \href{https://www.hdfgroup.org/}{HDF5}~\cite{Hoeche:2019rti} and the \lstinline!HepMC2Writer! or \lstinline!HepMC3Writer! for the \href{https://hepmc.web.cern.ch/hepmc/}{HepMC} format (Version 2 and 3). \subsection{Resummation} \label{sec:resum} In the \lstinline!EventReweighter::reweight! member function, we first classify the input fixed-order event (FKL, unordered, non-resummable, \dots) and decide according to the user settings whether to discard, keep, or resum the event. If we perform resummation for the given event, we generate a number of trial \lstinline!PhaseSpacePoint! objects. Phase space generation is discussed in more detail in section~\ref{sec:pspgen}. We then perform jet clustering according to the settings for the resummation jets on each \lstinline!PhaseSpacePoint!, update the factorisation and renormalisation scale in the resulting \lstinline!Event! and reweight it according to the ratio of pdf factors and \HEJ matrix elements between resummation and original fixed-order event: \begin{center} \begin{tikzpicture}[node distance=1.5cm and 5mm] \node (in) {}; \node (treat) [diamond,draw,below=of in,minimum size=3.5cm, label={[anchor=west, inner sep=8pt]west:discard}, label={[anchor=east, inner sep=14pt]east:keep}, label={[anchor=south, inner sep=20pt]south:reweight} ] {}; \draw (treat.north west) -- (treat.south east); \draw (treat.north east) -- (treat.south west); \node (psp) [mynode,below=of treat] {\lstinline!PhaseSpacePoint! constructor}; \node (cluster) [mynode,below=of psp] {\lstinline!Event::EventData::cluster!\nodepart{second}{cluster jets}}; \node (colour) [mynode,below=of cluster] {\lstinline!Event::generate_colours()!\nodepart{second}{generate particle colour}}; \node (gen_scales) [mynode,below=of colour] {\lstinline!ScaleGenerator::operator()!\nodepart{second}{update scales}}; \node (rescale) [mynode,below=of gen_scales] {\lstinline!PDF::pdfpt!, \lstinline!MatrixElement!\nodepart{second}{reweight}}; \node (out) [below of=rescale] {}; \draw[-{Latex[length=3mm, width=1.5mm]}] (in.south) -- node[left] {\lstinline!Event!} (treat.north); \draw[-{Latex[length=3mm, width=1.5mm]}] (treat.south) -- node[left] {\lstinline!Event!} (psp.north); \draw[-{Latex[length=3mm, width=1.5mm]}] (psp.south) -- (cluster.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(psp.south)+(7mm, 0cm)$) -- ($(cluster.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(psp.south)-(7mm, 0cm)$) -- node[left] {\lstinline!PhaseSpacePoint!} ($(cluster.north)-(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] (cluster.south) -- (colour.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cluster.south)+(7mm, 0cm)$) -- ($(colour.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cluster.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(colour.north)-(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] (colour.south) -- (gen_scales.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(colour.south)+(7mm, 0cm)$) -- ($(gen_scales.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(colour.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(gen_scales.north)-(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] (gen_scales.south) -- (rescale.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(gen_scales.south)+(7mm, 0cm)$) -- ($(rescale.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(gen_scales.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(rescale.north)-(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] (rescale.south) -- (out.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(rescale.south)+(7mm, 0cm)$) -- ($(out.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(rescale.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(out.north)-(7mm, 0cm)$); \node (helper) at ($(treat.east) + (15mm,0cm)$) {}; \draw[-{Latex[length=3mm, width=1.5mm]}] (treat.east) -- ($(treat.east) + (15mm,0cm)$) -- node[left] {\lstinline!Event!} (helper |- gen_scales.east) -- (gen_scales.east) ; \end{tikzpicture} \end{center} \subsection{Phase space point generation} \label{sec:pspgen} The resummed and matched \HEJ cross section for pure jet production of FKL configurations is given by (cf. eq. (3) of~\cite{Andersen:2018tnm}) \begin{align} \label{eq:resumdijetFKLmatched2} % \begin{split} \sigma&_{2j}^\mathrm{resum, match}=\sum_{f_1, f_2}\ \sum_m \prod_{j=1}^m\left( \int_{p_{j\perp}^B=0}^{p_{j\perp}^B=\infty} \frac{\mathrm{d}^2\mathbf{p}_{j\perp}^B}{(2\pi)^3}\ \int \frac{\mathrm{d} y_j^B}{2} \right) \ (2\pi)^4\ \delta^{(2)}\!\!\left(\sum_{k=1}^{m} \mathbf{p}_{k\perp}^B\right)\nonumber\\ &\times\ x_a^B\ f_{a, f_1}(x_a^B, Q_a^B)\ x_b^B\ f_{b, f_2}(x_b^B, Q_b^B)\ \frac{\overline{\left|\mathcal{M}_\text{LO}^{f_1f_2\to f_1g\cdots gf_2}\big(\big\{p^B_j\big\}\big)\right|}^2}{(\hat {s}^B)^2}\nonumber\\ & \times (2\pi)^{-4+3m}\ 2^m \nonumber\\ &\times\ \sum_{n=2}^\infty\ \int_{p_{1\perp}=p_{\perp,\mathrm{min}} }^{p_{1\perp}=\infty} \frac{\mathrm{d}^2\mathbf{p}_{1\perp}}{(2\pi)^3}\ \int_{p_{n\perp}=p_{\perp,\mathrm{min}}}^{p_{n\perp}=\infty} \frac{\mathrm{d}^2\mathbf{p}_{n\perp}}{(2\pi)^3}\ \prod_{i=2}^{n-1}\int_{p_{i\perp}=\lambda}^{p_{i\perp}=\infty} \frac{\mathrm{d}^2\mathbf{p}_{i\perp}}{(2\pi)^3}\ (2\pi)^4\ \delta^{(2)}\!\!\left(\sum_{k=1}^n \mathbf{p}_{k\perp}\right )\\ &\times \ \mathbf{T}_y \prod_{i=1}^n \left(\int \frac{\mathrm{d} y_i}{2}\right)\ \mathcal{O}_{mj}^e\ \left(\prod_{l=1}^{m-1}\delta^{(2)}(\mathbf{p}_{\mathcal{J}_{l}\perp}^B - \mathbf{j}_{l\perp})\right)\ \left(\prod_{l=1}^m\delta(y^B_{\mathcal{J}_l}-y_{\mathcal{J}_l})\right) \ \mathcal{O}_{2j}(\{p_i\})\nonumber\\ &\times \frac{(\hat{s}^B)^2}{\hat{s}^2}\ \frac{x_a f_{a,f_1}(x_a, Q_a)\ x_b f_{b,f_2}(x_b, Q_b)}{x_a^B\ f_{a,f_1}(x_a^B, Q_a^B)\ x_b^B\ f_{b,f_2}(x_b^B, Q_b^B)}\ \frac{\overline{\left|\mathcal{M}_{\mathrm{HEJ}}^{f_1 f_2\to f_1 g\cdots gf_2}(\{ p_i\})\right|}^2}{\overline{\left|\mathcal{M}_\text{LO, HEJ}^{f_1f_2\to f_1g\cdots gf_2}\big(\big\{p^B_j\big\}\big)\right|}^{2}} \,.\nonumber % \end{split} \end{align} The first two lines correspond to the generation of the fixed-order input events with incoming partons $f_1, f_2$ and outgoing momenta $p_j^B$, where $\mathbf{p}_{j\perp}^B$ and $y_j^B$ denote the respective transverse momentum and rapidity. Note that, at leading order, these coincide with the fixed-order jet momenta $p_{\mathcal{J}_j}^B$. $f_{a,f_1}(x_a, Q_a),f_{b,f_2}(x_b, Q_b)$ are the pdf factors for the incoming partons with momentum fractions $x_a$ and $x_b$. The square of the partonic centre-of-mass energy is denoted by $\hat{s}^B$ and $\mathcal{M}_\text{LO}^{f_1f_2\to f_1g\cdots gf_2}$ is the leading-order matrix element. The third line is a factor accounting for the different multiplicities between fixed-order and resummation events. Lines four and five are the integration over the resummation phase space described in this section. $p_i$ are the momenta of the outgoing partons in resummation phase space. $\mathbf{T}_y$ denotes rapidity ordering and $\mathcal{O}_{mj}^e$ projects out the exclusive $m$-jet component. The relation between resummation and fixed-order momenta is fixed by the $\delta$ functions. The first sets each transverse fixed-order jet momentum to some function $\mathbf{j_{l\perp}}$ of the resummation momenta. The exact form is described in section~\ref{sec:ptj_res}. The second $\delta$ forces the rapidities of resummation and fixed-order jets to be the same. Finally, the last line is the reweighting of pdf and matrix element factors already shown in section~\ref{sec:resum}. There are two kinds of cut-off in the integration over the resummation partons. $\lambda$ is a technical cut-off connected to the cancellation of infrared divergencies between real and virtual corrections. Its numerical value is set in \texttt{include/HEJ/Constants.h}. $p_{\perp,\mathrm{min}}$ regulates and \emph{uncancelled} divergence in the extremal parton momenta. Its size is set by the user configuration \url{https://hej.web.cern.ch/HEJ/doc/current/user/HEJ.html#settings}. It is straightforward to generalise eq.~(\ref{eq:resumdijetFKLmatched2}) to unordered configurations and processes with additional colourless emissions, for example a Higgs or electroweak boson. In the latter case only the fixed-order integration and the matrix elements change. \subsubsection{Gluon Multiplicity} \label{sec:psp_ng} The first step in evaluating the resummation phase space in eq.~(\ref{eq:resumdijetFKLmatched2}) is to randomly pick terms in the sum over the number of emissions. This sampling of the gluon multiplicity is done in the \lstinline!PhaseSpacePoint::sample_ng! function in \texttt{src/PhaseSpacePoint.cc}. The typical number of extra emissions depends strongly on the rapidity span of the underlying fixed-order event. Let us, for example, consider a fixed-order FKL-type multi-jet configuration with rapidities $y_{j_f},\,y_{j_b}$ of the most forward and backward jets, respectively. By eq.~(\ref{eq:resumdijetFKLmatched2}), the jet multiplicity and the rapidity of each jet are conserved when adding resummation. This implies that additional hard radiation is restricted to rapidities $y$ within a region $y_{j_b} \lesssim y \lesssim y_{j_f}$. Within \HEJ, we require the most forward and most backward emissions to be hard \todo{specify how hard} in order to avoid divergences, so this constraint in fact applies to \emph{all} additional radiation. To simplify the remaining discussion, let us remove the FKL rapidity ordering \begin{equation} \label{eq:remove_y_order} \mathbf{T}_y \prod_{i=1}^n\int \frac{\mathrm{d}y_i}{2} = \frac{1}{n!}\prod_{i=1}^n\int \frac{\mathrm{d}y_i}{2}\,, \end{equation} where all rapidity integrals now cover a region which is approximately bounded by $y_{j_b}$ and $y_{j_f}$. Each of the $m$ jets has to contain at least one parton; selecting random emissions we can rewrite the phase space integrals as \begin{equation} \label{eq:select_jets} \frac{1}{n!}\prod_{i=1}^n\int [\mathrm{d}p_i] = \left(\prod_{i=1}^{m}\int [\mathrm{d}p_i]\ {\cal J}_i(p_i)\right) \frac{1}{n_g!}\prod_{i=m+1}^{m+n_g}\int [\mathrm{d}p_i] \end{equation} with jet selection functions \begin{equation} \label{eq:def_jet_selection} {\cal J}_i(p) = \begin{cases} 1 &p\text{ clustered into jet }i\\ 0 & \text{otherwise} \end{cases} \end{equation} and $n_g \equiv n - m$. Here and in the following we use the short-hand notation $[\mathrm{d}p_i]$ to denote the phase-space measure for parton $i$. As is evident from eq.~\eqref{eq:select_jets}, adding an extra emission $n_g+1$ introduces a suppression factor $\tfrac{1}{n_g+1}$. However, the additional phase space integral also results in an enhancement proportional to $\Delta y_{j_f j_b} = y_{j_f} - y_{j_b}$. This is a result of the rapidity-independence of the MRK limit of the integrand, consisting of the matrix elements divided by the flux factor. Indeed, we observe that the typical number of gluon emissions is to a good approximation proportional to the rapidity separation and the phase space integral is dominated by events with $n_g \approx \Delta y_{j_f j_b}$. For the actual phase space sampling, we assume a Poisson distribution and extract the mean number of gluon emissions in different rapidity bins and fit the results to a linear function in $\Delta y_{j_f j_b}$, finding a coefficient of $0.975$ for the inclusive production of a Higgs boson with two jets. Here are the observed and fitted average gluon multiplicities as a function of $\Delta y_{j_f j_b}$: \begin{center} \includegraphics[width=.75\textwidth]{ng_mean} \end{center} As shown for two rapidity slices the assumption of a Poisson distribution is also a good approximation: \begin{center} \includegraphics[width=.49\textwidth]{{ng_1.5}.pdf}\hfill \includegraphics[width=.49\textwidth]{{ng_5.5}.pdf} \end{center} For configurations beyond leading-log, gluon emission is not allowed everywhere and the rapidity span has to be adjusted. When determining the most forward and backward jets, we exclude unordered emissions and the extremal jet in extremal quark-antiquark emissions. In addition, we subtract the rapidity region between central quark and antiquark emission. Technically, we could have two or more additional gluons inside one of the latter jets, in which case there could be gluons that end up in between the jet centres but still outside the region spanned by quark and antiquark. However, the phase space for this is very small and should not affect the average number of emitted gluons very much. \subsubsection{Number of Gluons inside Jets} \label{sec:psp_ng_jet} For each of the $n_g$ gluon emissions we can split the phase-space integral into a (disconnected) region inside the jets and a remainder: \begin{equation} \label{eq:psp_split} \int [\mathrm{d}p_i] = \int [\mathrm{d}p_i]\, \theta\bigg(\sum_{j=1}^{m}{\cal J}_j(p_i)\bigg) + \int [\mathrm{d}p_i]\, \bigg[1-\theta\bigg(\sum_{j=1}^{m}{\cal J}_j(p_i)\bigg)\bigg]\,. \end{equation} The next step is to decide how many of the gluons will form part of a jet. This is done in the \lstinline!PhaseSpacePoint::sample_ng_jets! function. We choose an importance sampling which is flat in the plane spanned by the azimuthal angle $\phi$ and the rapidity $y$. This is observed in BFKL and valid in the limit of Multi-Regge-Kinematics (MRK). Furthermore, we assume anti-$k_t$ jets, which cover an area of $\pi R^2$. In principle, the total accessible area in the $y$-$\phi$ plane is given by $2\pi \Delta y_{fb}$, where $\Delta y_{fb}\geq \Delta y_{j_f j_b}$ is the a priori unknown rapidity separation between the most forward and backward partons. In most cases the extremal jets consist of single partons, so that $\Delta y_{fb} = \Delta y_{j_f j_b}$. For the less common case of two partons forming a jet we observe a maximum distance of $R$ between the constituents and the jet centre. In rare cases jets have more than two constituents. Empirically, they are always within a distance of $\tfrac{5}{3}R$ to the centre of the jet, so $\Delta y_{fb} \leq \Delta y_{j_f j_b} + \tfrac{10}{3} R$. In practice, the extremal partons are required to carry a large fraction of the jet transverse momentum and will therefore be much closer to the jet axis. In summary, for sufficiently large rapidity separations we can use the approximation $\Delta y_{fb} \approx \Delta y_{j_f j_b}$. This scenario is depicted here: \begin{center} \includegraphics[width=0.5\linewidth]{ps_large_y} \end{center} If there is no overlap between jets, the probability $p_{\cal J, >}$ for an extra gluon to end up inside a jet is then given by \begin{equation} \label{eq:p_J_large} p_{\cal J, >} = \frac{(m - 1)\*R^2}{2\Delta y_{j_f j_b}}\,. \end{equation} For a very small rapidity separation, eq.~\eqref{eq:p_J_large} obviously overestimates the true probability. The maximum phase space covered by jets in the limit of a vanishing rapidity distance between all partons is $2mR \Delta y_{fb}$: \begin{center} \includegraphics[width=0.5\linewidth]{ps_small_y} \end{center} We therefore estimate the probability for a parton to end up inside a jet as \begin{equation} \label{eq:p_J} p_{\cal J} = \min\bigg(\frac{(m - 1)\*R^2}{2\Delta y_{j_f j_b}}, \frac{mR}{\pi}\bigg)\,. \end{equation} Here we compare this estimate with the actually observed fraction of additional emissions into jets as a function of the rapidity separation: \begin{center} \includegraphics[width=0.75\linewidth]{pJ} \end{center} Again, for configurations beyond leading-log the allowed rapidity range has to be modified as explained in section~\ref{sec:psp_ng}. We also subtract the areas of unordered jets and the extremal jet in extremal quark-antiquark emission when we estimate the phase space area covered by jets. The reason is that in this case any additional emission inside such a jet would have to beyond the hard parton dominating the next jet in rapidity, which is possible but rare. \subsubsection{Gluons outside Jets} \label{sec:gluons_nonjet} Using our estimate for the probability of a gluon to be a jet constituent, we choose a number $n_{g,{\cal J}}$ of gluons inside jets, which also fixes the number $n_g - n_{g,{\cal J}}$ of gluons outside jets. As explained later on, we need to generate the momenta of the gluons outside jets first. This is done in \lstinline!PhaseSpacePoint::gen_non_jet!. The azimuthal angle $\phi$ is generated flat within $0\leq \phi \leq 2 \pi$. The allowed rapidity interval is set by the most forward and backward partons, which are necessarily inside jets. Since these parton rapidities are not known at this point, we also have to postpone the rapidity generation for the gluons outside jets. For the scalar transverse momentum $p_\perp = |\mathbf{p}_\perp|$ of a gluon outside jets we use the parametrisation \begin{equation} \label{eq:p_nonjet} p_\perp = \lambda + \tilde{p}_\perp\*\tan(\tau\*r)\,, \qquad \tau = \arctan\bigg(\frac{p_{\perp{\cal J}_\text{min}} - \lambda}{\tilde{p}_\perp}\bigg)\,. \end{equation} For $r \in [0,1)$, $p_\perp$ is always less than the minimum momentum $p_{\perp{\cal J}_\text{min}}$ required for a jet. $\tilde{p}_\perp$ is a free parameter, a good empirical value is $\tilde{p}_\perp = [1.3 + 0.2\*(n_g - n_{g,\cal J})]\,$GeV \subsubsection{Resummation jet momenta} \label{sec:ptj_res} Since \HEJ generated additional soft emissions, their recoil have to be compensated through the remaining particles. In the traditional reshuffling this recoil was only distributed over all jets. However in anticipation of including more bosons ($WW+2j$), or less jets ($H+1j$) this changed to also include bosons in the reshuffling. In the following we will still always call the recoilers \emph{jet} instead of generic \emph{Born particles}, since the bosons are treated completely equivalent to (massive) jets. On the one hand, each jet momentum is given by the sum of its constituent momenta. On the other hand, the resummation jet momenta are fixed by the constraints in line five of the master equation~\eqref{eq:resumdijetFKLmatched2}. We therefore have to calculate the resummation jet momenta from these constraints before generating the momenta of the gluons inside jets. This is done in \lstinline!PhaseSpacePoint::reshuffle! and in the free \lstinline!resummation_jet_momenta! function (declared in \texttt{resummation\_jet.hh}). The resummation jet momenta are determined by the $\delta$ functions in line five of eq.~(\ref{eq:resumdijetFKLmatched2}). The rapidities are fixed to the rapidities of the jets in the input fixed-order events, so that the FKL ordering is guaranteed to be preserved. In traditional \HEJ reshuffling the transverse momentum are given through \begin{equation} \label{eq:ptreassign_old} \mathbf{p}^B_{\mathcal{J}_{l\perp}} = \mathbf{j}_{l\perp} \equiv \mathbf{p}_{\mathcal{J}_{l}\perp} + \mathbf{q}_\perp \,\frac{|\mathbf{p}_{\mathcal{J}_{l}\perp}|}{P_\perp}, \end{equation} where $\mathbf{q}_\perp = \sum_{j=1}^n \mathbf{p}_{i\perp} \bigg[1-\theta\bigg(\sum_{j=1}^{m}{\cal J}_j(p_i)\bigg)\bigg] $ is the total transverse momentum of all partons \emph{outside} jets and $P_\perp = \sum_{j=1}^m |\mathbf{p}_{\mathcal{J}_{j}\perp}|$. Since the total transverse momentum of an event vanishes, we can also use $\mathbf{q}_\perp = - \sum_{j=1}^m \mathbf{p}_{\mathcal{J}_{j}\perp}$. Eq.