diff --git a/doc/developer_manual/developer_manual.tex b/doc/developer_manual/developer_manual.tex index e6d915f..337c107 100644 --- a/doc/developer_manual/developer_manual.tex +++ b/doc/developer_manual/developer_manual.tex @@ -1,1387 +1,1387 @@ \documentclass[a4paper,11pt]{article} \usepackage{fourier} \usepackage[T1]{fontenc} \usepackage{microtype} \usepackage{geometry} \usepackage{enumitem} \setlist[description]{leftmargin=\parindent,labelindent=\parindent} \usepackage{amsmath} \usepackage{amssymb} \usepackage[utf8x]{inputenc} \usepackage{graphicx} \usepackage{xcolor} \usepackage{todonotes} \usepackage{listings} \usepackage{xspace} \usepackage{tikz} \usetikzlibrary{arrows.meta} \usetikzlibrary{shapes} \usetikzlibrary{calc} \usepackage[colorlinks,linkcolor={blue!50!black}]{hyperref} \graphicspath{{build/figures/}{figures/}} \emergencystretch \hsize \newcommand{\HEJ}{{\tt HEJ}\xspace} \newcommand{\HIGHEJ}{\emph{High Energy Jets}\xspace} \newcommand{\cmake}{\href{https://cmake.org/}{cmake}\xspace} \newcommand{\html}{\href{https://www.w3.org/html/}{html}\xspace} \newcommand{\YAML}{\href{http://yaml.org/}{YAML}\xspace} \newcommand{\QCDloop}{\href{https://github.com/scarrazza/qcdloop}{QCDloop}\xspace} \newcommand{\as}{\alpha_s} \DeclareRobustCommand{\mathgraphics}[1]{\vcenter{\hbox{\includegraphics{#1}}}} \def\spa#1.#2{\left\langle#1\,#2\right\rangle} \def\spb#1.#2{\left[#1\,#2\right]} \def\spaa#1.#2.#3{\langle\mskip-1mu{#1} | #2 | {#3}\mskip-1mu\rangle} \def\spbb#1.#2.#3{[\mskip-1mu{#1} | #2 | {#3}\mskip-1mu]} \def\spab#1.#2.#3{\langle\mskip-1mu{#1} | #2 | {#3}\mskip-1mu\rangle} \def\spba#1.#2.#3{\langle\mskip-1mu{#1}^+ | #2 | {#3}^+\mskip-1mu\rangle} \def\spav#1.#2.#3{\|\mskip-1mu{#1} | #2 | {#3}\mskip-1mu\|^2} \def\jc#1.#2.#3{j^{#1}_{#2#3}} \definecolor{darkgreen}{rgb}{0,0.4,0} \lstset{ % backgroundcolor=\color{lightgray}, % choose the background color; you must add \usepackage{color} or \usepackage{xcolor} basicstyle=\footnotesize\usefont{T1}{DejaVuSansMono-TLF}{m}{n}, % the size of the fonts that are used for the code breakatwhitespace=false, % sets if automatic breaks should only happen at whitespace breaklines=false, % sets automatic line breaking captionpos=t, % sets the caption-position to bottom commentstyle=\color{red}, % comment style deletekeywords={...}, % if you want to delete keywords from the given language escapeinside={\%*}{*)}, % if you want to add LaTeX within your code extendedchars=true, % lets you use non-ASCII characters; for 8-bits encodings only, does not work with UTF-8 frame=false, % adds a frame around the code keepspaces=true, % keeps spaces in text, useful for keeping indentation of code (possibly needs columns=flexible) keywordstyle=\color{blue}, % keyword style otherkeywords={}, % if you want to add more keywords to the set numbers=none, % where to put the line-numbers; possible values are (none, left, right) numbersep=5pt, % how far the line-numbers are from the code rulecolor=\color{black}, % if not set, the frame-color may be changed on line-breaks within not-black text (e.g. comments (green here)) showspaces=false, % show spaces everywhere adding particular underscores; it overrides 'showstringspaces' showstringspaces=false, % underline spaces within strings only showtabs=false, % show tabs within strings adding particular underscores stepnumber=2, % the step between two line-numbers. If it's 1, each line will be numbered stringstyle=\color{gray}, % string literal style tabsize=2, % sets default tabsize to 2 spaces title=\lstname, emph={}, emphstyle=\color{darkgreen} } \begin{document} \tikzstyle{mynode}=[rectangle split,rectangle split parts=2, draw,rectangle split part fill={lightgray, none}] \title{HEJ 2 developer manual} \author{} \maketitle \tableofcontents \newpage \section{Overview} \label{sec:overview} HEJ 2 is a C++ program and library implementing an algorithm to apply \HIGHEJ resummation~\cite{Andersen:2008ue,Andersen:2008gc} to pre-generated fixed-order events. This document is