diff --git a/src/Event.cc b/src/Event.cc index ece9702..6db3559 100644 --- a/src/Event.cc +++ b/src/Event.cc @@ -1,601 +1,635 @@ #include "RHEJ/Event.hh" #include "RHEJ/utility.hh" #include "RHEJ/qqx.hh" namespace RHEJ{ namespace{ constexpr int status_in = -1; constexpr int status_decayed = 2; constexpr int status_out = 1; // helper functions to determine event type // check if there is at most one photon, W, H, Z in the final state // and all the rest are quarks or gluons bool final_state_ok(std::vector const & outgoing){ bool has_AWZH_boson = false; for(auto const & out: outgoing){ if(is_AWZH_boson(out.type)){ if(has_AWZH_boson) return false; has_AWZH_boson = true; } else if(! is_parton(out.type)) return false; } return true; } template Iterator remove_AWZH(Iterator begin, Iterator end){ return std::remove_if( begin, end, [](Particle const & p){return is_AWZH_boson(p);} ); } template bool valid_outgoing(Iterator begin, Iterator end){ return std::distance(begin, end) >= 2 && std::is_sorted(begin, end, rapidity_less{}) && std::count_if( begin, end, [](Particle const & s){return is_AWZH_boson(s);} ) < 2; } /** * \brief function which determines if type change is consistent with W emission. * @param in incoming Particle * @param out outgoing Particle * * Ensures that change type of quark line is possible by a flavour changing * W emission. */ bool is_W_Current(ParticleID in, ParticleID out){ if((in==1 && out==2)||(in==2 && out==1)){ return true; } else if((in==-1 && out==-2)||(in==-2 && out==-1)){ return true; } else if((in==3 && out==4)||(in==4 && out==3)){ return true; } else if((in==-3 && out==-4)||(in==-4 && out==-3)){ return true; } else{ return false; } } /** * \brief checks if particle type remains same from incoming to outgoing * @param in incoming Particle * @param out outgoing Particle */ bool is_Pure_Current(ParticleID in, ParticleID out){ if(abs(in)<=6 || in==21) return (in==out); else return false; } // Note that this changes the outgoing range! template bool is_FKL( ConstIterator begin_incoming, ConstIterator end_incoming, Iterator begin_outgoing, Iterator end_outgoing ){ assert(std::distance(begin_incoming, end_incoming) == 2); assert(std::distance(begin_outgoing, end_outgoing) >= 2); // One photon, W, H, Z in the final state is allowed. // Remove it for remaining tests, end_outgoing = remove_AWZH(begin_outgoing, end_outgoing); if(std::all_of( begin_outgoing + 1, end_outgoing - 1, [](Particle const & p){ return p.type == pid::gluon; }) ){ // Test if this is a standard FKL configuration. if (is_Pure_Current(begin_incoming->type, begin_outgoing->type) && is_Pure_Current((end_incoming-1)->type, (end_outgoing-1)->type)){ return true; } - else if(is_W_Current(begin_incoming->type, begin_outgoing->type) + } + return false; + } + + template + bool is_W_FKL( + ConstIterator begin_incoming, ConstIterator end_incoming, + Iterator begin_outgoing, Iterator end_outgoing + ){ + assert(std::distance(begin_incoming, end_incoming) == 2); + assert(std::distance(begin_outgoing, end_outgoing) >= 2); + + // One photon, W, H, Z in the final state is allowed. + // Remove it for remaining tests, + end_outgoing = remove_AWZH(begin_outgoing, end_outgoing); + + if(std::all_of( + begin_outgoing + 1, end_outgoing - 1, + [](Particle const & p){ return p.type == pid::gluon; }) + ){ + // Test if this is a standard FKL configuration. + if(is_W_Current(begin_incoming->type, begin_outgoing->type) && is_Pure_Current((end_incoming-1)->type, (end_outgoing-1)->type)){ return true; } else if(is_Pure_Current(begin_incoming->type, begin_outgoing->type) && is_W_Current((end_incoming-1)->type, (end_outgoing-1)->type)){ return true; } } return false; } bool is_FKL( std::array const & incoming, std::vector outgoing ){ assert(std::is_sorted(begin(incoming), end(incoming), pz_less{})); assert(valid_outgoing(begin(outgoing), end(outgoing))); - return is_FKL( + const auto WEmit = std::find_if( + begin(outgoing), end(outgoing), + [](Particle const & s){ return abs(s.type) == pid::Wp; } + ); + + if (abs(WEmit->type) == pid::Wp){ + return is_W_FKL( begin(incoming), end(incoming), begin(outgoing), end(outgoing) - ); + ); + } + else{ + return is_FKL( + begin(incoming), end(incoming), + begin(outgoing), end(outgoing) + ); + } } bool has_2_jets(Event const & event){ return event.jets().size() >= 2; } /** * \brief Checks whether event is unordered backwards * @param ev Event * @returns Is Event Unordered Backwards * * Checks there is more than 3 constuents in the final state * Checks there is more than 3 jets * Checks the most backwards parton is a gluon * Checks the most forwards jet is not a gluon * Checks the rest of the event is FKL * Checks the second most backwards is not a different boson * Checks the unordered gluon actually forms a jet */ bool is_unordered_backward(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); if(out.size() < 3) return false; if(ev.jets().size() < 3) return false; if(in.front().type == pid::gluon) return false; if(out.front().type != pid::gluon) return false; // When skipping the unordered emission // the remainder should be a regular FKL event, // except that the (new) first outgoing particle must not be a A,W,Z,H. const auto FKL_begin = next(begin(out)); if(is_AWZH_boson(*FKL_begin)) return false; if(!is_FKL(in, {FKL_begin, end(out)})) return false; // check that the unordered gluon forms an extra jet const auto jets = sorted_by_rapidity(ev.jets()); const auto indices = ev.particle_jet_indices({jets.front()}); return indices[0] >= 0 && indices[1] == -1; } /** * \brief Checks for a forward unordered gluon emission * @param ev Event * @returns Is the event a forward unordered emission * * \see is_unordered_backward */ bool is_unordered_forward(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); if(out.size() < 3) return false; if(ev.jets().size() < 3) return false; if(in.back().type == pid::gluon) return false; if(out.back().type != pid::gluon) return false; // When skipping the unordered emission // the remainder should be a regular FKL event, // except that the (new) last outgoing particle must not be a A,W,Z,H. const auto FKL_end = prev(end(out)); if(is_AWZH_boson(*prev(FKL_end))) return false; if(!is_FKL(in, {begin(out), FKL_end})) return false; // check that the unordered gluon forms an extra jet const auto jets = sorted_by_rapidity(ev.jets()); const auto indices = ev.particle_jet_indices({jets.back()}); return indices.back() >= 0 && indices[indices.size()-2] == -1; } /** * \brief Checks for a forward extremal qqx * @param ev Event * @returns Is the event a forward extremal qqx event * * Checks there is 3 or more than 3 constituents in the final state * Checks there is 3 or more than 3 jets * Checks most forwards incoming is gluon * Checks most extremal particle is not a Higgs (either direction) * Checks the second most forwards particle is not Higgs boson * Checks the most forwards parton is a either quark or anti-quark. * Checks the second most forwards parton is anti-quark or quark. */ bool is_Ex_qqxf(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); int fkl_end=2; if(out.size() < 3) return false; if(ev.jets().size() < 3) return false; if(in.back().type != pid::gluon) return false; if(out.back().type == pid::Higgs || out.front().type == pid::Higgs || out.rbegin()[1].type == pid::Higgs) return false; // if extremal AWZ if(is_AWZ_boson(out.back())){ // if extremal AWZ fkl_end++; if (is_quark(out.rbegin()[1])){ //if second quark if (!(is_antiquark(out.rbegin()[2]))) return false;// third must be anti-quark } else if (is_antiquark(out.rbegin()[1])){ //if second anti-quark if (!(is_quark(out.rbegin()[2]))) return false;// third must be quark } else return false; } else if (is_quark(out.rbegin()[0])){ //if extremal quark if(is_AWZ_boson(out.rbegin()[1])){ // if second AWZ fkl_end++; if (!(is_antiquark(out.rbegin()[2]))) return false;// third must be anti-quark } else if (!(is_antiquark(out.rbegin()[1]))) return false;// second must be anti-quark } else if (is_antiquark(out.rbegin()[0])){ //if extremal anti-quark if(is_AWZ_boson(out.rbegin()[1])){ // if second AWZ fkl_end++; if (!(is_quark(out.rbegin()[2]))) return false;// third must be quark } else if (!(is_quark(out.rbegin()[1]))) return false;// second must be quark } // When skipping the qqbar // New last outgoing particle must not be a Higgs if (out.rbegin()[fkl_end].type == pid::Higgs) return false; // Opposite current should be logical to process if (is_AWZ_boson(out.front().type)){ return (is_Pure_Current(in.front().type, out[1].type) || is_W_Current(in.front().type,out[1].type)); } else return (is_Pure_Current(in.front().type, out[0].type) || is_W_Current(in.front().type,out[0].type)); } /** * \brief Checks for a backward extremal qqx * @param ev Event * @returns Is the event a backward extremal qqx event * * Checks there is 3 or more than 3 constituents in the final state * Checks there is 3 or more than 3 jets * Checks most backwards incoming is gluon * Checks most extremal particle is not a Higgs (either direction) y * Checks the second most backwards particle is not Higgs boson y * Checks the most backwards parton is a either quark or anti-quark. y * Checks the second most backwards parton is anti-quark or quark. y */ bool is_Ex_qqxb(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); int fkl_start=2; if(out.size() < 3) return false; if(ev.jets().size() < 3) return false; if(in.front().type != pid::gluon) return false; if(out.back().type == pid::Higgs || out.front().type == pid::Higgs || out[1].type == pid::Higgs) return false; if(is_AWZ_boson(out.front())){ // if extremal AWZ fkl_start++; if (is_quark(out[1])){ //if second quark if (!(is_antiquark(out[2]))) return false;// third must be anti-quark } else if (is_antiquark(out[1])){ //if second anti-quark if (!(is_quark(out[2]))) return false;// third must be quark } else return false; } else if (is_quark(out[0])){ // if extremal quark if(is_AWZ_boson(out[1])){ // if second AWZ fkl_start++; if (!(is_antiquark(out[2]))) return false;// third must be anti-quark } else if (!(is_antiquark(out[1]))) return false;// second must be anti-quark } else if (is_antiquark(out[0])){ //if extremal anti-quark if(is_AWZ_boson(out[1])){ // if second AWZ fkl_start++; if (!(is_quark(out[2]))) return false;// third must be quark } else if (!(is_quark(out[1]))) return false;// second must be quark } // When skipping the qqbar // New last outgoing particle must not be a Higgs. if (out[fkl_start].type == pid::Higgs) return false; // Other current should be logical to process if (is_AWZ_boson(out.back())){ return (is_Pure_Current(in.back().type, out.rbegin()[1].type) || is_W_Current(in.back().type,out.rbegin()[1].type)); } else return (is_Pure_Current(in.back().type, out.rbegin()[0].type) || is_W_Current(in.back().type, out.rbegin()[0].type)); } /** * \brief Checks for a central qqx * @param ev Event * @returns Is the event a central extremal qqx event * * Checks there is 4 or more than 4 constuents in the final state * Checks there is 4 or more than 4 jets * Checks most extremal particle is not a Higgs (either direction) y * Checks for a central quark in the outgoing states * Checks for adjacent anti-quark parton. (allowing for AWZ boson emission between) * Checks external currents are logically sound. */ bool is_Mid_qqx(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); if(out.size() < 4) return false; if(ev.jets().size() < 4) return false; if(out.back().type == pid::Higgs || out.front().type == pid::Higgs) return false; size_t start_FKL=0; size_t end_FKL=0; if (is_AWZ_boson(out.back())){ end_FKL++; } if (is_AWZ_boson(out.front())){ start_FKL++; } if ((is_Pure_Current(in.back().type,out.rbegin()[end_FKL].type) && is_Pure_Current(in.front().type,out[start_FKL].type))){ //nothing to do } else if (is_W_Current(in.back().type,out.rbegin()[end_FKL].type) && is_Pure_Current(in.front().type,out[start_FKL].type)){ //nothing to do } else if (!