diff --git a/current_generator/W_extremal_qqbar.frm b/current_generator/W_extremal_qqbar.frm index 1f98f2a..856fb9f 100644 --- a/current_generator/W_extremal_qqbar.frm +++ b/current_generator/W_extremal_qqbar.frm @@ -1,101 +1,102 @@ */** * \brief Calculation of W + extremal qqbar current contraction * * TODO: unify conventions with developer manual * the current dictionary is as follows: * * code | manual * pq | p_2 * pqbar | p_1 * pg | p_a * * \authors The HEJ collaboration (see AUTHORS for details) * \date 2020 * \copyright GPLv2 or later */ #include- include/helspin.frm #include- include/write.frm -s h,sg3,sgb,sqW,sqbarW,sqqbarW,tgq,tgqW,tgqbar,tgqbarW,tqW; -v pq,pqbar,pg,pl,plbar,p3,pb,pW,pr,q1; +s h,sgb,sgn,sqqbarW; +v pq,pqbar,pg,pl,plbar,pn,pb,pW,pr,q1,q2; i mu,nu,rho,sigma; i mu1,...,mu20; -cf epsg,m2,sqrt; +cf epsg,m2,m2inv,sqrt; #do h1={+,-} -* eq:U1tensorX in developer manual +* eq:U1tensorX in developer manual, up to factors 1/sij, 1/tij l [U1X `h1'] = ( - + Current(`h1'1, pq, nu, pg-pq, mu, pqbar+pW, rho, pqbar)/(tgqbar*sqW) - + Current(`h1'1, pq, nu, pg-pq, rho, pg-pq-pW, mu, pqbar)/(tgq*tgqW) - - Current(`h1'1, pq, rho, pq+pW, nu, pg-pq-pW, mu, pqbar)/(sqW*tgqW) + + Current(`h1'1, pq, nu, pg-pq, mu, pqbar+pW, rho, pqbar) + + Current(`h1'1, pq, nu, pg-pq, rho, pg-pq-pW, mu, pqbar) + - Current(`h1'1, pq, rho, pq+pW, nu, pg-pq-pW, mu, pqbar) ); -* eq:U2tensorX in developer manual +* eq:U2tensorX in developer manual, up to factors 1/sij, 1/tij l [U2X `h1'] = ( - - Current(`h1'1, pq, mu, pg-pqbar-pW, nu, pqbar+pW, rho, pqbar)/(tgqbarW*sqbarW) - + Current(`h1'1, pq, mu, pg-pqbar-pW, rho, pg-pqbar, nu, pqbar)/(tgqbarW*tgqbar) - + Current(`h1'1, pq, rho, pq+pW, mu, pg-pqbar, nu, pqbar)/(sqW*tgqbar) + - Current(`h1'1, pq, mu, pg-pqbar-pW, nu, pqbar+pW, rho, pqbar) + + Current(`h1'1, pq, mu, pg-pqbar-pW, rho, pg-pqbar, nu, pqbar) + + Current(`h1'1, pq, rho, pq+pW, mu, pg-pqbar, nu, pqbar) ); -* eq:LtensorX in developer manual +* eq:LtensorX in developer manual, up to factors 1/sij, 1/tij l [LX `h1'] = ( - - Current(`h1'1, pq, sigma, pqbar+pW, rho, pqbar)/sqbarW + - + Current(`h1'1, pq, rho, pq+pW, sigma, pqbar)/tqW + - Current(`h1'1, pq, sigma, pqbar+pW, rho, pqbar) + + + Current(`h1'1, pq, rho, pq+pW, sigma, pqbar) )*( - + (-(pb(nu)/sgb + p3(nu)/sg3)*m2(q1 + pg) + 2*q1(nu) - pg(nu))*d_(mu, sigma) + + (-(pb(nu)/sgb + pn(nu)/sgn)*m2(q1 + pg) + 2*q1(nu) - pg(nu))*d_(mu, sigma) - (2*pg(sigma) + q1(sigma))*d_(mu, nu) + 2*pg(mu)*d_(nu, sigma) )/sqqbarW; #enddo .sort +* restore kinematic factors +id Current(h?, pq, mu?, q1?, nu?, q2?, rho?, pqbar) = ( + Current(h, pq, mu, q1, nu, q2, rho, pqbar)*m2inv(q1)*m2inv(q2) +); +id Current(h?, pq, mu?, q1?, nu?, pqbar) = ( + Current(h, pq, mu, q1, nu, pqbar)*m2inv(q1) +); +.sort drop; * multiply with polarisation vector and other currents #do h1={+,-} #do h2={+,-} #do hg={+,-} #do TENSOR={U1X,U2X,LX} l [`TENSOR' `h1'`h2'`hg'] = ( [`TENSOR' `h1'] *epsg(`hg'1, nu) - *Current(`h2'1, p3, mu, pb) + *Current(`h2'1, pn, mu, pb) *Current(-1, pl, rho, plbar) ); #enddo #enddo #enddo #enddo -* TODO: choice of best reference vector (p3 or pb) -id epsg(h?, mu?) = epsg(h, mu, p3); +* TODO: choice of best reference vector (pn or pb) +id epsg(h?, mu?) = epsg(h, mu, pn); id epsg(-1, mu?, pr?) = sqrt(2)/2*SpinorChain(pr, mu, pg)/AngleChain(pg,pr); id epsg(+1, mu?, pr?) = sqrt(2)/2*SpinorChain(pg, mu, pr)/SquareChain(pg,pr); multiply replace_(q1,-(pq+pqbar+pW)); multiply replace_(pW,pl+plbar); - .sort #call ContractCurrents multiply replace_( - sg3,m2(pg+p3), + sgn,m2(pg+pn), sgb,m2(pg+pb), - sqW,m2(pq+pW), - sqbarW,m2(pqbar+pW), - sqqbarW,m2(pq+pqbar+pW), - tgq,m2(pg-pq), - tgqW,m2(pg-pq-pW), - tgqbar,m2(pg-pqbar), - tgqbarW,m2(pg-pqbar-pW), - tqW,m2(pq-pW) + sqqbarW,m2(pq+pqbar+pW) ); +id m2inv(q1?) = 1/m2(q1); multiply replace_(pW,pl+plbar); .sort format O4; format c; #call WriteHeader(`OUTPUT') -#call WriteOptimised(`OUTPUT',U1X,3,pg,pq,plbar,pl,pqbar,p3,pb) -#call WriteOptimised(`OUTPUT',U2X,3,pg,pq,plbar,pl,pqbar,p3,pb) -#call WriteOptimised(`OUTPUT',LX,3,pg,pq,plbar,pl,pqbar,p3,pb) +#call WriteOptimised(`OUTPUT',U1X,3,pg,pq,plbar,pl,pqbar,pn,pb) +#call WriteOptimised(`OUTPUT',U2X,3,pg,pq,plbar,pl,pqbar,pn,pb) +#call WriteOptimised(`OUTPUT',LX,3,pg,pq,plbar,pl,pqbar,pn,pb) #call WriteFooter(`OUTPUT') .end diff --git a/src/Wjets.cc b/src/Wjets.cc index 2d36888..5c92430 100644 --- a/src/Wjets.cc +++ b/src/Wjets.cc @@ -1,1140 +1,1180 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019 * \copyright GPLv2 or later */ #include "HEJ/Wjets.hh" #include <array> #include <iostream> #include "HEJ/Constants.hh" #include "HEJ/EWConstants.hh" #include "HEJ/jets.hh" #include "HEJ/Tensor.hh" #include "HEJ/LorentzVector.hh" #include "HEJ/exceptions.hh" // generated headers #include "HEJ/currents/jW_uno.hh" #include "HEJ/currents/W_central_qqbar.hh" +#include "HEJ/currents/W_extremal_qqbar.hh" using HEJ::Tensor; using HEJ::init_sigma_index; using HEJ::metric; using HEJ::rank3_current; using HEJ::rank5_current; using HEJ::eps; using HEJ::to_tensor; using HEJ::Helicity; using HEJ::angle; using HEJ::square; using HEJ::flip; using HEJ::ParticleProperties; namespace helicity = HEJ::helicity; namespace { // Helper Functions // FKL W Helper Functions double WProp (const HLV & plbar, const HLV & pl, ParticleProperties const & wprop){ COM propW = COM(0.,-1.)