intended to give an overview over the concepts and structure of this implementation. \subsection{Project structure} \label{sec:project} HEJ 2 is developed under the \href{https://git-scm.com/}{git} version control system. The main repository is on the IPPP \href{https://gitlab.com/}{gitlab} server under \url{https://gitlab.dur.scotgrid.ac.uk/hej/hej}. To get a local copy, get an account on the gitlab server and use \begin{lstlisting}[language=sh,caption={}] git clone git@gitlab.dur.scotgrid.ac.uk:hej/hej.git \end{lstlisting} This should create a directory \texttt{hej} with the following contents: \begin{description} \item[doc:] Contains additional documentation, see section~\ref{sec:doc}. \item[include:] Contains the C++ header files. \item[src:] Contains the C++ source files. \item[t:] Contains the source code for the automated tests. \item[CMakeLists.txt:] Configuration file for the \cmake build system. See section~\ref{sec:cmake}. \item[cmake:] Auxiliary files for \cmake. This includes modules for finding installed software in \texttt{cmake/Modules} and templates for code generation during the build process in \texttt{cmake/Templates}. \item[config.yml:] Sample configuration file for running HEJ 2. \item[events.lhe:] Fixed-order event sample that can be used as input for HEJ 2. \item[FixedOrderGen:] Contains the code for the fixed-order generator, see section~\ref{sec:HEJFOG}. \end{description} In the following all paths are given relative to the \texttt{hej} directory. \subsection{Documentation} \label{sec:doc} The \texttt{doc} directory contains user documentation in \texttt{doc/sphinx} and the configuration to generate source code documentation in \texttt{doc/doxygen}. The user documentation explains how to install and run HEJ 2. The format is \href{http://docutils.sourceforge.net/rst.html}{reStructuredText}, which is mostly human-readable. Other formats, like \html, can be generated with the \href{http://www.sphinx-doc.org/en/master/}{sphinx} generator with \begin{lstlisting}[language=sh,caption={}] make html \end{lstlisting} To document the source code we use \href{https://www.stack.nl/~dimitri/doxygen/}{doxygen}. To generate \html documentation, use the command \begin{lstlisting}[language=sh,caption={}] doxygen Doxyfile \end{lstlisting} in the \texttt{doc/doxygen} directory. \subsection{Build system} \label{sec:cmake} For the most part, HEJ 2 is a library providing classes and functions that can be used to add resummation to fixed-order events. In addition, there is a relatively small executable program leveraging this library to read in events from an input file and produce resummation events. Both the library and the program are built and installed with the help of \cmake. Debug information can be turned on by using \begin{lstlisting}[language=sh,caption={}] cmake base/directory -DCMAKE_BUILD_TYPE=Debug make install \end{lstlisting} This facilitates the use of debuggers like \href{https://www.gnu.org/software/gdb/}{gdb}. The main \cmake configuration file is \texttt{CMakeLists.txt}. It defines the compiler flags, software prerequisites, header and source files used to build HEJ 2, and the automated tests. \texttt{cmake/Modules} contains module files that help with the detection of the software prerequisites and \texttt{cmake/Templates} template files for the automatic generation of header and source files. For example, this allows to only keep the version information in one central location (\texttt{CMakeLists.txt}) and automatically generate a header file from the template \texttt{Version.hh.in} to propagate this to the C++ code. \subsection{General coding guidelines} \label{sec:notes} The goal is to make the HEJ 2 code well-structured and readable. Here are a number of guidelines to this end. \begin{description} \item[Observe the boy scout rule.] Always leave the code cleaner than how you found it. Ugly hacks can be useful for testing, but shouldn't make their way into the main branch. \item[Ask if something is