(is_Pure_Current(in.back().type,out.rbegin()[end_FKL].type) && is_W_Current(in.front().type,out[start_FKL].type))){ return false; } for(size_t i=1+start_FKL; i(hepeup.IDUP[i]), fastjet::PseudoJet{ hepeup.PUP[i][0], hepeup.PUP[i][1], hepeup.PUP[i][2], hepeup.PUP[i][3] } }; } bool is_decay_product(std::pair const & mothers){ if(mothers.first == 0) return false; return mothers.second == 0 || mothers.first == mothers.second; } } // namespace anonymous UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup): central(EventParameters{ hepeup.scales.mur, hepeup.scales.muf, hepeup.weight() }) { size_t in_idx = 0; for (int i = 0; i < hepeup.NUP; ++i) { // skip decay products // we will add them later on, but we have to ensure that // the decayed particle is added before if(is_decay_product(hepeup.MOTHUP[i])) continue; auto particle = extract_particle(hepeup, i); // needed to identify mother particles for decay products particle.p.set_user_index(i+1); if(hepeup.ISTUP[i] == status_in){ if(in_idx > incoming.size()) { throw std::invalid_argument{ "Event has too many incoming particles" }; } incoming[in_idx++] = std::move(particle); } else outgoing.emplace_back(std::move(particle)); } std::sort( begin(incoming), end(incoming), [](Particle o1, Particle o2){return o1.p.pz()= 0); decays[mother_idx].emplace_back(extract_particle(hepeup, i)); } } Event::Event( UnclusteredEvent ev, fastjet::JetDefinition const & jet_def, double min_jet_pt ): ev_{std::move(ev)}, cs_{to_PseudoJet(filter_partons(ev_.outgoing)), jet_def}, min_jet_pt_{min_jet_pt} { type_ = classify(*this); } std::vector Event::jets() const{ return cs_.inclusive_jets(min_jet_pt_); } /** * \brief Returns the invarient mass of the event * @param ev Event * @returns s hat * * Makes use of the FastJet PseudoJet function m2(). * Applies this function to the sum of the incoming partons. */ double shat(Event const & ev){ return (ev.incoming()[0].p + ev.incoming()[1].p).m2(); } namespace{ // colour flow according to Les Houches standard // TODO: stub std::vector> colour_flow( std::array const & incoming, std::vector const & outgoing ){ std::vector> result( incoming.size() + outgoing.size() ); for(auto & col: result){ col = std::make_pair(-1, -1); } return result; } } LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){ LHEF::HEPEUP result; result.heprup = heprup; result.weights = {{event.central().weight, nullptr}}; for(auto const & var: event.variations()){ result.weights.emplace_back(var.weight, nullptr); } size_t num_particles = event.incoming().size() + event.outgoing().size(); for(auto const & decay: event.decays()) num_particles += decay.second.size(); result.NUP = num_particles; // the following entries are pretty much meaningless result.IDPRUP = event.type()+1; // event ID result.AQEDUP = 1./128.; // alpha_EW //result.AQCDUP = 0.118 // alpha_QCD // end meaningless part result.XWGTUP = event.central().weight; result.SCALUP = event.central().muf; result.scales.muf = event.central().muf; result.scales.mur = event.central().mur; result.scales.SCALUP = event.central().muf; result.pdfinfo.p1 = event.incoming().front().type; result.pdfinfo.p2 = event.incoming().back().type; result.pdfinfo.scale = event.central().muf; for(Particle const & in: event.incoming()){ result.IDUP.emplace_back(in.type); result.ISTUP.emplace_back(status_in); result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()}); result.MOTHUP.emplace_back(0, 0); } for(size_t i = 0; i < event.outgoing().size(); ++i){ Particle const & out = event.outgoing()[i]; result.IDUP.emplace_back(out.type); const int status = event.decays().count(i)?status_decayed:status_out; result.ISTUP.emplace_back(status); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); result.MOTHUP.emplace_back(1, 2); } result.ICOLUP = colour_flow( event.incoming(), filter_partons(event.outgoing()) ); if(result.ICOLUP.size() < num_particles){ const size_t AWZH_boson_idx = std::find_if( begin(event.outgoing()), end(event.outgoing()), [](Particle const & s){ return is_AWZH_boson(s); } ) - begin(event.outgoing()) + event.incoming().size(); assert(AWZH_boson_idx <= result.ICOLUP.size()); result.ICOLUP.insert( begin(result.ICOLUP) + AWZH_boson_idx, std::make_pair(0,0) ); } for(auto const & decay: event.decays()){ for(auto const out: decay.second){ result.IDUP.emplace_back(out.type); result.ISTUP.emplace_back(status_out); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); const int mother_idx = 1 + event.incoming().size() + decay.first; result.MOTHUP.emplace_back(mother_idx, mother_idx); result.ICOLUP.emplace_back(0,0); } } assert(result.ICOLUP.size() == num_particles); static constexpr double unknown_spin = 9.; //per Les Houches accord result.VTIMUP = std::vector(num_particles, unknown_spin); result.SPINUP = result.VTIMUP; return result; } } diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc index e129609..01c6114 100644 --- a/src/MatrixElement.cc +++ b/src/MatrixElement.cc @@ -1,1601 +1,1601 @@ #include "RHEJ/MatrixElement.hh" #include #include #include "RHEJ/Constants.hh" #include "RHEJ/currents.hh" #include "RHEJ/PDG_codes.hh" #include "RHEJ/uno.hh" #include "RHEJ/qqx.hh" #include "RHEJ/utility.hh" namespace RHEJ{ //cf. last line of eq. (22) in \ref Andersen:2011hs double MatrixElement::omega0( double alpha_s, double mur, fastjet::PseudoJet const & q_j, double lambda ) const { const double result = - alpha_s*N_C/M_PI*log(q_j.perp2()/(lambda*lambda)); if(! param_.log_correction) return result; // use alpha_s(sqrt(q_j*lambda)), evolved to mur return ( 1. + alpha_s/(4.*M_PI)*beta0*log(mur*mur/(q_j.perp()*lambda)) )*result; } double MatrixElement::virtual_corrections( double mur, std::array const & in, std::vector const & out ) const{ fastjet::PseudoJet const & pa = in.front().p; #ifndef NDEBUG fastjet::PseudoJet const & pb = in.back().p; double const norm = (in.front().p + in.back().p).E(); #endif assert(std::is_sorted(out.begin(), out.end(), rapidity_less{})); assert(out.size() >= 2); assert(pa.pz() < pb.pz()); fastjet::PseudoJet q = pa - out[0].p; size_t first_idx = 0; size_t last_idx = out.size() - 1; // if there is a Higgs or unordered gluon outside the extremal partons // then it is not part of the FKL ladder and does not contribute // to the virtual corrections if(out.front().type == pid::Higgs || has_unob_gluon(in, out)){ q -= out[1].p; ++first_idx; } if(out.back().type == pid::Higgs || has_unof_gluon(in, out)){ --last_idx; } double exponent = 0; const double alpha_s = alpha_s_(mur); for(size_t j = first_idx; j < last_idx; ++j){ exponent += omega0(alpha_s, mur, q, CLAMBDA)*( out[j+1].rapidity() - out[j].rapidity() ); q -= out[j+1].p; } assert( nearby(q, -1*pb, norm) || out.back().type == pid::Higgs || has_unof_gluon(in, out) ); return exp(exponent); } } // namespace RHEJ namespace { //! Lipatov vertex for partons emitted into extremal jets double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2) { CLHEP::HepLorentzVector temptrans=-(qav+qbv); CLHEP::HepLorentzVector p5=qav-qbv; CLHEP::HepLorentzVector CL=temptrans + p1*(qav.m2()/p5.dot(p1) + 2.*p5.dot(p2)/p1.dot(p2)) - p2*(qbv.m2()/p5.dot(p2) + 2.*p5.dot(p1)/p1.dot(p2)); // cout << "#Fadin qa : "<fabs(CL.dot(CL))) // not sufficient! // return 0.; // else return -CL.dot(CL); } //! Lipatov vertex with soft subtraction for partons emitted into extremal jets double C2Lipatovots(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2) { double kperp=(qav-qbv).perp(); if (kperp>RHEJ::CLAMBDA) return C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2()); else { double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2())); return Cls-4./(kperp*kperp); } } //! Lipatov vertex double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector pim, CLHEP::HepLorentzVector pip, CLHEP::HepLorentzVector pom, CLHEP::HepLorentzVector pop) // B { CLHEP::HepLorentzVector temptrans=-(qav+qbv); CLHEP::HepLorentzVector p5=qav-qbv; CLHEP::HepLorentzVector CL=temptrans + qav.m2()*(1./p5.dot(pip)*pip + 1./p5.dot(pop)*pop)/2. - qbv.m2()*(1./p5.dot(pim)*pim + 1./p5.dot(pom)*pom)/2. + ( pip*(p5.dot(pim)/pip.dot(pim) + p5.dot(pom)/pip.dot(pom)) + pop*(p5.dot(pim)/pop.dot(pim) + p5.dot(pom)/pop.dot(pom)) - pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim)) - pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.; return -CL.dot(CL); } //! Lipatov vertex with soft subtraction double C2Lipatovots(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2) { double kperp=(qav-qbv).perp(); if (kperp>RHEJ::CLAMBDA) return C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()); else { double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2())); double temp=Cls-4./(kperp*kperp); return temp; } } /** Matrix element squared for tree-level current-current scattering * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @returns ME Squared for Tree-Level Current-Current Scattering */ double ME_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa ){ if (aptype==21&&bptype==21) { return jM2gg(pn,pb,p1,pa); } else if (aptype==21&&bptype!=21) { if (bptype > 0) return jM2qg(pn,pb,p1,pa); else return jM2qbarg(pn,pb,p1,pa); } else if (bptype==21&&aptype!=21) { // ----- || ----- if (aptype > 0) return jM2qg(p1,pa,pn,pb); else return jM2qbarg(p1,pa,pn,pb); } else { // they are both quark if (bptype>0) { if (aptype>0) return jM2qQ(pn,pb,p1,pa); else return jM2qQbar(pn,pb,p1,pa); } else { if (aptype>0) return jM2qQbar(p1,pa,pn,pb); else return jM2qbarQbar(pn,pb,p1,pa); } } throw std::logic_error("unknown particle types"); } /** Matrix element squared for tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @returns ME Squared for Tree-Level Current-Current Scattering */ double ME_W_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // We know it cannot be gg incoming. if (aptype==21&&bptype!=21) { if (bptype > 0) return jMWqg(pn,pl,plbar,pb,p1,pa); else return jMWqbarg(pn,pl,plbar,pb,p1,pa); } else if (bptype==21&&aptype!=21) { // ----- || ----- if (aptype > 0) return jMWqg(p1,pl,plbar,pa,pn,pb); else return jMWqbarg(p1,pl,plbar,pa,pn,pb); } else { // they are both quark if (wc==true){ // emission off b, (first argument pbout) if (bptype>0) { if (aptype>0) return jMWqQ(pn,pl,plbar,pb,p1,pa); else return jMWqQbar(pn,pl,plbar,pb,p1,pa); } else { if (aptype>0) return jMWqbarQ(pn,pl,plbar,pb,p1,pa); else return jMWqbarQbar(pn,pl,plbar,pb,p1,pa); } } else{ // emission off a, (first argument paout) if (aptype > 0) { if (bptype > 0) return jMWqQ(p1,plbar,pl,pa,pn,pb); else return jMWqQbar(p1,plbar,pl,pa,pn,pb); } else { // a is anti-quark if (bptype > 0) return jMWqbarQ(p1,plbar,pl,pa,pn,pb); else return jMWqbarQbar(p1,plbar,pl,pa,pn,pb); } } } throw std::logic_error("unknown particle types"); } /** Matrix element squared for backwards uno tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param pg Unordered gluon momentum * @returns ME Squared for unob Tree-Level Current-Current Scattering */ double ME_W_unob_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pg, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // we know they are not both gluons if (bptype == 21 && aptype != 21) { // b gluon => W emission off a if (aptype > 0) return jM2Wunogqg(pg,p1,plbar,pl,pa,pn,pb); else return jM2Wunogqbarg(pg,p1,plbar,pl,pa,pn,pb); } else { // they are both quark if (wc==true) {// emission off b, i.e. b is first current if (bptype>0){ if (aptype>0) return junobMWqQg(pn,plbar,pl,pb,p1,pa,pg); else return junobMWqQbarg(pn,plbar,pl,pb,p1,pa,pg); } else{ if (aptype>0) return junobMWqbarQg(pn,plbar,pl,pb,p1,pa,pg); else return junobMWqbarQbarg(pn,plbar,pl,pb,p1,pa,pg); } } else {// wc == false, emission off a, i.e. a is first current if (aptype > 0) { if (bptype > 0) //qq return jM2WunogqQ(pg,p1,plbar,pl,pa,pn,pb); else //qqbar return jM2WunogqQbar(pg,p1,plbar,pl,pa,pn,pb); } else { // a is anti-quark if (bptype > 0) //qbarq return jM2WunogqbarQ(pg,p1,plbar,pl,pa,pn,pb); else //qbarqbar return jM2WunogqbarQbar(pg,p1,plbar,pl,pa,pn,pb); } } } } /** Matrix element squared for uno forward tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param pg Unordered gluon momentum * @returns ME Squared for unof Tree-Level Current-Current Scattering */ double ME_W_unof_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pg, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // we know they are not both gluons if (aptype==21 && bptype!=21) {//a gluon => W emission off b if (bptype > 0) return jM2Wunogqg(pg, pn,plbar, pl, pb, p1, pa); else return jM2Wunogqbarg(pg, pn,plbar, pl, pb, p1, pa); } else { // they are both quark if (wc==true) {// emission off b, i.e. b is first current if (bptype>0){ if (aptype>0) return jM2WunogqQ(pg,pn,plbar,pl,pb,p1,pa); else return jM2WunogqQbar(pg,pn,plbar,pl,pb,p1,pa); } else{ if (aptype>0) return jM2WunogqbarQ(pg,pn,plbar,pl,pb,p1,pa); else return jM2WunogqbarQbar(pg,pn,plbar,pl,pb,p1,pa); } } else {// wc == false, emission off a, i.e. a is first current if (aptype > 0) { if (bptype > 0) //qq return junofMWgqQ(pg,pn,pb,p1,plbar,pl,pa); else //qqbar return junofMWgqQbar(pg,pn,pb,p1,plbar,pl,pa); } else { // a is anti-quark if (bptype > 0) //qbarq return junofMWgqbarQ(pg,pn,pb,p1,plbar,pl,pa); else //qbarqbar return junofMWgqbarQbar(pg,pn,pb,p1,plbar,pl,pa); } } } } /** \brief Matrix element squared for backward qqx tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pa Initial state a Momentum * @param pb Initial state b Momentum * @param pq Final state q Momentum * @param pqbar Final state qbar Momentum * @param pn Final state n Momentum * @param plbar Final state anti-lepton momentum * @param pl Final state lepton momentum * @returns ME Squared for qqxb Tree-Level Current-Current Scattering */ double ME_W_qqxb_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal) bool swapQuarkAntiquark=false; double CFbackward; if (pqbar.rapidity() > pq.rapidity()){ swapQuarkAntiquark=true; CFbackward = (0.5*(3.