diff --git a/src/Event.cc b/src/Event.cc
index 97f83f4..d09662b 100644
--- a/src/Event.cc
+++ b/src/Event.cc
@@ -1,839 +1,856 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include "HEJ/Event.hh"
 
 #include <algorithm>
 #include <assert.h>
 #include <numeric>
 #include <utility>
 
 #include "LHEF/LHEF.h"
 
 #include "fastjet/JetDefinition.hh"
 
 #include "HEJ/Constants.hh"
 #include "HEJ/exceptions.hh"
 #include "HEJ/PDG_codes.hh"
 
 namespace HEJ{
 
   namespace {
     constexpr int status_in = -1;
     constexpr int status_decayed = 2;
     constexpr int status_out = 1;
 
     /// @name helper functions to determine event type
     //@{
 
     /**
      * \brief check if final state valid for HEJ
      *
      * check if there is at most one photon, W, H, Z in the final state
      * and all the rest are quarks or gluons
      */
     bool final_state_ok(std::vector<Particle> const & outgoing){
       bool has_AWZH_boson = false;
       for(auto const & out: outgoing){
         if(is_AWZH_boson(out.type)){
           if(has_AWZH_boson) return false;
           has_AWZH_boson = true;
         }
         else if(! is_parton(out.type)) return false;
       }
       return true;
     }
 
     /**
      * \brief function which determines if type change is consistent with Wp emission.
      * @param in                      incoming Particle id
      * @param out                     outgoing Particle id
      * @param qqx                     Current both incoming/both outgoing?
      *
      * \see is_Wm_Change
      */
     bool is_Wp_Change(ParticleID in, ParticleID out, bool qqx){
       if(!qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out== (in-1);
       if( qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out==-(in+1);
       return false;
     }
 
     /**
      * \brief function which determines if type change is consistent with Wm emission.
      * @param in                      incoming Particle id
      * @param out                     outgoing Particle id
      * @param qqx                     Current both incoming/both outgoing?
      *
      * Ensures that change type of quark line is possible by a flavour changing
      * Wm emission. Allows checking of qqx currents also.
      */
     bool is_Wm_Change(ParticleID in, ParticleID out, bool qqx){
       if(!qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out== (in+1);
       if( qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out==-(in-1);
       return false;
     }
 
     /**
      * \brief checks if particle type remains same from incoming to outgoing
      * @param in                      incoming Particle
      * @param out                     outgoing Particle
      * @param qqx                     Current both incoming/outgoing?
      */
     bool no_flavour_change(ParticleID in, ParticleID out, bool qqx){
       const int qqxCurrent = qqx?-1:1;
       if(abs(in)<=6 || in==pid::gluon) return (in==out*qqxCurrent);
       else return false;
     }
 
     bool has_2_jets(Event const & event){
       return event.jets().size() >= 2;
     }
 
     /**
      * \brief check if we have a valid Impact factor
      * @param in                      incoming Particle
      * @param out                     outgoing Particle
      * @param qqx                     Current both incoming/outgoing?
      * @param qqx                     returns +1 if Wp, -1 if Wm, else 0
      */
     bool is_valid_impact_factor(
       ParticleID in, ParticleID out, bool qqx, int & W_change
     ){
       if( no_flavour_change(in, out, qqx) ){
         return true;
       }
       if( is_Wp_Change(in, out, qqx) ) {
         W_change+=1;
         return true;
       }
       if( is_Wm_Change(in, out, qqx) ) {
         W_change-=1;
         return true;
       }
       return false;
     }
 
     //! Returns all possible classifications from the impact factors
     // the beginning points are changed s.t. after the the classification they
     // point to the beginning of the (potential) FKL chain
     // sets W_change: + if Wp change
     //                0 if no change
     //                - if Wm change
     // This function can be used with forward & backwards iterators
     template<class OutIterator, class IndexIterator>
     size_t possible_impact_factors(
       ParticleID incoming_id,                                   // incoming
       OutIterator   & begin_out, OutIterator   const & end_out, // outgoing
       IndexIterator & begin_idx,                                // jet indices
       int & W_change, std::vector<Particle> const & boson,
       bool const backward                                       // backward?
     ){
       using event_type::EventType;
       assert(boson.size() < 2);
       // keep track of all states that we don't test
       size_t not_tested = EventType::qqxmid;
       if(backward)
         not_tested |= EventType::unof | EventType::qqxexf;
       else
         not_tested |= EventType::unob | EventType::qqxexb;
 