~(\ref{eq:ptreassign}) is a non-linear system of equations in the resummation jet momenta $\mathbf{p}_{\mathcal{J}_{l}\perp}$. Hence we would have to solve \begin{equation} \label{eq:ptreassign_eq} \mathbf{p}_{\mathcal{J}_{l}\perp}=\mathbf{j}^B_{l\perp} \equiv\mathbf{j}_{l\perp}^{-1} \left(\mathbf{p}^B_{\mathcal{J}_{l\perp}}\right) \end{equation} numerically. Since solving such a system is computationally expensive, we instead change the reshuffling around to be linear in the resummation jet momenta. Hence~\eqref{eq:ptreassign_eq} gets replaces by \begin{equation} \label{eq:ptreassign} \mathbf{p}_{\mathcal{J}_{l\perp}} = \mathbf{j}^B_{l\perp} \equiv \mathbf{p}^B_{\mathcal{J}_{l}\perp} - \mathbf{q}_\perp \,\frac{|\mathbf{p}^B_{\mathcal{J}_{l}\perp}|}{P^B_\perp}, \end{equation} which is linear in the resummation momentum. Consequently the equivalent of~\eqref{eq:ptreassign_old} is non-linear in the Born momentum. However the exact form of~\eqref{eq:ptreassign_old} is not relevant for the resummation. Both methods have been tested for two and three jets with the \textsc{rivet} standard analysis \texttt{MC\_JETS}. They didn't show any differences even after $10^9$ events. The reshuffling relation~\eqref{eq:ptreassign} allows the transverse momenta $p^B_{\mathcal{J}_{l\perp}}$ of the fixed-order jets to be somewhat below the minimum transverse momentum of resummation jets. It is crucial that this difference does not become too large, as the fixed-order cross section diverges for vanishing transverse momenta. In the production of a Higgs boson with resummation jets above $30\,$GeV we observe that the contribution from fixed-order events with jets softer than about $20\,$GeV can be safely neglected. This is shown in the following plot of the differential cross section over the transverse momentum of the softest fixed-order jet: \begin{center} \includegraphics[width=.75\textwidth]{ptBMin} \end{center} Finally, we have to account for the fact that the reshuffling relation~\eqref{eq:ptreassign} is non-linear in the Born momenta. To arrive at the master formula~\eqref{eq:resumdijetFKLmatched2} for the cross section, we have introduced unity in the form of an integral over the Born momenta with $\delta$ functions in the integrand, that is \begin{equation} \label{eq:delta_intro} 1 = \int_{p_{j\perp}^B=0}^{p_{j\perp}^B=\infty} \mathrm{d}^2\mathbf{p}_{j\perp}^B\delta^{(2)}(\mathbf{p}_{\mathcal{J}_{j\perp}}^B - \mathbf{j}_{j\perp})\,. \end{equation} If the arguments of the $\delta$ functions are not linear in the Born momenta, we have to compensate with additional Jacobians as factors. Explicitly, for the reshuffling relation~\eqref{eq:ptreassign} we have \begin{equation} \label{eq:delta_rewrite} \prod_{l=1}^m \delta^{(2)}(\mathbf{p}_{\mathcal{J}_{l\perp}}^B - \mathbf{j}_{l\perp}) = \Delta \prod_{l=1}^m \delta^{(2)}(\mathbf{p}_{\mathcal{J}_{l\perp}} - \mathbf{j}_{l\perp}^B)\,, \end{equation} where $\mathbf{j}_{l\perp}^B$ is given by~\eqref{eq:ptreassign_eq} and only depends on the Born momenta. We have extended the product to run to $m$ instead of $m-1$ by eliminating the last $\delta$ function $\delta^{(2)}\!\!\left(\sum_{k=1}^n \mathbf{p}_{k\perp}\right )$. The Jacobian $\Delta$ is the determinant of a $2m \times 2m$ matrix with $l, l' = 1,\dots,m$ and $X, X' = x,y$. \begin{equation} \label{eq:jacobian} \Delta = \left|\frac{\partial\,\mathbf{j}^B_{l'\perp}}{\partial\, \mathbf{p}^B_{{\cal J}_l \perp}} \right| = \left| \delta_{l l'} \delta_{X X'} - \frac{q_X\, p^B_{{\cal J}_{l'}X'}}{\left|\mathbf{p}^B_{{\cal J}_{l'} \perp}\right| P^B_\perp}\left(\delta_{l l'} - \frac{\left|\mathbf{p}^B_{{\cal J}_l \perp}\right|}{P^B_\perp}\right)\right|\,. \end{equation} The determinant is calculated in \lstinline!resummation_jet_weight!, again coming from the \texttt{resummation\_jet.hh} header. Having to introduce this Jacobian is not a disadvantage specific to the new reshuffling. If we instead use the old reshuffling relation~\eqref{eq:ptreassign_old} we \emph{also} have to introduce a similar Jacobian since we actually want to integrate over the resummation phase space and need to transform the argument of the $\delta$ function to be linear in the resummation momenta for this. \subsubsection{Gluons inside Jets} \label{sec:gluons_jet} After the steps outlined in section~\ref{sec:psp_ng_jet}, we have a total number of $m + n_{g,{\cal J}}$ constituents. In \lstinline!PhaseSpacePoint::distribute_jet_partons! we distribute them randomly among the jets such that each jet has at least one constituent. We then generate their momenta in \lstinline!PhaseSpacePoint::split! using the \lstinline!Splitter! class. The phase space integral for a jet ${\cal J}$ is given by \begin{equation} \label{eq:ps_jetparton} \prod_{i\text{ in }{\cal J}} \bigg(\int \mathrm{d}\mathbf{p}_{i\perp}\ \int \mathrm{d} y_i \bigg)\delta^{(2)}\Big(\sum_{i\text{ in }{\cal J}} \mathbf{p}_{i\perp} - \mathbf{j}_{\perp}^B\Big)\delta(y_{\mathcal{J}}-y^B_{\mathcal{J}})\,. \end{equation} For jets with a single constituent, the parton momentum is obiously equal to the jet momentum. In the case of two constituents, we observe that the partons are always inside the jet cone with radius $R$ and often very close to the jet centre. The following plots show the typical relative distance $\Delta R/R$ for this scenario: \begin{center} \includegraphics[width=0.45\linewidth]{dR_2} \includegraphics[width=0.45\linewidth]{dR_2_small} \end{center} According to this preference for small values of $\Delta R$, we parametrise the $\Delta R$ integrals as \begin{equation} \label{eq:dR_sampling} \frac{\Delta R}{R} = \begin{cases} 0.25\,x_R & x_R < 0.4 \\ 1.5\,x_R - 0.5 & x_R \geq 0.4 \end{cases}\,. \end{equation} Next, we generate $\Theta_1 \equiv \Theta$ and use the constraint $\Theta_2 = \Theta \pm \pi$. The transverse momentum of the first parton is then given by \begin{equation} \label{eq:delta_constraints} p_{1\perp} = \frac{p_{\mathcal{J} y} - \tan(\phi_2) p_{\mathcal{J} x}}{\sin(\phi_1) - \tan(\phi_2)\cos(\phi_1)}\,. \end{equation} We get $p_{2\perp}$ by exchanging $1 \leftrightarrow 2$ in the indices. To obtain the Jacobian of the transformation, we start from the single jet phase space eq.~(\ref{eq:ps_jetparton}) with the rapidity delta function already rewritten to be linear in the rapidity of the last parton, i.e. \begin{equation} \label{eq:jet_2p} \prod_{i=1,2} \bigg(\int \mathrm{d}\mathbf{p}_{i\perp}\ \int \mathrm{d} y_i \bigg)\delta^{(2)}\Big(\mathbf{p}_{1\perp} + \mathbf{p}_{2\perp} - \mathbf{j}_{\perp}^B\Big)\delta(y_2- \dots)\,. \end{equation} The integral over the second parton momentum is now trivial; we can just replace the integral over $y_2$ with the equivalent constraint \begin{equation} \label{eq:R2} \int \mathrm{d}R_2 \ \delta\bigg(R_2 - \bigg[\phi_{\cal J} - \arctan \bigg(\frac{p_{{\cal J}y} - p_{1y}}{p_{{\cal J}x} - p_{1x}}\bigg)\bigg]/\cos \Theta\bigg) \,. \end{equation} In order to fix the integral over $p_{1\perp}$ instead, we rewrite this $\delta$ function. This introduces the Jacobian \begin{equation} \label{eq:jac_pt1} \bigg|\frac{\partial p_{1\perp}}{\partial R_2} \bigg| = \frac{\cos(\Theta)\mathbf{p}_{2\perp}^2}{p_{{\cal J}\perp}\sin(\phi_{\cal J}-\phi_1)}\,. \end{equation} The final form of the integral over the two parton momenta is then \begin{equation} \label{eq:ps_jet_2p} \int \mathrm{d}R_1\ R_1 \int \mathrm{d}R_2 \int \mathrm{d}x_\Theta\ 2\pi \int \mathrm{d}p_{1\perp}\ p_{1\perp} \int \mathrm{d}p_{2\perp} \ \bigg|\frac{\partial p_{1\perp}}{\partial R_2} \bigg|\delta(p_{1\perp} -\dots) \delta(p_{2\perp} - \dots)\,. \end{equation} As is evident from section~\ref{sec:psp_ng_jet}, jets with three or more constituents are rare and an efficient phase-space sampling is less important. For such jets, we exploit the observation that partons with a distance larger than $R_{\text{max}} = \tfrac{5}{3} R$ to the jet centre are never clustered into the jet. Assuming $N$ constituents, we generate all components for the first $N-1$ partons and fix the remaining parton with the $\delta$-functional. In order to end up inside the jet, we use the parametrisation \begin{align} \label{eq:ps_jet_param} \phi_i ={}& \phi_{\cal J} + \Delta \phi_i\,, & \Delta \phi_i ={}& \Delta R_i \cos(\Theta_i)\,, \\ y_i ={}& y_{\cal J} + \Delta y_i\,, & \Delta y_i ={}& \Delta R_i \sin(\Theta_i)\,, \end{align} and generate $\Theta_i$ and $\Delta R_i$ randomly with $\Delta R_i \leq R_{\text{max}}$ and the empiric value $R_{\text{max}} = 5\*R/3$. We can then write the phase space integral for a single parton as $(p_\perp = |\mathbf{p}_\perp|)$ \begin{equation} \label{eq:ps_jetparton_x} \int \mathrm{d}\mathbf{p}_{\perp}\ \int \mathrm{d} y \approx \int_{\Box} \mathrm{d}x_{\perp} \mathrm{d}x_{ R} \mathrm{d}x_{\theta}\ 2\*\pi\,\*R_{\text{max}}^2\,\*x_{R}\,\*p_{\perp}\,\*(p_{\perp,\text{max}} - p_{\perp,\text{min}}) \end{equation} with \begin{align} \label{eq:ps_jetparton_parameters} \Delta \phi ={}& R_{\text{max}}\*x_{R}\*\cos(2\*\pi\*x_\theta)\,,& \Delta y ={}& R_{\text{max}}\*x_{R}\*\sin(2\*\pi\*x_\theta)\,, \\ p_{\perp} ={}& (p_{\perp,\text{max}} - p_{\perp,\text{min}})\*x_\perp + p_{\perp,\text{min}}\,. \end{align} $p_{\perp,\text{max}}$ is determined from the requirement that the total contribution from the first $n-1$ partons --- i.e. the projection onto the jet $p_{\perp}$ axis --- must never exceed the jet $p_\perp$. This gives \todo{This bound is too high} \begin{equation} \label{eq:pt_max} p_{i\perp,\text{max}} = \frac{p_{{\cal J}\perp} - \sum_{j<i} p_{j\perp} \cos \Delta \phi_j}{\cos \Delta \phi_i}\,. \end{equation} The $x$ and $y$ components of the last parton follow immediately from the first $\delta$ function. The last rapidity is fixed by the condition that the jet rapidity is kept fixed by the reshuffling, i.e. \begin{equation} \label{eq:yJ_delta} y^B_{\cal J} = y_{\cal J} = \frac 1 2 \ln \frac{\sum_{i=1}^n E_i+ p_{iz}}{\sum_{i=1}^n E_i - p_{iz}}\,. \end{equation} With $E_n \pm p_{nz} = p_{n\perp}\exp(\pm y_n)$ this can be rewritten to \begin{equation} \label{eq:yn_quad_eq} \exp(2y_{\cal J}) = \frac{\sum_{i=1}^{n-1} E_i+ p_{iz}+p_{n\perp} \exp(y_n)}{\sum_{i=1}^{n-1} E_i - p_{iz}+p_{n\perp} \exp(-y_n)}\,, \end{equation} which is a quadratic equation in $\exp(y_n)$. The physical solution is \begin{align} \label{eq:yn} y_n ={}& \log\Big(-b + \sqrt{b^2 + \exp(2y_{\cal J})}\,\Big)\,,\\ b ={}& \bigg(\sum_{i=1}^{n-1} E_i + p_{iz} - \exp(2y_{\cal J}) \sum_{i=1}^{n-1} E_i - p_{iz}\bigg)/(2 p_{n\perp})\,. \end{align} \todo{what's wrong with the following?} To eliminate the remaining rapidity integral, we transform the $\delta$ function to be linear in the rapidity $y$ of the last parton. The corresponding Jacobian is \begin{equation} \label{eq:jacobian_y} \bigg|\frac{\partial y_{\cal J}}{\partial y_n}\bigg|^{-1} = 2 \bigg( \frac{E_n + p_{nz}}{E_{\cal J} + p_{{\cal J}z}} + \frac{E_n - p_{nz}}{E_{\cal J} - p_{{\cal J}z}}\bigg)^{-1}\,. \end{equation} Finally, we check that all designated constituents are actually clustered into the considered jet. \subsubsection{Final steps} \label{sec:final} Knowing the rapidity span covered by the extremal partons, we can now generate the rapdities for the partons outside jets. We perform jet clustering on all partons and check in \lstinline!PhaseSpacePoint::jets_ok! that all the following criteria are fulfilled: \begin{itemize} \item The number of resummation jets must match the number of fixed-order jets. \item No partons designated to be outside jets may end up inside jets. \item All other outgoing partons \emph{must} end up inside jets. \item The extremal (in rapidity) partons must be inside the extremal jets. If there is, for example, an unordered forward emission, the most forward parton must end up inside the most forward jet and the next parton must end up inside second jet. \item The rapidities of fixed-order and resummation jets must match. \end{itemize} After this, we adjust the phase-space normalisation according to the third line of eq.~(\ref{eq:resumdijetFKLmatched2}), determine the flavours of the outgoing partons, and adopt any additional colourless bosons from the fixed-order input event. Finally, we use momentum conservation to reconstruct the momenta of the incoming partons. \subsection{Colour connection} \label{sec:Colour} \begin{figure} \input{src/ColourConnect.tex} \caption{Left: Non-crossing colour flow dominating in the MRK limit. The crossing of the colour line connecting to particle 2 can be resolved by writing particle 2 on the left. Right: A colour flow with a (manifest) colour-crossing. The crossing can only be resolved if one breaks the rapidities order, e.g. switching particles 2 and 3. From~\cite{Andersen:2017sht}.} \label{fig:Colour_crossing} \end{figure} After the phase space for the resummation event is generated, we can construct the colour for each particle. To generate the colour flow one has to call \lstinline!Event::generate_colours! on any \HEJ configuration. For non-\HEJ event we do not change the colour, and assume it is provided by the user (e.g. through the LHE file input). The colour connection is done in the large $N_c$ (infinite number of colour) limit with leading colour in MRK~\cite{Andersen:2008ue, Andersen:2017sht}. The idea is to allow only $t$-channel colour exchange, without any crossing colour lines. For example the colour crossing in the colour connection on the left of figure~\ref{fig:Colour_crossing} can be resolved by switching \textit{particle 2} to the left. We can write down the colour connections by following the colour flow from \textit{gluon a} to \textit{gluon b} and back to \textit{gluon a}, e.g. figure~\ref{fig:Colour_a123ba} corresponds to $a123ba$. All valid, non-crossing colour flow will connect all external legs, while respecting the rapidity ordering. For example the left of figure~\ref{fig:Colour_crossing} is allowed ($a134b2a$), it can be dientangled similar to figure~\ref{fig:Colour_a13b2a}. However the right of the same figures breaks the rapidity ordering between 2 and 3 ($a1324ba$). Connections between $b$ and $a$ are in inverse order, i.e. $ab321a$ corresponds to~\ref{fig:Colour_a123ba} ($a123ba$) with colour and anti-colour swapped. \begin{figure} \centering \subcaptionbox{$a123ba$\label{fig:Colour_a123ba}}{ \includegraphics[height=0.25\textwidth]{colour_a123ba.pdf}} \subcaptionbox{$a13b2a$\label{fig:Colour_a13b2a}}{ \includegraphics[height=0.25\textwidth]{colour_a13b2a.pdf}} \subcaptionbox{$a\_123ba$\label{fig:Colour_a_123ba}}{ \includegraphics[height=0.25\textwidth]{colour_a_123ba.pdf}} \subcaptionbox{$a13b2\_a$\label{fig:Colour_a13b2_a}}{ \includegraphics[height=0.25\textwidth]{colour_a13b2_a.pdf}} \subcaptionbox{$a14b3\_2a$\label{fig:Colour_a14b3_2a}}{ \includegraphics[height=0.25\textwidth]{colour_a14b3_2a.pdf}} \caption{Different colour non-crossing colour connections. Both incoming particles are drawn at the top or bottom and the outgoing left or right. Outside arrows represent the the colour flow.} \end{figure} If we replace two gluons with a quark, (anti-)quark pair we break one of the colour connections. We denote such a connection by a underscore (e.g. $1\_a$). For example the equivalent of~\ref{fig:Colour_a123ba} ($a123ba$) with an incoming antiquark is~\ref{fig:Colour_a_123ba} ($a\_123ba$). Such colour flows are always possible for all leading and next-to-leading configurations, like unordered emission~\ref{fig:Colour_a13b2_a} or central $q\bar{q}$-pairs~\ref{fig:Colour_a14b3_2a} \footnote{Some sub-subleading configurations are also possible. We could trivially chain multiple subleading blocks, like $qQ\to gqQg$ from two unordered currents.}. We treat subleading connections as one blob in which both $t$- and $u$-channels colour exchange is allowed. E.g. $u$-channel equivalent of~\ref{fig:Colour_a14b3_2a} is $a13\_24ba$. Each subleading blobs connect like gluons to the colour lines. Some rapidity ordering allow multiple colour connections, e.g.~\ref{fig:Colour_a123ba} and~\ref{fig:Colour_a13b2a}. This is always the case if a gluon (or subleading blob) radiates off a gluon line. In that case we randomly connect the gluon (or subleading blob) to either the colour or anti-colour. In the generation we keep track whether we are on a quark or gluon line, and act accordingly. \subsection{The matrix element } \label{sec:ME} The derivation of the \HEJ matrix element is explained in some detail in~\cite{Andersen:2017kfc}, where also results for leading and subleading matrix elements for pure multijet production and production of a Higgs boson with at least two associated jets are listed. Matrix elements for $Z/\gamma^*$ production together with jets are given in~\cite{Andersen:2016vkp}. A full list of all implemented currents is given in section~\ref{sec:currents_impl}. The matrix elements are implemented in the \lstinline!MatrixElement! class. To discuss the structure, let us consider the squared matrix element for FKL multijet production with $n$ final-state partons: \begin{align} \label{eq:ME} \begin{split} \overline{\left|\mathcal{M}_\HEJ^{f_1 f_2 \to f_1 g\cdots g f_2}\right|}^2 = \ &\frac {(4\pi\alpha_s)^n} {4\ (N_c^2-1)} \cdot\ \textcolor{blue}{\frac {K_{f_1}(p_1^-, p_a^-)} {t_1}\ \cdot\ \frac{K_{f_2}(p_n^+, p_b^+)}{t_{n-1}}\ \cdot\ \left\|S_{f_1 f_2\to f_1 f_2}\right\|^2}\\ & \cdot \prod_{i=1}^{n-2} \textcolor{gray}{\left( \frac{-C_A}{t_it_{i+1}}\ V^\mu(q_i,q_{i+1})V_\mu(q_i,q_{i+1}) \right)}\\ & \cdot \prod_{j=1}^{n-1} \textcolor{red}{\exp\left[\omega^0(q_{j\perp})(y_{j+1}-y_j)\right]}. \end{split} \end{align} The structure and momentum assignment of the unsquared matrix element is as illustrated here: \begin{center} \includegraphics{HEJ_amplitude} \end{center} The square of the complete matrix element as given in eq.~\eqref{eq:ME} is calculated by \lstinline!MatrixElement::operator()!. The \textcolor{red}{last line} of eq.~\eqref{eq:ME} constitutes the all-order virtual correction, implemented in \lstinline!MatrixElement::virtual_corrections!. $\omega^0$ is the \textit{regularised Regge trajectory} \begin{equation} \label{eq:omega_0} \omega^0(q_\perp) = - C_A \frac{\alpha_s}{\pi} \log \left(\frac{q_\perp^2}{\lambda^2}\right)\,, \end{equation} where $\lambda$ is the slicing parameter limiting the softness of real gluon emissions, cf. eq.