/( (pl+plbar).m2() - wprop.mass*wprop.mass + COM(0.,1.)*wprop.mass*wprop.width); double PropFactor=(propW*conj(propW)).real(); return PropFactor; } namespace { // FKL current including W emission off negative helicities // See eq. (87) {eq:jW-} in developer manual // Note that the terms are rearranged Tensor<1> jW_minus( HLV const & pa, HLV const & p1, HLV const & plbar, HLV const & pl ){ using HEJ::helicity::minus; const double tWin = (pa-pl-plbar).m2(); const double tWout = (p1+pl+plbar).m2(); // C++ arithmetic operators are evaluated left-to-right, // so the following first computes complex scalar coefficients, // which then multiply a current, reducing the number // of multiplications return 2.*( + angle(p1, pl)*square(p1, plbar)/tWout + square(pa, plbar)*angle(pa, pl)/tWin )*HEJ::current(p1, pa, helicity::minus) + 2.*angle(p1, pl)*square(pl, plbar)/tWout *HEJ::current(pl, pa, helicity::minus) + 2.*square(pa, plbar)*angle(pl, plbar)/tWin *HEJ::current(p1, plbar, helicity::minus); } } // FKL current including W emission // see eqs. (87), (88) {eq:jW-}, {eq:jW+} in developer manual Tensor<1> jW( HLV const & pa, HLV const & p1, HLV const & plbar, HLV const & pl, Helicity h ){ if(h == helicity::minus) { return jW_minus(pa, p1, plbar, pl); } return jW_minus(pa, p1, pl, plbar).complex_conj(); } /** * @brief Contraction of the \tilde{U}_1 tensor * * This is the contraction of the tensor defined in eq:U1tensor * in the developer manual with the uno gluon polarisation vector, * the leptonic and the partonic current (see eq:wunocurrent) in the * developer manual) */ COM U1contr( HLV const & pg, HLV const & p1,HLV const & plbar, HLV const & pl, HLV const & pa, Helicity h1, HLV const & p2, HLV const & pb, Helicity h2, Helicity hg ) { using helicity::plus; using helicity::minus; if(h1 == plus) { if(h2 == plus) { if(hg == plus) { return HEJ::U1<plus,plus,plus>(p1,p2,pa,pb,pg,pl,plbar); } else { return HEJ::U1<plus,plus,minus>(p1,p2,pa,pb,pg,pl,plbar); } } else { if(hg == helicity::plus) { return HEJ::U1<plus,minus,plus>(p1,p2,pa,pb,pg,pl,plbar); } else { return HEJ::U1<plus,minus,minus>(p1,p2,pa,pb,pg,pl,plbar); } } } else { if(h2 == helicity::plus) { if(hg == helicity::plus) { return HEJ::U1<minus,plus,plus>(p1,p2,pa,pb,pg,pl,plbar); } else { return HEJ::U1<minus,plus,minus>(p1,p2,pa,pb,pg,pl,plbar); } } else { if(hg == helicity::plus) { return HEJ::U1<minus,minus,plus>(p1,p2,pa,pb,pg,pl,plbar); } else { return HEJ::U1<minus,minus,minus>(p1,p2,pa,pb,pg,pl,plbar); } } } } /** * @brief Contraction of the \tilde{U}_1 tensor * * This is the contraction of the tensor defined in eq:U2tensor * in the developer manual with the uno gluon polarisation vector, * the leptonic and the partonic current (see eq:wunocurrent) in the * developer manual) */ COM U2contr( HLV const & pg, HLV const & p1,HLV const & plbar, HLV const & pl, HLV const & pa, Helicity h1, HLV const & p2, HLV const & pb, Helicity h2, Helicity hg ) { using helicity::plus; using helicity::minus; if(h1 == plus) { if(h2 == plus) { if(hg == plus) { return HEJ::U2<plus,plus,plus>(p1,p2,pa,pb,pg,pl,plbar); } else { return HEJ::U2<plus,plus,minus>(p1,p2,pa,pb,pg,pl,plbar); } } else { if(hg == helicity::plus) { return HEJ::U2<plus,minus,plus>(p1,p2,pa,pb,pg,pl,plbar); } else { return HEJ::U2<plus,minus,minus>(p1,p2,pa,pb,pg,pl,plbar); } } } else { if(h2 == helicity::plus) { if(hg == helicity::plus) { return HEJ::U2<minus,plus,plus>(p1,p2,pa,pb,pg,pl,plbar); } else { return HEJ::U2<minus,plus,minus>(p1,p2,pa,pb,pg,pl,plbar); } } else { if(hg == helicity::plus) { return HEJ::U2<minus,minus,plus>(p1,p2,pa,pb,pg,pl,plbar); } else { return HEJ::U2<minus,minus,minus>(p1,p2,pa,pb,pg,pl,plbar); } } } } /** * @brief Contraction of the \tilde{U}_1 tensor * * This is the contraction of the tensor defined in eq:Ltensor * in the developer manual with the uno gluon polarisation vector, * the leptonic and the partonic current (see eq:wunocurrent) in the * developer manual) */ COM Lcontr( HLV const & pg, HLV const & p1,HLV const & plbar, HLV const & pl, HLV const & pa, Helicity h1, HLV const & p2, HLV const & pb, Helicity h2, Helicity hg ) { using helicity::plus; using helicity::minus; if(h1 == plus) { if(h2 == plus) { if(hg == plus) { return HEJ::L<plus,plus,plus>(p1,p2,pa,pb,pg,pl,plbar); } else { return HEJ::L<plus,plus,minus>(p1,p2,pa,pb,pg,pl,plbar); } } else { if(hg == helicity::plus) { return HEJ::L<plus,minus,plus>(p1,p2,pa,pb,pg,pl,plbar); } else { return HEJ::L<plus,minus,minus>(p1,p2,pa,pb,pg,pl,plbar); } } } else { if(h2 == helicity::plus) { if(hg == helicity::plus) { return HEJ::L<minus,plus,plus>(p1,p2,pa,pb,pg,pl,plbar); } else { return HEJ::L<minus,plus,minus>(p1,p2,pa,pb,pg,pl,plbar); } } else { if(hg == helicity::plus) { return HEJ::L<minus,minus,plus>(p1,p2,pa,pb,pg,pl,plbar); } else { return HEJ::L<minus,minus,minus>(p1,p2,pa,pb,pg,pl,plbar); } } } } /** * @brief W+Jets Unordered Contribution Helper Functions * @returns result of equation (4.1.28) in Helen's Thesis (p.100) */ double jM2Wuno(HLV pg, HLV p1,HLV plbar, HLV pl, HLV pa, Helicity h1, HLV p2, HLV pb, Helicity h2, Helicity pol, ParticleProperties const & wprop ){ //@TODO Simplify the below (less Tensor class?) init_sigma_index(); HLV pW = pl+plbar; HLV q1g=pa-pW-p1-pg; HLV q1 = pa-p1-pW; HLV q2 = p2-pb; const double taW = (pa-pW).m2(); const double taW1 = (pa-pW-p1).m2(); const double s1W = (p1+pW).m2(); const double s1gW = (p1+pW+pg).m2(); const double s1g = (p1+pg).m2(); const double s2g = (p2+pg).m2(); const double sbg = (pb+pg).m2(); const double tag = (pa-pg).m2(); const double taWg = (pa-pW-pg).m2(); //use p1 as ref vec in pol tensor Tensor<1> epsg = eps(pg,p2,pol); Tensor<1> epsW = HEJ::current(pl,plbar,helicity::minus); Tensor<1> j2b = HEJ::current(p2,pb,h2); Tensor<1> Tq1q2 = to_tensor( (pb/sbg + p2/s2g)*(q1 - pg).m2() + 2*q1 - pg ); Tensor<3> J31a = rank3_current(p1, pa, h1); Tensor<2> J2_qaW =J31a.contract((pa-pW)/taW/taW1, 2); Tensor<2> J2_p1W =J31a.contract((p1+pW)/s1W/taW1, 2); Tensor<3> L1a = outer(Tq1q2, J2_qaW); Tensor<3> L1b = outer(Tq1q2, J2_p1W); Tensor<3> L2a = outer(-2*pg, J2_qaW); Tensor<3> L2b = outer(-2*pg, J2_p1W); Tensor<3> L3 = outer(metric(), J2_qaW.contract(2*pg-q1,1)+J2_p1W.contract(2*pg-q1,2)); Tensor<3> L(0.); Tensor<5> J51a = rank5_current(p1, pa, h1); Tensor<4> J_qaW = J51a.contract((pa-pW),4); Tensor<4> J_qag = J51a.contract(pa-pg,4); Tensor<4> J_p1gW = J51a.contract(p1+pg+pW,4); Tensor<3> U1a = J_qaW.contract(p1+pg,2); Tensor<3> U1b = J_p1gW.contract(p1+pg,2); Tensor<3> U1c = J_p1gW.contract(p1+pW,2); Tensor<3> U1(0.); Tensor<3> U2a = J_qaW.contract(pa-pg-pW,2); Tensor<3> U2b = J_qag.contract(pa-pg-pW,2); Tensor<3> U2c = J_qag.contract(p1+pW,2); Tensor<3> U2(0.); for(int nu=0; nu<4;++nu){ for(int mu=0;mu<4;++mu){ for(int rho=0;rho<4;++rho){ L(nu, mu, rho) = L1a(nu,mu,rho) + L1b(nu,rho,mu) + L2a(mu,nu,rho) + L2b(mu,rho,nu) + L3(mu,nu,rho); U1(nu, mu, rho) = U1a(nu, mu, rho) / (s1g*taW) + U1b(nu,rho,mu) / (s1g*s1gW) + U1c(rho,nu,mu) / (s1W*s1gW); U2(nu,mu,rho) = U2a(mu,nu,rho) / (taWg*taW) + U2b(mu,rho,nu) / (taWg*tag) + U2c(rho,mu,nu) / (s1W*tag); } } } COM X = ((((U1-L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)); COM Y = ((((U2+L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)); double amp = HEJ::C_A*HEJ::C_F*HEJ::C_F/2.*(norm(X)+norm(Y)) - HEJ::C_F/2.*(X*conj(Y)).real(); double t1 = q1g.m2(); double t2 = q2.m2(); //Divide by WProp amp*=WProp(plbar, pl, wprop); //Divide by t-channels amp/=(t1*t2); return amp; } /** * @brief New implementation of unordered W+Jets current * * See eq:wunocurrent in the developer manual for the definition * of this current * * The aim is to replace jM2Wuno and eventually all uses of the Tensor class. * Explicit tensor contractions are rather slow and the initialisation code * in Tensor.cc is not very transparent. * * At the moment, this function _only_ works for positive-energy spinors, * so jM2Wuno has to be kept for qqbar emission. */ double jM2Wuno_pos_energy( HLV const & pg, HLV const & p1, HLV const & plbar, HLV const & pl, HLV const & pa, Helicity const h1, HLV const & p2, HLV const & pb, Helicity const h2, Helicity const pol, ParticleProperties const & wprop ){ using HEJ::C_A; using HEJ::C_F; const COM U1 = U1contr(pg, p1, plbar, pl, pa, h1, p2, pb, h2, pol); const COM U2 = U2contr(pg, p1, plbar, pl, pa, h1, p2, pb, h2, pol); const COM L = Lcontr(pg, p1, plbar, pl, pa, h1, p2, pb, h2, pol); const COM X = U1 - L; const COM Y = U2 + L; double amp = C_A*C_F*C_F/2.*(norm(X)+norm(Y)) - HEJ::C_F/2.*(X*conj(Y)).real(); amp *= WProp(plbar, pl, wprop); const HLV q1g = pa-pl-plbar-p1-pg; const HLV q2 = p2-pb; const double t1 = q1g.m2(); const double t2 = q2.m2(); amp /= (t1*t2); return amp; } + /** + * @brief Contraction of W + extremal qqbar current + * + * See eq:crossed in the developer manual for the definition + * of the W + extremal qqbar current. + * + */ + template<Helicity h1, Helicity h2, Helicity hg> + double jM2_W_extremal_qqbar( + HLV const & pg, HLV const & pq, HLV const & plbar, HLV const & pl, + HLV const & pqbar, HLV const & p3, HLV const & pb, + ParticleProperties const & wprop + ){ + using HEJ::C_A; + using HEJ::C_F; + + const COM U1Xcontr = HEJ::U1X<h1, h2, hg>(pg, pq, plbar, pl, pqbar, p3, pb); + const COM U2Xcontr = HEJ::U2X<h1, h2, hg>(pg, pq, plbar, pl, pqbar, p3, pb); + const COM LXcontr = HEJ::LX<h1, h2, hg>(pg, pq, plbar, pl, pqbar, p3, pb); + + const COM X = U1Xcontr - LXcontr; + const COM Y = U2Xcontr + LXcontr; + + double amp = C_A*C_F*C_F/2.