unclear.] Often there is a good reason why code is written the way it is. Sometimes that reason is only obvious to the original author (use \lstinline!git blame! to find them), in which case they should be poked to add a comment. Sometimes there is no good reason, but nobody has had the time to come up with something better, yet. In some places the code might just be bad. \item[Don't break tests.] There are a number of tests in the \texttt{t} directory, which can be run with \lstinline!make test!. Ideally, all tests should run successfully in each git revision. If your latest commit broke a test and you haven't pushed to the central repository yet, you can fix it with \lstinline!git commit --amend!. If an earlier local commit broke a test, you can use \lstinline!git rebase -i! if you feel confident. \item[Test your new code.] When you add some new functionality, also add an automated test. This can be useful even if you don't know the ``correct'' result because it prevents the code from changing its behaviour silently in the future. \href{http://www.valgrind.org/}{valgrind} is a very useful tool to detect potential memory leaks. \item[Stick to the coding style.] It is somewhat easier to read code that has a uniform coding and indentation style. We don't have a strict style, but it helps if your code looks similar to what is already there. \end{description} \section{Program flow} \label{sec:flow} A run of the HEJ 2 program has three stages: initialisation, event processing, and cleanup. The following sections outline these stages and their relations to the various classes and functions in the code. Unless denoted otherwise, all classes and functions are part of the \lstinline!HEJ! namespace. The code for the HEJ 2 program is in \texttt{src/main.cc}, all other code comprises the HEJ 2 library. Classes and free functions are usually implemented in header and source files with a corresponding name, i.e. the code for \lstinline!MyClass! can usually be found in \texttt{include/HEJ/MyClass.hh} and \texttt{src/MyClass.cc}. \subsection{Initialisation} \label{sec:init} The first step is to load and parse the \YAML configuration file. The entry point for this is the \lstinline!load_config! function and the related code can be found in \texttt{include/HEJ/YAMLreader.hh}, \texttt{include/HEJ/config.hh} and the corresponding \texttt{.cc} files in the \texttt{src} directory. The implementation is based on the \href{https://github.com/jbeder/yaml-cpp}{yaml-cpp} library. The \lstinline!load_config! function returns a \lstinline!Config! object containing all settings. To detect potential mistakes as early as possible, we throw an exception whenever one of the following errors occurs: \begin{itemize} \item There is an unknown option in the \YAML file. \item A setting is invalid, for example a string is given where a number would be expected. \item An option value is not set. \end{itemize} The third rule is sometimes relaxed for ``advanced'' settings with an obvious default, like for importing custom scales or analyses. The information stored in the \lstinline!Config! object is then used to initialise various objects required for the event processing stage described in section~\ref{sec:processing}. First, the \lstinline!get_analysis! function creates an object that inherits from the \lstinline!Analysis! interface.\footnote{In the context of C++ the proper technical expression is ``pure abstract class''.