~\eqref{eq:resumdijetFKLmatched2}. $\lambda$ can be changed at runtime by setting \lstinline!regulator parameter! in \lstinline!conifg.yml!. The remaining parts, which correspond to the square of the leading-order \HEJ matrix element $\overline{\left|\mathcal{M}_\text{LO, \HEJ}^{f_1f_2\to f_1g\cdots gf_2}\big(\big\{p^B_j\big\}\big)\right|}^{2}$, are computed in \lstinline!MatrixElement::tree!. We can further factor off the scale-dependent ``parametric'' part \lstinline!MatrixElement::tree_param! containing all factors of the strong coupling $4\pi\alpha_s$. Using this function saves some CPU time when adjusting the renormalisation scale, see section~\ref{sec:resum}. The remaining ``kinematic'' factors are calculated in \lstinline!MatrixElement::kin!. The ``colour acceleration multiplier'' (CAM) $\textcolor{blue}{K_{f}}$ for a parton $f\in\{g,q,\bar{q}\}$ is defined as \begin{align} \label{eq:K_g} \textcolor{blue}{ K_g(p_1^-, p_a^-)} ={}& \frac{1}{2}\left(\frac{p_1^-}{p_a^-} + \frac{p_a^-}{p_1^-}\right)\left(C_A - \frac{1}{C_A}\right)+\frac{1}{C_A}\\ \label{eq:K_q} \textcolor{blue}{K_q(p_1^-, p_a^-)} ={}&\textcolor{blue}{K_{\bar{q}}(p_1^-, p_a^-)} = C_F\,. \end{align} and the helicity-summed current contraction squares $\left\|S_{f_1 f_2\to f_1 f_2}\right\|^2$ are explained in section~\ref{sec:currents}. \subsubsection{FKL ladder and Lipatov vertices} \label{sec:FKL_ladder} The ``FKL ladder'' is the product \begin{equation} \label{eq:FKL_ladder} \prod_{i=1}^{n-2} \left( \frac{-C_A}{t_it_{i+1}}\ V^\mu(q_i,q_{i+1})V_\mu(q_i,q_{i+1}) \right) \end{equation} appearing in the square of the matrix element for $n$ parton production, cf. eq.~(\ref{eq:ME}), and implemented in \lstinline!MatrixElement::FKL_ladder_weight!. The Lipatov vertex contraction $V^\mu(q_i,q_{i+1})V_\mu(q_i,q_{i+1})$ is implemented \lstinline!C2Lipatovots!. It is given by \todo{equation} \todo{mention difference between the two versions of \lstinline!C2Lipatovots!, maybe even get rid of one}. \subsubsection{Processes with interference} \label{sec:interference} For some processes several contributions can produce the same final state and it is necessary to take into account the interference between them. As an example let us consider the FKL squared matrix element for $Z/\gamma^*$ emission with two incoming quarks. It reads~\cite{Andersen:2016vkp} \todo{This equation is copied from the paper} \begin{align} \label{eq:ME_Z} \begin{split} \left|\mathcal{M}_{\HEJ}^{qQ\to Z qg\cdots gQ}\right|^2 &=\ g_s^2 \frac{C_F}{8N_c}\ ( g_s^2 C_A)^{n-2}\ \\ \times \Bigg(& \textcolor{blue}{\frac{\| j_a^{Z}\cdot j_b\|^2}{t_{a1}t_{a(n-1)}}} \prod^{n-2}_{i=1} \textcolor{gray}{\frac{-V^2(q_{ai}, q_{a(i+1)})}{t_{ai} t_{a(i+1)}}} \prod_{i=1}^{n-1} \textcolor{red}{\exp(\omega^0(q_{ai\perp}) (y_{i+1} - y_i))}\\ +\ &\textcolor{blue}{\frac{\|j_a \cdot j_b^{Z} \|^2}{t_{b1}t_{b(n-1)}}} \prod^{n-2}_{i=1}\textcolor{gray}{\frac{-V^2(q_{bi}, q_{b(i+1)})}{t_{bi} t_{b(i+1)}}} \prod_{i=1}^{n-1} \textcolor{red}{\exp(\omega^0(q_{bi\perp})(y_{i+1} - y_i))} \\ -\ &\textcolor{blue}{\frac{2\Re\{ (j_a^{Z}\cdot j_b)(\overline{j_a \cdot j_b^{Z}})\}}{\sqrt{t_{a1}t_{b1}}\sqrt{t_{a(n-1)} t_{b(n-1)}}}}\\ & \; \times \prod^{n-2}_{i=1}\textcolor{gray}{\frac{V(q_{ai}, q_{a(i+1)})\cdot V(q_{bi}, q_{b(i+1)})}{\sqrt{t_{ai}t_{bi}} \sqrt{t_{a(i+1)}t_{b(i+1)}}}} \prod_{i=1}^{n-1} \textcolor{red}{\exp(\omega^0(\sqrt{q_{ai\perp}q_{bi\perp}})(y_{i+1} - y_i))}\Bigg), \end{split} \end{align} where a sum over helicities in the products of currents is implied. The first two terms correspond to a boson emission from either the upper quark line (labeled $a$) or lower quark line (labeled $b$) in both the amplitude and the complex conjugate, while the last term is the interference between the top and bottom emissions. To deal with this structure the intermediate objects are kept as vectors. For example, \lstinline!MatrixElement::FKL_ladder_weight_mix! returns the ladder factors for top, bottom and mixed emission, the latter one making use of \lstinline!C2Lipatovots_Mix! which implements the contraction $V^\mu(q_{ai},q_{a(i+1)})V_\mu(q_{bi},q_{b(i+1)})$. \lstinline!MatrixElement::operator()! and \lstinline!MatrixElement::tree! then use these vectors to perform the sum in eq.~(\ref{eq:ME_Z}). \subsubsection{Matrix elements for Higgs plus jets} \label{sec:ME_h_jets} In the production of a Higgs boson together with jets the parametric parts and the virtual corrections only require minor changes in the respective functions. However, in the ``kinematic'' parts we have to distinguish between several cases, which is done in \lstinline!MatrixElement::tree_kin_Higgs!. The Higgs boson can be \emph{central}, i.e. inside the rapidity range spanned by the extremal partons (\lstinline!MatrixElement::tree_kin_Higgs_central!) or \emph{peripheral} and outside this range (\lstinline!MatrixElement::tree_kin_Higgs_first! or \lstinline!MatrixElement::tree_kin_Higgs_last!). Currently the current for an unordered emission with a Higgs on the same side is not implemented. If a Higgs boson with momentum $p_H$ is emitted centrally, after parton $j$ in rapidity, the matrix element reads \begin{equation} \label{eq:ME_h_jets_central} \begin{split} \overline{\left|\mathcal{M}_\HEJ^{f_1 f_2 \to f_1 g\cdot H \cdot g f_2}\right|}^2 = \ &\frac {\alpha_s^2 (4\pi\alpha_s)^n} {4\ (N_c^2-1)} \cdot\ \textcolor{blue}{\frac {K_{f_1}(p_1^-, p_a^-)} {t_1}\ \cdot\ \frac{1}{t_j t_{j+1}} \cdot\ \frac{K_{f_2}(p_n^+, p_b^+)}{t_{n}}\ \cdot\ \left\|S_{f_1 f_2\to f_1 H f_2}\right\|^2}\\ & \cdot \prod_{\substack{i=1\\i \neq j}}^{n-1} \textcolor{gray}{\left( \frac{-C_A}{t_it_{i+1}}\ V^\mu(q_i,q_{i+1})V_\mu(q_i,q_{i+1}) \right)}\\ & \cdot \textcolor{red}{\prod_{i=1}^{n-1} \exp\left[\omega^0(q_{i\perp})\Delta y_i\right]} \end{split} \end{equation} with the momentum definitions \begin{center} \includegraphics{HEJ_central_Higgs_amplitude} \end{center} $q_i$ is the $i$th $t$-channel momentum and $\Delta y_i$ the rapidity gap between outgoing \emph{particles} (not partons) $i$ and $i+1$ in rapidity ordering. For \emph{peripheral} emission in the backward direction (\lstinline!MatrixElement::tree_kin_Higgs_first!) we first check whether the most backward parton is a gluon or an (anti-)quark. In the latter case the leading contribution to the matrix element arises through emission off the $t$-channel gluons and we can use the same formula eq.~(\ref{eq:ME_h_jets_central}) as for central emission. If the most backward parton is a gluon, the square of the matrix element can be written as \begin{equation} \label{eq:ME_h_jets_peripheral} \begin{split} - \overline{\left|\mathcal{M}_\HEJ^{g f_2 \to H g\cdot g f_2}\right|}^2 = \ &\frac {\alpha_s^2 (4\pi\alpha_s)^n} {N_c^2-1} + \overline{\left|\mathcal{M}_\HEJ^{g f_2 \to H g\cdot g f_2}\right|}^2 = \ &\frac {\alpha_s^2 (4\pi\alpha_s)^n} {4(N_c^2-1)} \textcolor{blue}{\cdot\ \frac{1}{t_1}\ - \frac{K_{f_2}(p_n^+, p_b^+)}{t_n}\ \cdot\ \overline{\left\|S_{g - f_2\to H f_2}\right\|}^2}\\ + \frac{K_{f_2}(p_n^+, p_b^+)}{t_n}\ \cdot\ \left\|S_{g + f_2\to H f_2}\right\|^2}\\ & \cdot \prod_{\substack{i=1}}^{n-2} \textcolor{gray}{\left( \frac{-C_A}{t_it_{i+1}}\ V^\mu(q_i,q_{i+1})V_\mu(q_i,q_{i+1}) \right)}\\ & \cdot \textcolor{red}{\prod_{i=1}^{n-1} \exp\left[\omega^0(q_{i\perp}) (y_{i+1} - y_i)\right]}\,. \end{split} \end{equation} The current contraction $\textcolor{blue}{S_{gf_2\to H f_2}}$ has only one final-state parton; in contrast to all other \HEJ processes it is enough to have a \emph{single} jet together with the Higgs boson. -A factor $\tfrac{1}{4}$ was absorbed into $\textcolor{blue}{\overline{\|S\|}^2}$, where the bar indicates averaging over helicities.\todo{Do this everywhere!} The momenta are assigned as follows: \begin{center} \includegraphics{HEJ_peripheral_Higgs_amplitude} \end{center} The \textcolor{blue}{blue part} is implemented in -\lstinline!MatrixElement::MH2_forwardH!. The actual current contraction $\textcolor{blue}{\overline{\|S\|}^2}$ +\lstinline!MatrixElement::MH2_forwardH!. The actual current contraction $\textcolor{blue}{\|S\|^2}$ is calculated in \lstinline!ME_jgH_j! inside \lstinline!src/Hjets.cc! All other building blocks are already available. The forward emission of a Higgs boson is completely analogous. We can use the same function \lstinline!MatrixElement::MH2_forwardH!, replacing $p_n \to p_1 ,\, p_b \to p_a$. \subsubsection{Currents} \label{sec:currents} The current factors $\frac{K_{f_1}K_{f_2}}{t_1 t_{n-1}}\left\|S_{f_1 f_2\to f_1 f_2}\right\|^2$ and their extensions for unordered and boson emissions are implemented in the \lstinline!ME_!$\dots$ functions of \texttt{src/jets.cc}, \texttt{src/Hjets.cc}, \texttt{src/Wjets.cc}, and \texttt{src/Zjets.cc}. \todo{Only $\|S\|^2$ should be in currents} \footnote{The current implementation for Higgs production in \texttt{src/Hjets.cc} includes the $1/4$ factor inside $S$, opposing to~\eqref{eq:ME}. Thus the overall normalisation is unaffected.} The current contractions are given by\todo{many missing (W, Z, uno)} \begin{align} \label{eq:S} \left\|S_{f_1 f_2\to f_1 f_2}\right\|^2 ={}& \sum_{\substack{\lambda_a = +,-\\\lambda_b = +,-}} \left|j^{\lambda_a}_\mu(p_1, p_a)\ j^{\lambda_b\,\mu}(p_n, p_b)\right|^2 = 2\sum_{\lambda = +,-} \left|j^{-}_\mu(p_1, p_a)\ j^{\lambda\,\mu}(p_n, p_b)\right|^2\,,\\ \left\|S_{f_1 f_2\to f_1 H f_2}\right\|^2 ={}& \sum_{\substack{\lambda_a = +,-\\\lambda_b = +,-}} \left|j^{\lambda_a}_\mu(p_1, p_a)V_H^{\mu\nu}(q_j, q_{j+1})\ j^{\lambda_b}_\nu(p_n, p_b)\right|^2\,,\\ \label{eq:S_gf_Hf} - \overline{\left\|S_{g f_2 \to H f_2}\right\|}^2 ={}& \frac{1}{4} \sum_{ + \left\|S_{g f_2 \to H f_2}\right\|^2 ={}& \sum_{ \substack{ \lambda_{g} = +,-\\ \lambda_{b} = +,- }} \left|\epsilon_\mu^{\lambda_g}(p_g, p_r)\ V_H^{\mu\nu}(p_g, p_g-p_H)\ j_\nu^{\lambda_b}(p_n, p_b)\right|^2\,, \end{align} They individual pieces are listed in section~\ref{sec:currents_impl} and the contraction is done in the current generator, section~\ref{sec:cur_gen}. \subsection{Unweighting} \label{sec:unweight} Straightforward event generation tends to produce many events with small weights. Those events have a negligible contribution to the final observables, but can take up considerable storage space and CPU time in later processing stages. This problem can be addressed by unweighting. For naive unweighting, one would determine the maximum weight $w_\text{max}$ of all events, discard each event with weight $w$ with a probability $p=w/w_\text{max}$, and set the weights of all remaining events to $w_\text{max}$. The downside to this procedure is that it also eliminates a sizeable fraction of events with moderate weight, so that the statistical convergence deteriorates. Naive unweighting can be performed by using the \lstinline!set_cut_to_maxwt! member function of the \lstinline!Unweighter! on the events and then call the \lstinline!unweight! member function. It can be enabled for the resummation events as explained in the user documentation. To ameliorate the problem of naive unweighting, we also implement partial unweighting. That is, we perform unweighting only for events with sufficiently small weights. When using the \lstinline!Unweighter! member function \lstinline!set_cut_to_peakwt! we estimate the mean and width of the weight-weight distribution from a sample of events. We use these estimates to determine the maximum weight below which unweighting is performed; events with a larger weight are not touched. The actual unweighting is again done in the \lstinline!Unweighter::unweight! function. To estimate the peak weight we employ the following heuristic algorithm. For a calibration sample of $n$ events, create a histogram with $b=\sqrt{n}$ equal-sized bins. The histogram ranges from $ \log(\min |w_i|)$ to $\log(|\max w_i|)$, where $w_i$ are the event weights. For each event, add $|w_i|$ to the corresponding bin. We then prune the histogram by setting all bins containing less than $c=n/b$ events to zero. This effectively removes statistical outliers. The logarithm of the peak weight is then the centre of the highest bin in the histogram. In principle, the number of bins $b$ and the pruning parameter $c$ could be tuned further. To illustrate the principle, here is a weight-weight histogram filled with a sample of 100000 event weights before the pruning: \begin{center} \includegraphics[width=0.7\linewidth]{wtwt} \end{center} The peaks to the right are clearly outliers caused by single events. After pruning we get the following histogram: \begin{center} \includegraphics[width=0.7\linewidth]{wtwt_cut} \end{center} The actual peak weight probably lies above the cut, and the algorithm can certainly be improved. Still, the estimate we get from the pruned histogram is already good enough to eliminate about $99\%$ of the low-weight events. \section{The current generator} \label{sec:cur_gen} The current generator in the \texttt{current\_generator} directory is automatically invoked when building \HEJ 2. Its task is to compute and generate C++ code for the current contractions listed in section~\ref{sec:currents}. For each source file \texttt{<j\_j>.frm} inside \texttt{current\_generator} it generates a corresponding header \texttt{include/HEJ/currents/<j\_j>.hh} inside the build directory. The header can be included with \begin{lstlisting}[language=C++,caption={}] #include "HEJ/currents/<j>.hh" \end{lstlisting} The naming scheme is \begin{itemize} \item \texttt{j1\_j2.frm} for the contraction of current \texttt{j1} with current \texttt{j2}. \item \texttt{j1\_vx\_j2.frm} for the contraction of current \texttt{j1} with the vertex \texttt{vx} and the current \texttt{j2}. \end{itemize} For instance, \texttt{juno\_qqbarW\_j.frm} would indicate the contraction of an unordered current with a (central) quark-antiquark-W emission vertex and a standard FKL current. \subsection{Implementing new current contractions} \label{sec:cur_gen_new} Before adding a new current contraction, first find a representation where all momenta that appear inside the currents are \textcolor{red}{lightlike} and have \textcolor{red}{positive energy}. Section~\ref{sec:p_massive} describes how massive momenta can be decomposed into massless ones. For momenta $p'$ with negative energies replace $p' \to - p$ and exploit that negative- and positive-energy spinors are related by a phase, which is usually irrelevant: $u^\lambda(-p) = \pm i u^\lambda(p)$. To implement a current contraction \lstinline!jcontr! create a new file \texttt{jcontr.frm} inside the \texttt{current\_generator} directory. \texttt{jcontr.frm} should contain \FORM code, see \url{https://www.nikhef.nl/~form/} for more information on \FORM. Here is a small example: \begin{lstlisting}[caption={}] * FORM comments are started by an asterisk * at the beginning of a line * First include the relevant headers #include- include/helspin.frm #include- include/write.frm * Define the symbols that appear. * UPPERCASE symbols are reserved for internal use vectors p1,...,p10; indices mu1,...,mu10; * Define local expressions of the form [NAME HELICITIES] * for the current contractions for all relevant helicity configurations #do HELICITY1={+,-} #do HELICITY2={+,-} * We use the Current function * Current(h, p1, mu1, ..., muX, p2) = * u(p1) \gamma_{mu1} ... \gamma_{muX} u(p2) * where h=+1 or h=-1 is the spinor helicity. * All momenta appearing as arguments have to be *lightlike* local [jcontr `HELICITY1'`HELICITY2'] = Current(`HELICITY1'1, p1, mu1, p2, mu2, p3) *Current(`HELICITY2'1, p4, mu2, p2, mu1, p1); #enddo #enddo .sort * Main procedure that calculates the contraction #call ContractCurrents .sort * Optimise expression format O4; * Format in a (mostly) c compatible way format c; * Write start of C++ header file #call WriteHeader(`OUTPUT') * Write a template function jcontr * taking as template arguments two helicities * and as arguments the momenta p1,...,p4 * returning the contractions [jcontr HELICITIES] defined above #call WriteOptimised(`OUTPUT',jcontr,2,p1,p2,p3,p4) * Wrap up #call WriteFooter(`OUTPUT') .end \end{lstlisting} \subsection{Calculation of contractions} \label{sec:contr_calc} In order to describe the algorithm for the calculation of current contractions we first have to define the currents and establish some useful relations. \subsubsection{Massive momenta} \label{sec:p_massive} We want to use relations for lightlike momenta. Momenta $P$ that are \emph{not} lightlike can be written as the sum of two lightlike momenta: \begin{equation} \label{eq:P_massive} P^\mu = p^\mu + q^\mu\,, \qquad p^2 = q^2 = 0 \,. \end{equation} This decomposition is not unique. If we impose the arbitrary constraint $q_\perp = 0$ and require real-valued momentum components we can use the ansatz \begin{align} \label{eq:P_massive_p} p_\mu ={}& P_\perp\*(\cosh y, \cos \phi, \sin \phi, \sinh y)\,,\\ \label{eq:P_massive_q} q_\mu ={}& (E, 0, 0, s\,E)\,, \end{align} where $P_\perp$ is the transverse momentum of $P$ and $\phi$ the corresponding azimuthal angle. For the remaining parameters we obtain \begin{align} \label{eq:P_massive_plus} P^+ > 0:& & y ={}& \log \frac{P^+}{P_\perp}\,,\qquad E = \frac{P^2}{2P^+}\,,\qquad s = -1\,,\\ \label{eq:P_massive_minus} P^- > 0:& & y ={}& \log \frac{P_\perp}{P^-}\,,\qquad E = \frac{P^2}{2P^-}\,,\qquad s = +1\,. \end{align} The decomposition is implemented in the \lstinline!split_into_lightlike! function. \subsubsection{Currents and current relations} \label{sec:current_relations} Our starting point are generalised currents \begin{equation} \label{eq:j_gen} j^{\pm}(p, \mu_1,\dots,\mu_{2N-1},q) = \bar{u}^{\pm}(p)\gamma_{\mu_1} \dots \gamma_{\mu_{2N-1}} u^\pm(q)\,. \end{equation} Since there are no masses, we can consider two-component chiral spinors \begin{align} \label{eq:u_plus} u^+(p)={}& \left(\sqrt{p^+}, \sqrt{p^-} \hat{p}_\perp \right) \,,\\ \label{eq:u_minus} u^-(p)={}& \left(\sqrt{p^-} \hat{p}^*_\perp, -\sqrt{p^+}\right)\,, \end{align} with $p^\pm = E\pm p_z,\, \hat{p}_\perp = \tfrac{p_\perp}{|p_\perp|},\, p_\perp = p_x + i p_y$. The spinors for vanishing transverse momentum are obtained by replacing $\hat{p}_\perp \to -1$. This gives \begin{equation} \label{eq:jminus_gen} j^-(p,\mu_1,\dots,\mu_{2N-1},q) = u^{-,\dagger}(p)\ \sigma^-_{\mu_1}\ \sigma^+_{\mu_2}\dots\sigma^-_{\mu_{2N-1}}\ u^{-}(q)\,. \end{equation} where $\sigma_\mu^\pm = (1, \pm \sigma_i)$ and $\sigma_i$ are the Pauli matrices \begin{equation} \label{eq:Pauli_matrices} \sigma_1 = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \,, \qquad \sigma_2 = \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix} \,, \qquad \sigma_3 = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \,. \end{equation} For positive-helicity currents we can either flip all helicities in eq.~(\ref{eq:jminus_gen}) or reverse the order of the arguments, i.e. \begin{equation} \label{eq:jplus_gen} j^+(p,\mu_1,\dots,\mu_{2N-1},q) = \big(j^-(p,\mu_1,\dots,\mu_{2N-1},q)\big)^* = j^-(q,\mu_{2N-1},\dots,\mu_1,p) \,. \end{equation} Using the standard spinor-helicity notation we have \begin{gather} \label{eq:spinors_spinhel} u^+(p) = | p \rangle\,, \qquad u^-(p) = | p ]\,, \qquad u^{+,\dagger}(p) = [ p |\,, \qquad u^{-,\dagger}(p) = \langle p |\,,\\ \label{eq:current_spinhel} j^-(p,\mu_1,\dots,\mu_{2N-1},q) = \langle p |\ \mu_1\ \dots\ \mu_{2N-1}\ | q ] \,.