*(norm(X)+norm(Y)) - HEJ::C_F/2.*(X*conj(Y)).real(); + amp *= WProp(plbar, pl, wprop); + + // what do I have to put here? + const HLV q1 = pg-pl-plbar-pq-pqbar; + const HLV q2 = p3-pb; + + const double t1 = q1.m2(); + const double t2 = q2.m2(); + + amp /= (t1*t2); + return amp; + } Tensor <2> MCross(HLV pa, HLV pq, HLV pqbar, std::vector<HLV> partons, Helicity hq, int nabove ){ //@TODO Simplify the calculation below Maybe combine with MCrossW? HLV q1; q1=pa; for(int i=0;i<nabove+1;++i){ q1-=partons.at(i); } double t2=(q1-pqbar).m2(); //Blank 3 gamma Current Tensor<3> J323 = rank3_current(pq,pqbar,hq); // 2 gamma current (with 1 contraction already). Tensor<2> XCroCont = J323.contract((q1-pqbar),2)/(t2); //Initialise the Crossed Vertex Tensor<2> Xcro(0.); for(int mu=0; mu<4;++mu){ for(int nu=0;nu<4;++nu){ Xcro(mu,nu) = XCroCont(nu,mu); } } return Xcro; } // Helper Functions Calculate the Uncrossed Contribution Tensor <2> MUncross(HLV pa, HLV pq,HLV pqbar, std::vector<HLV> partons, Helicity hq, int nabove ){ //@TODO Simplify the calculation below Maybe combine with MUncrossW? HLV q1; q1=pa; for(int i=0;i<nabove+1;++i){ q1-=partons.at(i); } double t2 = (q1-pq).m2(); //Blank 3 gamma Current Tensor<3> J323 = rank3_current(pq,pqbar,hq); // 2 gamma currents (with 1 contraction already). Tensor<2> XUncCont = J323.contract((q1-pq),2)/t2; //Initialise the Uncrossed Vertex Tensor<2> Xunc(0.); for(int mu=0; mu<4;++mu){ for(int nu=0;nu<4;++nu){ Xunc(mu,nu) = -XUncCont(mu,nu); } } return Xunc; } // Helper Functions Calculate the Eikonal Contributions Tensor <2> MSym(HLV pa, HLV p1, HLV pb, HLV p4, HLV pq, HLV pqbar, std::vector<HLV> partons, Helicity hq, int nabove ){ //@TODO Simplify the calculation below Maybe combine with MsymW? HLV q1, q3; q1=pa; for(int i=0;i<nabove+1;++i){ q1-=partons.at(i); } q3 = q1-pq-pqbar; double t1 = (q1).m2(); double t3 = (q3).m2(); double s23 = (pq+pqbar).m2(); double sa2 = (pa+pq).m2(); double sa3 = (pa+pqbar).m2(); double s12 = (p1+pq).m2(); double s13 = (p1+pqbar).m2(); double sb2 = (pb+pq).m2(); double sb3 = (pb+pqbar).m2(); double s42 = (p4+pq).m2(); double s43 = (p4+pqbar).m2(); Tensor<1> qqxCur = HEJ::current(pq, pqbar, hq); // // 1a gluon emisson Contribution Tensor<3> X1a = outer(metric(), p1*(t1/(s12+s13))+ pa*(t1/(sa2+sa3))); Tensor<2> X1aCont = X1a.contract(qqxCur,3); // //4b gluon emission Contribution Tensor<3> X4b = outer(metric(), p4*(t3/(s42+s43)) + pb*(t3/(sb2+sb3))); Tensor<2> X4bCont = X4b.contract(qqxCur,3); // New Formulation Corresponding to New Analytics Tensor<3> X3g1 = outer(q1+pq+pqbar, metric()); Tensor<3> X3g2 = outer(q3-pq-pqbar, metric()); Tensor<3> X3g3 = outer(q1+q3, metric()); // Note the contraction of indices changes term by term Tensor<2> X3g1Cont = X3g1.contract(qqxCur,3); Tensor<2> X3g2Cont = X3g2.contract(qqxCur,2); Tensor<2> X3g3Cont = X3g3.contract(qqxCur,1); Tensor<2>Xsym(0.); for(int mu=0; mu<4;++mu){ for(int nu=0;nu<4;++nu){ Xsym(mu, nu) = COM(0,1) * ( (X3g1Cont(nu,mu) + X3g2Cont(mu,nu) - X3g3Cont(nu,mu)) + (X1aCont(mu,nu) - X4bCont(mu,nu)) ); } } return Xsym/s23; } //! W+Jets FKL Contributions /** * @brief W+Jets FKL Contributions, function to handle all incoming types. * @param p1out Outgoing Particle 1. (W emission) * @param plbar Outgoing election momenta * @param pl Outgoing neutrino momenta * @param p1in Incoming Particle 1. (W emission) * @param p2out Outgoing Particle 2 * @param p2in Incoming Particle 2 * @param aqlineb Bool. Is Backwards quark line an anti-quark line? * @param aqlinef Bool. Is Forwards quark line an anti-quark line? * * Calculates j_W ^\mu j_\mu. * Handles all possible incoming states. */ double jW_j( HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in, bool aqlineb, bool /* aqlinef */, ParticleProperties const & wprop ){ using helicity::minus; using helicity::plus; const HLV q1=p1in-p1out-plbar-pl; const HLV q2=-(p2in-p2out); const double WPropfact = WProp(plbar, pl, wprop); const auto j_W = COM{0,-1}*jW(p1in, p1out, plbar, pl, aqlineb?plus:minus); double Msqr = 0.; for(const auto h: {plus, minus}) { const auto j = HEJ::current(p2out, p2in, h); Msqr += abs2(j_W.contract(j, 1)); } // Division by colour and Helicity average (Nc2-1)(4) // Multiply by Cf^2 return HEJ::C_F*HEJ::C_F*WPropfact*Msqr/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4); } } // Anonymous Namespace double ME_W_qQ (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in, ParticleProperties const & wprop ){ return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, false, wprop); } double ME_W_qQbar (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in, ParticleProperties const & wprop ){ return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, true, wprop); } double ME_W_qbarQ (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in, ParticleProperties const & wprop ){ return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, false, wprop); } double ME_W_qbarQbar (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in, ParticleProperties const & wprop ){ return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, true, wprop); } double ME_W_qg (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in, ParticleProperties const & wprop ){ return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, false, wprop) *K_g(p2out, p2in)/HEJ::C_F; } double ME_W_qbarg (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in, ParticleProperties const & wprop ){ return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, false, wprop) *K_g(p2out, p2in)/HEJ::C_F; } namespace{ /** * @brief W+Jets Unordered Contributions, function to handle all incoming types. * @param p1out Outgoing Particle 1. (W emission) * @param plbar Outgoing election momenta * @param pl Outgoing neutrino momenta * @param p1in Incoming Particle 1. (W emission) * @param p2out Outgoing Particle 2 (Quark, unordered emission this side.) * @param p2in Incoming Particle 2 (Quark, unordered emission this side.) * @param pg Unordered Gluon momenta * @param aqlineb Bool. Is Backwards quark line an anti-quark line? * @param aqlinef Bool. Is Forwards quark line an anti-quark line? * * Calculates j_W ^\mu j_{uno}_\mu. Ie, unordered with W emission opposite side. * Handles all possible incoming states. */ double jW_juno(HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in, HLV pg, bool aqlineb, bool aqlinef, ParticleProperties const & wprop ){ using helicity::minus; using helicity::plus; const HLV q1=p1in-p1out-plbar-pl; const HLV q2=-(p2in-p2out-pg); const HLV q3=-(p2in-p2out); const Helicity fhel = aqlinef?plus:minus; const auto j_W = jW(p1in, p1out, plbar, pl, aqlineb?plus:minus); const auto mj2p = HEJ::current(p2out, p2in, flip(fhel)); const auto mj2m = HEJ::current(p2out, p2in, fhel); const auto jgbp = HEJ::current(pg, p2in, flip(fhel)); const auto jgbm = HEJ::current(pg, p2in, fhel); const auto j2gp = HEJ::current(p2out, pg, flip(fhel)); const auto j2gm = HEJ::current(p2out, pg, fhel); // Dot products of these which occur again and again COM MWmp=j_W.dot(mj2p); // And now for the Higgs ones COM MWmm=j_W.dot(mj2m); const auto qsum = to_tensor(q2+q3); const auto p1o = to_tensor(p1out); const auto p1i = to_tensor(p1in); const auto p2o = to_tensor(p2out); const auto p2i = to_tensor(p2in); const auto Lmm=( (-1.)*qsum*(MWmm) + (-2.*COM{j_W.dot(pg)})*mj2m + 2.*COM{mj2m.dot(pg)}*j_W + ( p1o/pg.dot(p1out) + p1i/pg.dot(p1in) )*( q2.m2()*MWmm/2. ) )/q3.m2(); const auto Lmp=( (-1.)*qsum*(MWmp) + (-2.*COM{j_W.dot(pg)})*mj2p + 2.*COM{mj2p.dot(pg)}*j_W + ( p1o/pg.dot(p1out) + p1i/pg.dot(p1in) )*( q2.m2()*MWmp/2. ) )/q3.m2(); const auto U1mm=(COM{jgbm.dot(j_W)}*j2gm+2.*p2o*MWmm)/(p2out+pg).m2(); const auto U1mp=(COM{jgbp.dot(j_W)}*j2gp+2.*p2o*MWmp)/(p2out+pg).m2(); const auto U2mm=((-1.)*COM{j2gm.dot(j_W)}*jgbm+2.*p2i*MWmm)/(p2in-pg).m2(); const auto U2mp=((-1.)*COM{j2gp.dot(j_W)}*jgbp+2.*p2i*MWmp)/(p2in-pg).m2(); double amm,amp; amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*abs2(U1mm+U2mm); amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*abs2(U1mp+U2mp); double ampsq=-(amm+amp); //Divide by WProp ampsq*=WProp(plbar, pl, wprop); return ampsq/((16)*(q2.m2()*q1.m2())); } } double ME_W_unob_qQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, HLV plbar, HLV pl, ParticleProperties const & wprop ){ return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, false, false, wprop); } double ME_W_unob_qQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, HLV plbar, HLV pl, ParticleProperties const & wprop ){ return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, false, true, wprop); } double ME_W_unob_qbarQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, HLV plbar, HLV pl, ParticleProperties const & wprop ){ return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, true, false, wprop); } double ME_W_unob_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, HLV plbar, HLV pl, ParticleProperties const & wprop ){ return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, true, true, wprop); } namespace{ /** * @brief W+Jets Unordered Contributions, function to handle all incoming types. * @param pg Unordered Gluon momenta * @param p1out Outgoing Particle 1. (Quark - W and Uno emission) * @param plbar Outgoing election momenta * @param pl Outgoing neutrino momenta * @param p1in Incoming Particle 1. (Quark - W and Uno emission) * @param p2out Outgoing Particle 2 * @param p2in Incoming Particle 2 * @param aqlineb Bool. Is Backwards quark line an anti-quark line? * * Calculates j_W_{uno} ^\mu j_\mu. Ie, unordered with W emission same side. * Handles all possible incoming states. Note this handles both forward and back- * -ward Wuno