-1./3.)*(pa.minus()/(pq.minus())+(pq.minus())/pa.minus())+1./3.)*3./4.; } else{ CFbackward = (0.5*(3.-1./3.)*(pa.minus()/(pqbar.minus())+(pqbar.minus())/pa.minus())+1./3.)*3./4.; } // With qqbar we could have 2 incoming gluons and W Emission if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg // This will be a wqqx emission as there is no other possible W Emission Site. if (swapQuarkAntiquark){ return jM2Wggtoqqbarg(pa, pqbar, plbar, pl, pq, pn,pb)*CFbackward;} else { return jM2Wggtoqbarqg(pa, pq, plbar, pl, pqbar, pn,pb)*CFbackward;} } else if (aptype==21&&bptype!=21 ) {//a gluon => W emission off b leg or qqx if (wc!=1){ // W Emitted from backwards qqx if (swapQuarkAntiquark){ return jM2WgQtoqqbarQ(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward;} else{ return jM2WgQtoqbarqQ(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward;} } else { // W Must be emitted from forwards leg. if (swapQuarkAntiquark){ return jM2WgqtoQQqW(pb, pa, pn, pqbar, pq, plbar, pl)*CFbackward;} else{ return jM2WgqtoQQqW(pb, pa, pn, pq, pqbar, plbar, pl)*CFbackward;} } } else{ throw std::logic_error("Incompatible incoming particle types with qqxb"); } } /* \brief Matrix element squared for forward qqx tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pa Initial state a Momentum * @param pb Initial state b Momentum * @param pq Final state q Momentum * @param pqbar Final state qbar Momentum * @param p1 Final state 1 Momentum * @param plbar Final state anti-lepton momentum * @param pl Final state lepton momentum * @returns ME Squared for qqxf Tree-Level Current-Current Scattering */ double ME_W_qqxf_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wc ){ // CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal) bool swapQuarkAntiquark=false; double CFforward; if (pqbar.rapidity() < pq.rapidity()){ swapQuarkAntiquark=true; CFforward = (0.5*(3.-1./3.)*(pb.plus()/(pq.plus())+(pq.plus())/pb.plus())+1./3.)*3./4.; } else{ CFforward = (0.5*(3.-1./3.)*(pb.plus()/(pqbar.plus())+(pqbar.plus())/pb.plus())+1./3.)*3./4.; } // With qqbar we could have 2 incoming gluons and W Emission if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg // This will be a wqqx emission as there is no other possible W Emission Site. if (swapQuarkAntiquark){ return jM2Wggtoqqbarg(pb, pqbar, plbar, pl, pq, p1,pa)*CFforward;} else { return jM2Wggtoqbarqg(pb, pq, plbar, pl, pqbar, p1,pa)*CFforward;} } else if (bptype==21&&aptype!=21) {// b gluon => W emission off a or qqx if (wc==1){ // W Emitted from forwards qqx if (swapQuarkAntiquark){ return jM2WgQtoqbarqQ(pb, pq, plbar,pl, pqbar, p1, pa)*CFforward;} else { return jM2WgQtoqqbarQ(pb, pq, plbar,pl, pqbar, p1, pa)*CFforward;} } // W Must be emitted from backwards leg. if (swapQuarkAntiquark){ return jM2WgqtoQQqW(pa,pb, p1, pqbar, pq, plbar, pl)*CFforward;} else{ return jM2WgqtoQQqW(pa,pb, p1, pq, pqbar, plbar, pl)*CFforward;} } else{ throw std::logic_error("Incompatible incoming particle types with qqxf"); } } /* \brief Matrix element squared for central qqx tree-level current-current scattering With W+Jets * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param nabove Number of gluons emitted before central qqxpair * @param nbelow Number of gluons emitted after central qqxpair * @param pa Initial state a Momentum * @param pb Initial state b Momentum\ * @param pq Final state qbar Momentum * @param pqbar Final state q Momentum * @param partons Vector of all outgoing partons * @param plbar Final state anti-lepton momentum * @param pl Final state lepton momentum * @param wqq Boolean. True siginfies W boson is emitted from Central qqx * @param wc Boolean. wc=true signifies w boson emitted from leg b; if wqq=false. * @returns ME Squared for qqxmid Tree-Level Current-Current Scattering */ double ME_W_qqxmid_current( int aptype, int bptype, int nabove, int nbelow, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & pq, CLHEP::HepLorentzVector const & pqbar, std::vector partons, CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl, bool const wqq, bool const wc ){ // CAM factors for the qqx amps, and qqbar ordering (default, pq backwards) bool swapQuarkAntiquark=false; if (pqbar.rapidity() < pq.rapidity()){ swapQuarkAntiquark=true; } double CFforward = (0.5*(3.-1./3.)*(pb.plus()/(partons[partons.size()-1].plus())+(partons[partons.size()-1].plus())/pb.plus())+1./3.)*3./4.; double CFbackward = (0.5*(3.-1./3.)*(pa.minus()/(partons[0].minus())+(partons[0].minus())/pa.minus())+1./3.)*3./4.; double wt=1.; if (aptype==21) wt*=CFbackward; if (bptype==21) wt*=CFforward; if (aptype <=0 && bptype <=0){ // Both External AntiQuark if (wqq==1){//emission from central qqbar return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons,true,true, swapQuarkAntiquark, nabove); } else if (wc==1){//emission from b leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true,true, swapQuarkAntiquark, nabove, nbelow, true); } else { // emission from a leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true,true, swapQuarkAntiquark, nabove, nbelow, false); } } // end both antiquark else if (aptype<=0){ // a is antiquark if (wqq==1){//emission from central qqbar return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons, false, true, swapQuarkAntiquark, nabove); } else if (wc==1){//emission from b leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons,false,true, swapQuarkAntiquark, nabove, nbelow, true); } else { // emission from a leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, true, swapQuarkAntiquark, nabove, nbelow, false); } } // end a is antiquark else if (bptype<=0){ // b is antiquark if (wqq==1){//emission from central qqbar return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove); } else if (wc==1){//emission from b leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove, nbelow, true); } else { // emission from a leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove, nbelow, false); } } //end b is antiquark else{ //Both Quark or gluon if (wqq==1){//emission from central qqbar return wt*jM2WqqtoqQQq(pa, pb, pl, plbar, partons, false, false, swapQuarkAntiquark, nabove);} else if (wc==1){//emission from b leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, false, swapQuarkAntiquark, nabove, nbelow, true); } else { // emission from a leg return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, false, swapQuarkAntiquark, nabove, nbelow, false); } } } /** \brief Matrix element squared for tree-level current-current scattering with Higgs * @param aptype Particle a PDG ID * @param bptype Particle b PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param qH t-channel momentum before Higgs * @param qHp1 t-channel momentum after Higgs * @returns ME Squared for Tree-Level Current-Current Scattering with Higgs */ double ME_Higgs_current( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs double mt, bool include_bottom, double mb ){ if (aptype==21&&bptype==21) // gg initial state return MH2gg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else if (aptype==21&&bptype!=21) { if (bptype > 0) return MH2qg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.; else return MH2qbarg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.; } else if (bptype==21&&aptype!=21) { if (aptype > 0) return MH2qg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.; else return MH2qbarg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.; } else { // they are both quark if (bptype>0) { if (aptype>0) return MH2qQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.); else return MH2qQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.); } else { if (aptype>0) return MH2qQbar(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4.*4./(9.*9.); else return MH2qbarQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.); } } throw std::logic_error("unknown particle types"); } /** \brief Current matrix element squared with Higgs and unordered forward emission * @param aptype Particle A PDG ID * @param bptype Particle B PDG ID * @param punof Unordered Particle Momentum * @param pn Particle n Momentum * @param pb Particle b Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param qH t-channel momentum before Higgs * @param qHp1 t-channel momentum after Higgs * @returns ME Squared with Higgs and unordered forward emission */ double ME_Higgs_current_unof( int aptype, int bptype, CLHEP::HepLorentzVector const & punof, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs double mt, bool include_bottom, double mb ){ if (aptype==21&&bptype!=21) { if (bptype > 0) return jM2unogqHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unogqbarHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } else { // they are both quark if (bptype>0) { if (aptype>0) return jM2unogqHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unogqHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } else { if (aptype>0) return jM2unogqbarHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unogqbarHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } } throw std::logic_error("unknown particle types"); } /** \brief Current matrix element squared with Higgs and unordered backward emission * @param aptype Particle A PDG ID * @param bptype Particle B PDG ID * @param pn Particle n Momentum * @param pb Particle b Momentum * @param punob Unordered back Particle Momentum * @param p1 Particle 1 Momentum * @param pa Particle a Momentum * @param qH t-channel momentum before Higgs * @param qHp1 t-channel momentum after Higgs * @returns ME Squared with Higgs and unordered backward emission */ double ME_Higgs_current_unob( int aptype, int bptype, CLHEP::HepLorentzVector const & pn, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & punob, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs double mt, bool include_bottom, double mb ){ if (bptype==21&&aptype!=21) { if (aptype > 0) return jM2unobgHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unobgHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } else { // they are both quark if (aptype>0) { if (bptype>0) return jM2unobqHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unobqbarHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } else { if (bptype>0) return jM2unobqHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); else return jM2unobqbarHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb); } } throw std::logic_error("unknown particle types"); } CLHEP::HepLorentzVector to_HepLorentzVector(RHEJ::Particle const & particle){ return {particle.p.px(), particle.p.py(), particle.p.pz(), particle.p.E()}; } void validate(RHEJ::MatrixElementConfig const & config) { #ifndef RHEJ_BUILD_WITH_QCDLOOP if(!config.Higgs_coupling.use_impact_factors) { throw std::invalid_argument{ "Invalid Higgs coupling settings.\n" "HEJ without QCDloop support can only use impact factors.\n" "Set use_impact_factors to true or recompile HEJ.