       // Is this LL current?
       if( is_valid_impact_factor(incoming_id, begin_out->type, false, W_change) ){
         ++begin_out;
         ++begin_idx;
         return not_tested | EventType::FKL;
       }
 
       // or NLL current?
       // -> needs two partons in two different jets
       if( std::distance(begin_out, end_out)>=2
         && *begin_idx>=0 && *(begin_idx+1)>=0 && *begin_idx!=*(begin_idx+1)
       ){
         // Is this unordered emisson?
         if( incoming_id!=pid::gluon && begin_out->type==pid::gluon ){
           if( is_valid_impact_factor(
                 incoming_id, (begin_out+1)->type, false, W_change )
           ){
             // veto Higgs inside uno
             assert((begin_out+1)<end_out);
             if( !boson.empty() && boson.front().type == ParticleID::h
             ){
               if(  (backward && boson.front().rapidity() < (begin_out+1)->rapidity())
                 ||(!backward && boson.front().rapidity() > (begin_out+1)->rapidity()))
               return EventType::non_resummable;
             }
             begin_out+=2;
             begin_idx+=2;
             return not_tested | (backward?EventType::unob:EventType::unof);
           }
         }
         // Is this QQbar?
         else if( incoming_id==pid::gluon ){
           if( is_valid_impact_factor(
                 begin_out->type, (begin_out+1)->type, true, W_change )
           ){
             // veto Higgs inside qqx
             assert((begin_out+1)<end_out);
             if( !boson.empty() && boson.front().type == ParticleID::h
             ){
               if(  (backward && boson.front().rapidity() < (begin_out+1)->rapidity())
                 ||(!backward && boson.front().rapidity() > (begin_out+1)->rapidity()))
               return EventType::non_resummable;
             }
             begin_out+=2;
             begin_idx+=2;
             return not_tested | (backward?EventType::qqxexb:EventType::qqxexf);
           }
         }
       }
       return EventType::non_resummable;
     }
 
     //! Returns all possible classifications from central emissions
     // the beginning points are changed s.t. after the the classification they
     // point to the end of the emission chain
     // sets W_change: + if Wp change
     //               0 if no change
     //               - if Wm change
     template<class OutIterator, class IndexIterator>
     size_t possible_central(
       OutIterator   & begin_out, OutIterator   const & end_out,
       IndexIterator & begin_idx,
       int & W_change, std::vector<Particle> const & boson
     ){
       using event_type::EventType;
       assert(boson.size() < 2);
       // if we already passed the central chain,
       // then it is not a valid all-order state
       if(std::distance(begin_out, end_out) < 0) return EventType::non_resummable;
       // keep track of all states that we don't test
       size_t possible = EventType::unob | EventType::unof
                           | EventType::qqxexb | EventType::qqxexf;
 
       // Find the first non-gluon/non-FKL
       while( (begin_out->type==pid::gluon) && (begin_out<end_out) ){
         ++begin_out;
         ++begin_idx;
       }
       // end of chain -> FKL
       if( begin_out==end_out ){
         return possible | EventType::FKL;
       }
 
       // is this a qqbar-pair?
       // needs two partons in two separate jets
       if( is_valid_impact_factor(
             begin_out->type, (begin_out+1)->type, true, W_change )
         && *begin_idx>=0 && *(begin_idx+1)>=0 && *begin_idx!=*(begin_idx+1)
       ){
         // veto Higgs inside qqx
         if( !boson.empty() && boson.front().type == ParticleID::h
             && boson.front().rapidity() > begin_out->rapidity()
             && boson.front().rapidity() < (begin_out+1)->rapidity()
         ){
           return EventType::non_resummable;
         }
         begin_out+=2;
         begin_idx+=2;
         // remaining chain should be pure gluon/FKL
         for(; begin_out<end_out; ++begin_out){
           if(begin_out->type != pid::gluon) return EventType::non_resummable;
           ++begin_idx;
         }
         return possible | EventType::qqxmid;
       }
       return EventType::non_resummable;
     }
 