} Using an interface allows us to decide the concrete type of the analysis at run time instead of having to make a compile-time decision. Depending on the settings, \lstinline!get_analysis! creates either a user-defined analysis loaded from an external library (see the user documentation \url{https://hej.web.cern.ch/HEJ/doc/current/user/}) or the default \lstinline!EmptyAnalysis!, which does nothing. Together with a number of further objects, whose roles are described in section~\ref{sec:processing}, we also initialise the global random number generator. We again use an interface to defer deciding the concrete type until the program is actually run. Currently, we support the \href{https://mixmax.hepforge.org/}{MIXMAX} (\texttt{include/HEJ/Mixmax.hh}) and Ranlux64 (\texttt{include/HEJ/Ranlux64.hh}) random number generators, both are provided by \href{http://proj-clhep.web.cern.ch/}{CLHEP}. We also set up a \lstinline!LHEF::Reader! object (see \href{http://home.thep.lu.se/~leif/LHEF/}{\texttt{include/LHEF/LHEF.h}}) for reading events from a file in the Les Houches event file format~\cite{Alwall:2006yp}. A small wrapper around the \href{https://www.boost.org/doc/libs/1_67_0/libs/iostreams/doc/index.html}{boost iostreams} library allows us to also read event files compressed with \href{https://www.gnu.org/software/gzip/}{gzip}. The wrapper code is in \texttt{include/HEJ/stream.hh} and the \texttt{src/stream.cc}. \subsection{Event processing} \label{sec:processing} In the second stage events are continously read from the event file. After jet clustering, a number of corresponding resummation events are generated for each input event and fed into the analysis and a number of output files. The roles of various classes and functions are illustrated in the following flow chart: \begin{center} \begin{tikzpicture}[node distance=2cm and 5mm] \node (reader) [mynode] {\lstinline!LHEF::Reader::readEvent!\nodepart{second}{read event}}; \node (cluster) [mynode,below=of reader] {\lstinline!Event! constructor\nodepart{second}{cluster jets}}; \node (resum) [mynode,below=of cluster] {\lstinline!EventReweighter::reweight!\nodepart{second}{perform resummation}}; \node (cut) [mynode,below=of resum] {\lstinline!Analysis::pass_cuts!\nodepart{second}{apply cuts}}; \node (fill) [mynode,below left=of cut] {\lstinline!Analysis::fill!\nodepart{second}{analyse event}}; \node (write) [mynode,below right=of cut] {\lstinline!CombinedEventWriter::write!\nodepart{second}{write out event}}; \node (control) [below=of cut] {}; \draw[-{Latex[length=3mm, width=1.5mm]}] (reader.south) -- node[left] {\lstinline!LHEF::HEPEUP!} (cluster.north); \draw[-{Latex[length=3mm, width=1.5mm]}] (cluster.south) -- node[left] {\lstinline!Event!} (resum.north); \draw[-{Latex[length=3mm, width=1.5mm]}] (resum.south) -- (cut.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(resum.south)+(7mm, 0cm)$) -- ($(cut.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(resum.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(cut.north)-(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cut.south)-(3mm,0mm)$) .. controls ($(control)-(3mm,0mm)$) ..node[left] {\lstinline!Event!} (fill.east); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cut.south)-(3mm,0mm)$) .. controls ($(control)-(3mm,0mm)$) .. (write.west); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cut.south)+(3mm,0mm)$) .. controls ($(control)+(3mm,0mm)$) .. (fill.east); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cut.south)+(3mm,0mm)$) .. controls ($(control)+(3mm,0mm)$) ..node[right] {\lstinline!Event!} (write.west); \end{tikzpicture} \end{center} The resummation is performed by the \lstinline!EventReweighter! class, which is described in more detail in section~\ref{sec:resum}. The \lstinline!CombinedEventWriter! writes events to zero or more output files. To this end, it contains a number of objects implementing the \lstinline!EventWriter! interface. These event writers typically write the events to a file in a given format. We currently have the \lstinline!LesHouchesWriter! for event files in the Les Houches Event File format and the \lstinline!HepMCWriter! for the \href{https://hepmc.web.cern.ch/hepmc/}{HepMC} format (Version 2 and 3). \subsection{Resummation} \label{sec:resum} In the \lstinline!EventReweighter::reweight! member function, we first classify the input fixed-order event (FKL, unordered, non-HEJ, \dots) and decide according to the user settings whether to discard, keep, or resum the event. If we perform resummation for the given