\\ \label{eq:contraction_spinhel} P_{\mu_i} j^-(p,\mu_1,\dots,\mu_{2N-1},q) = \langle p |\ \mu_1\ \dots\ \mu_{i-1}\ P\ \mu_{i+1}\ \dots\ \mu_{2N-1}\ | q ] \,. \end{gather} Lightlike momenta $p$ can be decomposed into spinor products: \begin{equation} \label{eq:p_decomp} \slashed{p} = |p\rangle [p| + |p] \langle p |\,. \end{equation} Taking into account helicity conservation this gives the following relations: \begingroup \addtolength{\jot}{1em} \begin{align} \label{eq:p_in_current} \langle p |\ \mu_1\ \dots\ \mu_i\ P\ \mu_{i+1}\ \dots\ \mu_{2N-1}\ | q ] ={}& \begin{cases} \langle p |\ \mu_1\ \dots\ \mu_i\ |P]\ \langle P|\ \mu_{i+1}\ \dots\ \mu_{2N-1}\ | q ]& i \text{ even}\\ \langle p |\ \mu_1\ \dots\ \mu_i\ |P\rangle\ [ P|\ \mu_{i+1}\ \dots\ \mu_{2N-1}\ | q ]& i \text{ odd} \end{cases}\,,\\ \label{eq:p_in_angle} \langle p |\ \mu_1\ \dots\ \mu_i\ P\ \mu_{i+1}\ \dots\ \mu_{2N}\ | q \rangle ={}& \begin{cases} \langle p |\ \mu_1\ \dots\ \mu_i\ |P]\ \langle P| \mu_{i+1}\ \dots\ \mu_{2N}\ | q \rangle & i \text{ even}\\ \langle p |\ \mu_1\ \dots\ \mu_i\ |P\rangle\ \big(\langle P| \mu_{i+1}\ \dots\ \mu_{2N}\ | q ]\big)^* & i \text{ odd} \end{cases}\,,\\ \label{eq:p_in_square} [ p |\ \mu_1\ \dots\ \mu_i\ P\ \mu_{i+1}\ \dots\ \mu_{2N}\ | q ] ={}& \begin{cases} \big(\langle p |\ \mu_1\ \dots\ \mu_i\ |P]\big)^* \ [ P| \mu_{i+1}\ \dots\ \mu_{2N}\ | q ] & i \text{ even}\\ [ p |\ \mu_1\ \dots\ \mu_i\ |P]\ \langle P| \mu_{i+1}\ \dots\ \mu_{2N}\ | q ] & i \text{ odd} \end{cases}\,. \end{align} \endgroup For contractions of vector currents we can use the Fierz identity \begin{equation} \label{eq:Fierz} \langle p|\ \mu\ |q]\ \langle k|\ \mu\ |l] = 2 \spa p.k \spb l.q\,. \end{equation} The scalar angle and square products are given by \begin{align} \label{eq:angle_product} \spa p.q ={}& {\big(u^-(p)\big)}^\dagger u^+(q) = \sqrt{p^-q^+}\hat{p}_{i,\perp} - \sqrt{p^+q^-}\hat{q}_{j,\perp} = - \spa q.p\,,\\ \label{eq:square_product} \spb p.q ={}& {\big(u^+(p)\big)}^\dagger u^-(q) = -\spa p.q ^* = - \spb q.p\,. \end{align} We also define polarisation vectors \begin{equation} \label{eq:pol_vector} \epsilon_\mu^-(p_g, p_r) = \frac{\langle p_r|\mu|p_g]}{\sqrt{2}\spa p_g.{p_r}}\,,\qquad\epsilon_\mu^+(p_g, p_r) = \frac{\langle p_g|\mu|p_r]}{\sqrt{2}\spb p_g.{p_r}}\,. \end{equation} fulfilling \begin{equation} \label{eq:pol_vector_norm} \epsilon_\mu^\lambda(p_g, p_r)\big[\epsilon^{\mu\,\lambda'}(p_g, p_r)\big]^* = -\delta_{\lambda\lambda'}\,. \end{equation} \subsubsection{Contraction algorithm} \label{sec:contr_calc_algo} The contractions are now calculated as follows: \begin{enumerate} \item Use equations \eqref{eq:jplus_gen}, \eqref{eq:current_spinhel} to write all currents in a canonical form. \item Assume that all momenta are lightlike and use the relations \eqref{eq:p_in_current}, \eqref{eq:p_in_angle}, \eqref{eq:p_in_square} to split up currents that are contracted with momenta. \item Apply the Fierz transformation~\eqref{eq:Fierz} to eliminate contractions between vector currents. \item Write the arguments of the antisymmetric angle and scalar products in canonical order, see equations~\eqref{eq:angle_product} ,\eqref{eq:square_product}. \end{enumerate} The corresponding \lstinline!ContractCurrents! procedure is implemented in \texttt{include/helspin.fm}. \section{The fixed-order generator} \label{sec:HEJFOG} Even at leading order, standard fixed-order generators can only generate events with a limited number of final-state particles within reasonable CPU time. The purpose of the fixed-order generator is to supplement this with high-multiplicity input events according to the first two lines of eq.~\eqref{eq:resumdijetFKLmatched2} with the \HEJ approximation $\mathcal{M}_\text{LO, \HEJ}^{f_1f_2\to f_1g\cdots gf_2}$ instead of the full fixed-order matrix element $\mathcal{M}_\text{LO}^{f_1f_2\to f_1g\cdots gf_2}$. Its usage is described in the user documentation \url{https://hej.web.cern.ch/HEJ/doc/current/user/HEJFOG.html}. \subsection{File structure} \label{sec:HEJFOG_structure} The code for the fixed-order generator is in the \texttt{FixedOrderGen} directory, which contains the following: \begin{description} \item[include:] Contains the C++ header files. \item[src:] Contains the C++ source files. \item[t:] Contains the source code for the automated tests. \item[CMakeLists.txt:] Configuration file for the \cmake build system. \item[configFO.yml:] Sample configuration file for the fixed-order generator. \end{description} The code is generally in the \lstinline!HEJFOG! namespace. Functions and classes \lstinline!MyClass! are usually declared in \texttt{include/MyClass.hh} and implemented in \texttt{src/MyClass.cc}. \subsection{Program flow} \label{sec:prog_flow} A single run of the fixed-order generator consists of three or four stages. First, we perform initialisation similar to \HEJ 2, see section~\ref{sec:init}. Since there is a lot of overlap we frequently reuse classes and functions from \HEJ 2, i.e. from the \lstinline!HEJ! namespace. The code for parsing the configuration file is in \texttt{include/config.hh} and implemented in \texttt{src/config.cc}. If partial unweighting is requested in the user settings \url{https://hej.web.cern.ch/HEJ/doc/current/user/HEJFOG.html#settings}, the initialisation is followed by a calibration phase. We use a \lstinline!EventGenerator! to produce a number of trial events. We use these to calibrate the \lstinline!Unweighter! in its constructor and produce a first batch of partially unweighted events. This also allows us to estimate our unweighting efficiency. In the next step, we continue to generate events and potentially unweight them. Once the user-defined target number of events is reached, we adjust their weights according to the number of required trials. As in \HEJ 2 (see section~\ref{sec:processing}), we pass the final events to a number of \lstinline!HEJ::Analysis! objects and a \lstinline!HEJ::CombinedEventWriter!. \subsection{Event generation} \label{sec:evgen} Event generation is performed by the \lstinline!EventGenerator::gen_event! member function. We begin by generating a \lstinline!PhaseSpacePoint!. This is not to be confused with the resummation phase space points represented by \lstinline!HEJ::PhaseSpacePoint!! After jet clustering, we compute the leading-order matrix element (see section~\ref{sec:ME}) and pdf factors. The phase space point generation is performed in the \lstinline!PhaseSpacePoint! constructor. We first construct the user-defined number of $n_p$ partons (by default gluons) in \lstinline!PhaseSpacePoint::gen_LO_partons!. We use flat sampling in rapidity and azimuthal angle. The scalar transverse momenta is generated based on a random variable $x_{p_\perp}$ according to \begin{equation} \label{eq:pt_sampling} p_\perp = p_{\perp,\text{min}} + p_{\perp,\text{par}} \tan\left( x_{p_\perp} \arctan\left( \frac{p_{\perp,\text{max}} - p_{\perp,\text{min}}}{p_{\perp,\text{par}}} \right) \right)\,, \end{equation} where $p_{\perp,\text{min}}$ is the minimum jet transverse momentum, $p_{\perp,\text{max}}$ is the maximum transverse parton momentum, tentatively set to the beam energy, and $p_{\perp,\text{par}}$ is a generation parameter set to the heuristically determined value of \begin{equation} \label{eq:pt_par} p_{\perp,\text{par}}=p_{\perp,\min}+\frac{n_p}{5}. \end{equation} The problem with this generation is that the transverse momenta peak at the minimum transverse momentum required for fixed-order jets. However, if we use the generated events as input for \HEJ resummation, events with such soft transverse momenta hardly contribute, see section~\ref{sec:ptj_res}. To generate efficient input for resummation, there is the user option \texttt{peak pt}, which specifies the dominant transverse momentum for resummation jets. If this option is set, most jets will be generated as above, but with $p_{\perp,\text{min}}$ set to the peak transverse momentum $p_{\perp, \text{peak}}$. In addition, there is a small chance of around $2\%$ to generate softer jets. The heuristic ansatz for the transverse momentum distribution in the ``soft'' region is \begin{equation} \label{FO_pt_soft} \frac{\partial \sigma}{\partial p_\perp} \propto e^{n_p\frac{p_\perp- p_{\perp, \text{peak}}}{\bar{p}_\perp}}\,, \end{equation} where $n_p$ is the number of partons and $\bar{p}_\perp \approx 4\,$GeV. To achieve this distribution, we use \begin{equation} \label{eq:FO_pt_soft_sampling} p_\perp = p_{\perp, \text{peak}} + \bar{p}_\perp \frac{\log x_{p_\perp}}{n_p} \end{equation} and discard the phase space point if the parton is too soft, i.e. below the threshold for fixed-order jets. After ensuring that all partons form separate jets, we generate any potential colourless emissions. We then determine the incoming momenta and flavours in \lstinline!PhaseSpacePoint::reconstruct_incoming! and adjust the outgoing flavours to ensure an FKL configuration. Finally, we may reassign outgoing flavours to generate suppressed (for example unordered) configurations. \input{currents} \appendix \section{Continuous Integration} \label{sec:CI} Whenever you are implementing something new or fixed a bug, please also add a test for the new behaviour to \texttt{t/CMakeLists.txt} via \lstinline!add_test!. These test can be triggered by running \lstinline!make test! or \lstinline!ctest! after compiling. A typical test should be at most a few seconds, so it can be potentially run on each commit change by each developer. If you require a longer, more careful test, preferably on top of a small one, surround it with \begin{lstlisting}[caption={}] if(${TEST_ALL}) add_test( NAME t_feature COMMAND really_long_test ) endif() \end{lstlisting} Afterwards you can execute the longer tests with\footnote{No recompiling is needed, as long as only the \lstinline!add_test! command is guarded, not the compiling commands itself.} \begin{lstlisting}[language=sh,caption={}] cmake base/directory -DTEST_ALL=TRUE make test \end{lstlisting} On top of that you should add \href{https://en.cppreference.com/w/cpp/error/assert}{\lstinline!assert!s} in the code itself. They are only executed when compiled with \lstinline!CMAKE_BUILD_TYPE=Debug!, without slowing down release code. So you can use them everywhere to test \textit{expected} or \textit{assumed} behaviour, e.g. requiring a Higgs boson or relying on rapidity ordering. GitLab provides ways to directly test code via \textit{Continuous integrations}. The CI is controlled by \texttt{.gitlab-ci.yml}. For all options for the YAML file see \href{https://docs.gitlab.com/ee/ci/yaml/}{docs.gitlab.com/ee/ci/yaml/}.https://gitlab.dur.scotgrid.ac.uk/hej/docold/tree/master/Theses GitLab also provides a small tool to check that YAML syntax is correct under \lstinline!CI/CD > Pipelines > CI Lint! or \href{https://gitlab.dur.scotgrid.ac.uk/hej/HEJ/-/ci/lint}{gitlab.dur.scotgrid.ac.uk/hej/HEJ/-/ci/lint}. Currently the CI is configured to trigger a \textit{Pipeline} on each \lstinline!git push!. The corresponding \textit{GitLab runners} are configured under \lstinline!CI/CD Settings>Runners! in the GitLab UI. All runners use a \href{https://www.docker.com/}{docker} image as virtual environments\footnote{To use only Docker runners set the \lstinline!docker! tag in \texttt{.gitlab-ci.yml}.}. The specific docker images maintained separately. If you add a new dependencies, please also provide a docker image for the CI. The goal to be able to test \HEJ with all possible configurations. Each pipeline contains multiple stages (see \lstinline!stages! in \texttt{.gitlab-ci.yml}) which are executed in order from top to bottom. Additionally each stage contains multiple jobs. For example the stage \lstinline!build! contains the jobs \lstinline!build:basic!, \lstinline!build:qcdloop!, \lstinline!build:rivet!, etc., which compile \HEJ for different environments and dependencies, by using different Docker images. Jobs starting with an dot are ignored by the Runner, e.g. \lstinline!.HEJ_build! is only used as a template, but never executed directly. Only after all jobs of the previous stage was executed without any error the next stage will start. To pass information between multiple stages we use \lstinline!artifacts!. The runner will automatically load all artifacts form all \lstinline!dependencies! for each job\footnote{If no dependencies are defined \textit{all} artifacts from all previous jobs are downloaded. Thus please specify an empty dependence if you do not want to load any artifacts.}. For example the compiled \HEJ code from \lstinline!build:basic! gets loaded in \lstinline!test:basic! and \lstinline!FOG:build:basic!, without recompiling \HEJ again. Additionally artifacts can be downloaded from the GitLab web page, which could be handy for debugging. We also trigger some jobs \lstinline!only! on specific events. For example we only push the code to \href{https://phab.hepforge.org/source/hej/repository/v2.0/}{HepForge} on release branches (e.g. v2.0). Also we only execute the \textit{long} tests for merge requests, on pushes for any release or the \lstinline!master! branch, or when triggered manually from the GitLab web page. The actual commands are given in the \lstinline!before_script!, \lstinline!script! and \lstinline!after_script! \footnote{\lstinline!after_script! is always executed} sections, and are standard Linux shell commands (dependent on the docker image). Any failed command, i.e. returning not zero, stops the job and making the pipeline fail entirely. Most tests are just running \lstinline!make test! or are based on it. Thus, to emphasise it again, write tests for your code in \lstinline!cmake!. The CI is only intended to make automated testing in different environments easier. \section{Monte Carlo uncertainty} \label{sec:MC_err} Since \HEJ is reweighting each Fixed Order point with multiple resummation events, the Monte Carlo uncertainty of \HEJ is a little bit more complicated then usual. We start by defining the \HEJ cross section after $N$ FO points \begin{align} \sigma_N:=\sum_{i}^N x_i \sum_{j}^{M_i} y_{i,j}=:\sum_i^N\sum_j^{M_i} w_{i,j}, \end{align} where $x_i$ are the FO weights\footnote{In this definition $x_i$ can be zero, see the discussion in the next section.}, $y_{i,j}$ are the reweighting weights , and $M_i$ the number of resummation points. We can set $M=M_i \forall i$ by potentially adding some points with $y_{i,j}=0$, i.e. $M$ correspond to the \lstinline!trials! in \lstinline!EventReweighter!. $w_{i,j}$ are the weights as written out by \HEJ. The expectation value of $\sigma$ is then \begin{align} \ev{\sigma_N}= \sum_i \ev{x_i}\sum_j\ev{y_{i,j}}=M \mu_x\sum_i\mu_{y_i},\label{eq:true_sigma} \end{align} with $\mu_{x/y}$ being the (true) mean value of $x$ or $y$, i.e. \begin{align} \mu_{x}:=\ev{\bar{x}}=\ev{\frac{\sum_i x_i}{N}}=\ev{x}. \end{align} The true underlying standard derivation on $\sigma_N$, assuming $\delta_{x}$ and $\delta_{y_i}$ are the standard derivations of $x$ and $y_i$ is \begin{align} \delta_{\sigma_N}^2&=M^2 \delta_{x}^2 \sum_i \mu_{y_i}^2 +M \mu_x^2 \sum_i \delta_{y_i}^2. \label{eq:true_err} \end{align} Notice that each point $i$ can have an different expectation for $y_i$. Since we do not know the true distribution of $x$ and $y$ we need to estimate it. We use the standard derivation \begin{align} \tilde{\delta}_{x_i}^2&:=\left(x_i-\bar x\right)^2 =\left(\frac{N-1}{N} x_i - \frac{\sum_{j\neq i} x_j}{N}\right)^2 \label{eq:err_x}\\ \tilde{\delta}_{y_{i,j}}^2&:=\left(y_{i,j}-\bar y_i\right)^2 \label{eq:err_y}, \end{align} and the mean values $\bar x$ and $\bar y$, to get an estimator for $\delta_{\sigma_N}$ \begin{align} \tilde\delta_{\sigma_N}^2&=M^2 \sum_i \tilde\delta_{x_i}^2 \bar{y_i}^2 +\sum_{i,j} x_i^2\tilde\delta_{y_{i,j}}^2. \label{eq:esti_err} \end{align} Trough error propagation we can connect the estimated uncertainties back to the fundamental ones \begin{align} \delta_{\tilde{\delta}_{x_i}}^2=\frac{N-1}{N} \delta_x^2. \end{align} Together with $\delta_x^2=\ev{x^2}-\ev{x}^2$ and $\ev{\tilde\delta}=0$ this leads to \begin{align} \ev{\tilde{\delta}_{x_i}^2 \bar y_i^2}&=\ev{\tilde{\delta}_{x_i} \bar y_i}^2 +\delta_{\tilde{\delta}_{x_i}}^2 \mu_{y_i}^2 +\delta_{y_i}^2 \mu_{\tilde\delta}^2 \\ &=\frac{N-1}{N} \delta_x^2\mu_{y_i}^2, \end{align} and a similar results for $y$. Therefore \begin{align} \ev{\delta_{\sigma_N}}=\frac{N-1}{N} M^2 \delta_{x}^2 \sum_i \mu_{y_i}^2 +\frac{M-1}{M} M \mu_x^2 \sum_i \delta_{y_i}^2, \end{align} where we can compensate for the additional factors compared to~\eqref{eq:true_err}, by replacing \begin{align} \tilde\delta_x&\to\frac{N}{N-1}\tilde\delta_x \label{eq:xcom_bias}\\ \tilde\delta_{y_i}&\to\frac{M}{M-1}\tilde\delta_{y_i}. \label{eq:ycom_bias} \end{align} Thus~\eqref{eq:esti_err} is an unbiased estimator of $\delta_{\sigma_N}$. \subsection{Number of events vs. number of trials} Even though the above calculation is completely valid, it is unpractical. Both $x_i$ and $y_{ij}$ could be zero, but zero weight events are typically not written out. In that sense $N$ and $M$ are the \textit{number of trials} it took to generate $N'$ and $M'$ (non-zero) events. We can not naively replace all $N$ and $M$ with $N'$ and $M'$ in the above equations, since this would also change the definition of the average $\bar x$ and $\bar y$. For illustration let us consider unweighted events, with all weights equal to $x'$, without changing the cross section $\sum_i^N x_i=\sum_i^{N'} x'_i=N' x'$. Then the average trial weight is unequal to the average event weight \begin{align} \bar x = \frac{\sum_i^{N} x_i}{N} = \frac{\sum_i^{N'} x'}{N}=x'\frac{N'}{N} \neq x'=\frac{\sum_i^{N'} x'}{N'}. \end{align} $N=N'$ would correspond to an $100\%$ efficient unweighting, i.e. a perfect sampling, where we know the analytical results. In particular using $N'$ instead of $N$ in the standard derivation gives \begin{align} \sum_i \left(x_i-\frac{\sum_i^{N} x_i}{N'}\right)^2=\sum_i \left(x'-x' \frac{\sum_i^{N'}}{N'}\right)^2=0, \end{align} which is obviously not true in general for $\tilde\delta^2_x$. Hence we would have to use the number of trials $N$ everywhere. This would require an additional parameter to be passed with each events, which is not always available in practice\footnote{ \texttt{Sherpa} gives the number of trials, as an \lstinline!attribute::trials! of \lstinline!HEPEUP! in the \texttt{LHE} file, or similarly as a data member in the HDF5 format \cite{Hoeche:2019rti}. The \texttt{LHE} standard itself provides the variable \lstinline!ntries! per event (see \href{https://phystev.cnrs.fr/wiki/2017:groups:tools:lhe}{this proposal}), though I have not seen this used anywhere.}. Instead we use \begin{align} \tilde\delta_{x}'^2:=\sum_i^{N} x_i^2\geq\tilde\delta_x^2, \label{eq:err_prac} \end{align} where the bias of $\delta_x'^2$ vanishes for large $N$. Thus we can use the sum of weight squares~\eqref{eq:err_prac} instead of~\eqref{eq:err_x} and~\eqref{eq:err_y}, without worrying about the difference between trials and generated events. The total error~\eqref{eq:esti_err} becomes \begin{align} \tilde\delta_{\sigma_N}^2=\sum_i \left(\sum_j w_{i,j}\right)^2+\sum_{i,j} \left(w_{i,j}\right)^2, \end{align} which (conveniently) only dependent on the \HEJ weights $w_{i,j}$. \section{Explicit formulas for vector currents} \label{sec:j_vec} Using eqs.