     /**
      * \brief Checks for all event types
      * @param ev          Event
      * @returns           Event Type
      *
      */
     event_type::EventType classify(Event const & ev){
       using event_type::EventType;
       if(! has_2_jets(ev))
         return EventType::no_2_jets;
       // currently we can't handle multiple boson states in the ME. So they are
       // considered "bad_final_state" even though the "classify" could work with
       // them.
       if(! final_state_ok(ev.outgoing()))
         return EventType::bad_final_state;
 
       // initialise variables
       auto const & in = ev.incoming();
       auto const & out = filter_partons(ev.outgoing());
       auto indices{ev.particle_jet_indices({ev.jets()})};
 
       assert(std::distance(begin(in), end(in)) == 2);
       assert(out.size() >= 2);
       assert(std::distance(begin(out), end(out)) >= 2);
       assert(std::is_sorted(begin(out), end(out), rapidity_less{}));
 
       auto const boson{ filter_AWZH_bosons(ev.outgoing()) };
       // we only allow one boson through final_state_ok
       assert(boson.size()<=1);
 
       // keep track of potential W couplings, at the end the sum should be 0
       int remaining_Wp = 0;
       int remaining_Wm = 0;
       if(!boson.empty() && abs(boson.front().type) == ParticleID::Wp ){
         if(boson.front().type>0) ++remaining_Wp;
         else ++remaining_Wm;
       }
       int W_change = 0;
 
       // range for current checks
       auto begin_out{out.cbegin()};
       auto end_out{out.crbegin()};
       auto begin_idx{indices.cbegin()};
       auto end_idx{indices.crbegin()};
 
       size_t final_type = ~(EventType::no_2_jets | EventType::bad_final_state);
 
       // check forward impact factor
       final_type &= possible_impact_factors(
         in.front().type,
         begin_out, end_out.base(), begin_idx,
         W_change, boson, true );
       assert(std::distance(begin_out, end_out.base())
         == std::distance(begin_idx, end_idx.base()));
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
       W_change = 0;
 
       // check backward impact factor
       final_type &= possible_impact_factors(
         in.back().type,
         end_out, std::make_reverse_iterator(begin_out), end_idx,
         W_change, boson, false );
       assert(std::distance(begin_out, end_out.base())
         == std::distance(begin_idx, end_idx.base()));
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
       W_change = 0;
 
       // check central emissions
       final_type &= possible_central(
         begin_out, end_out.base(), begin_idx, W_change, boson );
       assert(std::distance(begin_out, end_out.base())
         == std::distance(begin_idx, end_idx.base()));
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
 
       // Check whether the right number of Ws are present
       if( remaining_Wp != 0 || remaining_Wm != 0 ) return EventType::non_resummable;
 
       // result has to be unique
       if( (final_type & (final_type-1)) != 0) return EventType::non_resummable;
 
       return static_cast<EventType>(final_type);
     }
     //@}
 
     Particle extract_particle(LHEF::HEPEUP const & hepeup, int i){
       const ParticleID id = static_cast<ParticleID>(hepeup.IDUP[i]);
       const fastjet::PseudoJet momentum{
         hepeup.PUP[i][0], hepeup.PUP[i][1],
         hepeup.PUP[i][2], hepeup.PUP[i][3]
       };
       if(is_parton(id))
         return Particle{ id, std::move(momentum), hepeup.ICOLUP[i] };
       return Particle{ id, std::move(momentum), {} };
     }
 
     bool is_decay_product(std::pair<int, int> const & mothers){
       if(mothers.first == 0) return false;
       return mothers.second == 0 || mothers.first == mothers.second;
     }
 