event, we generate a number of trial \lstinline!PhaseSpacePoint! objects. Phase space generation is discussed in more detail in section~\ref{sec:pspgen}. We then perform jet clustering according to the settings for the resummation jets on each \lstinline!PhaseSpacePoint!, update the factorisation and renormalisation scale in the resulting \lstinline!Event! and reweight it according to the ratio of pdf factors and \HEJ matrix elements between resummation and original fixed-order event: \begin{center} \begin{tikzpicture}[node distance=2cm and 5mm] \node (in) {}; \node (treat) [diamond,draw,below=of in,minimum size=3.5cm, label={[anchor=west, inner sep=8pt]west:discard}, label={[anchor=east, inner sep=14pt]east:keep}, label={[anchor=south, inner sep=20pt]south:reweight} ] {}; \draw (treat.north west) -- (treat.south east); \draw (treat.north east) -- (treat.south west); \node (psp) [mynode,below=of treat] {\lstinline!PhaseSpacePoint! constructor}; \node (cluster) [mynode,below=of psp] {\lstinline!Event! constructor\nodepart{second}{cluster jets}}; \node (gen_scales) [mynode,below=of cluster] {\lstinline!ScaleGenerator::operator()!\nodepart{second}{update scales}}; \node (rescale) [mynode,below=of gen_scales] {\lstinline!PDF::pdfpt!, \lstinline!MatrixElement!\nodepart{second}{reweight}}; \node (out) [below of=rescale] {}; \draw[-{Latex[length=3mm, width=1.5mm]}] (in.south) -- node[left] {\lstinline!Event!} (treat.north); \draw[-{Latex[length=3mm, width=1.5mm]}] (treat.south) -- node[left] {\lstinline!Event!} (psp.north); \draw[-{Latex[length=3mm, width=1.5mm]}] (psp.south) -- (cluster.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(psp.south)+(7mm, 0cm)$) -- ($(cluster.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(psp.south)-(7mm, 0cm)$) -- node[left] {\lstinline!PhaseSpacePoint!} ($(cluster.north)-(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] (cluster.south) -- (gen_scales.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cluster.south)+(7mm, 0cm)$) -- ($(gen_scales.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(cluster.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(gen_scales.north)-(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] (gen_scales.south) -- (rescale.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(gen_scales.south)+(7mm, 0cm)$) -- ($(rescale.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(gen_scales.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(rescale.north)-(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] (rescale.south) -- (out.north); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(rescale.south)+(7mm, 0cm)$) -- ($(out.north)+(7mm, 0cm)$); \draw[-{Latex[length=3mm, width=1.5mm]}] ($(rescale.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(out.north)-(7mm, 0cm)$); \node (helper) at ($(treat.east) + (15mm,0cm)$) {}; \draw[-{Latex[length=3mm, width=1.5mm]}] (treat.east) -- ($(treat.east) + (15mm,0cm)$) -- node[left] {\lstinline!Event!} (helper |- gen_scales.east) -- (gen_scales.east) ; \end{tikzpicture} \end{center} \subsection{Phase space point generation} \label{sec:pspgen} The resummed and matched \HEJ cross section for pure jet production of FKL configurations is given by (cf. eq. (3) of~\cite{Andersen:2018tnm}) \begin{align} \label{eq:resumdijetFKLmatched2} % \begin{split} \sigma&_{2j}^\mathrm{resum, match}=\sum_{f_1, f_2}\ \sum_m \prod_{j=1}^m\left( \int_{p_{j\perp}^B=0}^{p_{j\perp}^B=\infty} \frac{\mathrm{d}^2\mathbf{p}_{j\perp}^B}{(2\pi)^3}\ \int \frac{\mathrm{d} y_j^B}{2} \right) \ (2\pi)^4\ \delta^{(2)}\!\!\left(\sum_{k=1}^{m} \mathbf{p}_{k\perp}^B\right)\nonumber\\ &\times\ x_a^B\ f_{a, f_1}(x_a^B, Q_a^B)\ x_b^B\ f_{b, f_2}(x_b^B, Q_b^B)\ \frac{\overline{\left|\mathcal{M}_\text{LO}^{f_1f_2\to f_1g\cdots gf_2}\big(\big\{p^B_j\big\}\big)\right|}^2}{(\hat {s}^B)^2}\nonumber\\ & \times (2\pi)^{-4+3m}\ 2^m \nonumber\\ &\times\ \sum_{n=2}^\infty\ \int_{p_{1\perp}=p_{\perp,\mathrm{min}} }^{p_{1\perp}=\infty} \frac{\mathrm{d}^2\mathbf{p}_{1\perp}}{(2\pi)^3}\ \int_{p_{n\perp}=p_{\perp,\mathrm{min}}}^{p_{n\perp}=\infty} \frac{\mathrm{d}^2\mathbf{p}_{n\perp}}{(2\pi)^3}\ \prod_{i=2}^{n-1}\int_{p_{i\perp}=\lambda}^{p_{i\perp}=\infty} \frac{\mathrm{d}^2\mathbf{p}_{i\perp}}{(2\pi)^3}\ (2\pi)^4\ \delta^{(2)}\!