\n" }; } #endif if(config.Higgs_coupling.use_impact_factors && config.Higgs_coupling.mt != std::numeric_limits::infinity()) { throw std::invalid_argument{ "Conflicting settings: " "impact factors may only be used in the infinite top mass limit" }; } } } // namespace anonymous namespace RHEJ{ MatrixElement::MatrixElement( std::function alpha_s, MatrixElementConfig conf ): alpha_s_{std::move(alpha_s)}, param_{std::move(conf)} { validate(param_); } double MatrixElement::operator()( double mur, std::array const & incoming, std::vector const & outgoing, std::unordered_map> const & decays, bool check_momenta ) const { return tree( mur, incoming, outgoing, decays, check_momenta )*virtual_corrections( mur, incoming, outgoing ); } double MatrixElement::tree_kin( std::array const & incoming, std::vector const & outgoing, std::unordered_map> const & decays, bool check_momenta ) const { assert( std::is_sorted( incoming.begin(), incoming.end(), [](Particle o1, Particle o2){return o1.p.pz()type){ case pid::Higgs: { return tree_kin_Higgs(incoming, outgoing, check_momenta); } // TODO case pid::Wp: { return tree_kin_W(incoming, outgoing, decays, true, check_momenta); } case pid::Wm: { return tree_kin_W(incoming, outgoing, decays, false, check_momenta); } case pid::photon: case pid::Z: default: throw std::logic_error("Emission of boson of unsupported type."); } } namespace{ constexpr int extremal_jet_idx = 1; constexpr int no_extremal_jet_idx = 0; bool treat_as_extremal(Particle const & parton){ return parton.p.user_index() == extremal_jet_idx; } template double FKL_ladder_weight( InputIterator begin_gluon, InputIterator end_gluon, CLHEP::HepLorentzVector const & q0, CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb, CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn ){ double wt = 1; auto qi = q0; for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){ assert(gluon_it->type == pid::gluon); const auto g = to_HepLorentzVector(*gluon_it); const auto qip1 = qi - g; if(treat_as_extremal(*gluon_it)){ wt *= C2Lipatovots(qip1, qi, pa, pb)*C_A; } else{ wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn)*C_A; } qi = qip1; } return wt; } } // namespace anonymous std::vector MatrixElement::tag_extremal_jet_partons( std::array const & incoming, std::vector out_partons, bool check_momenta ) const{ if(!check_momenta){ for(auto & parton: out_partons){ parton.p.set_user_index(no_extremal_jet_idx); } return out_partons; } fastjet::ClusterSequence cs(to_PseudoJet(out_partons), param_.jet_param.def); const auto jets = sorted_by_rapidity(cs.inclusive_jets(param_.jet_param.min_pt)); assert(jets.size() >= 2); auto most_backward = begin(jets); auto most_forward = end(jets) - 1; // skip jets caused by unordered emission if(has_unob_gluon(incoming, out_partons)){ assert(jets.size() >= 3); ++most_backward; } else if(has_unof_gluon(incoming, out_partons)){ assert(jets.size() >= 3); --most_forward; } const auto extremal_jet_indices = cs.particle_jet_indices( {*most_backward, *most_forward} ); assert(extremal_jet_indices.size() == out_partons.size()); for(size_t i = 0; i < out_partons.size(); ++i){ assert(RHEJ::is_parton(out_partons[i])); const int idx = (extremal_jet_indices[i]>=0)? extremal_jet_idx: no_extremal_jet_idx; out_partons[i].p.set_user_index(idx); } return out_partons; } double MatrixElement::tree_kin_jets( std::array const & incoming, std::vector partons, bool check_momenta ) const { partons = tag_extremal_jet_partons(incoming, partons, check_momenta); if(has_unob_gluon(incoming, partons) || has_unof_gluon(incoming, partons)){ throw std::logic_error("unordered emission not implemented for pure jets"); } const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto p1 = to_HepLorentzVector(partons.front()); const auto pn = to_HepLorentzVector(partons.back()); return ME_current( incoming[0].type, incoming[1].type, pn, pb, p1, pa )/(4*(N_C*N_C - 1))*FKL_ladder_weight( begin(partons) + 1, end(partons) - 1, pa - p1, pa, pb, p1, pn ); } namespace{ double tree_kin_W_FKL( int aptype, int bptype, HLV pa, HLV pb, std::vector const & partons, HLV plbar, HLV pl, bool WPlus ) { auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - p1; auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 1; bool wc; if (aptype==partons[0].type) { //leg b emits w wc = true;} else{ wc = false; q0 -=pl + plbar; } double current_factor; if (WPlus){ current_factor = ME_W_current( aptype, bptype, pn, pb, p1, pa, pl, plbar, wc ); } else{ current_factor = ME_W_current( aptype, bptype, pn, pb, p1, pa, plbar, pl, wc ); } const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_unob( int aptype, int bptype, HLV pa, HLV pb, std::vector const & partons, HLV plbar, HLV pl, bool WPlus ) { auto pg = to_HepLorentzVector(partons[0]); auto p1 = to_HepLorentzVector(partons[1]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - p1- pg; auto begin_ladder = begin(partons) + 2; auto end_ladder = end(partons) - 1; bool wc; if (aptype==partons[1].type) { //leg b emits w wc = true;} else{ wc = false; q0 -=pl + plbar; } double current_factor; if (WPlus){ current_factor = ME_W_unob_current( aptype, bptype, pn, pb, p1, pa, pg, pl, plbar, wc ); } else{ current_factor = ME_W_unob_current( aptype, bptype, pn, pb, p1, pa, pg, plbar, pl, wc ); } const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_unof( int aptype, int bptype, HLV pa, HLV pb, std::vector const & partons, HLV plbar, HLV pl, bool WPlus ) { auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 2]); auto pg = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - p1; auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 2; bool wc; if (aptype==partons[0].type) { //leg b emits w wc = true;} else{ wc = false; q0 -=pl + plbar; } double current_factor; if (WPlus){ current_factor = ME_W_unof_current( aptype, bptype, pn, pb, p1, pa, pg, pl, plbar, wc ); } else{ current_factor = ME_W_unof_current( aptype, bptype, pn, pb, p1, pa, pg, plbar, pl, wc ); } const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_qqxb( int aptype, int bptype, HLV pa, HLV pb, std::vector const & partons, HLV plbar, HLV pl, bool WPlus ) { HLV pq,pqbar; if(is_quark(partons[0])){ pq = to_HepLorentzVector(partons[0]); pqbar = to_HepLorentzVector(partons[1]); } else{ pq = to_HepLorentzVector(partons[1]); pqbar = to_HepLorentzVector(partons[0]); } auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - pq - pqbar; auto begin_ladder = begin(partons) + 2; auto end_ladder = end(partons) - 1; bool wc; if (partons[0].type==-partons[1].type) { //leg b emits w wc = true;} else{ wc = false; q0 -=pl + plbar; } double current_factor; if (WPlus){ current_factor = ME_W_qqxb_current( aptype, bptype, pa, pb, pq, pqbar, pn, pl, plbar, wc ); } else{ current_factor = ME_W_qqxb_current( aptype, bptype, pa, pb, pq, pqbar, pn, plbar, pl, wc ); } const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_qqxf( int aptype, int bptype, HLV pa, HLV pb, std::vector const & partons, HLV plbar, HLV pl, bool WPlus ) { HLV pq,pqbar; if(is_quark(partons[partons.size() - 1])){ pq = to_HepLorentzVector(partons[partons.size() - 1]); pqbar = to_HepLorentzVector(partons[partons.size() - 2]); } else{ pq = to_HepLorentzVector(partons[partons.size() - 2]); pqbar = to_HepLorentzVector(partons[partons.size() - 1]); } auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - p1; auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 2; bool wc; if (aptype==partons[0].type) { //leg b emits w wc = true;} else{ wc = false; q0 -=pl + plbar; } double current_factor; if (WPlus){ current_factor = ME_W_qqxf_current( aptype, bptype, pa, pb, pq, pqbar, p1, pl, plbar, wc ); } else{ current_factor = ME_W_qqxf_current( aptype, bptype, pa, pb, pq, pqbar, p1, plbar, pl, wc ); } const double ladder_factor = FKL_ladder_weight( begin_ladder, end_ladder, q0, pa, pb, p1, pn ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double tree_kin_W_qqxmid( int aptype, int bptype, HLV pa, HLV pb, std::vector const & partons, HLV plbar, HLV pl, bool WPlus ) { HLV pq,pqbar; const auto backmidquark = std::find_if( begin(partons)+1, end(partons)-1, [](Particle const & s){ return s.type != pid::gluon; } ); if (is_quark(backmidquark->type)){ pq = to_HepLorentzVector(*backmidquark); pqbar = to_HepLorentzVector(*(backmidquark+1)); } else { pqbar = to_HepLorentzVector(*backmidquark); pq = to_HepLorentzVector(*(backmidquark+1)); } auto p1 = to_HepLorentzVector(partons[0]); auto pn = to_HepLorentzVector(partons[partons.size() - 1]); auto q0 = pa - p1; // t-channel momentum after qqx auto qqxt = q0; bool wc, wqq; if (backmidquark->type == -(backmidquark+1)->type){ // Central qqx does not emit wqq=false; if (aptype==partons[0].type) { wc = true; } else{ wc = false; q0-=pl+plbar; } } else{ wqq = true; wc = false; qqxt-=pl+plbar; } auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 1; auto first_after_qqx = (backmidquark+2); for(auto parton_it = begin_ladder; parton_it != first_after_qqx; ++parton_it){ qqxt -= to_HepLorentzVector(*parton_it); } - int nabove = std::distance(begin_ladder, backmidquark-1); + int nabove = std::distance(begin_ladder, backmidquark); int nbelow = std::distance(first_after_qqx, end_ladder); std::vector partonsHLV; partonsHLV.reserve(partons.size()); for (size_t i = 0; i != partons.size(); ++i) { partonsHLV.push_back(to_HepLorentzVector(partons[i])); } double current_factor; if (WPlus){ current_factor = ME_W_qqxmid_current( aptype, bptype, nabove, nbelow, pa, pb, pq, pqbar, partonsHLV, pl, plbar, wqq, wc ); } else{ current_factor = ME_W_qqxmid_current( aptype, bptype, nabove, nbelow, pa, pb, pq, pqbar, partonsHLV, plbar, pl, wqq, wc ); } const double ladder_factor = FKL_ladder_weight( - begin_ladder, backmidquark-1, + begin_ladder, backmidquark, q0, pa, pb, p1, pn )*FKL_ladder_weight( first_after_qqx, end_ladder, qqxt, pa, pb, p1, pn ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } } double MatrixElement::tree_kin_W( std::array const & incoming, std::vector const & outgoing, std::unordered_map> const & decays, bool WPlus, bool check_momenta ) const { HLV plbar, pl; for (auto& x: decays) { if (x.second.at(0).type < 0){ plbar = to_HepLorentzVector(x.second.at(0)); pl = to_HepLorentzVector(x.second.at(1)); } else{ pl = to_HepLorentzVector(x.second.at(0)); plbar = to_HepLorentzVector(x.second.at(1)); } } const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto the_W = std::find_if( begin(outgoing), end(outgoing), [](Particle const & s){ return abs(s.type) == pid::Wp; } ); std::vector partons(begin(outgoing), the_W); partons.insert(end(partons), the_W + 1, end(outgoing)); partons = tag_extremal_jet_partons(incoming, partons, check_momenta); if(has_unob_gluon(incoming, outgoing)){ return tree_kin_W_unob(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, WPlus); } else if(has_unof_gluon(incoming, outgoing)){ return tree_kin_W_unof(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, WPlus); } else if(has_Ex_qqxb(incoming, outgoing)){ return tree_kin_W_qqxb(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, WPlus); } else if(has_Ex_qqxf(incoming, outgoing)){ return tree_kin_W_qqxf(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, WPlus); } else if(has_mid_qqx(outgoing)){ return tree_kin_W_qqxmid(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, WPlus); } return tree_kin_W_FKL(incoming[0].type, incoming[1].type, pa, pb, partons, plbar, pl, WPlus); } double MatrixElement::tree_kin_Higgs( std::array const & incoming, std::vector const & outgoing, bool check_momenta ) const { if(has_uno_gluon(incoming, outgoing)){ return tree_kin_Higgs_between(incoming, outgoing, check_momenta); } if(outgoing.front().type == pid::Higgs){ return tree_kin_Higgs_first(incoming, outgoing, check_momenta); } if(outgoing.back().type == pid::Higgs){ return tree_kin_Higgs_last(incoming, outgoing, check_momenta); } return tree_kin_Higgs_between(incoming, outgoing, check_momenta); } namespace { // Colour acceleration multipliers, for gluons see eq. (7) in arXiv:0910.5113 // TODO: code duplication with currents.cc double K_g(double p1minus, double paminus) { return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A; } double K_g( CLHEP::HepLorentzVector const & pout, CLHEP::HepLorentzVector const & pin ) { if(pin.z() > 0) return K_g(pout.plus(), pin.plus()); return K_g(pout.minus(), pin.minus()); } double K( ParticleID type, CLHEP::HepLorentzVector const & pout, CLHEP::HepLorentzVector const & pin ) { if(type == ParticleID::gluon) return K_g(pout, pin); return C_F; } // Colour factor in strict MRK limit double K_MRK(ParticleID type) { return (type == ParticleID::gluon)?C_A:C_F; } } double MatrixElement::MH2_forwardH( CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, ParticleID type2, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pH, double t1, double t2 ) const{ ignore(p2out, p2in); const double shat = p1in.invariantMass2(p2in); // gluon case #ifdef RHEJ_BUILD_WITH_QCDLOOP if(!param_.Higgs_coupling.use_impact_factors){ return K(type2, p2out, p2in)*C_A*1./(16*M_PI*M_PI)*t1/t2*MH2gq_outsideH( p1out, p1in, p2out, p2in, pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb )/(4*(N_C*N_C - 1)); } #endif return K_MRK(type2)/C_A*9./2.