   } // namespace anonymous
 
   Event::EventData::EventData(LHEF::HEPEUP const & hepeup){
     parameters.central = EventParameters{
       hepeup.scales.mur, hepeup.scales.muf, hepeup.weight()
     };
     size_t in_idx = 0;
     for (int i = 0; i < hepeup.NUP; ++i) {
       // skip decay products
       // we will add them later on, but we have to ensure that
       // the decayed particle is added before
       if(is_decay_product(hepeup.MOTHUP[i])) continue;
 
       auto particle = extract_particle(hepeup, i);
       // needed to identify mother particles for decay products
       particle.p.set_user_index(i+1);
 
       if(hepeup.ISTUP[i] == status_in){
         if(in_idx > incoming.size()) {
           throw std::invalid_argument{
             "Event has too many incoming particles"
           };
         }
         incoming[in_idx++] = std::move(particle);
       }
       else outgoing.emplace_back(std::move(particle));
     }
 
     // add decay products
     for (int i = 0; i < hepeup.NUP; ++i) {
       if(!is_decay_product(hepeup.MOTHUP[i])) continue;
       const int mother_id = hepeup.MOTHUP[i].first;
       const auto mother = std::find_if(
           begin(outgoing), end(outgoing),
           [mother_id](Particle const & particle){
             return particle.p.user_index() == mother_id;
           }
       );
       if(mother == end(outgoing)){
         throw std::invalid_argument{"invalid decay product parent"};
       }
       const int mother_idx = std::distance(begin(outgoing), mother);
       assert(mother_idx >= 0);
       decays[mother_idx].emplace_back(extract_particle(hepeup, i));
     }
   }
 
   Event::Event(
     UnclusteredEvent const & ev,
     fastjet::JetDefinition const & jet_def, double const min_jet_pt
   ):
     Event( Event::EventData{
       ev.incoming, ev.outgoing, ev.decays,
       Parameters<EventParameters>{ev.central, ev.variations}
     }.cluster(jet_def, min_jet_pt) )
   {}
 
   //! @TODO remove in HEJ 2.2.0
   UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){
       Event::EventData const evData{hepeup};
       incoming = evData.incoming;
       outgoing = evData.outgoing;
       decays = evData.decays;
       central = evData.parameters.central;
       variations = evData.parameters.variations;
   }
 
   void Event::EventData::sort(){
     // sort particles
     std::sort(
         begin(incoming), end(incoming),
         [](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
     );
 
     auto old_outgoing = std::move(outgoing);
     std::vector<size_t> idx(old_outgoing.size());
     std::iota(idx.begin(), idx.end(), 0);
     std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){
       return old_outgoing[i].rapidity() < old_outgoing[j].rapidity();
     });
     outgoing.clear();
     outgoing.reserve(old_outgoing.size());
     for(size_t i: idx) {
       outgoing.emplace_back(std::move(old_outgoing[i]));
     }
 
     // find decays again
     if(!decays.empty()){
       auto old_decays = std::move(decays);
       decays.clear();
       for(size_t i=0; i<idx.size(); ++i) {
         auto decay = old_decays.find(idx[i]);
         if(decay != old_decays.end())
           decays.emplace(i, std::move(decay->second));
       }
       assert(old_decays.size() == decays.size());
     }
   }
 
   namespace {
     Particle reconstruct_boson(std::vector<Particle> const & leptons) {
       Particle decayed_boson;
       decayed_boson.p = leptons[0].p + leptons[1].p;
       const int pidsum = leptons[0].type + leptons[1].type;
       if(pidsum == +1) {
         assert(is_antilepton(leptons[0]));
         if(is_antineutrino(leptons[0])) {
           throw not_implemented{"lepton-flavour violating final state"};
         }
         assert(is_neutrino(leptons[1]));
         // charged antilepton + neutrino means we had a W+
         decayed_boson.type = pid::Wp;
       }
       else if(pidsum == -1) {
         assert(is_antilepton(leptons[0]));
         if(is_neutrino(leptons[1])) {
           throw not_implemented{"lepton-flavour violating final state"};
         }
         assert(is_antineutrino(leptons[0]));
         // charged lepton + antineutrino means we had a W-
         decayed_boson.type = pid::Wm;
       }
       else {
         throw not_implemented{
           "final state with leptons "
             + name(leptons[0].type)
             + " and "
             + name(leptons[1].type)
         };
       }
       return decayed_boson;
     }
   }
 