emission. For forward, ensure p1out is the uno and W emission parton. * @TODO: Include separate wrapper functions for forward and backward to clean up * ME_W_unof_current in `MatrixElement.cc`. */ double jWuno_j(HLV pg, HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in, bool aqlineb, ParticleProperties const & wprop ){ //Calculate different Helicity choices const Helicity h = aqlineb?helicity::plus:helicity::minus; double ME2mpp = jM2Wuno_pos_energy(pg, p1out,plbar,pl,p1in,h,p2out,p2in, helicity::plus,helicity::plus, wprop); double ME2mpm = jM2Wuno_pos_energy(pg, p1out,plbar,pl,p1in,h,p2out,p2in, helicity::plus,helicity::minus, wprop); double ME2mmp = jM2Wuno_pos_energy(pg, p1out,plbar,pl,p1in,h,p2out,p2in, helicity::minus,helicity::plus, wprop); double ME2mmm = jM2Wuno_pos_energy(pg, p1out,plbar,pl,p1in,h,p2out,p2in, helicity::minus,helicity::minus, wprop); //Helicity sum and average over initial states return (ME2mpp + ME2mpm + ME2mmp + ME2mmm)/(4.*HEJ::C_A*HEJ::C_A); } } double ME_Wuno_qQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, HLV plbar, HLV pl, ParticleProperties const & wprop ){ return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false, wprop); } double ME_Wuno_qQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, HLV plbar, HLV pl, ParticleProperties const & wprop ){ return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false, wprop); } double ME_Wuno_qbarQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, HLV plbar, HLV pl, ParticleProperties const & wprop ){ return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true, wprop); } double ME_Wuno_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, HLV plbar, HLV pl, ParticleProperties const & wprop ){ return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true, wprop); } double ME_Wuno_qg(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, HLV plbar, HLV pl, ParticleProperties const & wprop ){ return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false, wprop) *K_g(p2out, p2in)/HEJ::C_F; } double ME_Wuno_qbarg(HLV p1out, HLV p1in, HLV p2out, HLV p2in, HLV pg, HLV plbar, HLV pl, ParticleProperties const & wprop ){ return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true, wprop) *K_g(p2out, p2in)/HEJ::C_F; } /** * @brief W+Jets Extremal qqx Contributions, function to handle all incoming types. * @param pgin Incoming gluon which will split into qqx. * @param pqout Quark of extremal qqx outgoing (W-Emission). * @param plbar Outgoing anti-lepton momenta * @param pl Outgoing lepton momenta * @param pqbarout Anti-quark of extremal qqx pair. (W-Emission) * @param pout Outgoing Particle 2 (end of FKL chain) * @param p2in Incoming Particle 2 * @param aqlinef Bool. Is Forwards quark line an anti-quark line? * * Calculates j_W_{qqx} ^\mu j_\mu. Ie, Ex-QQX with W emission same side. * Handles all possible incoming states. Calculated via crossing symmetry from jWuno_j. */ double jWqqx_j(HLV pgin, HLV pqout, HLV plbar, HLV pl, HLV pqbarout, HLV p2out, HLV p2in, bool aqlinef, ParticleProperties const & wprop ){ + using helicity::minus; + using helicity::plus; + //Calculate Different Helicity Configurations. const Helicity h = aqlinef?helicity::plus:helicity::minus; double ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in, helicity::plus,helicity::plus, wprop); double ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in, helicity::plus,helicity::minus, wprop); double ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in, helicity::minus,helicity::plus, wprop); double ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in, helicity::minus,helicity::minus, wprop); //Helicity sum and average over initial states. double ME2 = (ME2mpp + ME2mpm + ME2mmp + ME2mmm)/(4.*HEJ::C_A*HEJ::C_A); //Correct colour averaging after crossing: ME2*=(3.0/8.0); return ME2; } double ME_WExqqx_qbarqQ(HLV pgin, HLV pqout, HLV plbar, HLV pl, HLV pqbarout, HLV p2out, HLV p2in, ParticleProperties const & wprop ){ return jWqqx_j(pgin, pqout, plbar, pl, pqbarout, p2out, p2in, false, wprop); } double ME_WExqqx_qqbarQ(HLV pgin, HLV pqbarout, HLV plbar, HLV pl, HLV pqout, HLV p2out, HLV p2in, ParticleProperties const & wprop ){ return jWqqx_j(pgin, pqbarout, plbar, pl, pqout, p2out, p2in, true, wprop); } double ME_WExqqx_qbarqg(HLV pgin, HLV pqout, HLV plbar, HLV pl, HLV pqbarout, HLV p2out, HLV p2in, ParticleProperties const & wprop ){ return jWqqx_j(pgin, pqout, plbar, pl, pqbarout, p2out, p2in, false, wprop) *K_g(p2out,p2in)/HEJ::C_F; } double ME_WExqqx_qqbarg(HLV pgin, HLV pqbarout, HLV plbar, HLV pl, HLV pqout, HLV p2out, HLV p2in, ParticleProperties const & wprop ){ return jWqqx_j(pgin, pqbarout, plbar, pl, pqout, p2out, p2in, true, wprop) *K_g(p2out,p2in)/HEJ::C_F; } namespace { //Function to calculate Term 1 in Equation 3.23 in James Cockburn's Thesis. Tensor<1> qggm1(HLV pb, HLV p2, HLV p3, Helicity hel2, Helicity helg, HLV refmom){ //@TODO Simplify the calculation below. (Less Tensor class use?) double t1 = (p3-pb)*(p3-pb); // Gauge choice in polarisation tensor. (see JC's Thesis) Tensor<1> epsg = eps(pb, refmom, helg); Tensor<3> qqCurBlank = rank3_current(p2,p3,hel2); Tensor<2> qqCur = qqCurBlank.contract(p3-pb,2); Tensor<1> gqqCur = qqCur.contract(epsg,2)/t1; return gqqCur*(-1); } //Function to calculate Term 2 in Equation 3.23 in James Cockburn's Thesis. Tensor<1> qggm2(HLV pb, HLV p2, HLV p3, Helicity hel2, Helicity helg, HLV refmom){ //@TODO Simplify the calculation below (Less Tensor class use?) double t1 = (p2-pb)*(p2-pb); // Gauge choice in polarisation tensor. (see JC's Thesis) Tensor<1> epsg = eps(pb,refmom, helg); Tensor<3> qqCurBlank = rank3_current(p2,p3,hel2); Tensor<2> qqCur = qqCurBlank.contract(p2-pb,2); Tensor<1> gqqCur = qqCur.contract(epsg,1)/t1; return gqqCur; } //Function to calculate Term 3 in Equation 3.23 in James Cockburn's Thesis. Tensor<1> qggm3(HLV pb, HLV p2, HLV p3, Helicity hel2, Helicity helg, HLV refmom){ //@TODO Simplify the calculation below (Less Tensor class use?) double s23 = (p2+p3)*(p2+p3); // Gauge choice in polarisation tensor. (see JC's Thesis) Tensor<1> epsg = eps(pb, refmom, helg); Tensor<3> qqCurBlank1 = outer(p2+p3, metric())/s23; Tensor<3> qqCurBlank2 = outer(pb, metric())/s23; Tensor<1> Cur23 = HEJ::current(p2, p3,hel2); Tensor<2> qqCur1 = qqCurBlank1.contract(Cur23,3); Tensor<2> qqCur2 = qqCurBlank2.contract(Cur23,3); Tensor<2> qqCur3 = qqCurBlank2.contract(Cur23,1); Tensor<1> gqqCur = (qqCur1.contract(epsg,1) - qqCur2.contract(epsg,2) + qqCur3.contract(epsg,1))*2*COM(0,1); return gqqCur; } } // no wqq emission double ME_W_Exqqx_QQq(HLV pa, HLV pb, HLV p1, HLV p2, HLV p3,HLV plbar, HLV pl, bool aqlinepa, ParticleProperties const & wprop ){ using helicity::minus; using helicity::plus; init_sigma_index(); // 2 independent helicity choices (complex conjugation related). Tensor<1> TMmmm1 = qggm1(pb,p2,p3,minus,minus, pa); Tensor<1> TMmmm2 = qggm2(pb,p2,p3,minus,minus, pa); Tensor<1> TMmmm3 = qggm3(pb,p2,p3,minus,minus, pa); Tensor<1> TMpmm1 = qggm1(pb,p2,p3,minus,plus, pa); Tensor<1> TMpmm2 = qggm2(pb,p2,p3,minus,plus, pa); Tensor<1> TMpmm3 = qggm3(pb,p2,p3,minus,plus, pa); // Build the external quark line W Emmision Tensor<1> cur1a = jW(pa,p1,plbar,pl, aqlinepa?plus:minus); //Contract with the qqxCurrent. COM Mmmm1 = TMmmm1.contract(cur1a,1); COM Mmmm2 = TMmmm2.contract(cur1a,1); COM Mmmm3 = TMmmm3.contract(cur1a,1); COM Mpmm1 = TMpmm1.contract(cur1a,1); COM Mpmm2 = TMpmm2.contract(cur1a,1); COM Mpmm3 = TMpmm3.contract(cur1a,1); //Colour factors: COM cm1m1,cm2m2,cm3m3,cm1m2,cm1m3,cm2m3; cm1m1=8./3.; cm2m2=8./3.; cm3m3=6.; cm1m2 =-1./3.; cm1m3 = -3.*COM(0.,1.); cm2m3 = 3.*COM(0.,1.); //Sqaure and sum for each helicity config: double Mmmm = real( cm1m1*pow(abs(Mmmm1),2) + cm2m2*pow(abs(Mmmm2),2) + cm3m3*pow(abs(Mmmm3),2) + 2.*real(cm1m2*Mmmm1*conj(Mmmm2)) + 2.*real(cm1m3*Mmmm1*conj(Mmmm3)) + 2.*real(cm2m3*Mmmm2*conj(Mmmm3)) ); double Mpmm = real( cm1m1*pow(abs(Mpmm1),2) + cm2m2*pow(abs(Mpmm2),2) + cm3m3*pow(abs(Mpmm3),2) + 2.*real(cm1m2*Mpmm1*conj(Mpmm2)) + 2.*real(cm1m3*Mpmm1*conj(Mpmm3)) + 2.*real(cm2m3*Mpmm2*conj(Mpmm3)) ); // Divide by WProp const double WPropfact = WProp(plbar, pl, wprop); return (2*WPropfact*(Mmmm+Mpmm)/24./4.)/(pa-p1-pl-plbar).m2()/(p2+p3-pb).m2(); } namespace { // helper function for matrix element for W + Jets with central qqbar template<HEJ::Helicity h1a, HEJ::Helicity h4b> double amp_WCenqqx_qq( HLV const & pa, HLV const & p1, HLV const & pb, HLV const & p4, HLV const & pq, HLV const & pqbar, HLV const & pl, HLV const & plbar, HLV const & q11, HLV const & q12 ) { const COM sym = HEJ::M_sym_W<h1a, h4b>( pa, p1, pb, p4, pq, pqbar, pl, plbar, q11, q12 ); const COM cross = HEJ::M_cross_W<h1a, h4b>( pa, p1, pb, p4, pq, pqbar, pl, plbar, q11, q12 ); const COM uncross = HEJ::M_uncross_W<h1a, h4b>( pa, p1, pb, p4, pq, pqbar, pl, plbar, q11, q12 ); // Colour factors static constexpr COM cmsms = 3.; static constexpr COM cmumu = 4./3.; static constexpr COM cmcmc = 4./3.; static constexpr COM cmsmu = COM{0., 3./2.}; static constexpr COM cmsmc = COM{0.,-3./2.}; static constexpr COM cmumc = -1./6.; return real( cmsms*pow(abs(sym),2) +cmumu*pow(abs(uncross),2) +cmcmc*pow(abs(cross),2) ) +2.*real(cmsmu*sym*conj(uncross)) +2.*real(cmsmc*sym*conj(cross)) +2.