~\eqref{eq:u_plus}\eqref{eq:u_minus}\eqref{eq:jminus_gen}\eqref{eq:Pauli_matrices}\eqref{eq:jplus_gen}, the vector currents read \begin{align} \label{eq:j-_explicit} j^-_\mu(p, q) ={}& \begin{pmatrix} \sqrt{p^+\,q^+} + \sqrt{p^-\,q^-} \hat{p}_{\perp} \hat{q}_{\perp}^*\\ \sqrt{p^-\,q^+}\, \hat{p}_{\perp} + \sqrt{p^+\,q^-}\,\hat{q}_{\perp}^*\\ -i \sqrt{p^-\,q^+}\, \hat{p}_{\perp} + i \sqrt{p^+\,q^-}\, \hat{q}_{\perp}^*\\ \sqrt{p^+\,q^+} - \sqrt{p^-\,q^-}\, \hat{p}_{\perp}\, \hat{q}_{\perp}^* \end{pmatrix}\,,\\ j^+_\mu(p, q) ={}&\big(j^-_\mu(p, q)\big)^*\,,\\ j^\pm_\mu(q, p) ={}&\big(j^\pm_\mu(p, q)\big)^*\,. \end{align} If $q= p_{\text{in}}$ is the momentum of an incoming parton, we have $\hat{p}_{\text{in} \perp} = -1$ and either $p_{\text{in}}^+ = 0$ or $p_{\text{in}}^- = 0$. The current simplifies further:\todo{Helicities flipped w.r.t code} \begin{align} \label{eq:j_explicit} j^-_\mu(p_{\text{out}}, p_{\text{in}}) ={}& \begin{pmatrix} \sqrt{p_{\text{in}}^+\,p_{\text{out}}^+}\\ \sqrt{p_{\text{in}}^+\,p_{\text{out}}^-} \ \hat{p}_{\text{out}\,\perp}\\ -i\,j^-_1\\ j^-_0 \end{pmatrix} & p_{\text{in}\,z} > 0\,,\\ j^-_\mu(p_{\text{out}}, p_{\text{in}}) ={}& \begin{pmatrix} -\sqrt{p_{\text{in}}^-\,p_{\text{out}}^{-\phantom{+}}} \ \hat{p}_{\text{out}\,\perp}\\ - \sqrt{p_{\text{in}}^-\,p_{\text{out}}^+}\\ i\,j^-_1\\ -j^-_0 \end{pmatrix} & p_{\text{in}\,z} < 0\,. \end{align} \bibliographystyle{JHEP} \bibliography{biblio} \end{document} diff --git a/src/Hjets.cc b/src/Hjets.cc index eb6f9f2..3d38278 100644 --- a/src/Hjets.cc +++ b/src/Hjets.cc @@ -1,472 +1,474 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "HEJ/jets.hh" #include "HEJ/Hjets.hh" #include <array> #include <cassert> #include <cmath> #include <complex> #include <limits> #include "HEJ/ConfigFlags.hh" #include "HEJ/Constants.hh" #include "HEJ/LorentzVector.hh" #include "HEJ/utility.hh" // generated headers #include "HEJ/currents/j_h_j.hh" #include "HEJ/currents/juno_h_j.hh" #include "HEJ/currents/jgh_j.hh" #ifdef HEJ_BUILD_WITH_QCDLOOP #include "qcdloop/qcdloop.h" #else #include "HEJ/exceptions.hh" #endif namespace HEJ { namespace currents { namespace { // short hand for math functions using std::norm; using std::abs; using std::conj; using std::pow; using std::sqrt; constexpr double infinity = std::numeric_limits<double>::infinity(); // NOLINT // Loop integrals #ifdef HEJ_BUILD_WITH_QCDLOOP const COM LOOPRWFACTOR = (COM(0.,1.)*M_PI*M_PI)/pow((2.*M_PI),4); COM B0DD(HLV const & q, double mq) { static std::vector<std::complex<double>> result(3); static auto ql_B0 = [](){ ql::Bubble<std::complex<double>,double,double> ql_B0; ql_B0.setCacheSize(100); return ql_B0; }(); static std::vector<double> masses(2); static std::vector<double> momenta(1); for(auto & m: masses) m = mq*mq; momenta.front() = q.m2(); ql_B0.integral(result, 1, masses, momenta); return result[0]; } COM C0DD(HLV const & q1, HLV const & q2, double mq) { static std::vector<std::complex<double>> result(3); static auto ql_C0 = [](){ ql::Triangle<std::complex<double>,double,double> ql_C0; ql_C0.setCacheSize(100); return ql_C0; }(); static std::vector<double> masses(3); static std::vector<double> momenta(3); for(auto & m: masses) m = mq*mq; momenta[0] = q1.m2(); momenta[1] = q2.m2(); momenta[2] = (q1+q2).m2(); ql_C0.integral(result, 1, masses, momenta); return result[0]; } // Kallen lambda functions, see eq:lambda in developer manual double lambda(const double s1, const double s2, const double s3) { return s1*s1 + s2*s2 + s3*s3 - 2*s1*s2 - 2*s1*s3 - 2*s2*s3; } // eq: T_1 in developer manual COM T1(HLV const & q1, HLV const & q2, const double m) { const double q12 = q1.m2(); const double q22 = q2.m2(); const HLV ph = q1 - q2; const double ph2 = ph.m2(); const double lam = lambda(q12, q22, ph2); assert(m > 0.); const double m2 = m*m; return - C0DD(q1, -q2, m)*(2.*m2 + 1./2.*(q12 + q22 - ph2) + 2.*q12*q22*ph2/lam) - (B0DD(q2, m) - B0DD(ph, m))*(q22 - q12 - ph2)*q22/lam - (B0DD(q1, m) - B0DD(ph, m))*(q12 - q22 - ph2)*q12/lam - 1.; } // eq: T_2 in developer manual COM T2(HLV const & q1, HLV const & q2, const double m) { const double q12 = q1.m2(); const double q22 = q2.m2(); const HLV ph = q1 - q2; const double ph2 = ph.m2(); const double lam = lambda(q12, q22, ph2); assert(m > 0.); const double m2 = m*m; return C0DD(q1, -q2, m)*( 4.*m2/lam*(ph2 - q12 - q22) - 1. - 4.*q12*q22/lam*( 1 + 3.*ph2*(q12 + q22 - ph2)/lam ) ) - (B0DD(q2, m) - B0DD(ph, m))*(1. + 6.*q12/lam*(q22 - q12 + ph2))*2.*q22/lam - (B0DD(q1, m) - B0DD(ph, m))*(1. + 6.*q22/lam*(q12 - q22 + ph2))*2.*q12/lam - 2.*(q12 + q22 - ph2)/lam; } #else // no QCDloop COM T1(HLV const & /*q1*/, HLV const & /*q2*/, double /*mt*/){ throw std::logic_error{"T1 called without QCDloop support"}; } COM T2(HLV const & /*q1*/, HLV const & /*q2*/, double /*mt*/){ throw std::logic_error{"T2 called without QCDloop support"}; } #endif // prefactors of g^{\mu \nu} and q_2^\mu q_1^\nu in Higgs boson emission vertex // see eq:VH in developer manual, but *without* global factor \alpha_s std::array<COM, 2> TT( HLV const & qH1, HLV const & qH2, const double mt, const bool inc_bottom, const double mb, const double vev ) { if(mt == infinity) { std::array<COM, 2> res = {qH1.dot(qH2), 1.}; for(auto & tt: res) tt /= (3.*M_PI*vev); return res; } std::array<COM, 2> res = {T1(qH1, qH2, mt), T2(qH1, qH2, mt)}; for(auto & tt: res) tt *= mt*mt; if(inc_bottom) { res[0] += mb*mb*T1(qH1, qH2, mb); res[1] += mb*mb*T2(qH1, qH2, mb); } for(auto & tt: res) tt /= M_PI*vev; return res; } /** * @brief Higgs+Jets FKL Contributions, function to handle all incoming types. * @param p1out Outgoing Particle 1 * @param p1in Incoming Particle 1 * @param p2out Outgoing Particle 2 * @param p2in Incoming Particle 2 * @param qH1 t-channel momenta into higgs vertex * @param qH2 t-channel momenta out of higgs vertex * @param mt top mass (inf or value) * @param inc_bottom whether to include bottom mass effects (true) or not (false) * @param mb bottom mass (value) * @param vev Higgs vacuum expectation value * * Calculates j^\mu H j_\mu. FKL with higgs vertex somewhere in the FKL chain. * Handles all possible incoming states. */ double j_h_j( HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, const double mt, const bool inc_bottom, const double mb, const double vev ){ using helicity::plus; using helicity::minus; const auto qqH1 = split_into_lightlike(qH1); const HLV qH11 = qqH1.first; const HLV qH12 = -qqH1.second; const auto qqH2 = split_into_lightlike(qH2); const HLV qH21 = qqH2.first; const HLV qH22 = -qqH2.second; // since qH1.m2(), qH2.m2() < 0 the following assertions are always true assert(qH11.e() > 0); assert(qH12.e() > 0); assert(qH21.e() > 0); assert(qH22.e() > 0); const auto T_pref = TT(qH1, qH2, mt, inc_bottom, mb, vev); const COM amp_mm = HEJ::j_h_j<minus, minus>( p1out, p1in, p2out, p2in, qH11, qH12, qH21, qH22, T_pref[0], T_pref[1] ); const COM amp_mp = HEJ::j_h_j<minus, plus>( p1out, p1in, p2out, p2in, qH11, qH12, qH21, qH22, T_pref[0], T_pref[1] ); const COM amp_pm = HEJ::j_h_j<plus, minus>( p1out, p1in, p2out, p2in, qH11, qH12, qH21, qH22, T_pref[0], T_pref[1] ); const COM amp_pp = HEJ::j_h_j<plus, plus>( p1out, p1in, p2out, p2in, qH11, qH12, qH21, qH22, T_pref[0], T_pref[1] ); static constexpr double num_hel = 4.; // square of amplitudes, averaged over helicities const double amp2 = (norm(amp_mm) + norm(amp_mp) + norm(amp_pm) + norm(amp_pp))/num_hel; return amp2/((p1in-p1out).m2()*(p2in-p2out).m2()*qH1.m2()*qH2.m2()); } // } } // namespace double ME_H_qQ(HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, double mt, bool include_bottom, double mb, double vev ){ return j_h_j(p1out, p1in, p2out, p2in, qH1, qH2, mt, include_bottom, mb, vev); } double ME_H_qQbar(HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, double mt, bool include_bottom, double mb, double vev ){ return j_h_j(p1out, p1in, p2out, p2in, qH1, qH2, mt, include_bottom, mb, vev); } double ME_H_qbarQ(HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, double mt, bool include_bottom, double mb, double vev ){ return j_h_j(p1out, p1in, p2out, p2in, qH1, qH2, mt, include_bottom, mb, vev); } double ME_H_qbarQbar(HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, double mt, bool include_bottom, double mb, double vev ){ return j_h_j(p1out, p1in, p2out, p2in, qH1, qH2, mt, include_bottom, mb, vev); } double ME_H_qg(HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, double mt, bool include_bottom, double mb, double vev ){ return j_h_j(p1out, p1in, p2out, p2in, qH1, qH2, mt, include_bottom, mb, vev) * K_g(p2out,p2in)/C_A; } double ME_H_qbarg(HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, double mt, bool include_bottom, double mb, double vev ){ return j_h_j(p1out, p1in, p2out, p2in, qH1, qH2, mt, include_bottom, mb, vev) * K_g(p2out,p2in)/C_A; } double ME_H_gg(HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, double mt, bool include_bottom, double mb, double vev ){ return j_h_j(p1out, p1in, p2out, p2in, qH1, qH2, mt, include_bottom, mb, vev) * K_g(p2out,p2in)/C_A * K_g(p1out,p1in)/C_A; } //@} double ME_jgH_j( - HLV const & ph, HLV const & pg, + HLV const & ph, HLV const & pa, HLV const & pn, HLV const & pb, const double mt, const bool inc_bottom, const double mb, const double vev ){ using helicity::plus; using helicity::minus; const auto pH = split_into_lightlike(ph); const HLV ph1 = pH.first; const HLV ph2 = pH.second; // since pH.m2() > 0 the following assertions are always true assert(ph1.e() > 0); assert(ph2.e() > 0); - const auto T_pref = TT(pg, pg-ph, mt, inc_bottom, mb, vev); + const auto T_pref = TT(pa, pa-ph, mt, inc_bottom, mb, vev); // only distinguish between same and different helicities, // the other two combinations just add a factor of 2 const COM amp_mm = HEJ::jgh_j<minus, minus>( - pg, pb, pn, ph1, ph2, T_pref[0], T_pref[1] + pa, pb, pn, ph1, ph2, T_pref[0], T_pref[1] ); const COM amp_mp = HEJ::jgh_j<minus, plus>( - pg, pb, pn, ph1, ph2, T_pref[0], T_pref[1] + pa, pb, pn, ph1, ph2, T_pref[0], T_pref[1] ); + constexpr double hel_factor = 2.; + + // sum over squares of helicity amplitudes + return hel_factor*(norm(amp_mm) + norm(amp_mp)); + } - static constexpr double num_hel = 2.; - // square of amplitudes, averaged over helicities - return (norm(amp_mm) + norm(amp_mp))/num_hel; } namespace { template<Helicity h1, Helicity h2, Helicity hg> double amp_juno_h_j( HLV const & pa, HLV const & pb, HLV const & pg, HLV const & p1, HLV const & p2, HLV const & qH11, HLV const & qH12, HLV const & qH21, HLV const & qH22, std::array<COM, 2> const & T_pref ) { // TODO: code duplication with Wjets and pure jets const COM u1 = U1_h_j<h1, h2, hg>(pa,p1,pb,p2,pg,qH11,qH12,qH21,qH22,T_pref[0],T_pref[1]); const COM u2 = U2_h_j<h1, h2, hg>(pa,p1,pb,p2,pg,qH11,qH12,qH21,qH22,T_pref[0],T_pref[1]); const COM l = L_h_j<h1, h2, hg>(pa,p1,pb,p2,pg,qH11,qH12,qH21,qH22,T_pref[0],T_pref[1]); return 2.*C_F*std::real((l-u1)*std::conj(l+u2)) + 2.*C_F*C_F/3.*std::norm(u1+u2) ; } //@{ /** * @brief Higgs+Jets Unordered Contributions, function to handle all incoming types. * @param pg Unordered Gluon momenta * @param p1out Outgoing Particle 1 * @param p1in Incoming Particle 1 * @param p2out Outgoing Particle 2 * @param p2in Incoming Particle 2 * @param qH1 t-channel momenta into higgs vertex * @param qH2 t-channel momenta out of higgs vertex * @param mt top mass (inf or value) * @param inc_bottom whether to include bottom mass effects (true) or not (false) * @param mb bottom mass (value) * * Calculates j_{uno}^\mu H j_\mu. Unordered with higgs vertex * somewhere in the FKL chain. Handles all possible incoming states. */ double juno_h_j( HLV const & pg, HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, const double mt, const bool incBot, const double mb, const double vev ){ using helicity::plus; using helicity::minus; const auto qqH1 = split_into_lightlike(qH1); const HLV qH11 = qqH1.first; const HLV qH12 = -qqH1.second; const auto qqH2 = split_into_lightlike(qH2); const HLV qH21 = qqH2.first; const HLV qH22 = -qqH2.second; // since qH1.m2(), qH2.m2() < 0 the following assertions are always true assert(qH11.e() > 0); assert(qH12.e() > 0); assert(qH21.e() > 0); assert(qH22.e() > 0); const auto T_pref = TT(qH1, qH2, mt, incBot, mb, vev); // only 4 out of the 8 helicity amplitudes are independent // we still compute all of them for better numerical stability (mirror check) MultiArray<double, 2, 2, 2> amp{}; // NOLINTNEXTLINE #define ASSIGN_HEL(RES, J, H1, H2, HG) \ RES[H1][H2][HG] = J<H1, H2, HG>( \ p1in, p2in, pg, p1out, p2out, qH11, qH12, qH21, qH22, T_pref \ ) ASSIGN_HEL(amp, amp_juno_h_j, minus, minus, minus); ASSIGN_HEL(amp, amp_juno_h_j, minus, minus, plus); ASSIGN_HEL(amp, amp_juno_h_j, minus, plus, minus); ASSIGN_HEL(amp, amp_juno_h_j, minus, plus, plus); ASSIGN_HEL(amp, amp_juno_h_j, plus, minus, minus); ASSIGN_HEL(amp, amp_juno_h_j, plus, minus, plus); ASSIGN_HEL(amp, amp_juno_h_j, plus, plus, minus); ASSIGN_HEL(amp, amp_juno_h_j, plus, plus, plus); #undef ASSIGN_HEL const HLV q1 = p1in-p1out; // Top End const HLV q2 = p2out-p2in; // Bottom End const HLV qg = p1in-p1out-pg; // Extra bit post-gluon double ampsq = 0.; for(Helicity h1: {minus, plus}) { for(Helicity h2: {minus, plus}) { for(Helicity hg: {minus, plus}) { ampsq += amp[h1][h2][hg]; } } } ampsq /= 16.*qg.m2()*qH1.m2()*qH2.m2()*q2.m2(); // Factor of (Cf/Ca) for each quark to match ME_H_qQ. ampsq*=C_F*C_F/C_A/C_A; return ampsq; } } // namespace double ME_H_unob_qQ(HLV const & pg, HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, double mt, bool include_bottom, double mb, double vev ){ return juno_h_j(pg, p1out, p1in, p2out, p2in, qH1, qH2, mt, include_bottom, mb, vev); } double ME_H_unob_qbarQ(HLV const & pg, HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, double mt, bool include_bottom, double mb, double vev ){ return juno_h_j(pg, p1out, p1in, p2out, p2in, qH1, qH2, mt, include_bottom, mb, vev); } double ME_H_unob_qQbar(HLV const & pg, HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, double mt, bool include_bottom, double mb, double vev ){ return juno_h_j(pg, p1out, p1in, p2out, p2in, qH1, qH2, mt, include_bottom, mb, vev); } double ME_H_unob_qbarQbar(HLV const & pg, HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, double mt, bool include_bottom, double mb, double vev ){ return juno_h_j(pg, p1out, p1in, p2out, p2in, qH1, qH2, mt, include_bottom, mb, vev); } double ME_H_unob_gQ(HLV const & pg, HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, double mt, bool include_bottom, double mb, double vev ){ return juno_h_j(pg, p1out, p1in, p2out, p2in, qH1, qH2, mt, include_bottom, mb, vev) *K_g(p2out,p2in)/C_F; } double ME_H_unob_gQbar(HLV const & pg, HLV const & p1out, HLV const & p1in, HLV const & p2out, HLV const & p2in, HLV const & qH1, HLV const & qH2, double mt, bool include_bottom, double mb, double vev ){ return juno_h_j(pg, p1out, p1in, p2out, p2in, qH1, qH2, mt, include_bottom, mb, vev) *K_g(p2out,p2in)/C_F; } //@} } // namespace currents } // namespace HEJ diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc index ea61085..4650d5c 100644 --- a/src/MatrixElement.cc +++ b/src/MatrixElement.cc @@ -1,2113 +1,2115 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "HEJ/MatrixElement.hh" #include <algorithm> #include <cassert> #include <cmath> #include <cstddef> #include <cstdlib> #include <iterator> #include <limits> #include <unordered_map> #include <utility> #include "fastjet/PseudoJet.hh" #include "HEJ/ConfigFlags.hh" #include "HEJ/Constants.hh" #include "HEJ/EWConstants.hh" #include "HEJ/Event.hh" #include "HEJ/HiggsCouplingSettings.hh" #include "HEJ/Hjets.hh" #include "HEJ/LorentzVector.hh" #include "HEJ/PDG_codes.hh" #include "HEJ/Particle.hh" #include "HEJ/Wjets.hh" #include "HEJ/Zjets.hh" #include "HEJ/event_types.hh" #include "HEJ/exceptions.hh" #include "HEJ/jets.hh" #include "HEJ/utility.hh" namespace HEJ { double MatrixElement::omega0( double alpha_s, double mur, fastjet::PseudoJet const & q_j ) const { const double lambda = param_.regulator_lambda; const double result = - alpha_s*N_C/M_PI*std::log(q_j.perp2()/(lambda*lambda)); if(! param_.log_correction) return result; return ( 1. + alpha_s/(4.*M_PI)*BETA0*std::log(mur*mur/(q_j.perp()*lambda)) )*result; } Weights MatrixElement::operator()(Event const & event) const { std::vector <double> tree_kin_part=tree_kin(event); std::vector <Weights> virtual_part=virtual_corrections(event); if(tree_kin_part.size() != virtual_part.size()) { throw std::logic_error("tree and virtuals have different sizes"); } Weights sum = Weights{0., std::vector<double>(event.variations().size(), 0.)}; for(size_t i=0; i<tree_kin_part.size(); ++i) { sum += tree_kin_part.at(i)*virtual_part.at(i); } return tree_param(event)*sum; } Weights MatrixElement::tree(Event const & event) const { std::vector <double> tree_kin_part=tree_kin(event); double sum = 0.; for(double i : tree_kin_part) { sum += i; } return tree_param(event)*sum; } Weights MatrixElement::tree_param(Event const & event) const { if(! is_resummable(event.type())) { return Weights{0., std::vector<double>(event.variations().size(), 0.)}; } Weights result; // only compute once for each renormalisation scale std::unordered_map<double, double> known; result.central = tree_param(event, event.central().mur); known.emplace(event.central().mur, result.central); for(auto const & var: event.variations()) { const auto ME_it = known.find(var.mur); if(ME_it == end(known)) { const double wt = tree_param(event, var.mur); result.variations.emplace_back(wt); known.emplace(var.mur, wt); } else { result.variations.emplace_back(ME_it->second); } } return result; } std::vector<Weights> MatrixElement::virtual_corrections(Event const & event) const { if(! is_resummable(event.type())) { return {Weights{0., std::vector<double>(event.variations().size(), 0.)}}; } // only compute once for each renormalisation scale std::unordered_map<double, std::vector<double> > known_vec; std::vector<double> central_vec=virtual_corrections(event, event.central().mur); known_vec.emplace(event.central().mur, central_vec); for(auto const & var: event.variations()) { const auto ME_it = known_vec.find(var.mur); if(ME_it == end(known_vec)) { known_vec.emplace(var.mur, virtual_corrections(event, var.mur)); } } // At this stage known_vec contains one vector of virtual corrections for each mur value // Now put this into a vector of Weights std::vector<Weights> result_vec; for(size_t i=0; i<central_vec.size(); ++i) { Weights result; result.central = central_vec.at(i); for(auto const & var: event.variations()) { const auto ME_it = known_vec.find(var.mur); result.variations.emplace_back(ME_it->second.at(i)); } result_vec.emplace_back(result); } return result_vec; } double MatrixElement::virtual_corrections_W( Event const & event, const double mur, Particle const & WBoson ) const{ auto const & in = event.incoming(); const auto partons = filter_partons(event.outgoing()); fastjet::PseudoJet const & pa = in.front().p; #ifndef NDEBUG fastjet::PseudoJet const & pb = in.back().p; double const norm = (in.front().p + in.back().p).E(); #endif assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{})); assert(partons.size() >= 2); assert(pa.pz() < pb.pz()); fastjet::PseudoJet q = pa - partons[0].p; std::size_t first_idx = 0; std::size_t last_idx = partons.size() - 1; #ifndef NDEBUG bool wc = true; #endif bool wqq = false; // With extremal qqbar or unordered gluon outside the extremal // partons then it is not part of the FKL ladder and does not // contribute to the virtual corrections. W emitted from the // most backward leg must be taken into account in t-channel if (event.type() == event_type::unob) { q -= partons[1].p; ++first_idx; if (in[0].type != partons[1].type ){ q -= WBoson.p; #ifndef NDEBUG wc=false; #endif } } else if (event.type() == event_type::qqbar_exb) { q -= partons[1].p; ++first_idx; if (std::abs(partons[0].type) != std::abs(partons[1].type)){ q -= WBoson.p; #ifndef NDEBUG wc=false; #endif } } else { if(event.type() == event_type::unof || event.type() == event_type::qqbar_exf){ --last_idx; } if (in[0].type != partons[0].type ){ q -= WBoson.p; #ifndef NDEBUG wc=false; #endif } } std::size_t first_idx_qqbar = last_idx; std::size_t last_idx_qqbar = last_idx; //if qqbarMid event, virtual correction do not occur between qqbar pair. if(event.type() == event_type::qqbar_mid){ const auto backquark = std::find_if( begin(partons) + 1, end(partons) - 1 , [](Particle const & s){ return (s.type != pid::gluon); } ); if(backquark == end(partons) || (backquark+1)->type==pid::gluon) return 0; if(std::abs(backquark->type) != std::abs((backquark+1)->type)) { wqq=true; #ifndef NDEBUG wc=false; #endif } last_idx = std::distance(begin(partons), backquark); first_idx_qqbar = last_idx+1; } double exponent = 0; const double alpha_s = alpha_s_(mur); for(std::size_t j = first_idx; j < last_idx; ++j){ exponent += omega0(alpha_s, mur, q)*( partons[j+1].rapidity() - partons[j].rapidity() ); q -=partons[j+1].p; } // End Loop one if (last_idx != first_idx_qqbar) q -= partons[last_idx+1].p; if (wqq) q -= WBoson.p; for(std::size_t j = first_idx_qqbar; j < last_idx_qqbar; ++j){ exponent += omega0(alpha_s, mur, q)*( partons[j+1].rapidity() - partons[j].rapidity() ); q -= partons[j+1].p; } #ifndef NDEBUG if (wc) q -= WBoson.p; assert( nearby(q, -1*pb, norm) || is_AWZH_boson(partons.back().type) || event.type() == event_type::unof || event.type() == event_type::qqbar_exf ); #endif return std::exp(exponent); } std::vector <double> MatrixElement::virtual_corrections_Z_qq( Event const & event, const double mur, Particle const & ZBoson ) const{ auto const & in = event.incoming(); const auto partons = filter_partons(event.outgoing()); fastjet::PseudoJet const & pa = in.front().p; #ifndef NDEBUG fastjet::PseudoJet const & pb = in.back().p; #endif assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{})); assert(partons.size() >= 2); assert(pa.pz() < pb.pz()); fastjet::PseudoJet q_t = pa - partons[0].p - ZBoson.p; fastjet::PseudoJet q_b = pa - partons[0].p; size_t first_idx = 0; size_t last_idx = partons.size() - 1; // Unordered gluon does not contribute to the virtual corrections if (event.type() == event_type::unob) { // Gluon is partons[0] and is already subtracted // partons[1] is the backward quark q_t -= partons[1].p; q_b -= partons[1].p; ++first_idx; } else if (event.type() == event_type::unof) { // End sum at forward quark --last_idx; } double sum_top=0.; double sum_bot=0.; double sum_mix=0.; const double alpha_s = alpha_s_(mur); for(size_t j = first_idx; j < last_idx; ++j){ const double dy = partons[j+1].rapidity() - partons[j].rapidity(); const double tmp_top = omega0(alpha_s, mur, q_t)*dy; const double tmp_bot = omega0(alpha_s, mur, q_b)*dy; sum_top += tmp_top; sum_bot += tmp_bot; sum_mix += (tmp_top + tmp_bot) / 2.; q_t -= partons[j+1].p; q_b -= partons[j+1].p; } return {exp(sum_top), exp(sum_bot), exp(sum_mix)}; } double MatrixElement::virtual_corrections_Z_qg( Event const & event, const double mur, Particle const & ZBoson, const bool is_gq_event ) const{ auto const & in = event.incoming(); const auto partons = filter_partons(event.outgoing()); fastjet::PseudoJet const & pa = in.front().p; #ifndef NDEBUG fastjet::PseudoJet const & pb = in.back().p; #endif assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{})); assert(partons.size() >= 2); assert(pa.pz() < pb.pz()); // If this is a gq event, don't subtract the Z momentum from first q fastjet::PseudoJet q = (is_gq_event ? pa - partons[0].p : pa - partons[0].p - ZBoson.p); size_t first_idx = 0; size_t last_idx = partons.size() - 1; // Unordered gluon does not contribute to the virtual corrections if (event.type() == event_type::unob) { // Gluon is partons[0] and is already subtracted // partons[1] is the backward quark q -= partons[1].p; ++first_idx; } else if (event.type() == event_type::unof) { // End sum at forward quark --last_idx; } double sum=0.; const double alpha_s = alpha_s_(mur); for(size_t j = first_idx; j < last_idx; ++j){ sum += omega0(alpha_s, mur, q)*(partons[j+1].rapidity() - partons[j].rapidity()); q -= partons[j+1].p; } return exp(sum); } std::vector<double> MatrixElement::virtual_corrections( Event const & event, const double mur ) const{ auto const & in = event.incoming(); auto const & out = event.outgoing(); fastjet::PseudoJet const & pa = in.front().p; #ifndef NDEBUG fastjet::PseudoJet const & pb = in.back().p; double const norm = (in.front().p + in.back().p).E(); #endif const auto AWZH_boson = std::find_if( begin(out), end(out), [](Particle const & p){ return is_AWZH_boson(p); } ); if(AWZH_boson != end(out) && std::abs(AWZH_boson->type) == pid::Wp){ return {virtual_corrections_W(event, mur, *AWZH_boson)}; } if(AWZH_boson != end(out) && AWZH_boson->type == pid::Z_photon_mix){ if(is_gluon(in.back().type)){ // This is a qg event return {virtual_corrections_Z_qg(event, mur, *AWZH_boson, false)}; } if(is_gluon(in.front().type)){ // This is a gq event return {virtual_corrections_Z_qg(event, mur, *AWZH_boson, true)}; } // This is a qq event return virtual_corrections_Z_qq(event, mur, *AWZH_boson); } assert(std::is_sorted(out.begin(), out.end(), rapidity_less{})); assert(out.size() >= 2); assert(pa.pz() < pb.pz()); fastjet::PseudoJet q = pa - out[0].p; std::size_t first_idx = 0; std::size_t last_idx = out.size() - 1; // if there is a Higgs boson _not_ emitted off an incoming gluon, // extremal qqbar or unordered gluon outside the extremal partons // then it is not part of the FKL ladder // and does not contribute to the virtual corrections if((out.front().type == pid::Higgs && in.front().type != pid::gluon) || event.type() == event_type::unob || event.type() == event_type::qqbar_exb){ q -= out[1].p; ++first_idx; } if((out.back().type == pid::Higgs && in.back().type != pid::gluon) || event.type() == event_type::unof || event.type() == event_type::qqbar_exf){ --last_idx; } std::size_t first_idx_qqbar = last_idx; std::size_t last_idx_qqbar = last_idx; //if central qqbar event, virtual correction do not occur between q-qbar. if(event.type() == event_type::qqbar_mid){ const auto backquark = std::find_if( begin(out) + 1, end(out) - 1 , [](Particle const & s){ return (s.type != pid::gluon && is_parton(s.type)); } ); if(backquark == end(out) || (backquark+1)->type==pid::gluon) return {0.}; last_idx = std::distance(begin(out), backquark); first_idx_qqbar = last_idx+1; } double exponent = 0; const double alpha_s = alpha_s_(mur); for(std::size_t j = first_idx; j < last_idx; ++j){ exponent += omega0(alpha_s, mur, q)*( out[j+1].rapidity() - out[j].rapidity() ); q -= out[j+1].p; } if (last_idx != first_idx_qqbar) q -= out[last_idx+1].p; for(std::size_t j = first_idx_qqbar; j < last_idx_qqbar; ++j){ exponent += omega0(alpha_s, mur, q)*( out[j+1].rapidity() - out[j].rapidity() ); q -= out[j+1].p; } assert( nearby(q, -1*pb, norm) || (out.back().type == pid::Higgs && in.back().type != pid::gluon) || event.type() == event_type::unof || event.type() == event_type::qqbar_exf ); return {std::exp(exponent)}; } namespace { //! Lipatov vertex for partons emitted into extremal jets CLHEP::HepLorentzVector CLipatov( CLHEP::HepLorentzVector const & qav, CLHEP::HepLorentzVector const & qbv, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2 ) { const CLHEP::HepLorentzVector p5 = qav-qbv; const CLHEP::HepLorentzVector CL = -(qav+qbv) + p1*(qav.m2()/p5.dot(p1) + 2.*p5.dot(p2)/p1.dot(p2)) - p2*(qbv.m2()/p5.dot(p2) + 2.*p5.dot(p1)/p1.dot(p2)); return CL; } double C2Lipatov( CLHEP::HepLorentzVector const & qav, CLHEP::HepLorentzVector const & qbv, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2 ){ const CLHEP::HepLorentzVector CL = CLipatov(qav, qbv, p1, p2); return -CL.dot(CL); } //! Lipatov vertex with soft subtraction for partons emitted into extremal jets double C2Lipatovots( CLHEP::HepLorentzVector const & qav, CLHEP::HepLorentzVector const & qbv, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2, const double lambda ) { const double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2())); const double kperp=(qav-qbv).perp(); if (kperp>lambda) return Cls; return Cls-4./(kperp*kperp); } double C2Lipatov_Mix( CLHEP::HepLorentzVector const & qav_t, CLHEP::HepLorentzVector const & qbv_t, CLHEP::HepLorentzVector const & qav_b, CLHEP::HepLorentzVector const & qbv_b, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2 ) { const CLHEP::HepLorentzVector CL_t = CLipatov(qav_t, qbv_t, p1, p2); const CLHEP::HepLorentzVector CL_b = CLipatov(qav_b, qbv_b, p1, p2); return -CL_t.dot(CL_b); } double C2Lipatovots_Mix( CLHEP::HepLorentzVector const & qav_t, CLHEP::HepLorentzVector const & qbv_t, CLHEP::HepLorentzVector const & qav_b, CLHEP::HepLorentzVector const & qbv_b, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2, const double lambda ) { const double Cls = C2Lipatov_Mix(qav_t, qbv_t, qav_b, qbv_b, p1, p2) / sqrt(qav_t.m2() * qbv_t.m2() * qav_b.m2() * qbv_b.m2()); const double kperp = (qav_t - qbv_t).perp(); if (kperp > lambda){ return Cls; } return Cls - 4.0 / (kperp * kperp); } CLHEP::HepLorentzVector CLipatov( CLHEP::HepLorentzVector const & qav, CLHEP::HepLorentzVector const & qbv, CLHEP::HepLorentzVector const & pim, CLHEP::HepLorentzVector const & pip, CLHEP::HepLorentzVector const & pom, CLHEP::HepLorentzVector const & pop ){ const CLHEP::HepLorentzVector p5 = qav-qbv; const CLHEP::HepLorentzVector CL = -(qav+qbv) + qav.m2()*(1./p5.dot(pip)*pip + 1./p5.dot(pop)*pop)/2. - qbv.m2()*(1./p5.dot(pim)*pim + 1./p5.dot(pom)*pom)/2. + ( pip*(p5.dot(pim)/pip.dot(pim) + p5.dot(pom)/pip.dot(pom)) + pop*(p5.dot(pim)/pop.dot(pim) + p5.dot(pom)/pop.dot(pom)) - pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim)) - pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.; return CL; } //! Lipatov vertex double C2Lipatov( // B CLHEP::HepLorentzVector const & qav, CLHEP::HepLorentzVector const & qbv, CLHEP::HepLorentzVector const & pim, CLHEP::HepLorentzVector const & pip, CLHEP::HepLorentzVector const & pom, CLHEP::HepLorentzVector const & pop ){ const CLHEP::HepLorentzVector CL = CLipatov(qav, qbv, pim, pip, pom, pop); return -CL.dot(CL); } //! Lipatov vertex with soft subtraction double C2Lipatovots( CLHEP::HepLorentzVector const & qav, CLHEP::HepLorentzVector const & qbv, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2, const double lambda ) { const double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2())); const double kperp=(qav-qbv).perp(); if (kperp>lambda) return Cls; return Cls-4./(kperp*kperp); } double C2Lipatov_Mix( CLHEP::HepLorentzVector const & qav_t, CLHEP::HepLorentzVector const & qbv_t, CLHEP::HepLorentzVector const & qav_b, CLHEP::HepLorentzVector const & qbv_b, CLHEP::HepLorentzVector const & pim, CLHEP::HepLorentzVector const & pip, CLHEP::HepLorentzVector const & pom, CLHEP::HepLorentzVector const & pop ) { const CLHEP::HepLorentzVector CL_t = CLipatov(qav_t, qbv_t, pim, pip, pom, pop); const CLHEP::HepLorentzVector CL_b = CLipatov(qav_b, qbv_b, pim, pip, pom, pop); return -CL_t.dot(CL_b); } double C2Lipatovots_Mix( CLHEP::HepLorentzVector const & qav_t, CLHEP::HepLorentzVector const & qbv_t, CLHEP::HepLorentzVector const & qav_b, CLHEP::HepLorentzVector const & qbv_b, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2, const double lambda ) { const double Cls = C2Lipatov_Mix(qav_t, qbv_t, qav_b, qbv_b, pa, pb, p1, p2) / sqrt(qav_t.m2() * qbv_t.m2() * qav_b.m2() * qbv_b.m2()); const double kperp = (qav_t - qbv_t).perp(); if (kperp > lambda) { return Cls; } return Cls - 4.0 / (kperp * kperp); } /** Matrix element squared for tree-level current-current scattering * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pg Unordered gluon momentum * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @returns ME Squared for Tree-Level Current-Current Scattering * * @note The unof contribution can be calculated by reversing the argument ordering. */ double ME_uno_current( ParticleID aptype, ParticleID bptype, CLHEP::HepLorentzVector const & pg, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa ){ using namespace currents; assert(aptype!=pid::gluon); // aptype cannot be gluon if (bptype==pid::gluon) { if (is_quark(aptype)) return ME_unob_qg(pg,p1,pa,pn,pb); return ME_unob_qbarg(pg,p1,pa,pn,pb); } if (is_antiquark(bptype)) { if (is_quark(aptype)) return ME_unob_qQbar(pg,p1,pa,pn,pb); return ME_unob_qbarQbar(pg,p1,pa,pn,pb); } //bptype == quark if (is_quark(aptype)) return ME_unob_qQ(pg,p1,pa,pn,pb); return ME_unob_qbarQ(pg,p1,pa,pn,pb); } /** Matrix element squared for tree-level current-current scattering * @param bptype Particle b PDG ID * @param pgin Incoming gluon momentum * @param pq Quark from splitting Momentum * @param pqbar Anti-quark from splitting Momentum * @param pn Particle n Momentum * @param pb Particle b Momentum * @param swap_qqbar Ordering of qqbar pair. False: pqbar extremal. * @returns ME Squared for Tree-Level Current-Current Scattering * * @note The forward qqbar contribution can be calculated by reversing the * argument ordering. */ double ME_qqbar_current( ParticleID bptype, CLHEP::HepLorentzVector const & pgin, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, bool const swap_qqbar ){ using namespace currents; if (bptype==pid::gluon) { if (swap_qqbar) // pq extremal return ME_Exqqbar_qqbarg(pgin,pq,pqbar,pn,pb); // pqbar extremal return ME_Exqqbar_qbarqg(pgin,pq,pqbar,pn,pb); } // b leg quark line if (swap_qqbar) //extremal pq return ME_Exqqbar_qqbarQ(pgin,pq,pqbar,pn,pb); return ME_Exqqbar_qbarqQ(pgin,pq,pqbar,pn,pb); } /* \brief Matrix element squared for central qqbar tree-level current-current * scattering * * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param nabove Number of gluons emitted before central qqbarpair * @param nbelow Number of gluons emitted after central qqbarpair * @param pa Initial state a Momentum * @param pb Initial state b Momentum * @param pq Final state qbar Momentum * @param pqbar Final state q Momentum * @param partons Vector of all outgoing partons * @returns ME Squared for qqbar_mid Tree-Level Current-Current Scattering */ double ME_qqbar_mid_current( ParticleID aptype, ParticleID bptype, int nabove, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, std::vector<CLHEP::HepLorentzVector> const & partons ){ using namespace currents; // CAM factors for the qqbar amps, and qqbar ordering (default, pq backwards) const bool swap_qqbar=pqbar.rapidity() < pq.rapidity(); double wt=1.; if (aptype==pid::gluon) wt*=K_g(partons.front(),pa)/C_F; if (bptype==pid::gluon) wt*=K_g(partons.back(),pb)/C_F; return wt*ME_Cenqqbar_qq(pa, pb, partons, is_antiquark(bptype), is_antiquark(aptype), swap_qqbar, nabove); } /** Matrix element squared for tree-level current-current scattering * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @returns ME Squared for Tree-Level Current-Current Scattering */ double ME_current( ParticleID aptype, ParticleID bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa ){ using namespace currents; if (aptype==pid::gluon && bptype==pid::gluon) { return ME_gg(pn,pb,p1,pa); } if (aptype==pid::gluon && bptype!=pid::gluon) { if (is_quark(bptype)) return ME_qg(pn,pb,p1,pa); return ME_qbarg(pn,pb,p1,pa); } if (bptype==pid::gluon && aptype!=pid::gluon) { if (is_quark(aptype)) return ME_qg(p1,pa,pn,pb); return ME_qbarg(p1,pa,pn,pb); } // they are both quark if (is_quark(bptype)) { if (is_quark(aptype)) return ME_qQ(pn,pb,p1,pa); return ME_qQbar(pn,pb,p1,pa); } if (is_quark(aptype)) return ME_qQbar(p1,pa,pn,pb); return ME_qbarQbar(pn,pb,p1,pa); } /** Matrix element squared for tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param wc Boolean. True->W Emitted from b. Else; emitted from leg a * @returns ME Squared for Tree-Level Current-Current Scattering */ double ME_W_current( ParticleID aptype, ParticleID bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc, ParticleProperties const & Wprop ){ using namespace currents; // We know it cannot be gg incoming. assert(!(aptype==pid::gluon && bptype==pid::gluon)); if (aptype==pid::gluon && bptype!=pid::gluon) { if (is_quark(bptype)) return ME_W_qg(pn,plbar,pl,pb,p1,pa,Wprop); return ME_W_qbarg(pn,plbar,pl,pb,p1,pa,Wprop); } if (bptype==pid::gluon && aptype!