   void Event::EventData::reconstruct_intermediate() {
     const auto begin_leptons = std::partition(
         begin(outgoing), end(outgoing),
         [](Particle const & p) {return !is_anylepton(p);}
     );
     if(begin_leptons == end(outgoing)) return;
     assert(is_anylepton(*begin_leptons));
     std::vector<Particle> leptons(begin_leptons, end(outgoing));
     outgoing.erase(begin_leptons, end(outgoing));
     if(leptons.size() != 2) {
       throw not_implemented{"Final states with one or more than two leptons"};
     }
     std::sort(
         begin(leptons), end(leptons),
         [](Particle const & p0, Particle const & p1) {
           return p0.type < p1.type;
         }
     );
     outgoing.emplace_back(reconstruct_boson(leptons));
     decays.emplace(outgoing.size()-1, std::move(leptons));
   }
 
   Event Event::EventData::cluster(
       fastjet::JetDefinition const & jet_def, double const min_jet_pt
   ){
     sort();
     Event ev{ std::move(incoming), std::move(outgoing), std::move(decays),
       std::move(parameters),
       jet_def, min_jet_pt
     };
     assert(std::is_sorted(begin(ev.outgoing_), end(ev.outgoing_),
       rapidity_less{}));
     ev.type_ = classify(ev);
     return ev;
   }
 
   Event::Event(
       std::array<Particle, 2> && incoming,
       std::vector<Particle> && outgoing,
       std::unordered_map<size_t, std::vector<Particle>> && decays,
       Parameters<EventParameters> && parameters,
       fastjet::JetDefinition const & jet_def,
       double const min_jet_pt
     ): incoming_{std::move(incoming)},
        outgoing_{std::move(outgoing)},
        decays_{std::move(decays)},
        parameters_{std::move(parameters)},
        cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def },
        min_jet_pt_{min_jet_pt}
     {
       jets_ = sorted_by_rapidity(cs_.inclusive_jets(min_jet_pt_));
     }
 
   namespace {
     // check that Particles have a reasonable colour
     bool correct_colour(Particle const & part){
       ParticleID id{ part.type };
       if(!is_parton(id))
         return !part.colour;
 
       if(!part.colour)
         return false;
 
       Colour const & col{ *part.colour };
       if(is_quark(id))
         return col.first != 0 && col.second == 0;
       if(is_antiquark(id))
         return col.first == 0 && col.second != 0;
       assert(id==ParticleID::gluon);
       return col.first != 0 && col.second != 0 && col.first != col.second;
     }
   }
 
   bool Event::is_leading_colour() const {
     if( !correct_colour(incoming()[0]) || !correct_colour(incoming()[1]) )
       return false;
 
     Colour line_colour = *incoming()[0].colour;
     std::swap(line_colour.first, line_colour.second);
 
     for(auto const & part: outgoing()){
       // reasonable colour
       if(!correct_colour(part))
         return false;
       if(!is_parton(part)) // skip colour neutral particles
           continue;
 
        // if possible connect to line
       if( line_colour.first == part.colour->second )
         line_colour.first = part.colour->first;
       else if( line_colour.second == part.colour->first )
         line_colour.second = part.colour->second;
       else
         return false;
 
       // no colour singlet exchange/disconnected diagram
       if(line_colour.first == line_colour.second)
         return false;
     }
 
     return (incoming()[1].colour->first == line_colour.first)
         && (incoming()[1].colour->second == line_colour.second);
   }
 
   namespace {
     void connect_incoming(Particle & in, int & colour, int & anti_colour){
       in.colour = std::make_pair(anti_colour, colour);
       // gluon
       if(in.type == pid::gluon)
         return;
       if(in.type > 0){
         // quark
         assert(is_quark(in));
         in.colour->second = 0;
         colour*=-1;
         return;
       }
       // anti-quark
       assert(is_antiquark(in));
       in.colour->first = 0;
       anti_colour*=-1;
       return;
     }
   }
 
   bool Event::generate_colours(RNG & ran){
     // generate only for HEJ events
     if(!event_type::is_resummable(type()))
       return false;
     assert(std::is_sorted(
       begin(outgoing()), end(outgoing()), rapidity_less{}));
     assert(incoming()[0].pz() < incoming()[1].pz());
 