*real(cmumc*uncross*conj(cross)) ; } } // matrix element for W + Jets with central qqbar double ME_WCenqqx_qq( HLV pa, HLV pb, HLV pl, HLV plbar, std::vector<HLV> partons, bool /* aqlinepa */, bool /* aqlinepb */, bool qqxmarker, int nabove, ParticleProperties const & wprop ) { using helicity::plus; using helicity::minus; CLHEP::HepLorentzVector q1 = pa; for(int i = 0; i <= nabove; ++i){ q1 -= partons[i]; } const auto qq = HEJ::split_into_lightlike(q1); // since q1.m2() < 0 the following assertion is always true // see documentation for split_into_lightlike assert(qq.second.e() < 0); HLV pq, pqbar; if (qqxmarker){ pqbar = partons[nabove+1]; pq = partons[nabove+2];} else{ pq = partons[nabove+1]; pqbar = partons[nabove+2]; } const HLV p1 = partons.front(); const HLV p4 = partons.back(); // 4 Different Helicity Choices (Differs from Pure Jet Case, where there is // also the choice in qqbar helicity. // the first helicity label is for aqlinepa == true, // the second one for aqlinepb == true // In principle the corresponding helicity should be flipped // if either of them is false, but we sum up all helicities, // so this has no effect in the end. const double amp_mm = amp_WCenqqx_qq<minus, minus>( pa, p1, pb, p4, pq, pqbar, pl, plbar, qq.first, -qq.second ); const double amp_mp = amp_WCenqqx_qq<minus, plus>( pa, p1, pb, p4, pq, pqbar, pl, plbar, qq.first, -qq.second ); const double amp_pm = amp_WCenqqx_qq<plus, minus>( pa, p1, pb, p4, pq, pqbar, pl, plbar, qq.first, -qq.second ); const double amp_pp = amp_WCenqqx_qq<plus, plus>( pa, p1, pb, p4, pq, pqbar, pl, plbar, qq.first, -qq.second ); const double t1 = q1.m2(); const double t3 = (q1-pl-plbar-pq-pqbar).m2(); const double amp = WProp(plbar, pl, wprop)*( amp_mm+amp_mp+amp_pm+amp_pp )/(9.*4.*t1*t1*t3*t3); return amp; } // no wqq emission double ME_W_Cenqqx_qq(HLV pa, HLV pb,HLV pl,HLV plbar, std::vector<HLV> partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove, int nbelow, bool forwards, ParticleProperties const & wprop ){ using helicity::minus; using helicity::plus; init_sigma_index(); if (!forwards){ //If Emission from Leg a instead, flip process. std::swap(pa, pb); std::reverse(partons.begin(),partons.end()); std::swap(aqlinepa, aqlinepb); qqxmarker = !qqxmarker; std::swap(nabove,nbelow); } HLV pq, pqbar, p1,p4; if (qqxmarker){ pqbar = partons[nabove+1]; pq = partons[nabove+2];} else{ pq = partons[nabove+1]; pqbar = partons[nabove+2];} p1 = partons.front(); p4 = partons.back(); Tensor<1> T1am(0.), T1ap(0.); if(!(aqlinepa)){ T1ap = HEJ::current(p1, pa, plus); T1am = HEJ::current(p1, pa, minus);} else if(aqlinepa){ T1ap = HEJ::current(pa, p1, plus); T1am = HEJ::current(pa, p1, minus);} Tensor <1> T4bm = jW(pb, p4, plbar, pl, aqlinepb?plus:minus); // Calculate the 3 separate contributions to the effective vertex Tensor<2> Xunc_m = MUncross(pa, pq, pqbar,partons, minus, nabove); Tensor<2> Xcro_m = MCross( pa, pq, pqbar,partons, minus, nabove); Tensor<2> Xsym_m = MSym( pa, p1, pb, p4, pq, pqbar, partons, minus, nabove); Tensor<2> Xunc_p = MUncross(pa, pq, pqbar,partons, plus, nabove); Tensor<2> Xcro_p = MCross( pa, pq, pqbar,partons, plus, nabove); Tensor<2> Xsym_p = MSym( pa, p1, pb, p4, pq, pqbar, partons, plus, nabove); // (- - hel choice) COM M_mmUnc = (((Xunc_m).contract(T1am,1)).contract(T4bm,1)); COM M_mmCro = (((Xcro_m).contract(T1am,1)).contract(T4bm,1)); COM M_mmSym = (((Xsym_m).contract(T1am,1)).contract(T4bm,1)); // (- + hel choice) COM M_mpUnc = (((Xunc_p).contract(T1am,1)).contract(T4bm,1)); COM M_mpCro = (((Xcro_p).contract(T1am,1)).contract(T4bm,1)); COM M_mpSym = (((Xsym_p).contract(T1am,1)).contract(T4bm,1)); // (+ - hel choice) COM M_pmUnc = (((Xunc_m).contract(T1ap,1)).contract(T4bm,1)); COM M_pmCro = (((Xcro_m).contract(T1ap,1)).contract(T4bm,1)); COM M_pmSym = (((Xsym_m).contract(T1ap,1)).contract(T4bm,1)); // (+ + hel choice) COM M_ppUnc = (((Xunc_p).contract(T1ap,1)).contract(T4bm,1)); COM M_ppCro = (((Xcro_p).contract(T1ap,1)).contract(T4bm,1)); COM M_ppSym = (((Xsym_p).contract(T1ap,1)).contract(T4bm,1)); //Colour factors: COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc; cmsms=3.; cmumu=4./3.; cmcmc=4./3.; cmsmu =3./2.*COM(0.,1.); cmsmc = -3./2.*COM(0.,1.); cmumc = -1./6.; // Work Out Interference in each case of helicity: double amp_mm = real(cmsms*pow(abs(M_mmSym),2) +cmumu*pow(abs(M_mmUnc),2) +cmcmc*pow(abs(M_mmCro),2) +2.*real(cmsmu*M_mmSym*conj(M_mmUnc)) +2.*real(cmsmc*M_mmSym*conj(M_mmCro)) +2.*real(cmumc*M_mmUnc*conj(M_mmCro))); double amp_mp = real(cmsms*pow(abs(M_mpSym),2) +cmumu*pow(abs(M_mpUnc),2) +cmcmc*pow(abs(M_mpCro),2) +2.*real(cmsmu*M_mpSym*conj(M_mpUnc)) +2.*real(cmsmc*M_mpSym*conj(M_mpCro)) +2.*real(cmumc*M_mpUnc*conj(M_mpCro))); double amp_pm = real(cmsms*pow(abs(M_pmSym),2) +cmumu*pow(abs(M_pmUnc),2) +cmcmc*pow(abs(M_pmCro),2) +2.*real(cmsmu*M_pmSym*conj(M_pmUnc)) +2.*real(cmsmc*M_pmSym*conj(M_pmCro)) +2.*real(cmumc*M_pmUnc*conj(M_pmCro))); double amp_pp = real(cmsms*pow(abs(M_ppSym),2) +cmumu*pow(abs(M_ppUnc),2) +cmcmc*pow(abs(M_ppCro),2) +2.*real(cmsmu*M_ppSym*conj(M_ppUnc)) +2.*real(cmsmc*M_ppSym*conj(M_ppCro)) +2.*real(cmumc*M_ppUnc*conj(M_ppCro))); double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.)); HLV q1,q3; q1=pa; for(int i=0;i<nabove+1;++i){ q1-=partons.at(i); } q3 = q1 - pq - pqbar; double t1 = (q1).m2(); double t3 = (q3).m2(); //Divide by t-channels amp/=(t1*t1*t3*t3); //Divide by WProp amp*=WProp(plbar, pl, wprop); return amp; }