*shat*shat*( C2gHgp(p1in,p1out,pH) + C2gHgm(p1in,p1out,pH) )/(t1*t2); } double MatrixElement::tree_kin_Higgs_first( std::array const & incoming, std::vector const & outgoing, bool check_momenta ) const { assert(outgoing.front().type == pid::Higgs); if(outgoing[1].type != pid::gluon) { assert(incoming.front().type == outgoing[1].type); return tree_kin_Higgs_between(incoming, outgoing, check_momenta); } const auto pH = to_HepLorentzVector(outgoing.front()); const auto partons = tag_extremal_jet_partons( incoming, std::vector(begin(outgoing) + 1, end(outgoing)), check_momenta ); const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); const auto p1 = to_HepLorentzVector(partons.front()); const auto pn = to_HepLorentzVector(partons.back()); const auto q0 = pa - p1 - pH; const double t1 = q0.m2(); const double t2 = (pn - pb).m2(); return MH2_forwardH( p1, pa, incoming[1].type, pn, pb, pH, t1, t2 )*FKL_ladder_weight( begin(partons) + 1, end(partons) - 1, q0, pa, pb, p1, pn ); } double MatrixElement::tree_kin_Higgs_last( std::array const & incoming, std::vector const & outgoing, bool check_momenta ) const { assert(outgoing.back().type == pid::Higgs); if(outgoing[outgoing.size()-2].type != pid::gluon) { assert(incoming.back().type == outgoing[outgoing.size()-2].type); return tree_kin_Higgs_between(incoming, outgoing, check_momenta); } const auto pH = to_HepLorentzVector(outgoing.back()); const auto partons = tag_extremal_jet_partons( incoming, std::vector(begin(outgoing), end(outgoing) - 1), check_momenta ); const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); auto p1 = to_HepLorentzVector(partons.front()); const auto pn = to_HepLorentzVector(partons.back()); auto q0 = pa - p1; const double t1 = q0.m2(); const double t2 = (pn + pH - pb).m2(); return MH2_forwardH( pn, pb, incoming[0].type, p1, pa, pH, t2, t1 )*FKL_ladder_weight( begin(partons) + 1, end(partons) - 1, q0, pa, pb, p1, pn ); } double MatrixElement::tree_kin_Higgs_between( std::array const & incoming, std::vector const & outgoing, bool check_momenta ) const { const auto the_Higgs = std::find_if( begin(outgoing), end(outgoing), [](Particle const & s){ return s.type == pid::Higgs; } ); assert(the_Higgs != end(outgoing)); const auto pH = to_HepLorentzVector(*the_Higgs); std::vector partons(begin(outgoing), the_Higgs); partons.insert(end(partons), the_Higgs + 1, end(outgoing)); partons = tag_extremal_jet_partons(incoming, partons, check_momenta); const auto pa = to_HepLorentzVector(incoming[0]); const auto pb = to_HepLorentzVector(incoming[1]); auto p1 = to_HepLorentzVector( partons[has_unob_gluon(incoming, outgoing)?1:0] ); auto pn = to_HepLorentzVector( partons[partons.size() - (has_unof_gluon(incoming, outgoing)?2:1)] ); auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing)); assert( (first_after_Higgs == end(partons) && ( has_unob_gluon(incoming, outgoing) || partons.back().type != pid::gluon )) || first_after_Higgs->rapidity() >= the_Higgs->rapidity() ); assert( (first_after_Higgs == begin(partons) && ( has_unof_gluon(incoming, outgoing) || partons.front().type != pid::gluon )) || (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity() ); // always treat the Higgs as if it were in between the extremal FKL partons if(first_after_Higgs == begin(partons)) ++first_after_Higgs; else if(first_after_Higgs == end(partons)) --first_after_Higgs; // t-channel momentum before Higgs auto qH = pa; for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){ qH -= to_HepLorentzVector(*parton_it); } auto q0 = pa - p1; auto begin_ladder = begin(partons) + 1; auto end_ladder = end(partons) - 1; double current_factor; if(has_unob_gluon(incoming, outgoing)){ current_factor = C_A*C_A/2.*ME_Higgs_current_unob( // 1/2 = "K_uno" incoming[0].type, incoming[1].type, pn, pb, to_HepLorentzVector(partons.front()), p1, pa, qH, qH - pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb ); const auto p_unob = to_HepLorentzVector(partons.front()); q0 -= p_unob; p1 += p_unob; ++begin_ladder; } else if(has_unof_gluon(incoming, outgoing)){ current_factor = C_A*C_A/2.*ME_Higgs_current_unof( // 1/2 = "K_uno" incoming[0].type, incoming[1].type, to_HepLorentzVector(partons.back()), pn, pb, p1, pa, qH, qH - pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb ); pn += to_HepLorentzVector(partons.back()); --end_ladder; } else{ current_factor = ME_Higgs_current( incoming[0].type, incoming[1].type, pn, pb, p1, pa, qH, qH - pH, param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb ); } const double ladder_factor = FKL_ladder_weight( begin_ladder, first_after_Higgs, q0, pa, pb, p1, pn )*FKL_ladder_weight( first_after_Higgs, end_ladder, qH - pH, pa, pb, p1, pn ); return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor; } double MatrixElement::tree_param_partons( double alpha_s, double mur, std::vector const & partons ) const{ const double gs2 = 4.*M_PI*alpha_s; double wt = std::pow(gs2, partons.size()); if(param_.log_correction){ // use alpha_s(q_perp), evolved to mur assert(partons.size() >= 2); for(size_t i = 1; i < partons.size()-1; ++i){ wt *= 1 + alpha_s/(2*M_PI)*beta0*log(mur/partons[i].p.perp()); } } return wt; } double MatrixElement::tree_param( double mur, std::array const & incoming, std::vector const & outgoing ) const{ const double alpha_s = alpha_s_(mur); auto AWZH_boson = std::find_if( begin(outgoing), end(outgoing), [](auto const & p){return is_AWZH_boson(p);} ); double AWZH_coupling = 1.; if(AWZH_boson != end(outgoing)){ switch(AWZH_boson->type){ case pid::Higgs: { AWZH_coupling = alpha_s*alpha_s; break; } // TODO case pid::Wp:{ AWZH_coupling = alpha_w*alpha_w/2; break; } case pid::Wm:{ AWZH_coupling = alpha_w*alpha_w/2; break; } case pid::photon: case pid::Z: default: throw std::logic_error("Emission of boson of unsupported type"); } } if(has_unob_gluon(incoming, outgoing)){ return AWZH_coupling*4*M_PI*alpha_s*tree_param_partons( alpha_s, mur, filter_partons({begin(outgoing) + 1, end(outgoing)}) ); } if(has_unof_gluon(incoming, outgoing)){ return AWZH_coupling*4*M_PI*alpha_s*tree_param_partons( alpha_s, mur, filter_partons({begin(outgoing), end(outgoing) - 1}) ); } return AWZH_coupling*tree_param_partons(alpha_s, mur, filter_partons(outgoing)); } double MatrixElement::tree( double mur, std::array const & incoming, std::vector const & outgoing, std::unordered_map> const & decays, bool check_momenta ) const { return tree_param(mur, incoming, outgoing)*tree_kin( incoming, outgoing, decays, check_momenta ); } } // namespace RHEJ diff --git a/src/Wjets.cc b/src/Wjets.cc index 9f3effe..eb7ddf4 100644 --- a/src/Wjets.cc +++ b/src/Wjets.cc @@ -1,1868 +1,1859 @@ #include "RHEJ/currents.hh" #include "RHEJ/utility.hh" #include "RHEJ/Tensor.hh" #include "RHEJ/Constants.hh" #include #include namespace { // Helper Functions // FKL W Helper Functions CCurrent jW (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin) { COM cur[4]; cur[0]=0.; cur[1]=0.; cur[2]=0.; cur[3]=0.; CCurrent sum(0.,0.,0.,0.); // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5) // Need to swap e and nu for events with W- --> e- nubar! if (helin==helout && hele==helnu) { CLHEP::HepLorentzVector qa=pout+pe+pnu; CLHEP::HepLorentzVector qb=pin-pe-pnu; double ta(qa.m2()),tb(qb.m2()); CCurrent temp2,temp3,temp5; CCurrent t65 = joo(pnu,helnu,pe,hele); CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z()); CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z()); COM brac615=t65.dot(vout); COM brac645=t65.dot(vin); // prod1565 and prod6465 are zero for Ws (not Zs)!! temp2 = joo(pout,helout,pnu,helout); COM prod1665=temp2.dot(t65); temp3 = j(pe,helin,pin,helin); COM prod5465=temp3.dot(t65); temp2=joo(pout,helout,pe,helout); temp3=j(pnu,helnu,pin,helin); temp5=j(pout,helout,pin,helin); CCurrent term1,term2,term3; term1=(2.*brac615/ta+2.*brac645/tb)*temp5; term2=(prod1665/ta)*temp3; term3=(-prod5465/tb)*temp2; sum=term1+term2+term3; } return sum; } CCurrent jWbar (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin) { COM cur[4]; cur[0]=0.; cur[1]=0.; cur[2]=0.; cur[3]=0.; CCurrent sum(0.,0.,0.,0.); // NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5) // Need to swap e and nu for events with W- --> e- nubar! if (helin==helout && hele==helnu) { CLHEP::HepLorentzVector qa=pout+pe+pnu; CLHEP::HepLorentzVector qb=pin-pe-pnu; double ta(qa.m2()),tb(qb.m2()); CCurrent temp2,temp3,temp5; CCurrent t65 = joo(pnu,helnu,pe,hele); CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z()); CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z()); COM brac615=t65.dot(vout); COM brac645=t65.dot(vin); // prod1565 and prod6465 are zero for Ws (not Zs)!! temp2 = joo(pe,helout,pout,helout); // temp2 is <5|alpha|1> COM prod5165=temp2.dot(t65); temp3 = jio(pin,helin,pnu,helin); // temp3 is <4|alpha|6> COM prod4665=temp3.dot(t65); temp2=joo(pnu,helout,pout,helout); // temp2 is now <6|mu|1> temp3=jio(pin,helin,pe,helin); // temp3 is now <4|mu|5> temp5=jio(pin,helin,pout,helout); // temp5 is <4|mu|1> CCurrent term1,term2,term3; term1 =(-2.*brac615/ta-2.*brac645/tb)*temp5; term2 =(-prod5165/ta)*temp3; term3 =(prod4665/tb)*temp2; sum = term1 + term2 + term3; } return sum; } // Relevant W+Jets Unordered Contribution Helper Functions // W+Jets Uno double jM2Wuno(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector plbar, CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pa, bool h1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector pb, bool h2, bool pol) { static bool is_sigma_index_set(false); if(!is_sigma_index_set){ //std::cout<<"Setting sigma_index...." << std::endl; if(init_sigma_index()) is_sigma_index_set = true; else return 0.; } CLHEP::HepLorentzVector pW = pl+plbar; CLHEP::HepLorentzVector q1g=pa-pW-p1-pg; CLHEP::HepLorentzVector q1 = pa-p1-pW; CLHEP::HepLorentzVector q2 = p2-pb; const double taW = (pa-pW).m2(); const double taW1 = (pa-pW-p1).m2(); const double tb2 = (pb-p2).m2(); const double tb2g = (pb-p2-pg).m2(); const double s1W = (p1+pW).m2(); const double s1gW = (p1+pW+pg).m2(); const double s1g = (p1+pg).m2(); const double tag = (pa-pg).m2(); const double taWg = (pa-pW-pg).m2(); //use p1 as ref vec in pol tensor Tensor<1,4> epsg = eps(pg,p2,pol); Tensor<1,4> epsW = TCurrent(pl,false,plbar,false); Tensor<1,4> j2b = TCurrent(p2,h2,pb,h2); Tensor<1,4> Tq1q2 = Construct1Tensor((q1+q2)/taW1 + (pb/pb.dot(pg) + p2/p2.dot(pg)) * tb2/(2*tb2g)); Tensor<1,4> Tq1g = Construct1Tensor((-pg-q1))/taW1; Tensor<1,4> Tq2g = Construct1Tensor((pg-q2)); Tensor<1,4> TqaW = Construct1Tensor((pa-pW));//pa-pw Tensor<1,4> Tqag = Construct1Tensor((pa-pg)); Tensor<1,4> TqaWg = Construct1Tensor((pa-pg-pW)); Tensor<1,4> Tp1g = Construct1Tensor((p1+pg)); Tensor<1,4> Tp1W = Construct1Tensor((p1+pW));//p1+pw Tensor<1,4> Tp1gW = Construct1Tensor((p1+pg+pW));//p1+pw+pg Tensor<2,4> g=Metric(); Tensor<3,4> J31a = T3Current(p1, h1, pa, h1); Tensor<2,4> J2_qaW =J31a.contract(TqaW/taW, 2); Tensor<2,4> J2_p1W =J31a.contract(Tp1W/s1W, 2); Tensor<3,4> L1a =J2_qaW.leftprod(Tq1q2); Tensor<3,4> L1b =J2_p1W.leftprod(Tq1q2); Tensor<3,4> L2a = J2_qaW.leftprod(Tq1g); Tensor<3,4> L2b = J2_p1W.leftprod(Tq1g); Tensor<3,4> L3 = (g.rightprod(J2_qaW.contract(Tq2g,1)+J2_p1W.contract(Tq2g,2)))/taW1; Tensor<3,4> L(0.); Tensor<5,4> J51a = T5Current(p1, h1, pa, h1); Tensor<4,4> J_qaW = J51a.contract(TqaW,4); Tensor<4,4> J_qag = J51a.contract(Tqag,4); Tensor<4,4> J_p1gW = J51a.contract(Tp1gW,4); Tensor<3,4> U1a = J_qaW.contract(Tp1g,2); Tensor<3,4> U1b = J_p1gW.contract(Tp1g,2); Tensor<3,4> U1c = J_p1gW.contract(Tp1W,2); Tensor<3,4> U1(0.); Tensor<3,4> U2a = J_qaW.contract(TqaWg,2); Tensor<3,4> U2b = J_qag.contract(TqaWg,2); Tensor<3,4> U2c = J_qag.contract(Tp1W,2); Tensor<3,4> U2(0.); for(int nu=0; nu<4;nu++){ for(int mu=0;mu<4;mu++){ for(int rho=0;rho<4;rho++){ L.Set(nu, mu, rho, L1a.at(nu,mu,rho) + L1b.at(nu,rho,mu) + L2a.at(mu,nu,rho) + L2b.at(mu,rho,nu) + L3.at(mu,nu,rho)); U1.Set(nu, mu, rho, U1a.at(nu, mu, rho) / (s1g*taW) + U1b.at(nu,rho,mu) / (s1g*s1gW) + U1c.at(rho,nu,mu) / (s1W*s1gW)); U2.Set(nu,mu,rho,U2a.at(mu,nu,rho) / (taWg*taW) + U2b.at(mu,rho,nu) / (taWg*tag) + U2c.at(rho,mu,nu) / (s1W*tag)); } } } COM X = ((((U1-L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)).at(0); COM Y = ((((U2+L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)).at(0); double amp = RHEJ::C_A*RHEJ::C_F*RHEJ::C_F/2.*(norm(X)+norm(Y)) - RHEJ::C_F/2.*(X*conj(Y)).real(); double t1 = q1g.m2(); double t2 = q2.m2(); //Divide by t-channels amp/=(t1*t2); //Average over initial states amp/=(4.