     // positive (anti-)colour -> can connect
     // negative (anti-)colour -> not available/used up by (anti-)quark
     int colour = COLOUR_OFFSET;
     int anti_colour = colour+1;
     // initialise first
     connect_incoming(incoming_[0], colour, anti_colour);
 
     for(auto & part: outgoing_){
       assert(colour>0 || anti_colour>0);
       if(part.type == ParticleID::gluon){
         // gluon
         if(colour>0 && anti_colour>0){
           // on g line => connect to colour OR anti-colour (random)
           if(ran.flat() < 0.5){
             part.colour = std::make_pair(colour+2,colour);
             colour+=2;
           } else {
             part.colour = std::make_pair(anti_colour, anti_colour+2);
             anti_colour+=2;
           }
         } else if(colour > 0){
           // on q line => connect to available colour
             part.colour = std::make_pair(colour+2, colour);
             colour+=2;
         } else {
           assert(colour<0 && anti_colour>0);
           // on qx line => connect to available anti-colour
           part.colour = std::make_pair(anti_colour, anti_colour+2);
           anti_colour+=2;
         }
       } else if(is_quark(part)) {
         // quark
         assert(anti_colour>0);
         if(colour>0){
           // on g line => connect and remove anti-colour
           part.colour = std::make_pair(anti_colour, 0);
           anti_colour+=2;
           anti_colour*=-1;
         } else {
           // on qx line => new colour
           colour*=-1;
           part.colour = std::make_pair(colour, 0);
         }
       } else if(is_antiquark(part)) {
         // anti-quark
         assert(colour>0);
         if(anti_colour>0){
           // on g line => connect and remove colour
           part.colour = std::make_pair(0, colour);
           colour+=2;
           colour*=-1;
         } else {
           // on q line => new anti-colour
           anti_colour*=-1;
           part.colour = std::make_pair(0, anti_colour);
         }
       } else { // not a parton
         assert(!is_parton(part));
         part.colour = {};
       }
     }
     // Connect last
     connect_incoming(incoming_[1], anti_colour, colour);
     assert(is_leading_colour());
     return true;
   } // generate_colours
 
   Event::ConstPartonIterator Event::begin_partons() const {
     return cbegin_partons();
   };
   Event::ConstPartonIterator Event::cbegin_partons() const {
     return boost::make_filter_iterator(
         static_cast<bool (*)(Particle const &)>(is_parton),
         cbegin(outgoing()),
         cend(outgoing())
     );
   };
 
   Event::ConstPartonIterator Event::end_partons() const {
     return cend_partons();
   };
   Event::ConstPartonIterator Event::cend_partons() const {
     return boost::make_filter_iterator(
         static_cast<bool (*)(Particle const &)>(is_parton),
         cend(outgoing()),
         cend(outgoing())
     );
   };
 
   namespace {
     void print_momentum(std::ostream & os, fastjet::PseudoJet const & part){
     const std::streamsize orig_prec = os.precision();
       os <<std::scientific<<std::setprecision(6) << "["
         <<std::setw(13)<<std::right<< part.px() << ", "
         <<std::setw(13)<<std::right<< part.py() << ", "
         <<std::setw(13)<<std::right<< part.pz() << ", "
         <<std::setw(13)<<std::right<< part.E() << "]"<< std::fixed;
       os.precision(orig_prec);
     }
+
+    void print_colour(std::ostream & os, optional<Colour> const & col){
+      if(!col)
+        os << "(no color)"; // American spelling for better alignment
+      else
+        os << "(" <<std::setw(3)<<std::right<< col->first
+           << ", " <<std::setw(3)<<std::right<< col->second << ")";
+    }
   }
 