=pid::gluon) { if (is_quark(aptype)) return ME_W_qg(p1,plbar,pl,pa,pn,pb,Wprop); return ME_W_qbarg(p1,plbar,pl,pa,pn,pb,Wprop); } // they are both quark if (wc){ // emission off b, (first argument pbout) if (is_quark(bptype)) { if (is_quark(aptype)) return ME_W_qQ(pn,plbar,pl,pb,p1,pa,Wprop); return ME_W_qQbar(pn,plbar,pl,pb,p1,pa,Wprop); } if (is_quark(aptype)) return ME_W_qbarQ(pn,plbar,pl,pb,p1,pa,Wprop); return ME_W_qbarQbar(pn,plbar,pl,pb,p1,pa,Wprop); } // emission off a, (first argument paout) if (is_quark(aptype)) { if (is_quark(bptype)) return ME_W_qQ(p1,plbar,pl,pa,pn,pb,Wprop); return ME_W_qQbar(p1,plbar,pl,pa,pn,pb,Wprop); } // a is anti-quark if (is_quark(bptype)) return ME_W_qbarQ(p1,plbar,pl,pa,pn,pb,Wprop); return ME_W_qbarQbar(p1,plbar,pl,pa,pn,pb,Wprop); } /** Matrix element squared for backwards uno tree-level current-current * scattering With W+Jets * * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param pg Unordered gluon momentum * @param wc Boolean. True->W Emitted from b. Else; emitted from leg a * @returns ME Squared for unob Tree-Level Current-Current Scattering * * @note The unof contribution can be calculated by reversing the argument ordering. */ double ME_W_uno_current( ParticleID aptype, ParticleID bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pg, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc, ParticleProperties const & Wprop ){ using namespace currents; // we know they are not both gluons assert(bptype != pid::gluon || aptype != pid::gluon); if (bptype == pid::gluon && aptype != pid::gluon) { // b gluon => W emission off a if (is_quark(aptype)) return ME_Wuno_qg(p1,pa,pn,pb,pg,plbar,pl,Wprop); return ME_Wuno_qbarg(p1,pa,pn,pb,pg,plbar,pl,Wprop); } // they are both quark if (wc) {// emission off b, i.e. b is first current if (is_quark(bptype)){ if (is_quark(aptype)) return ME_W_unob_qQ(p1,pa,pn,pb,pg,plbar,pl,Wprop); return ME_W_unob_qQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop); } if (is_quark(aptype)) return ME_W_unob_qbarQ(p1,pa,pn,pb,pg,plbar,pl,Wprop); return ME_W_unob_qbarQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop); } // wc == false, emission off a, i.e. a is first current if (is_quark(aptype)) { if (is_quark(bptype)) //qq return ME_Wuno_qQ(p1,pa,pn,pb,pg,plbar,pl,Wprop); //qqbar return ME_Wuno_qQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop); } // a is anti-quark if (is_quark(bptype)) //qbarq return ME_Wuno_qbarQ(p1,pa,pn,pb,pg,plbar,pl,Wprop); //qbarqbar return ME_Wuno_qbarQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop); } /** \brief Matrix element squared for backward qqbar tree-level current-current * scattering With W+Jets * * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pa Initial state a Momentum * @param pb Initial state b Momentum * @param pq Final state q Momentum * @param pqbar Final state qbar Momentum * @param pn Final state n Momentum * @param plbar Final state anti-lepton momentum * @param pl Final state lepton momentum * @param swap_qqbar Ordering of qqbar pair. False: pqbar extremal. * @param wc Boolean. True->W Emitted from b. Else; emitted from leg a * @returns ME Squared for qqbarb Tree-Level Current-Current Scattering * * @note calculate forwards qqbar contribution by reversing argument ordering. */ double ME_W_qqbar_current( ParticleID aptype, ParticleID bptype, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const swap_qqbar, bool const wc, ParticleProperties const & Wprop ){ using namespace currents; // With qqbar we could have 2 incoming gluons and W Emission if (aptype==pid::gluon && bptype==pid::gluon) { //a gluon, b gluon gg->qqbarWg // This will be a wqqbar emission as there is no other possible W Emission // Site. if (swap_qqbar) return ME_WExqqbar_qqbarg(pa, pqbar, plbar, pl, pq, pn, pb, Wprop); return ME_WExqqbar_qbarqg(pa, pq, plbar, pl, pqbar, pn, pb, Wprop); } assert(aptype==pid::gluon && bptype!=pid::gluon ); //a gluon => W emission off b leg or qqbar if (!wc){ // W Emitted from backwards qqbar if (swap_qqbar) return ME_WExqqbar_qqbarQ(pa, pqbar, plbar, pl, pq, pn, pb, Wprop); return ME_WExqqbar_qbarqQ(pa, pq, plbar, pl, pqbar, pn, pb, Wprop); } // W Must be emitted from forwards leg. return ME_W_Exqqbar_QQq(pb, pa, pn, pq, pqbar, plbar, pl, is_antiquark(bptype), Wprop); } /* \brief Matrix element squared for central qqbar tree-level current-current * scattering With W+Jets * * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param nabove Number of gluons emitted before central qqbarpair * @param nbelow Number of gluons emitted after central qqbarpair * @param pa Initial state a Momentum * @param pb Initial state b Momentum\ * @param pq Final state qbar Momentum * @param pqbar Final state q Momentum * @param partons Vector of all outgoing partons * @param plbar Final state anti-lepton momentum * @param pl Final state lepton momentum * @param wqq Boolean. True siginfies W boson is emitted from Central qqbar * @param wc Boolean. wc=true signifies w boson emitted from leg b; if wqq=false. * @returns ME Squared for qqbar_mid Tree-Level Current-Current Scattering */ double ME_W_qqbar_mid_current( ParticleID aptype, ParticleID bptype, int nabove, int nbelow, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, std::vector<CLHEP::HepLorentzVector> const & partons, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wqq, bool const wc, ParticleProperties const & Wprop ){ using namespace currents; // CAM factors for the qqbar amps, and qqbar ordering (default, pq backwards) const bool swap_qqbar=pqbar.rapidity() < pq.rapidity(); double wt=1.; if (aptype==pid::gluon) wt*=K_g(partons.front(),pa)/C_F; if (bptype==pid::gluon) wt*=K_g(partons.back(),pb)/C_F; if(wqq) return wt*ME_WCenqqbar_qq(pa, pb, pl, plbar, partons, is_antiquark(aptype),is_antiquark(bptype), swap_qqbar, nabove, Wprop); return wt*ME_W_Cenqqbar_qq(pa, pb, pl, plbar, partons, is_antiquark(aptype), is_antiquark(bptype), swap_qqbar, nabove, nbelow, wc, Wprop); } /** Matrix element squared for tree-level current-current scattering With Z+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param plbar Final state positron momentum * @param pl Final state electron momentum * @param Zprop Z properties * @param stw2 Value of sin(theta_w)^2 * @param ctw Value of cos(theta_w) * @returns ME Squared for Tree-Level Current-Current Scattering */ std::vector<double> ME_Z_current( const ParticleID aptype, const ParticleID bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, ParticleProperties const & Zprop, const double stw2, const double ctw ){ using namespace currents; // we know they are not both gluons assert(!is_gluon(aptype) || !is_gluon(bptype)); if(is_anyquark(aptype) && is_gluon(bptype)){ // This is a qg event return { ME_Z_qg(pa,pb,p1,pn,plbar,pl,aptype,bptype,Zprop,stw2,ctw) }; } if(is_gluon(aptype) && is_anyquark(bptype)){ // This is a gq event return { ME_Z_qg(pb,pa,pn,p1,plbar,pl,bptype,aptype,Zprop,stw2,ctw) }; } assert(is_anyquark(aptype) && is_anyquark(bptype)); // This is a qq event return ME_Z_qQ(pa,pb,p1,pn,plbar,pl,aptype,bptype,Zprop,stw2,ctw); } /** Matrix element squared for backwards uno tree-level current-current * scattering With Z+Jets * * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param pg Unordered gluon momentum * @param plbar Final state positron momentum * @param pl Final state electron momentum * @param Zprop Z properties * @param stw2 Value of sin(theta_w)^2 * @param ctw Value of cos(theta_w) * @returns ME Squared for unob Tree-Level Current-Current Scattering * * @note The unof contribution can be calculated by reversing the argument ordering. */ std::vector<double> ME_Z_uno_current( const ParticleID aptype, const ParticleID bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pg, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, ParticleProperties const & Zprop, const double stw2, const double ctw ){ using namespace currents; // we know they are not both gluons assert(!is_gluon(aptype) || !is_gluon(bptype)); if (is_anyquark(aptype) && is_gluon(bptype)) { // This is a qg event return { ME_Zuno_qg(pa,pb,pg,p1,pn,plbar,pl,aptype,bptype,Zprop,stw2,ctw) }; } if (is_gluon(aptype) && is_anyquark(bptype)) { // This is a gq event return { ME_Zuno_qg(pb,pa,pg,pn,p1,plbar,pl,bptype,aptype,Zprop,stw2,ctw) }; } assert(is_anyquark(aptype) && is_anyquark(bptype)); // This is a qq event return ME_Zuno_qQ(pa,pb,pg,p1,pn,plbar,pl,aptype,bptype,Zprop,stw2,ctw); } /** \brief Matrix element squared for tree-level current-current scattering with Higgs * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param qH t-channel momentum before Higgs * @param qHp1 t-channel momentum after Higgs * @returns ME Squared for Tree-Level Current-Current Scattering with Higgs */ double ME_Higgs_current( ParticleID aptype, ParticleID bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs double mt, bool include_bottom, double mb, double vev ){ using namespace currents; if (aptype==pid::gluon && bptype==pid::gluon) // gg initial state return ME_H_gg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev); if (aptype==pid::gluon&&bptype!=pid::gluon) { if (is_quark(bptype)) return ME_H_qg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4./9.; return ME_H_qbarg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4./9.; } if (bptype==pid::gluon && aptype!=pid::gluon) { if (is_quark(aptype)) return ME_H_qg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev)*4./9.; return ME_H_qbarg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev)*4./9.; } // they are both quark if (is_quark(bptype)) { if (is_quark(aptype)) return ME_H_qQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.); return ME_H_qQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.); } if (is_quark(aptype)) return ME_H_qbarQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.); return ME_H_qbarQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.); } /** \brief Current matrix element squared with Higgs and unordered backward emission * @param aptype Particle A PDG ID * @param bptype Particle B PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param pg Unordered back Particle Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param qH t-channel momentum before Higgs * @param qHp1 t-channel momentum after Higgs * @returns ME Squared with Higgs and unordered backward emission * * @note This function assumes unordered gluon backwards from pa-p1 current. * For unof, reverse call order */ double ME_Higgs_current_uno( ParticleID aptype, ParticleID bptype, CLHEP::HepLorentzVector const & pg, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs double mt, bool include_bottom, double mb, double vev ){ using namespace currents; if (bptype==pid::gluon && aptype!=pid::gluon) { if (is_quark(aptype)) return ME_H_unob_gQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev); return ME_H_unob_gQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev); } // they are both quark if (is_quark(aptype)) { if (is_quark(bptype)) return ME_H_unob_qQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev); return ME_H_unob_qbarQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev); } if (is_quark(bptype)) return ME_H_unob_qQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev); return ME_H_unob_qbarQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev); } void validate(MatrixElementConfig const & config) { #ifndef HEJ_BUILD_WITH_QCDLOOP if(!config.Higgs_coupling.use_impact_factors) { throw std::invalid_argument{ "Invalid Higgs coupling settings.\n" "HEJ without QCDloop support can only use impact factors.\n" "Set use_impact_factors to true or recompile HEJ.\n" }; } #endif if(config.Higgs_coupling.use_impact_factors && config.Higgs_coupling.mt != std::numeric_limits<double>::infinity()) { throw std::invalid_argument{ "Conflicting settings: " "impact factors may only be used in the infinite top mass limit" }; } } } // namespace MatrixElement::MatrixElement( std::function<double (double)> alpha_s, MatrixElementConfig conf ): alpha_s_{std::move(alpha_s)}, param_{std::move(conf)} { validate(param_); } std::vector<double> MatrixElement::tree_kin( Event const & ev ) const { if(!ev.valid_hej_state(param_.soft_pt_regulator)) return {0.}; auto AWZH_boson = std::find_if( begin(ev.outgoing()), end(ev.outgoing()), [](Particle const & p){return is_AWZH_boson(p);} ); if(AWZH_boson == end(ev.outgoing())) return {tree_kin_jets(ev)}; switch(AWZH_boson->type){ case pid::Higgs: return {tree_kin_Higgs(ev)}; case pid::Wp: case pid::Wm: return {tree_kin_W(ev)}; case pid::Z_photon_mix: return tree_kin_Z(ev); // TODO case pid::photon: case pid::Z: default: throw not_implemented("Emission of boson of unsupported type"); } } namespace { constexpr int EXTREMAL_JET_IDX = 1; constexpr int NO_EXTREMAL_JET_IDX = 0; bool treat_as_extremal(Particle const & parton){ return parton.p.user_index() == EXTREMAL_JET_IDX; } template<class InputIterator> double FKL_ladder_weight( InputIterator begin_gluon, InputIterator end_gluon, CLHEP::HepLorentzVector const & q0, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn, double lambda ){ double wt = 1; auto qi = q0; for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){ assert(gluon_it->type == pid::gluon); const auto g = to_HepLorentzVector(*gluon_it); const auto qip1 = qi - g; if(treat_as_extremal(*gluon_it)){ wt *= C2Lipatovots(qip1, qi, pa, pb, lambda)*C_A; } else{ wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn, lambda)*C_A; } qi = qip1; } return wt; } template<class InputIterator> std::vector <double> FKL_ladder_weight_mix( InputIterator begin_gluon, InputIterator end_gluon, CLHEP::HepLorentzVector const & q0_t, CLHEP::HepLorentzVector const & q0_b, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn, const double lambda ){ double wt_top = 1; double wt_bot = 1; double wt_mix = 1; auto qi_t = q0_t; auto qi_b = q0_b; for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){ assert(gluon_it->type == pid::gluon); const auto g = to_HepLorentzVector(*gluon_it); const auto qip1_t = qi_t - g; const auto qip1_b = qi_b - g; if(treat_as_extremal(*gluon_it)){ wt_top *= C2Lipatovots(qip1_t, qi_t, pa, pb, lambda)*C_A; wt_bot *= C2Lipatovots(qip1_b, qi_b, pa, pb, lambda)*C_A; wt_mix *= C2Lipatovots_Mix(qip1_t, qi_t, qip1_b, qi_b, pa, pb, lambda)*C_A; } else{ wt_top *= C2Lipatovots(qip1_t, qi_t, pa, pb, p1, pn, lambda)*C_A; wt_bot *= C2Lipatovots(qip1_b, qi_b, pa, pb, p1, pn, lambda)*C_A; wt_mix *= C2Lipatovots_Mix(qip1_t, qi_t, qip1_b, qi_b, pa, pb, p1, pn, lambda)*C_A; } qi_t = qip1_t; qi_b = qip1_b; } return {wt_top, wt_bot, wt_mix}; } std::vector<Particle> tag_extremal_jet_partons( Event const & ev ){ auto out_partons = filter_partons(ev.outgoing()); if(out_partons.size() == ev.jets().size()){ // no additional emissions in extremal jets, don't need to tag anything for(auto & parton: out_partons){ parton.p.set_user_index(NO_EXTREMAL_JET_IDX); } return out_partons; } auto const & jets = ev.jets(); std::vector<fastjet::PseudoJet> extremal_jets; if(! is_backward_g_to_h(ev)) { auto most_backward = begin(jets); // skip jets caused by unordered emission or qqbar if(ev.type() == event_type::unob || ev.type() == event_type::qqbar_exb){ assert(jets.size() >= 2); ++most_backward; } extremal_jets.emplace_back(*most_backward); } if(! is_forward_g_to_h(ev)) { auto most_forward = end(jets) - 1; if(ev.type() == event_type::unof || ev.type() == event_type::qqbar_exf){ assert(jets.size() >= 2); --most_forward; } extremal_jets.emplace_back(*most_forward); } const auto extremal_jet_indices = ev.particle_jet_indices( extremal_jets ); assert(extremal_jet_indices.size() == out_partons.size()); for(std::size_t i = 0; i < out_partons.size(); ++i){ assert(is_parton(out_partons[i])); const int idx = (extremal_jet_indices[i]>=0)? EXTREMAL_JET_IDX: NO_EXTREMAL_JET_IDX; out_partons[i].p.set_user_index(idx); } return out_partons; } double tree_kin_jets_qqbar_mid( ParticleID aptype, ParticleID bptype, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, std::vector<Particle> const & partons, double lambda ){ CLHEP::HepLorentzVector pq; CLHEP::HepLorentzVector pqbar; const auto backmidquark = std::find_if( begin(partons)+1, end(partons)-1, [](Particle const & s){ return s.type != pid::gluon; } ); assert(backmidquark!=end(partons)-1); if (is_quark(backmidquark->type)){ pq = to_HepLorentzVector(*backmidquark); pqbar = to_HepLorentzVector(*(backmidquark+1)); } else { pqbar = to_HepLorentzVector(*backmidquark); pq = to_HepLorentzVector(*(backmidquark+1)); } auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - p1; // t-channel momentum after qqbar auto qqbart = q0; const auto begin_ladder = cbegin(partons) + 1; const auto end_ladder_1 = (backmidquark); const auto begin_ladder_2 = (backmidquark+2); const auto end_ladder = cend(partons) - 1; for(auto parton_it = begin_ladder; parton_it < begin_ladder_2; ++parton_it){ qqbart -= to_HepLorentzVector(*parton_it); } const int nabove = std::distance(begin_ladder, backmidquark); std::vector<CLHEP::HepLorentzVector> partonsHLV; partonsHLV.reserve(partons.size()); for (std::size_t i = 0; i != partons.size(); ++i) { partonsHLV.push_back(to_HepLorentzVector(partons[i])); } const double current_factor = ME_qqbar_mid_current( aptype, bptype, nabove, pa, pb, pq, pqbar, partonsHLV ); const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder_1, q0, pa, pb, p1, pn, lambda )*FKL_ladder_weight( begin_ladder_2, end_ladder, qqbart, pa, pb, p1, pn, lambda ); return current_factor*ladder_factor; } template<class InIter, class partIter> double tree_kin_jets_qqbar(InIter BeginIn, InIter EndIn, partIter BeginPart, partIter EndPart, double lambda){ const bool swap_qqbar = is_quark(*BeginPart); const auto pgin = to_HepLorentzVector(*BeginIn); const auto pb = to_HepLorentzVector(*(EndIn-1)); const auto pq = to_HepLorentzVector(*(BeginPart+(swap_qqbar?0:1))); const auto pqbar = to_HepLorentzVector(*(BeginPart+(swap_qqbar?1:0))); const auto p1 = to_HepLorentzVector(*(BeginPart)); const auto pn = to_HepLorentzVector(*(EndPart-1)); assert((BeginIn)->type==pid::gluon); // Incoming a must be gluon. const double current_factor = ME_qqbar_current( (EndIn-1)->type, pgin, pq, pqbar, pn, pb, swap_qqbar )/(4.*(N_C*N_C - 1.)); const double ladder_factor = FKL_ladder_weight( (BeginPart+2), (EndPart-1), pgin-pq-pqbar, pgin, pb, p1, pn, lambda ); return current_factor*ladder_factor; } template<class InIter, class partIter> double tree_kin_jets_uno(InIter BeginIn, InIter EndIn, partIter BeginPart, partIter EndPart, double lambda ){ const auto pa = to_HepLorentzVector(*BeginIn); const auto pb = to_HepLorentzVector(*(EndIn-1)); const auto pg = to_HepLorentzVector(*BeginPart); const auto p1 = to_HepLorentzVector(*(BeginPart+1)); const auto pn = to_HepLorentzVector(*(EndPart-1)); const double current_factor = ME_uno_current( (BeginIn)->type, (EndIn-1)->type, pg, pn, pb, p1, pa ); const double ladder_factor = FKL_ladder_weight( (BeginPart+2), (EndPart-1), pa-p1-pg, pa, pb, p1, pn, lambda ); return current_factor*ladder_factor; } } // namespace double MatrixElement::tree_kin_jets(Event const & ev) const { auto const & incoming = ev.incoming(); const auto partons = tag_extremal_jet_partons(ev); if (ev.type()==event_type::FKL){ const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto p1 = to_HepLorentzVector(partons.front()); const auto pn = to_HepLorentzVector(partons.back()); return ME_current( incoming[0].type, incoming[1].type, pn, pb, p1, pa )/(4.*(N_C*N_C - 1.))