*RHEJ::C_A*RHEJ::C_A); return amp; } // Relevant Wqqx Helper Functions. //g->qxqlxl (Calculates gluon to qqx Current. See JV_\mu in WSubleading Notes) Tensor <1,4> gtqqxW(CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar){ double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); Tensor<1,4> Tpq = Construct1Tensor(pq); Tensor<1,4> Tpqbar = Construct1Tensor(pqbar); Tensor<1,4> TAB = Construct1Tensor(pl+plbar); // Define llx current. Tensor<1,4> ABCur = TCurrent(pl, false, plbar, false); //blank 3 Gamma Current Tensor<3,4> JV23 = T3Current(pq,false,pqbar,false); // Components of g->qqW before W Contraction Tensor<2,4> JV1 = JV23.contract((Tpq + TAB),2)/(s2AB); Tensor<2,4> JV2 = JV23.contract((Tpqbar + TAB),2)/(s3AB); // g->qqW Current. Note Minus between terms due to momentum flow. // Also note: (-I)^2 from W vert. (I) from Quark prop. Tensor<1,4> JVCur = (JV1.contract(ABCur,1) - JV2.contract(ABCur,2))*COM(0.,-1.); return JVCur; } // Helper Functions Calculate the Crossed Contribution Tensor <2,4> MCrossW(CLHEP::HepLorentzVector pa,CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar, std::vector partons, int nabove){ // Useful propagator factors double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); CLHEP::HepLorentzVector q1, q3; q1=pa; for(int i=0; i Tp1 = Construct1Tensor(p1); Tensor<1,4> Tp4 = Construct1Tensor(p4); Tensor<1,4> Tpa = Construct1Tensor(pa); Tensor<1,4> Tpb = Construct1Tensor(pb); Tensor<1,4> Tpq = Construct1Tensor(pq); Tensor<1,4> Tpqbar = Construct1Tensor(pqbar); Tensor<1,4> TAB = Construct1Tensor(pl+plbar); Tensor<1,4> Tq1 = Construct1Tensor(q1); Tensor<1,4> Tq3 = Construct1Tensor(q3); Tensor<2,4> g=Metric(); // Define llx current. Tensor<1,4> ABCur = TCurrent(pl, false, plbar,false); //Blank 5 gamma Current Tensor<5,4> J523 = T5Current(pq,false,pqbar,false); // 4 gamma currents (with 1 contraction already). Tensor<4,4> J_q3q = J523.contract((Tq3+Tpq),2); Tensor<4,4> J_2AB = J523.contract((Tpq+TAB),2); // Components of Crossed Vertex Contribution Tensor<3,4> Xcro1 = J_q3q.contract((Tpqbar + TAB),3); Tensor<3,4> Xcro2 = J_q3q.contract((Tq1-Tpqbar),3); Tensor<3,4> Xcro3 = J_2AB.contract((Tq1-Tpqbar),3); // Term Denominators Taken Care of at this stage Tensor<2,4> Xcro1Cont = Xcro1.contract(ABCur,3)/(tcro1*s3AB); Tensor<2,4> Xcro2Cont = Xcro2.contract(ABCur,2)/(tcro1*tcro2); Tensor<2,4> Xcro3Cont = Xcro3.contract(ABCur,1)/(s2AB*tcro2); //Initialise the Crossed Vertex Object Tensor<2,4> Xcro(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xcro.Set(mu,nu, -(-Xcro1Cont.at(nu,mu)+Xcro2Cont.at(nu,mu)+Xcro3Cont.at(nu,mu))); } } return Xcro; } // Helper Functions Calculate the Uncrossed Contribution Tensor <2,4> MUncrossW(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar, std::vector partons, int nabove){ double s2AB=(pl+plbar+pq).m2(); double s3AB=(pl+plbar+pqbar).m2(); CLHEP::HepLorentzVector q1, q3; q1=pa; for(int i=0; i Tp1 = Construct1Tensor(p1); Tensor<1,4> Tp4 = Construct1Tensor(p4); Tensor<1,4> Tpa = Construct1Tensor(pa); Tensor<1,4> Tpb = Construct1Tensor(pb); Tensor<1,4> Tpq = Construct1Tensor(pq); Tensor<1,4> Tpqbar = Construct1Tensor(pqbar); Tensor<1,4> TAB = Construct1Tensor(pl+plbar); Tensor<1,4> Tq1 = Construct1Tensor(q1); Tensor<1,4> Tq3 = Construct1Tensor(q3); Tensor<2,4> g=Metric(); // Define llx current. Tensor<1,4> ABCur = TCurrent(pl, false, plbar, false); //Blank 5 gamma Current Tensor<5,4> J523 = T5Current(pq,false,pqbar,false); // 4 gamma currents (with 1 contraction already). Tensor<4,4> J_2AB = J523.contract((Tpq+TAB),2); Tensor<4,4> J_q1q = J523.contract((Tq1-Tpq),2); // 2 Contractions taken care of. Tensor<3,4> Xunc1 = J_2AB.contract((Tq3+Tpqbar),3); Tensor<3,4> Xunc2 = J_q1q.contract((Tq3+Tpqbar),3); Tensor<3,4> Xunc3 = J_q1q.contract((Tpqbar+TAB),3); // Term Denominators Taken Care of at this stage Tensor<2,4> Xunc1Cont = Xunc1.contract(ABCur,1)/(s2AB*tunc2); Tensor<2,4> Xunc2Cont = Xunc2.contract(ABCur,2)/(tunc1*tunc2); Tensor<2,4> Xunc3Cont = Xunc3.contract(ABCur,3)/(tunc1*s3AB); //Initialise the Uncrossed Vertex Object Tensor<2,4> Xunc(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xunc.Set(mu,nu,-(- Xunc1Cont.at(mu,nu)+Xunc2Cont.at(mu,nu) +Xunc3Cont.at(mu,nu))); } } return Xunc; } // Helper Functions Calculate the g->qqxW (Eikonal) Contributions Tensor <2,4> MSymW(CLHEP::HepLorentzVector pa,CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar, std::vector partons, int nabove){ double sa2=(pa+pq).m2(); double s12=(p1+pq).m2(); double sa3=(pa+pqbar).m2(); double s13=(p1+pqbar).m2(); double saA=(pa+pl).m2(); double s1A=(p1+pl).m2(); double saB=(pa+plbar).m2(); double s1B=(p1+plbar).m2(); double sb2=(pb+pq).m2(); double s42=(p4+pq).m2(); double sb3=(pb+pqbar).m2(); double s43=(p4+pqbar).m2(); double sbA=(pb+pl).m2(); double s4A=(p4+pl).m2(); double sbB=(pb+plbar).m2(); double s4B=(p4+plbar).m2(); double s23AB=(pl+plbar+pq+pqbar).m2(); CLHEP::HepLorentzVector q1,q3; q1=pa; for(int i=0;i Tp1 = Construct1Tensor(p1); Tensor<1,4> Tp4 = Construct1Tensor(p4); Tensor<1,4> Tpa = Construct1Tensor(pa); Tensor<1,4> Tpb = Construct1Tensor(pb); Tensor<1,4> Tpq = Construct1Tensor(pq); Tensor<1,4> Tpqbar = Construct1Tensor(pqbar); Tensor<1,4> TAB = Construct1Tensor(pl+plbar); Tensor<1,4> Tq1 = Construct1Tensor(q1); Tensor<1,4> Tq3 = Construct1Tensor(q3); Tensor<2,4> g=Metric(); // g->qqW Current (Factors of sqrt2 dealt with in this function.) Tensor<1,4> JV = gtqqxW(pq,pqbar,pl,plbar); // 1a gluon emisson Contribution Tensor<3,4> X1a = g.rightprod(Tp1*(t1/(s12+s13+s1A+s1B)) + Tpa*(t1/(sa2+sa3+saA+saB))); Tensor<2,4> X1aCont = X1a.contract(JV,3); //4b gluon emission Contribution Tensor<3,4> X4b = g.rightprod(Tp4*(t3/(s42+s43+s4A+s4B)) + Tpb*(t3/(sb2+sb3+sbA+sbB))); Tensor<2,4> X4bCont = X4b.contract(JV,3); //Set up each term of 3G diagram. Tensor<3,4> X3g1 = g.leftprod(Tq1+Tpq+Tpqbar+TAB); Tensor<3,4> X3g2 = g.leftprod(Tq3-Tpq-Tpqbar-TAB); Tensor<3,4> X3g3 = g.leftprod((Tq1+Tq3)); // Note the contraction of indices changes term by term Tensor<2,4> X3g1Cont = X3g1.contract(JV,3); Tensor<2,4> X3g2Cont = X3g2.contract(JV,2); Tensor<2,4> X3g3Cont = X3g3.contract(JV,1); // XSym is an amalgamation of x1a, X4b and X3g. Makes sense from a colour factor point of view. Tensor<2,4>Xsym(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xsym.Set(mu,nu, (X3g1Cont.at(nu,mu) + X3g2Cont.at(mu,nu) - X3g3Cont.at(nu,mu)) + (X1aCont.at(mu,nu) - X4bCont.at(mu,nu)) ); } } return Xsym/s23AB; } Tensor <2,4> MCross(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar, std::vector partons, bool hq, int nabove){ CLHEP::HepLorentzVector q1; q1=pa; for(int i=0;i Tq1 = Construct1Tensor(q1-pqbar); //Blank 3 gamma Current Tensor<3,4> J323 = T3Current(pq,hq,pqbar,hq); // 2 gamma current (with 1 contraction already). Tensor<2,4> XCroCont = J323.contract((Tq1),2)/(t2); //Initialise the Crossed Vertex Tensor<2,4> Xcro(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xcro.Set(mu,nu, (XCroCont.at(nu,mu))); } } return Xcro; } // Helper Functions Calculate the Uncrossed Contribution Tensor <2,4> MUncross(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar, std::vector partons, bool hq, int nabove){ CLHEP::HepLorentzVector q1; q1=pa; for(int i=0;i Tq1 = Construct1Tensor(q1-pq); //Blank 3 gamma Current Tensor<3,4> J323 = T3Current(pq,hq,pqbar,hq); // 2 gamma currents (with 1 contraction already). Tensor<2,4> XUncCont = J323.contract((Tq1),2)/t2; //Initialise the Uncrossed Vertex Tensor<2,4> Xunc(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xunc.Set(mu,nu,-(XUncCont.at(mu,nu))); } } return Xunc; } // Helper Functions Calculate the Eikonal Contributions Tensor <2,4> MSym(CLHEP::HepLorentzVector pa,CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar, std::vector partons, bool hq, int nabove){ CLHEP::HepLorentzVector q1, q3; q1=pa; for(int i=0;i Tp1 = Construct1Tensor(p1); Tensor<1,4> Tp4 = Construct1Tensor(p4); Tensor<1,4> Tpa = Construct1Tensor(pa); Tensor<1,4> Tpb = Construct1Tensor(pb); Tensor<1,4> Tpq = Construct1Tensor(pq); Tensor<1,4> Tpqbar = Construct1Tensor(pqbar); Tensor<1,4> Tq1 = Construct1Tensor(q1); Tensor<1,4> Tq3 = Construct1Tensor(q3); Tensor<2,4> g=Metric(); Tensor<1,4> qqxCur = TCurrent(pq, hq, pqbar, hq); // // 1a gluon emisson Contribution Tensor<3,4> X1a = g.rightprod(Tp1*(t1/(s12+s13))+Tpa*(t1/(sa2+sa3))); Tensor<2,4> X1aCont = X1a.contract(qqxCur,3); // //4b gluon emission Contribution Tensor<3,4> X4b = g.rightprod(Tp4*(t3/(s42+s43)) + Tpb*(t3/(sb2+sb3))); Tensor<2,4> X4bCont = X4b.contract(qqxCur,3); // New Formulation Corresponding to New Analytics Tensor<3,4> X3g1 = g.leftprod(Tq1+Tpq+Tpqbar); Tensor<3,4> X3g2 = g.leftprod(Tq3-Tpq-Tpqbar); Tensor<3,4> X3g3 = g.leftprod((Tq1+Tq3)); // Note the contraction of indices changes term by term Tensor<2,4> X3g1Cont = X3g1.contract(qqxCur,3); Tensor<2,4> X3g2Cont = X3g2.contract(qqxCur,2); Tensor<2,4> X3g3Cont = X3g3.contract(qqxCur,1); Tensor<2,4>Xsym(0.); for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ Xsym.Set(mu, nu, COM(0,1) * ( (X3g1Cont.at(nu,mu) + X3g2Cont.at(mu,nu) - X3g3Cont.at(nu,mu)) + (X1aCont.at(mu,nu) - X4bCont.at(mu,nu)) ) ); } } return Xsym/s23; } Tensor <1,4> jW4bEmit(HLV pb, HLV p4, HLV pl, HLV plbar, bool aqlinepb){ // Build the external quark line W Emmision Tensor<1,4> ABCurr = TCurrent(pl, false, plbar, false)/2; Tensor<1,4> Tp4W = Construct1Tensor((p4+pl+plbar));//p4+pw Tensor<1,4> TpbW = Construct1Tensor((pb-pl-plbar));//pb-pw Tensor<3,4> J4bBlank; if (aqlinepb){ J4bBlank = T3Current(pb,false,p4,false); } else{ J4bBlank = T3Current(p4,false,pb,false); } double t4AB = (p4+pl+plbar).m2(); double tbAB = (pb-pl-plbar).m2(); Tensor<2,4> J4b1 = (J4bBlank.contract(Tp4W,2))/t4AB; Tensor<2,4> J4b2 = (J4bBlank.contract(TpbW,2))/tbAB; Tensor<2,4> T4bmMom(0.); if (aqlinepb){ for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ T4bmMom.Set(mu,nu, (J4b1.at(nu,mu) + J4b2.at(mu,nu))*(COM(-1,0))); } } } else{ for(int mu=0; mu<4;mu++){ for(int nu=0;nu<4;nu++){ T4bmMom.Set(nu,mu, (J4b1.at(nu,mu) + J4b2.at(mu,nu))); } } } Tensor<1,4> T4bm = T4bmMom.contract(ABCurr,1); return T4bm; } } // Anonymous Namespace helper functions //Functions which can be called elsewhere (declarations in currents.hh). // W+Jets Unordered Contributions //qQ->qQWg_unob double junobMWqQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj1m,mj2p,mj2m; CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu; CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); CLHEP::HepLorentzVector q3=-(p2in-p2out); mj1m=jW(p1out,false,pe,false,pnu,false,p1in,false); mj2p=j(p2out,true,p2in,true); mj2m=j(p2out,false,p2in,false); // Dot products of these which occur again and again COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgbm,jgbp,j2gm,j2gp; j2gp=joo(p2out,true,pg,true); j2gm=joo(p2out,false,pg,false); jgbp=j(pg,true,p2in,true); jgbm=j(pg,false,p2in,false); CCurrent qsum(q2+q3); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in); CCurrent p2o(p2out); CCurrent p2i(p2in); Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2(); Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2(); U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2(); U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2(); U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2(); double amm,amp; amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); amp=RHEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mp+U2mp); double ampsq=-(amm+amp); // Now add the t-channels double th=q2.m2()*q1.m2(); ampsq/=th; ampsq/=16.; return ampsq; } //qQbar->qQbarWg_unob double junobMWqQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj1m,mj2p,mj2m; CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu; CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); CLHEP::HepLorentzVector q3=-(p2in-p2out); mj1m=jW(p1out,false,pe,false,pnu,false,p1in,false); mj2p=jio(p2in,true,p2out,true); mj2m=jio(p2in,false,p2out,false); // Dot products of these which occur again and again COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgbm,jgbp,j2gm,j2gp; j2gp=joo(pg,true,p2out,true); j2gm=joo(pg,false,p2out,false); jgbp=jio(p2in,true,pg,true); jgbm=jio(p2in,false,pg,false); CCurrent qsum(q2+q3); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in); CCurrent p2o(p2out); CCurrent p2i(p2in); Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2(); Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2(); U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2(); U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2(); U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2(); double amm,amp; amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); amp=RHEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mp+U2mp); double ampsq=-(amm+amp); // Now add the t-channels double th=q2.m2()*q1.m2(); ampsq/=th; ampsq/=16.; return ampsq; } //qbarQ->qbarQWg_unob double junobMWqbarQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj1m,mj2p,mj2m; CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu; CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); CLHEP::HepLorentzVector q3=-(p2in-p2out); mj1m=jWbar(p1out,false,pe,false,pnu,false,p1in,false); mj2p=j(p2out,true,p2in,true); mj2m=j(p2out,false,p2in,false); // Dot products of these which occur again and again COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgbm,jgbp,j2gm,j2gp; j2gp=joo(p2out,true,pg,true); j2gm=joo(p2out,false,pg,false); jgbp=j(pg,true,p2in,true); jgbm=j(pg,false,p2in,false); CCurrent qsum(q2+q3); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in); CCurrent p2o(p2out); CCurrent p2i(p2in); Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2(); Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2(); U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2(); U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2(); U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2(); double amm,amp; amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); amp=RHEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mp+U2mp); double