   std::ostream& operator<<(std::ostream & os, Event const & ev){
     const std::streamsize orig_prec = os.precision();
     os <<std::setprecision(4)<<std::fixed;
-    std::cout << "########## " << event_type::name(ev.type()) << " ##########" << std::endl;
-    std::cout << "Incoming particles:\n";
+    os << "########## " << event_type::name(ev.type()) << " ##########" << std::endl;
+    os << "Incoming particles:\n";
     for(auto const & in: ev.incoming()){
-      std::cout <<std::setw(3)<< in.type << ": ";
+      os <<std::setw(3)<< in.type << ": ";
+      print_colour(os, in.colour);
+      os << " ";
       print_momentum(os, in.p);
-      std::cout << std::endl;
+      os << std::endl;
     }
-    std::cout << "\nOutgoing particles: " << ev.outgoing().size() << "\n";
+    os << "\nOutgoing particles: " << ev.outgoing().size() << "\n";
     for(auto const & out: ev.outgoing()){
-      std::cout <<std::setw(3)<< out.type << ": ";
+      os <<std::setw(3)<< out.type << ": ";
+      print_colour(os, out.colour);
+      os << " ";
       print_momentum(os, out.p);
-      std::cout << " => rapidity="
+      os << " => rapidity="
         <<std::setw(7)<<std::right<< out.rapidity() << std::endl;
     }
-    std::cout << "\nForming Jets: " << ev.jets().size() << "\n";
+    os << "\nForming Jets: " << ev.jets().size() << "\n";
     for(auto const & jet: ev.jets()){
       print_momentum(os, jet);
-      std::cout << " => rapidity="
+      os << " => rapidity="
         <<std::setw(7)<<std::right<< jet.rapidity() << std::endl;
     }
     if(ev.decays().size() > 0 ){
-      std::cout << "\nDecays: " << ev.decays().size() << "\n";
+      os << "\nDecays: " << ev.decays().size() << "\n";
       for(auto const & decay: ev.decays()){
-        std::cout <<std::setw(3)<< ev.outgoing()[decay.first].type
+        os <<std::setw(3)<< ev.outgoing()[decay.first].type
           << " (" << decay.first << ") to:\n";
         for(auto const & out: decay.second){
-          std::cout <<"  "<<std::setw(3)<< out.type << ": ";
+          os <<"  "<<std::setw(3)<< out.type << ": ";
           print_momentum(os, out.p);
-          std::cout << " => rapidity="
+          os << " => rapidity="
             <<std::setw(7)<<std::right<< out.rapidity() << std::endl;
         }
       }
 
     }
     os << std::defaultfloat;
     os.precision(orig_prec);
     return os;
   }
 
   double shat(Event const & ev){
     return (ev.incoming()[0].p + ev.incoming()[1].p).m2();
   }
 
   LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){
     LHEF::HEPEUP result;
     result.heprup = heprup;
     result.weights = {{event.central().weight, nullptr}};
     for(auto const & var: event.variations()){
       result.weights.emplace_back(var.weight, nullptr);
     }
     size_t num_particles = event.incoming().size() + event.outgoing().size();
     for(auto const & decay: event.decays()) num_particles += decay.second.size();
     result.NUP = num_particles;
     // the following entries are pretty much meaningless
     result.IDPRUP = event.type();  // event type
     result.AQEDUP = 1./128.;  // alpha_EW
     //result.AQCDUP = 0.118 // alpha_QCD
     // end meaningless part
     result.XWGTUP = event.central().weight;
     result.SCALUP = event.central().muf;
     result.scales.muf = event.central().muf;
     result.scales.mur = event.central().mur;
     result.scales.SCALUP = event.central().muf;
     result.pdfinfo.p1 = event.incoming().front().type;
     result.pdfinfo.p2 = event.incoming().back().type;
     result.pdfinfo.scale = event.central().muf;
 