*FKL_ladder_weight( begin(partons) + 1, end(partons) - 1, pa - p1, pa, pb, p1, pn, param_.regulator_lambda ); } if (ev.type()==event_type::unordered_backward){ return tree_kin_jets_uno(incoming.begin(), incoming.end(), partons.begin(), partons.end(), param_.regulator_lambda); } if (ev.type()==event_type::unordered_forward){ return tree_kin_jets_uno(incoming.rbegin(), incoming.rend(), partons.rbegin(), partons.rend(), param_.regulator_lambda); } if (ev.type()==event_type::extremal_qqbar_backward){ return tree_kin_jets_qqbar(incoming.begin(), incoming.end(), partons.begin(), partons.end(), param_.regulator_lambda); } if (ev.type()==event_type::extremal_qqbar_forward){ return tree_kin_jets_qqbar(incoming.rbegin(), incoming.rend(), partons.rbegin(), partons.rend(), param_.regulator_lambda); } if (ev.type()==event_type::central_qqbar){ return tree_kin_jets_qqbar_mid(incoming[0].type, incoming[1].type, to_HepLorentzVector(incoming[0]), to_HepLorentzVector(incoming[1]), partons, param_.regulator_lambda); } throw std::logic_error("Cannot reweight non-resummable processes in Pure Jets"); } namespace { double tree_kin_W_FKL( ParticleID aptype, ParticleID bptype, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, std::vector<Particle> const & partons, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, double lambda, ParticleProperties const & Wprop ){ auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); const auto begin_ladder = cbegin(partons) + 1; const auto end_ladder = cend(partons) - 1; bool wc = aptype==partons[0].type; //leg b emits w auto q0 = pa - p1; if(!wc) q0 -= pl + plbar; const double current_factor = ME_W_current( aptype, bptype, pn, pb, p1, pa, plbar, pl, wc, Wprop ); const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn, lambda ); return current_factor*ladder_factor; } template<class InIter, class partIter> double tree_kin_W_uno(InIter BeginIn, partIter BeginPart, partIter EndPart, const CLHEP::HepLorentzVector & plbar, const CLHEP::HepLorentzVector & pl, double lambda, ParticleProperties const & Wprop ){ const auto pa = to_HepLorentzVector(*BeginIn); const auto pb = to_HepLorentzVector(*(BeginIn+1)); const auto pg = to_HepLorentzVector(*BeginPart); const auto p1 = to_HepLorentzVector(*(BeginPart+1)); const auto pn = to_HepLorentzVector(*(EndPart-1)); bool wc = (BeginIn)->type==(BeginPart+1)->type; //leg b emits w auto q0 = pa - p1 - pg; if(!wc) q0 -= pl + plbar; const double current_factor = ME_W_uno_current( (BeginIn)->type, (BeginIn+1)->type, pn, pb, p1, pa, pg, plbar, pl, wc, Wprop ); const double ladder_factor = FKL_ladder_weight( BeginPart+2, EndPart-1, q0, pa, pb, p1, pn, lambda ); return current_factor*ladder_factor; } template<class InIter, class partIter> double tree_kin_W_qqbar(InIter BeginIn, partIter BeginPart, partIter EndPart, const CLHEP::HepLorentzVector & plbar, const CLHEP::HepLorentzVector & pl, double lambda, ParticleProperties const & Wprop ){ const bool swap_qqbar=is_quark(*BeginPart); const auto pa = to_HepLorentzVector(*BeginIn); const auto pb = to_HepLorentzVector(*(BeginIn+1)); const auto pq = to_HepLorentzVector(*(BeginPart+(swap_qqbar?0:1))); const auto pqbar = to_HepLorentzVector(*(BeginPart+(swap_qqbar?1:0))); const auto p1 = to_HepLorentzVector(*(BeginPart)); const auto pn = to_HepLorentzVector(*(EndPart-1)); const bool wc = (BeginIn+1)->type!=(EndPart-1)->type; //leg b emits w auto q0 = pa - pq - pqbar; if(!wc) q0 -= pl + plbar; const double current_factor = ME_W_qqbar_current( (BeginIn)->type, (BeginIn+1)->type, pa, pb, pq, pqbar, pn, plbar, pl, swap_qqbar, wc, Wprop ); const double ladder_factor = FKL_ladder_weight( BeginPart+2, EndPart-1, q0, pa, pb, p1, pn, lambda ); return current_factor*ladder_factor; } double tree_kin_W_qqbar_mid( ParticleID aptype, ParticleID bptype, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, std::vector<Particle> const & partons, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, double lambda, ParticleProperties const & Wprop ){ CLHEP::HepLorentzVector pq; CLHEP::HepLorentzVector pqbar; const auto backmidquark = std::find_if( begin(partons)+1, end(partons)-1, [](Particle const & s){ return s.type != pid::gluon; } ); assert(backmidquark!=end(partons)-1); if (is_quark(backmidquark->type)){ pq = to_HepLorentzVector(*backmidquark); pqbar = to_HepLorentzVector(*(backmidquark+1)); } else { pqbar = to_HepLorentzVector(*backmidquark); pq = to_HepLorentzVector(*(backmidquark+1)); } auto p1 = to_HepLorentzVector(partons.front()); auto pn = to_HepLorentzVector(partons.back()); auto q0 = pa - p1; // t-channel momentum after qqbar auto qqbart = q0; bool wqq = backmidquark->type != -(backmidquark+1)->type; // qqbar emit W bool wc = !wqq && (aptype==partons.front().type); //leg b emits w assert(!wqq || !wc); if(wqq){ // emission from qqbar qqbart -= pl + plbar; } else if(!wc) { // emission from leg a q0 -= pl + plbar; qqbart -= pl + plbar; } const auto begin_ladder = cbegin(partons) + 1; const auto end_ladder_1 = (backmidquark); const auto begin_ladder_2 = (backmidquark+2); const auto end_ladder = cend(partons) - 1; for(auto parton_it = begin_ladder; parton_it < begin_ladder_2; ++parton_it){ qqbart -= to_HepLorentzVector(*parton_it); } const int nabove = std::distance(begin_ladder, backmidquark); const int nbelow = std::distance(begin_ladder_2, end_ladder); std::vector<CLHEP::HepLorentzVector> partonsHLV; partonsHLV.reserve(partons.size()); for (std::size_t i = 0; i != partons.size(); ++i) { partonsHLV.push_back(to_HepLorentzVector(partons[i])); } const double current_factor = ME_W_qqbar_mid_current( aptype, bptype, nabove, nbelow, pa, pb, pq, pqbar, partonsHLV, plbar, pl, wqq, wc, Wprop ); const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder_1, q0, pa, pb, p1, pn, lambda )*FKL_ladder_weight( begin_ladder_2, end_ladder, qqbart, pa, pb, p1, pn, lambda ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } } // namespace double MatrixElement::tree_kin_W(Event const & ev) const { using namespace event_type; auto const & incoming(ev.incoming()); #ifndef NDEBUG // assert that there is exactly one decay corresponding to the W assert(ev.decays().size() == 1); auto const & w_boson{ std::find_if(ev.outgoing().cbegin(), ev.outgoing().cend(), [] (Particle const & p) -> bool { return std::abs(p.type) == ParticleID::Wp; }) }; assert(w_boson != ev.outgoing().cend()); assert( static_cast<long int>(ev.decays().cbegin()->first) == std::distance(ev.outgoing().cbegin(), w_boson) ); #endif // find decay products of W auto const & decay{ ev.decays().cbegin()->second }; assert(decay.size() == 2); assert( ( is_anylepton(decay.at(0)) && is_anyneutrino(decay.at(1)) ) || ( is_anylepton(decay.at(1)) && is_anyneutrino(decay.at(0)) ) ); // get lepton & neutrino CLHEP::HepLorentzVector plbar; CLHEP::HepLorentzVector pl; if (decay.at(0).type < 0){ plbar = to_HepLorentzVector(decay.at(0)); pl = to_HepLorentzVector(decay.at(1)); } else{ pl = to_HepLorentzVector(decay.at(0)); plbar = to_HepLorentzVector(decay.at(1)); } const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto partons = tag_extremal_jet_partons(ev); if(ev.type() == FKL){ return tree_kin_W_FKL(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, param_.regulator_lambda, param_.ew_parameters.Wprop()); } if(ev.type() == unordered_backward){ return tree_kin_W_uno(cbegin(incoming), cbegin(partons), cend(partons), plbar, pl, param_.regulator_lambda, param_.ew_parameters.Wprop()); } if(ev.type() == unordered_forward){ return tree_kin_W_uno(crbegin(incoming), crbegin(partons), crend(partons), plbar, pl, param_.regulator_lambda, param_.ew_parameters.Wprop()); } if(ev.type() == extremal_qqbar_backward){ return tree_kin_W_qqbar(cbegin(incoming), cbegin(partons), cend(partons), plbar, pl, param_.regulator_lambda, param_.ew_parameters.Wprop()); } if(ev.type() == extremal_qqbar_forward){ return tree_kin_W_qqbar(crbegin(incoming), crbegin(partons), crend(partons), plbar, pl, param_.regulator_lambda, param_.ew_parameters.Wprop()); } assert(ev.type() == central_qqbar); return tree_kin_W_qqbar_mid(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, param_.regulator_lambda, param_.ew_parameters.Wprop()); } namespace { std::vector <double> tree_kin_Z_FKL( const ParticleID aptype, const ParticleID bptype, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, std::vector<Particle> const & partons, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, const double lambda, ParticleProperties const & Zprop, const double stw2, const double ctw ){ const auto p1 = to_HepLorentzVector(partons[0]); const auto pn = to_HepLorentzVector(partons[partons.size() - 1]); const auto begin_ladder = cbegin(partons) + 1; const auto end_ladder = cend(partons) - 1; const std::vector <double> current_factor = ME_Z_current( aptype, bptype, pn, pb, p1, pa, plbar, pl, Zprop, stw2, ctw ); std::vector <double> ladder_factor; if(is_gluon(bptype)){ // This is a qg event const auto q0 = pa-p1-plbar-pl; ladder_factor.push_back(FKL_ladder_weight(begin_ladder, end_ladder, q0, pa, pb, p1, pn, lambda)); } else if(is_gluon(aptype)){ // This is a gq event const auto q0 = pa-p1; ladder_factor.push_back(FKL_ladder_weight(begin_ladder, end_ladder, q0, pa, pb, p1, pn, lambda)); } else { // This is a qq event const auto q0 = pa-p1-plbar-pl; const auto q1 = pa-p1; ladder_factor=FKL_ladder_weight_mix(begin_ladder, end_ladder, q0, q1, pa, pb, p1, pn, lambda); } std::vector <double> result; for(size_t i=0; i<current_factor.size(); ++i){ result.push_back(current_factor.at(i)*ladder_factor.at(i)); } return result; } template<class InIter, class partIter> std::vector <double> tree_kin_Z_uno(InIter BeginIn, partIter BeginPart, partIter EndPart, const CLHEP::HepLorentzVector & plbar, const CLHEP::HepLorentzVector & pl, const double lambda, ParticleProperties const & Zprop, const double stw2, const double ctw){ const auto pa = to_HepLorentzVector(*BeginIn); const auto pb = to_HepLorentzVector(*(BeginIn+1)); const auto pg = to_HepLorentzVector(*BeginPart); const auto p1 = to_HepLorentzVector(*(BeginPart+1)); const auto pn = to_HepLorentzVector(*(EndPart-1)); const ParticleID aptype = (BeginIn)->type; const ParticleID bptype = (BeginIn+1)->type; const std::vector <double> current_factor = ME_Z_uno_current( aptype, bptype, pn, pb, p1, pa, pg, plbar, pl, Zprop, stw2, ctw ); std::vector <double> ladder_factor; if(is_gluon(bptype)){ // This is a qg event const auto q0 = pa-pg-p1-plbar-pl; ladder_factor.push_back(FKL_ladder_weight(BeginPart+2, EndPart-1, q0, pa, pb, p1, pn, lambda)); }else if(is_gluon(aptype)){ // This is a gq event const auto q0 = pa-pg-p1; ladder_factor.push_back(FKL_ladder_weight(BeginPart+2, EndPart-1, q0, pa, pb, p1, pn, lambda)); }else{ // This is a qq event const auto q0 = pa-pg-p1-plbar-pl; const auto q1 = pa-pg-p1; ladder_factor=FKL_ladder_weight_mix(BeginPart+2, EndPart-1, q0, q1, pa, pb, p1, pn, lambda); } std::vector <double> result; for(size_t i=0; i<current_factor.size(); ++i){ result.push_back(current_factor.at(i)*ladder_factor.at(i)); } return result; } } // namespace std::vector<double> MatrixElement::tree_kin_Z(Event const & ev) const { using namespace event_type; auto const & incoming(ev.incoming()); // find decay products of Z auto const & decay{ ev.decays().cbegin()->second }; assert(decay.size() == 2); assert(is_anylepton(decay.at(0)) && !is_anyneutrino(decay.at(0)) && decay.at(0).type==-decay.at(1).type); // get leptons CLHEP::HepLorentzVector plbar; CLHEP::HepLorentzVector pl; if (decay.at(0).type < 0){ plbar = to_HepLorentzVector(decay.at(0)); pl = to_HepLorentzVector(decay.at(1)); } else{ pl = to_HepLorentzVector(decay.at(0)); plbar = to_HepLorentzVector(decay.at(1)); } const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto partons = tag_extremal_jet_partons(ev); const double stw2 = param_.ew_parameters.sin2_tw(); const double ctw = param_.ew_parameters.cos_tw(); if(ev.type() == FKL){ return tree_kin_Z_FKL(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, param_.regulator_lambda, param_.ew_parameters.Zprop(), stw2, ctw); } if(ev.type() == unordered_backward){ return tree_kin_Z_uno(cbegin(incoming), cbegin(partons), cend(partons), plbar, pl, param_.regulator_lambda, param_.ew_parameters.Zprop(), stw2, ctw); } if(ev.type() == unordered_forward){ return tree_kin_Z_uno(crbegin(incoming), crbegin(partons), crend(partons), plbar, pl, param_.regulator_lambda, param_.ew_parameters.Zprop(), stw2, ctw); } throw std::logic_error("Can only reweight FKL or uno processes in Z+Jets"); } double MatrixElement::tree_kin_Higgs(Event const & ev) const { if(is_uno(ev.type())){ return tree_kin_Higgs_between(ev); } if(ev.outgoing().front().type == pid::Higgs){ return tree_kin_Higgs_first(ev); } if(ev.outgoing().back().type == pid::Higgs){ return tree_kin_Higgs_last(ev); } return tree_kin_Higgs_between(ev); } namespace { // Colour acceleration multipliers, for gluons see eq. (7) in arXiv:0910.5113 double K( ParticleID type, CLHEP::HepLorentzVector const & pout, CLHEP::HepLorentzVector const & pin ){ if(type == pid::gluon) return currents::K_g(pout, pin); return C_F; } } // namespace // kinetic matrix element square for forward Higgs emission // cf. eq:ME_h_jets_peripheral in developer manual, // but without factors \alpha_s and the FKL ladder double MatrixElement::MH2_forwardH( ParticleID type2, - CLHEP::HepLorentzVector const & pg, + CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pH, CLHEP::HepLorentzVector const & pn ) const { using namespace currents; const double vev = param_.ew_parameters.vev(); return K(type2, pn, pb)*ME_jgH_j( - pH, pg, pn, pb, + pH, pa, pn, pb, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb, vev - )/((N_C*N_C - 1)*(pg-pH).m2()*(pb-pn).m2()); + )/(4.*(N_C*N_C - 1)*(pa-pH).m2()*(pb-pn).m2()); } double MatrixElement::tree_kin_Higgs_first(Event const & ev) const { auto const & incoming = ev.incoming(); auto const & outgoing = ev.outgoing(); assert(outgoing.front().type == pid::Higgs); if(is_anyquark(incoming.front())) { assert(incoming.front().type == outgoing[1].type); return tree_kin_Higgs_between(ev); } const auto partons = tag_extremal_jet_partons(ev); - const auto pg = to_HepLorentzVector(incoming.front()); + const auto pa = to_HepLorentzVector(incoming.front()); const auto pb = to_HepLorentzVector(incoming.back()); const auto pH = to_HepLorentzVector(outgoing.front()); const auto pn = to_HepLorentzVector(outgoing.back()); return MH2_forwardH( incoming.back().type, pg, pb, pH, pn )*FKL_ladder_weight( begin(partons), end(partons) - 1, pg - pH, pg, pb, pH, pn, param_.regulator_lambda ); } double MatrixElement::tree_kin_Higgs_last(Event const & ev) const { auto const & incoming = ev.incoming(); auto const & outgoing = ev.outgoing(); assert(outgoing.back().type == pid::Higgs); - const auto partons = tag_extremal_jet_partons(ev); if(is_anyquark(incoming.back())) { assert(incoming.back().type == outgoing[outgoing.size()-2].type); return tree_kin_Higgs_between(ev); } + + const auto partons = tag_extremal_jet_partons(ev); + const auto pa = to_HepLorentzVector(incoming.front()); - const auto pg = to_HepLorentzVector(incoming.back()); + const auto pb = to_HepLorentzVector(incoming.back()); const auto p1 = to_HepLorentzVector(partons.front()); const auto pH = to_HepLorentzVector(outgoing.back()); return MH2_forwardH( incoming.front().type, pg, pa, pH, p1 )*FKL_ladder_weight( begin(partons) + 1, end(partons), pa - p1, pa, pg, p1, pH, param_.regulator_lambda ); } namespace { template<class InIter, class partIter> double tree_kin_Higgs_uno(InIter BeginIn, InIter EndIn, partIter BeginPart, partIter EndPart, CLHEP::HepLorentzVector const & qH, CLHEP::HepLorentzVector const & qHp1, double mt, bool inc_bot, double mb, double vev ){ const auto pa = to_HepLorentzVector(*BeginIn); const auto pb = to_HepLorentzVector(*(EndIn-1)); const auto pg = to_HepLorentzVector(*BeginPart); const auto p1 = to_HepLorentzVector(*(BeginPart+1)); const auto pn = to_HepLorentzVector(*(EndPart-1)); return ME_Higgs_current_uno( (BeginIn)->type, (EndIn-1)->type, pg, pn, pb, p1, pa, qH, qHp1, mt, inc_bot, mb, vev ); } } // namespace double MatrixElement::tree_kin_Higgs_between(Event const & ev) const { using namespace event_type; auto const & incoming = ev.incoming(); auto const & outgoing = ev.outgoing(); const auto the_Higgs = std::find_if( begin(outgoing), end(outgoing), [](Particle const & s){ return s.type == pid::Higgs; } ); assert(the_Higgs != end(outgoing)); const auto pH = to_HepLorentzVector(*the_Higgs); const auto partons = tag_extremal_jet_partons(ev); const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); auto p1 = to_HepLorentzVector( partons[(ev.type() == unob)?1:0] ); auto pn = to_HepLorentzVector( partons[partons.size() - ((ev.type() == unof)?2:1)] ); auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing)); assert( (first_after_Higgs == end(partons) && ( (ev.type() == unob) || partons.back().type != pid::gluon )) || first_after_Higgs->rapidity() >= the_Higgs->rapidity() ); assert( (first_after_Higgs == begin(partons) && ( (ev.type() == unof) || partons.front().type != pid::gluon )) || (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity() ); // always treat the Higgs as if it were in between the extremal FKL partons if(first_after_Higgs == begin(partons)) ++first_after_Higgs; else if(first_after_Higgs == end(partons)) --first_after_Higgs; // t-channel momentum before Higgs auto qH = pa; for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){ qH -= to_HepLorentzVector(*parton_it); } auto q0 = pa - p1; auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 1; double current_factor = NAN; if(ev.type() == FKL){ current_factor = ME_Higgs_current( incoming[0].type, incoming[1].type, pn, pb, p1, pa, qH, qH - pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb, param_.ew_parameters.vev() ); } else if(ev.type() == unob){ current_factor = C_A*C_A/2*tree_kin_Higgs_uno( begin(incoming), end(incoming), begin(partons), end(partons), qH, qH-pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb, param_.ew_parameters.vev() ); const auto p_unob = to_HepLorentzVector(partons.front()); q0 -= p_unob; p1 += p_unob; ++begin_ladder; } else if(ev.type() == unof){ current_factor = C_A*C_A/2*tree_kin_Higgs_uno( rbegin(incoming), rend(incoming), rbegin(partons), rend(partons), qH-pH, qH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb, param_.ew_parameters.vev() ); pn += to_HepLorentzVector(partons.back()); --end_ladder; } else{ throw std::logic_error("Can only reweight FKL or uno processes in H+Jets"); } const double ladder_factor = FKL_ladder_weight( begin_ladder, first_after_Higgs, q0, pa, pb, p1, pn, param_.regulator_lambda )*FKL_ladder_weight( first_after_Higgs, end_ladder, qH - pH, pa, pb, p1, pn, param_.regulator_lambda ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } namespace { double get_AWZH_coupling(Event const & ev, double alpha_s, double alpha_w) { const auto AWZH_boson = std::find_if( begin(ev.outgoing()), end(ev.outgoing()), [](auto const & p){return is_AWZH_boson(p);} ); if(AWZH_boson == end(ev.outgoing())) return 1.; switch(AWZH_boson->type){ case pid::Higgs: return alpha_s*alpha_s; case pid::Wp: case pid::Wm: case pid::Z_photon_mix: return alpha_w*alpha_w; // TODO case pid::photon: case pid::Z: default: throw not_implemented("Emission of boson of unsupported type"); } } } // namespace double MatrixElement::tree_param(Event const & ev, double mur) const { assert(is_resummable(ev.type())); const auto begin_partons = ev.begin_partons(); const auto end_partons = ev.end_partons(); const auto num_partons = std::distance(begin_partons, end_partons); const double alpha_s = alpha_s_(mur); const double gs2 = 4.*M_PI*alpha_s; double res = std::pow(gs2, num_partons); if(param_.log_correction){ // use alpha_s(q_perp), evolved to mur assert(num_partons >= 2); const auto first_emission = std::next(begin_partons); const auto last_emission = std::prev(end_partons); for(auto parton = first_emission; parton != last_emission; ++parton){ res *= 1. + alpha_s/(2.*M_PI)*BETA0*std::log(mur/parton->perp()); } } return get_AWZH_coupling(ev, alpha_s, param_.ew_parameters.alpha_w())*res; } } // namespace HEJ