ampsq=-(amm+amp); // Now add the t-channels double th=q2.m2()*q1.m2(); ampsq/=th; ampsq/=16.; return ampsq; } //qbarQbar->qbarQbarWg_unob double junobMWqbarQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj1m,mj2p,mj2m; CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu; CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); CLHEP::HepLorentzVector q3=-(p2in-p2out); mj1m=jWbar(p1out,false,pe,false,pnu,false,p1in,false); mj2p=jio(p2in,true,p2out,true); mj2m=jio(p2in,false,p2out,false); // Dot products of these which occur again and again COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgbm,jgbp,j2gm,j2gp; j2gp=joo(pg,true,p2out,true); j2gm=joo(pg,false,p2out,false); jgbp=jio(p2in,true,pg,true); jgbm=jio(p2in,false,pg,false); CCurrent qsum(q2+q3); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in); CCurrent p2o(p2out); CCurrent p2i(p2in); Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2(); Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2(); U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2(); U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2(); U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2(); double amm,amp; amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); amp=RHEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mp+U2mp); double ampsq=-(amm+amp); // Now add the t-channels double th=q2.m2()*q1.m2(); ampsq/=th; ampsq/=16.; return ampsq; } //////////////////////////////////////////////////////////////////// //qQ->qQWg_unof double junofMWgqQ (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj2m,mj1p,mj1m; CLHEP::HepLorentzVector q1=p1in-p1out; CLHEP::HepLorentzVector qg=p1in-p1out-pg; CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu); mj2m=jW(p2out,false,pe,false,pnu,false,p2in,false); mj1p=j(p1out,true,p1in,true); mj1m=j(p1out,false,p1in,false); // Dot products of these which occur again and again COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgam,jgap,j2gm,j2gp; j2gp=joo(p1out,true,pg,true); j2gm=joo(p1out,false,pg,false); jgap=j(pg,true,p1in,true); jgam=j(pg,false,p1in,false); CCurrent qsum(q1+qg); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in); CCurrent p1o(p1out); CCurrent p1i(p1in); Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2(); Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2(); U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2(); U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2(); U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2(); double amm,apm; amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); apm=RHEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1pm+U2pm); double ampsq=-(apm+amm); // Now add the t-channels double th=q2.m2()*qg.m2(); ampsq/=th; ampsq/=16.; return ampsq; } //qQbar->qQbarWg_unof double junofMWgqQbar (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj2m,mj1p,mj1m; CLHEP::HepLorentzVector q1=p1in-p1out; CLHEP::HepLorentzVector qg=p1in-p1out-pg; CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu); mj2m=jWbar(p2out,false,pe,false,pnu,false,p2in,false); mj1p=j(p1out,true,p1in,true); mj1m=j(p1out,false,p1in,false); // Dot products of these which occur again and again COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgam,jgap,j2gm,j2gp; j2gp=joo(p1out,true,pg,true); j2gm=joo(p1out,false,pg,false); jgap=j(pg,true,p1in,true); jgam=j(pg,false,p1in,false); CCurrent qsum(q1+qg); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in); CCurrent p1o(p1out); CCurrent p1i(p1in); Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2(); Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2(); U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2(); U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2(); U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2(); double amm,apm; amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); apm=RHEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1pm+U2pm); double ampsq=-(apm+amm); // Now add the t-channels double th=q2.m2()*qg.m2(); ampsq/=th; ampsq/=16.; return ampsq; } //qbarQ->qbarQWg_unof double junofMWgqbarQ (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj2m,mj1p,mj1m; CLHEP::HepLorentzVector q1=p1in-p1out; CLHEP::HepLorentzVector qg=p1in-p1out-pg; CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu); mj2m=jW(p2out,false,pe,false,pnu,false,p2in,false); mj1p=jio(p1in,true,p1out,true); mj1m=jio(p1in,false,p1out,false); // Dot products of these which occur again and again COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgam,jgap,j2gm,j2gp; j2gp=joo(pg,true,p1out,true); j2gm=joo(pg,false,p1out,false); jgap=jio(p1in,true,pg,true); jgam=jio(p1in,false,pg,false); CCurrent qsum(q1+qg); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in); CCurrent p1o(p1out); CCurrent p1i(p1in); Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2(); Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2(); U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2(); U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2(); U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2(); double amm,apm; amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); apm=RHEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1pm+U2pm); double ampsq=-(apm+amm); // Now add the t-channels double th=q2.m2()*qg.m2(); ampsq/=th; ampsq/=16.; return ampsq; } //qbarQbar->qbarQbarWg_unof double junofMWgqbarQbar (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in) // Calculates the square of the current contractions for qQ->qenuQ scattering // p1: quark (with W emittance) // p2: Quark { CCurrent mj2m,mj1p,mj1m; CLHEP::HepLorentzVector q1=p1in-p1out; CLHEP::HepLorentzVector qg=p1in-p1out-pg; CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu); mj2m=jWbar(p2out,false,pe,false,pnu,false,p2in,false); mj1p=jio(p1in,true,p1out,true); mj1m=jio(p1in,false,p1out,false); // Dot products of these which occur again and again COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones COM MWmm=mj1m.dot(mj2m); CCurrent jgam,jgap,j2gm,j2gp; j2gp=joo(pg,true,p1out,true); j2gm=joo(pg,false,p1out,false); jgap=jio(p1in,true,pg,true); jgam=jio(p1in,false,pg,false); CCurrent qsum(q1+qg); CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in); CCurrent p1o(p1out); CCurrent p1i(p1in); Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2(); Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2(); U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2(); U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2(); U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2(); U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2(); double amm,apm; amm=RHEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1mm+U2mm); apm=RHEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*RHEJ::C_F*RHEJ::C_F/3.*vabs2(U1pm+U2pm); double ampsq=-(apm+amm); // Now add the t-channels double th=q2.m2()*qg.m2(); ampsq/=th; ampsq/=16.; return ampsq; } ///TODO make this comment more visible /// Naming scheme jM2-Wuno-g-({q/qbar}{Q/Qbar/g}) ///TODO Spit naming for more complicated functions? /// e.g. jM2WqqtoqQQq -> jM2_Wqq_to_qQQq double jM2WunogqQ(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } //same as function above but actually obtaining the antiquark line by crossing symmetry, where p1out and p1in are expected to be negative. //should give same result as jM2WunogqbarQ below (verified) double jM2WunogqQ_crossqQ(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } double jM2WunogqQbar(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } double jM2Wunogqg(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; double ratio; // p2-/pb- in the notes if (p2in.pz()>0.) // if the gluon is the positive ratio=p2out.plus()/p2in.plus(); else // the gluon is the negative ratio=p2out.minus()/p2in.minus(); double cam = ( (RHEJ::C_A - 1/RHEJ::C_A)*(ratio + 1./ratio)/2. + 1/RHEJ::C_A)/RHEJ::C_F; ME2*=cam; return ME2; } double jM2WunogqbarQ(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } double jM2WunogqbarQbar(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; return ME2; } double jM2Wunogqbarg(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; double ratio; // p2-/pb- in the notes if (p2in.pz()>0.) // if the gluon is the positive ratio=p2out.plus()/p2in.plus(); else // the gluon is the negative ratio=p2out.minus()/p2in.minus(); double cam = ( (RHEJ::C_A - 1/RHEJ::C_A)*(ratio + 1./ratio)/2. + 1/RHEJ::C_A)/RHEJ::C_F; ME2*=cam; return ME2; } // W+Jets qqxExtremal // W+Jets qqxExtremal Currents - wqq emission double jM2WgQtoqbarqQ(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqbarout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; //Correct colour averaging ME2*=(3.0/8.0); return ME2; } double jM2WgQtoqqbarQ(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqbarout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in){ //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; //Correct colour averaging ME2*=(3.0/8.0); return ME2; } double jM2Wggtoqbarqg(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqbarout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in) { //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,true); ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,false); ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,true); ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; double ratio; // p2-/pb- in the notes if (p2in.pz()>0.) // if the gluon is the positive ratio=p2out.plus()/p2in.plus(); else // the gluon is the negative ratio=p2out.minus()/p2in.minus(); double cam = ( (RHEJ::C_A - 1/RHEJ::C_A)*(ratio + 1./ratio)/2. + 1/RHEJ::C_A)/RHEJ::C_F; ME2*=cam; //Correct colour averaging ME2*=(3.0/8.0); return ME2; } double jM2Wggtoqqbarg(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqbarout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in){ //COM temp; double ME2mpp=0.; double ME2mpm=0.; double ME2mmp=0.; double ME2mmm=0.; double ME2; ME2mpp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,true); ME2mpm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,false); ME2mmp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,true); ME2mmm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,false); //Helicity sum ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm; double ratio; // p2-/pb- in the notes if (p2in.pz()>0.) // if the gluon is the positive ratio=p2out.plus()/p2in.plus(); else // the gluon is the negative ratio=p2out.minus()/p2in.minus(); double cam = ( (RHEJ::C_A - 1/RHEJ::C_A)*(ratio + 1./ratio)/2. + 1/RHEJ::C_A)/RHEJ::C_F; ME2*=cam; //Correct colour averaging ME2*=(3.0/8.0); return ME2; } namespace { //First, a function for generating polarisation tensors. Output as 'current'. void eps(CLHEP::HepLorentzVector refmom, CLHEP::HepLorentzVector kb, bool hel, current &ep){ current curm,curp; //Recall - positive helicity eps has negative helicity choices for spinors and vice versa j(refmom,true,kb,true,curm); j(refmom,false,kb,false,curp); double norm=1.; if(kb.z()<0.) norm *= sqrt(2.*refmom.plus()*kb.minus()); if(kb.z()>0.) norm = sqrt(2.