     result.IDUP.reserve(num_particles);   // PID
     result.ISTUP.reserve(num_particles);  // status (in, out, decay)
     result.PUP.reserve(num_particles);    // momentum
     result.MOTHUP.reserve(num_particles); // index mother particle
     result.ICOLUP.reserve(num_particles); // colour
     // incoming
-    for(Particle const & in: event.incoming()){
+    std::array<Particle, 2> incoming{ event.incoming() };
+    // First incoming should be positive pz according to LHE standard
+    // (or at least most (everyone?) do it this way, and Pythia assumes it)
+    if(incoming[0].pz() < incoming[1].pz())
+      std::swap(incoming[0], incoming[1]);
+    for(Particle const & in: incoming){
       result.IDUP.emplace_back(in.type);
       result.ISTUP.emplace_back(status_in);
       result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()});
       result.MOTHUP.emplace_back(0, 0);
       assert(in.colour);
       result.ICOLUP.emplace_back(*in.colour);
     }
     // outgoing
     for(size_t i = 0; i < event.outgoing().size(); ++i){
       Particle const & out = event.outgoing()[i];
       result.IDUP.emplace_back(out.type);
       const int status = event.decays().count(i)?status_decayed:status_out;
       result.ISTUP.emplace_back(status);
       result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
       result.MOTHUP.emplace_back(1, 2);
       if(out.colour)
         result.ICOLUP.emplace_back(*out.colour);
       else{
         assert(is_AWZH_boson(out));
         result.ICOLUP.emplace_back(std::make_pair(0,0));
       }
     }
     // decays
     for(auto const & decay: event.decays()){
       for(auto const out: decay.second){
         result.IDUP.emplace_back(out.type);
         result.ISTUP.emplace_back(status_out);
         result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
         const size_t mother_idx = 1 + event.incoming().size() + decay.first;
         result.MOTHUP.emplace_back(mother_idx, mother_idx);
         result.ICOLUP.emplace_back(0,0);
       }
     }
 
     assert(result.ICOLUP.size() == num_particles);
     static constexpr double unknown_spin = 9.;     //per Les Houches accord
     result.VTIMUP = std::vector<double>(num_particles, unknown_spin);
     result.SPINUP = result.VTIMUP;
     return result;
   }
 
 }
diff --git a/t/check_lhe.cc b/t/check_lhe.cc
index b770227..d4ca3b2 100644
--- a/t/check_lhe.cc
+++ b/t/check_lhe.cc
@@ -1,41 +1,53 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include <iostream>
 #include <unordered_map>
 
+#include "HEJ/event_types.hh"
 #include "HEJ/stream.hh"
+
 #include "LHEF/LHEF.h"
 
+#define ASSERT(x) if(!(x)) { \
+    std::cerr << "Assertion '" #x "' failed.\n"; \
+    return EXIT_FAILURE; \
+  }
+
 static constexpr double ep = 1e-3;
 
 int main(int argn, char** argv) {
   if(argn != 2){
     std::cerr << "Usage: check_lhe lhe_file\n";
     return EXIT_FAILURE;
   }
 
   HEJ::istream in{argv[1]};
   LHEF::Reader reader{in};
 
   std::unordered_map<int, double> xsec_ref;
   for(int i=0; i < reader.heprup.NPRUP; ++i)
       xsec_ref[reader.heprup.LPRUP[i]] = 0.;
 
   while(reader.readEvent()){
+    ASSERT(reader.hepeup.NUP > 2); // at least 3 particles (2 in + 1 out)
+    // first incoming has positive pz
+    ASSERT(reader.hepeup.PUP[0][2] > reader.hepeup.PUP[1][2]);
+    // test that we can trasform IDPRUP to event type
+    (void) name(static_cast<HEJ::event_type::EventType>(reader.hepeup.IDPRUP));
     xsec_ref[reader.hepeup.IDPRUP] += reader.hepeup.weight();
   }
 
   for(size_t i = 0; i < xsec_ref.size(); ++i){
     double const ref = xsec_ref[reader.heprup.LPRUP[i]];
     double const calc = reader.heprup.XSECUP[i];
     std::cout << ref << '\t' << calc << '\n';
     if(std::abs(calc-ref) > ep*calc){
       std::cerr << "Cross sections deviate substantially";
       return EXIT_FAILURE;
     }
   }
   return EXIT_SUCCESS;
 }