*refmom.minus()*kb.plus()); if(hel==false){ ep[0] = curm[0]/norm; ep[1] = curm[1]/norm; ep[2] = curm[2]/norm; ep[3] = curm[3]/norm; } if(hel==true){ ep[0] = curp[0]/norm; ep[1] = curp[1]/norm; ep[2] = curp[2]/norm; ep[3] = curp[3]/norm; } } //Now build up each part of the squared amplitude COM qWggm1(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector plbar, bool helchain, bool helb,CLHEP::HepLorentzVector refmom){ current cur33, cur23, curb3, cur2b, ep; joo(p3, helchain, p3, helchain,cur33); joo(p2,helchain,p3,helchain,cur23); jio(pb,helchain,p3,helchain,curb3); joi(p2,helchain,pb,helchain,cur2b); // Build the external quark line W Emmision Tensor<1,4> ABCurr = TCurrent(pl, false, plbar, false); Tensor<1,4> Tp1W = Construct1Tensor((p1+pl+plbar));//p1+pw Tensor<1,4> TqaW = Construct1Tensor((pa-pl-plbar));//pa-pw Tensor<3,4> J1aBlank = T3Current(p1,false,pa,false); double t1AB = (p1+pl+plbar).m2(); double taAB = (pa-pl-plbar).m2(); Tensor<2,4> J1a1 = (J1aBlank.contract(Tp1W,2))/t1AB; Tensor<2,4> J1a2 = (J1aBlank.contract(TqaW,2))/taAB; Tensor<1,4> cur1a = J1a1.contract(ABCurr,1) + J1a2.contract(ABCurr,2); double t2 = (p3-pb)*(p3-pb); //Create vertex COM v1[4][4]; for(int u=0; u<4;u++) { for(int v=0; v<4; v++) { v1[u][v]=(cur23[u]*cur33[v]-cur2b[u]*curb3[v])/t2*(-1.); } } //Dot in current and eps //Metric tensor double eta[4][4]={}; eta[0][0]=1.; eta[1][1]=-1.; eta[2][2]=-1.; eta[3][3]=-1.; //eps eps(refmom,pb,helb, ep); COM M1=0.; for(int i=0;i<4;i++){ for(int j=0;j<4;j++){ for(int k=0; k<4; k++){ for(int l=0; l<4;l++){ M1+= eta[i][k]*cur1a.at(k)*(v1[i][j])*ep[l]*eta[l][j]; } } } } return M1; } COM qWggm2(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector plbar, bool helchain, bool helb,CLHEP::HepLorentzVector refmom){ current cur22, cur23, curb3, cur2b, ep; joo(p2, helchain, p2, helchain,cur22); joo(p2,helchain,p3,helchain,cur23); jio(pb,helchain,p3,helchain,curb3); joi(p2,helchain,pb,helchain,cur2b); // Build the external quark line W Emmision Tensor<1,4> ABCurr = TCurrent(pl, false, plbar, false); Tensor<1,4> Tp1W = Construct1Tensor((p1+pl+plbar));//p1+pw Tensor<1,4> TqaW = Construct1Tensor((pa-pl-plbar));//pa-pw Tensor<3,4> J1aBlank = T3Current(p1,false,pa,false); double t1AB = (p1+pl+plbar).m2(); double taAB = (pa-pl-plbar).m2(); Tensor<2,4> J1a1 = (J1aBlank.contract(Tp1W,2))/t1AB; Tensor<2,4> J1a2 = (J1aBlank.contract(TqaW,2))/taAB; Tensor<1,4> cur1a = J1a1.contract(ABCurr,1) + J1a2.contract(ABCurr,2); double t2t = (p2-pb)*(p2-pb); //Create vertex COM v2[4][4]={}; for(int u=0; u<4;u++) { for(int v=0; v<4; v++) { v2[u][v]=(cur22[v]*cur23[u]-cur2b[v]*curb3[u])/t2t; } } //Dot in current and eps //Metric tensor double eta[4][4]={}; eta[0][0]=1.; eta[1][1]=-1.; eta[2][2]=-1.; eta[3][3]=-1.; //eps eps(refmom,pb,helb, ep); COM M2=0.; for(int i=0;i<4;i++){ for(int j=0;j<4;j++){ for(int k=0; k<4; k++){ for(int l=0; l<4;l++){ M2+= eta[i][k]*cur1a.at(k)*(v2[i][j])*ep[l]*eta[l][j]; } } } } return M2; } COM qWggm3(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector plbar, bool helchain, bool helb,CLHEP::HepLorentzVector refmom){ //3 gluon vertex bit double eta[4][4]={}; eta[0][0]=1.; eta[1][1]=-1.; eta[2][2]=-1.; eta[3][3]=-1.; current spincur,ep; double s23 = (p2+p3)*(p2+p3); joo(p2,helchain,p3,helchain,spincur); // Build the external quark line W Emmision Tensor<1,4> ABCurr = TCurrent(pl, false, plbar, false); Tensor<1,4> Tp1W = Construct1Tensor((p1+pl+plbar));//p1+pw Tensor<1,4> TqaW = Construct1Tensor((pa-pl-plbar));//pa-pw Tensor<3,4> J1aBlank = T3Current(p1,false,pa,false); double t1AB = (p1+pl+plbar).m2(); double taAB = (pa-pl-plbar).m2(); Tensor<2,4> J1a1 = (J1aBlank.contract(Tp1W,2))/t1AB; Tensor<2,4> J1a2 = (J1aBlank.contract(TqaW,2))/taAB; Tensor<1,4> cur1a = J1a1.contract(ABCurr,1) + J1a2.contract(ABCurr,2); //Redefine relevant momenta as currents - for ease of calling correct part of vector current ka,k2,k3,kb; kb[0]=pb.e(); kb[1]=pb.x(); kb[2]=pb.y(); kb[3]=pb.z(); k2[0]=p2.e(); k2[1]=p2.x(); k2[2]=p2.y(); k2[3]=p2.z(); k3[0]=p3.e(); k3[1]=p3.x(); k3[2]=p3.y(); k3[3]=p3.z(); ka[0]=pa.e(); ka[1]=pa.x(); ka[2]=pa.y(); ka[3]=pa.z(); COM V3g[4][4]={}; for(int u=0;u<4;u++){ for(int v=0;v<4;v++){ for(int p=0;p<4;p++){ for(int r=0; r<4;r++){ V3g[u][v] += COM(0.,1.)*(((2.*k2[v]+2.*k3[v])*eta[u][p] - (2.*kb[u])*eta[p][v]+2.*kb[p]*eta[u][v])*spincur[r]*eta[r][p])/s23; } } } } COM diffextrabit[4][4]={}; for(int u=0;u<4;u++) { for(int v=0;v<4;v++) { diffextrabit[u][v] = 0.; } } //Dot in current and eps //eps eps(refmom,pb,helb, ep); COM M3=0.; for(int i=0;i<4;i++){ for(int j=0;j<4;j++){ for(int k=0; k<4; k++){ for(int l=0; l<4;l++){ M3+= eta[i][k]*cur1a.at(k)*(V3g[i][j]+diffextrabit[i][j])*ep[l]*eta[l][j]; } } } } return M3; } } // no wqq emission double jM2WgqtoQQqW(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl){ - // 4 indepedent helicity choices (complex conjugation related). + // 2 independent helicity choices (complex conjugation related). - //Need to evalute each independent hel configuration and store that result somewhere + //Need to evaluate each independent hel configuration and store that result somewhere COM Mmmm1 = qWggm1(pa,pb,p1,p2,p3,pl,plbar,false,false, pa); COM Mmmm2 = qWggm2(pa,pb,p1,p2,p3,pl,plbar,false,false, pa); COM Mmmm3 = qWggm3(pa,pb,p1,p2,p3,pl,plbar,false,false, pa); - COM Mmmp1 = qWggm1(pa,pb,p1,p2,p3,pl,plbar,true,false, pa); - COM Mmmp2 = qWggm2(pa,pb,p1,p2,p3,pl,plbar,true,false, pa); - COM Mmmp3 = qWggm3(pa,pb,p1,p2,p3,pl,plbar,true,false, pa); COM Mpmm1 = qWggm1(pa,pb,p1,p2,p3,pl,plbar,false,true, pa); COM Mpmm2 = qWggm2(pa,pb,p1,p2,p3,pl,plbar,false,true, pa); COM Mpmm3 = qWggm3(pa,pb,p1,p2,p3,pl,plbar,false,true, pa); - COM Mpmp1 = qWggm1(pa,pb,p1,p2,p3,pl,plbar,true,true, pa); - COM Mpmp2 = qWggm2(pa,pb,p1,p2,p3,pl,plbar,true,true, pa); - COM Mpmp3 = qWggm3(pa,pb,p1,p2,p3,pl,plbar,true,true, pa); //Colour factors: COM cm1m1,cm2m2,cm3m3,cm1m2,cm1m3,cm2m3; cm1m1=8./3.; cm2m2=8./3.; cm3m3=6.; cm1m2 =-1./3.; cm1m3 = -3.*COM(0.,1.); cm2m3 = 3.*COM(0.,1.); //Sqaure and sum for each helicity config: - double Mmmm,Mmmp,Mpmm,Mpmp; - Mmmm = real(cm1m1*pow(abs(Mmmm1),2)+cm2m2*pow(abs(Mmmm2),2)+cm3m3*pow(abs(Mmmm3),2)+2.*real(cm1m2*Mmmm1*conj(Mmmm2))+2.*real(cm1m3*Mmmm1*conj(Mmmm3))+2.*real(cm2m3*Mmmm2*conj(Mmmm3))); - Mmmp = real(cm1m1*pow(abs(Mmmp1),2)+cm2m2*pow(abs(Mmmp2),2)+cm3m3*pow(abs(Mmmp3),2)+2.*real(cm1m2*Mmmp1*conj(Mmmp2))+2.*real(cm1m3*Mmmp1*conj(Mmmp3))+2.*real(cm2m3*Mmmp2*conj(Mmmp3))); - Mpmm = real(cm1m1*pow(abs(Mpmm1),2)+cm2m2*pow(abs(Mpmm2),2)+cm3m3*pow(abs(Mpmm3),2)+2.*real(cm1m2*Mpmm1*conj(Mpmm2))+2.*real(cm1m3*Mpmm1*conj(Mpmm3))+2.*real(cm2m3*Mpmm2*conj(Mpmm3))); - Mpmp = real(cm1m1*pow(abs(Mpmp1),2)+cm2m2*pow(abs(Mpmp2),2)+cm3m3*pow(abs(Mpmp3),2)+2.*real(cm1m2*Mpmp1*conj(Mpmp2))+2.*real(cm1m3*Mpmp1*conj(Mpmp3))+2.*real(cm2m3*Mpmp2*conj(Mpmp3))); + double Mmmm = real(cm1m1*pow(abs(Mmmm1),2)+cm2m2*pow(abs(Mmmm2),2)+cm3m3*pow(abs(Mmmm3),2)+2.*real(cm1m2*Mmmm1*conj(Mmmm2))+2.*real(cm1m3*Mmmm1*conj(Mmmm3))+2.*real(cm2m3*Mmmm2*conj(Mmmm3))); + double Mpmm = real(cm1m1*pow(abs(Mpmm1),2)+cm2m2*pow(abs(Mpmm2),2)+cm3m3*pow(abs(Mpmm3),2)+2.*real(cm1m2*Mpmm1*conj(Mpmm2))+2.*real(cm1m3*Mpmm1*conj(Mpmm3))+2.*real(cm2m3*Mpmm2*conj(Mpmm3))); - return ((Mmmm+Mmmp+Mpmm+Mpmp)/24./4.)/(pa-p1).m2()/(p2+p3-pb).m2(); + return (2*(Mmmm+Mpmm)/24./4.)/(pa-p1).m2()/(p2+p3-pb).m2(); } // W+Jets qqxCentral double jM2WqqtoqQQq(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector plbar, std::vector partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove) { static bool is_sigma_index_set(false); if(!is_sigma_index_set){ if(init_sigma_index()) is_sigma_index_set = true; else return 0.;} HLV pq, pqbar, p1, p4; if (qqxmarker){ pqbar = partons[nabove+1]; pq = partons[nabove+2];} else{ pq = partons[nabove+1]; pqbar = partons[nabove+2];} p1 = partons.front(); p4 = partons.back(); Tensor<1,4> T1am, T4bm, T1ap, T4bp; if(!(aqlinepa)){ T1ap = TCurrent(p1, true, pa, true); T1am = TCurrent(p1, false, pa, false);} else if(aqlinepa){ T1ap = TCurrent(pa, true, p1, true); T1am = TCurrent(pa, false, p1, false);} if(!(aqlinepb)){ T4bp = TCurrent(p4, true, pb, true); T4bm = TCurrent(p4, false, pb, false);} else if(aqlinepb){ T4bp = TCurrent(pb, true, p4, true); T4bm = TCurrent(pb, false, p4, false);} // Calculate the 3 separate contributions to the effective vertex Tensor<2,4> Xunc = MUncrossW(pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); Tensor<2,4> Xcro = MCrossW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); Tensor<2,4> Xsym = MSymW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove); // 4 Different Helicity Choices (Differs from Pure Jet Case, where there is also the choice in qqbar helicity. // (- - hel choice) COM M_mmUnc = (((Xunc).contract(T1am,1)).contract(T4bm,1)).at(0); COM M_mmCro = (((Xcro).contract(T1am,1)).contract(T4bm,1)).at(0); COM M_mmSym = (((Xsym).contract(T1am,1)).contract(T4bm,1)).at(0); // (- + hel choice) COM M_mpUnc = (((Xunc).contract(T1am,1)).contract(T4bp,1)).at(0); COM M_mpCro = (((Xcro).contract(T1am,1)).contract(T4bp,1)).at(0); COM M_mpSym = (((Xsym).contract(T1am,1)).contract(T4bp,1)).at(0); // (+ - hel choice) COM M_pmUnc = (((Xunc).contract(T1ap,1)).contract(T4bm,1)).at(0); COM M_pmCro = (((Xcro).contract(T1ap,1)).contract(T4bm,1)).at(0); COM M_pmSym = (((Xsym).contract(T1ap,1)).contract(T4bm,1)).at(0); // (+ + hel choice) COM M_ppUnc = (((Xunc).contract(T1ap,1)).contract(T4bp,1)).at(0); COM M_ppCro = (((Xcro).contract(T1ap,1)).contract(T4bp,1)).at(0); COM M_ppSym = (((Xsym).contract(T1ap,1)).contract(T4bp,1)).at(0); //Colour factors: COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc; cmsms=3.; cmumu=4./3.; cmcmc=4./3.; cmsmu =3./2.*COM(0.,1.); cmsmc = -3./2.*COM(0.,1.); cmumc = -1./6.; // Work Out Interference in each case of helicity: double amp_mm = real(cmsms*pow(abs(M_mmSym),2) +cmumu*pow(abs(M_mmUnc),2) +cmcmc*pow(abs(M_mmCro),2) +2.*real(cmsmu*M_mmSym*conj(M_mmUnc)) +2.*real(cmsmc*M_mmSym*conj(M_mmCro)) +2.*real(cmumc*M_mmUnc*conj(M_mmCro))); double amp_mp = real(cmsms*pow(abs(M_mpSym),2) +cmumu*pow(abs(M_mpUnc),2) +cmcmc*pow(abs(M_mpCro),2) +2.*real(cmsmu*M_mpSym*conj(M_mpUnc)) +2.*real(cmsmc*M_mpSym*conj(M_mpCro)) +2.*real(cmumc*M_mpUnc*conj(M_mpCro))); double amp_pm = real(cmsms*pow(abs(M_pmSym),2) +cmumu*pow(abs(M_pmUnc),2) +cmcmc*pow(abs(M_pmCro),2) +2.*real(cmsmu*M_pmSym*conj(M_pmUnc)) +2.*real(cmsmc*M_pmSym*conj(M_pmCro)) +2.*real(cmumc*M_pmUnc*conj(M_pmCro))); double amp_pp = real(cmsms*pow(abs(M_ppSym),2) +cmumu*pow(abs(M_ppUnc),2) +cmcmc*pow(abs(M_ppCro),2) +2.*real(cmsmu*M_ppSym*conj(M_ppUnc)) +2.*real(cmsmc*M_ppSym*conj(M_ppCro)) +2.*real(cmumc*M_ppUnc*conj(M_ppCro))); double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.)); CLHEP::HepLorentzVector q1,q3; q1=pa; for(int i=0;i partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove, int nbelow, bool forwards){ static bool is_sigma_index_set(false); if(!is_sigma_index_set){ if(init_sigma_index()) is_sigma_index_set = true; else return 0.; } if (!forwards){ //If Emission from Leg a instead, flip process. HLV dummymom = pa; bool dummybool= aqlinepa; int dummyint = nabove; pa = pb; pb = dummymom; std::reverse(partons.begin(),partons.end()); qqxmarker = !(qqxmarker); aqlinepa = aqlinepb; aqlinepb = dummybool; nabove = nbelow; nbelow = dummyint; } HLV pq, pqbar, p1,p4; if (qqxmarker){ pqbar = partons[nabove+1]; pq = partons[nabove+2];} else{ pq = partons[nabove+1]; pqbar = partons[nabove+2];} p1 = partons.front(); p4 = partons.back(); Tensor<1,4> T1am(0.), T1ap(0.); if(!(aqlinepa)){ T1ap = TCurrent(p1, true, pa, true); T1am = TCurrent(p1, false, pa, false);} else if(aqlinepa){ T1ap = TCurrent(pa, true, p1, true); T1am = TCurrent(pa, false, p1, false);} Tensor <1,4> T4bm = jW4bEmit(pb, p4, pl, plbar, aqlinepb); // Calculate the 3 separate contributions to the effective vertex Tensor<2,4> Xunc_m = MUncross(pa, pq, pqbar,partons, false, nabove); Tensor<2,4> Xcro_m = MCross( pa, pq, pqbar,partons, false, nabove); Tensor<2,4> Xsym_m = MSym( pa, p1, pb, p4, pq, pqbar, partons, false, nabove); Tensor<2,4> Xunc_p = MUncross(pa, pq, pqbar,partons, true, nabove); Tensor<2,4> Xcro_p = MCross( pa, pq, pqbar,partons, true, nabove); Tensor<2,4> Xsym_p = MSym( pa, p1, pb, p4, pq, pqbar, partons, true, nabove); // (- - hel choice) COM M_mmUnc = (((Xunc_m).contract(T1am,1)).contract(T4bm,1)).at(0); COM M_mmCro = (((Xcro_m).contract(T1am,1)).contract(T4bm,1)).at(0); COM M_mmSym = (((Xsym_m).contract(T1am,1)).contract(T4bm,1)).at(0); // (- + hel choice) COM M_mpUnc = (((Xunc_p).contract(T1am,1)).contract(T4bm,1)).at(0); COM M_mpCro = (((Xcro_p).contract(T1am,1)).contract(T4bm,1)).at(0); COM M_mpSym = (((Xsym_p).contract(T1am,1)).contract(T4bm,1)).at(0); // (+ - hel choice) COM M_pmUnc = (((Xunc_m).contract(T1ap,1)).contract(T4bm,1)).at(0); COM M_pmCro = (((Xcro_m).contract(T1ap,1)).contract(T4bm,1)).at(0); COM M_pmSym = (((Xsym_m).contract(T1ap,1)).contract(T4bm,1)).at(0); // (+ + hel choice) COM M_ppUnc = (((Xunc_p).contract(T1ap,1)).contract(T4bm,1)).at(0); COM M_ppCro = (((Xcro_p).contract(T1ap,1)).contract(T4bm,1)).at(0); COM M_ppSym = (((Xsym_p).contract(T1ap,1)).contract(T4bm,1)).at(0); //Colour factors: COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc; cmsms=3.; cmumu=4./3.; cmcmc=4./3.; cmsmu =3./2.*COM(0.,1.); cmsmc = -3./2.*COM(0.,1.); cmumc = -1./6.; // Work Out Interference in each case of helicity: double amp_mm = real(cmsms*pow(abs(M_mmSym),2) +cmumu*pow(abs(M_mmUnc),2) +cmcmc*pow(abs(M_mmCro),2) +2.*real(cmsmu*M_mmSym*conj(M_mmUnc)) +2.*real(cmsmc*M_mmSym*conj(M_mmCro)) +2.*real(cmumc*M_mmUnc*conj(M_mmCro))); double amp_mp = real(cmsms*pow(abs(M_mpSym),2) +cmumu*pow(abs(M_mpUnc),2) +cmcmc*pow(abs(M_mpCro),2) +2.*real(cmsmu*M_mpSym*conj(M_mpUnc)) +2.*real(cmsmc*M_mpSym*conj(M_mpCro)) +2.*real(cmumc*M_mpUnc*conj(M_mpCro))); double amp_pm = real(cmsms*pow(abs(M_pmSym),2) +cmumu*pow(abs(M_pmUnc),2) +cmcmc*pow(abs(M_pmCro),2) +2.*real(cmsmu*M_pmSym*conj(M_pmUnc)) +2.*real(cmsmc*M_pmSym*conj(M_pmCro)) +2.*real(cmumc*M_pmUnc*conj(M_pmCro))); double amp_pp = real(cmsms*pow(abs(M_ppSym),2) +cmumu*pow(abs(M_ppUnc),2) +cmcmc*pow(abs(M_ppCro),2) +2.*real(cmsmu*M_ppSym*conj(M_ppUnc)) +2.*real(cmsmc*M_ppSym*conj(M_ppCro)) +2.*real(cmumc*M_ppUnc*conj(M_ppCro))); double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.)); CLHEP::HepLorentzVector q1,q3; q1=pa; for(int i=0;i