\!\left(\sum_{k=1}^n \mathbf{p}_{k\perp}\right )\\ &\times \ \mathbf{T}_y \prod_{i=1}^n \left(\int \frac{\mathrm{d} y_i}{2}\right)\ \mathcal{O}_{mj}^e\ \left(\prod_{l=1}^{m-1}\delta^{(2)}(\mathbf{p}_{\mathcal{J}_{l}\perp}^B - \mathbf{j}_{l\perp})\right)\ \left(\prod_{l=1}^m\delta(y^B_{\mathcal{J}_l}-y_{\mathcal{J}_l})\right) \ \mathcal{O}_{2j}(\{p_i\})\nonumber\\ &\times \frac{(\hat{s}^B)^2}{\hat{s}^2}\ \frac{x_a f_{a,f_1}(x_a, Q_a)\ x_b f_{b,f_2}(x_b, Q_b)}{x_a^B\ f_{a,f_1}(x_a^B, Q_a^B)\ x_b^B\ f_{b,f_2}(x_b^B, Q_b^B)}\ \frac{\overline{\left|\mathcal{M}_{\mathrm{HEJ}}^{f_1 f_2\to f_1 g\cdots gf_2}(\{ p_i\})\right|}^2}{\overline{\left|\mathcal{M}_\text{LO, HEJ}^{f_1f_2\to f_1g\cdots gf_2}\big(\big\{p^B_j\big\}\big)\right|}^{2}} \,.\nonumber % \end{split} \end{align} The first two lines correspond to the generation of the fixed-order input events with incoming partons $f_1, f_2$ and outgoing momenta $p_j^B$, where $\mathbf{p}_{j\perp}^B$ and $y_j^B$ denote the respective transverse momentum and rapidity. Note that, at leading order, these coincide with the fixed-order jet momenta $p_{\mathcal{J}_j}^B$. $f_{a,f_1}(x_a, Q_a),f_{b,f_2}(x_b, Q_b)$ are the pdf factors for the incoming partons with momentum fractions $x_a$ and $x_b$. The square of the partonic centre-of-mass energy is denoted by $\hat{s}^B$ and $\mathcal{M}_\text{LO}^{f_1f_2\to f_1g\cdots gf_2}$ is the leading-order matrix element. The third line is a factor accounting for the different multiplicities between fixed-order and resummation events. Lines four and five are the integration over the resummation phase space described in this section. $p_i$ are the momenta of the outgoing partons in resummation phase space. $\mathbf{T}_y$ denotes rapidity ordering and $\mathcal{O}_{mj}^e$ projects out the exclusive $m$-jet component. The relation between resummation and fixed-order momenta is fixed by the $\delta$ functions. The first sets each transverse fixed-order jet momentum to some function $\mathbf{j_{l\perp}}$ of the resummation momenta. The exact form is described in section~\ref{sec:ptj_res}. The second $\delta$ forces the rapidities of resummation and fixed-order jets to be the same. Finally, the last line is the reweighting of pdf and matrix element factors already shown in section~\ref{sec:resum}. There are two kinds of cut-off in the integration over the resummation partons. $\lambda$ is a technical cut-off connected to the cancellation of infrared divergencies between real and virtual corrections. Its numerical value is set in \texttt{include/HEJ/Constants.h}. $p_{\perp,\mathrm{min}}$ regulates and \emph{uncancelled} divergence in the extremal parton momenta. Its size is set by the user configuration \url{https://hej.web.cern.ch/HEJ/doc/current/user/HEJ.html#settings}. It is straightforward to generalise eq.~(\ref{eq:resumdijetFKLmatched2}) to unordered configurations and processes with additional colourless emissions, for example a Higgs or electroweak boson. In the latter case only the fixed-order integration and the matrix elements change. \subsubsection{Gluon Multiplicity} \label{sec:psp_ng} The first step in evaluating the resummation phase space in eq.~(\ref{eq:resumdijetFKLmatched2}) is to randomly pick terms in the sum over the number of emissions. This sampling of the gluon multiplicity is done in the \lstinline!PhaseSpacePoint::sample_ng! function in \texttt{src/PhaseSpacePoint.cc}. The typical number of extra emissions depends strongly on the rapidity span of the underlying fixed-order event. Let us, for example, consider a fixed-order FKL-type multi-jet configuration with rapidities $y_{j_f},\,y_{j_b}$ of the most forward and backward jets, respectively. By eq.~(\ref{eq:resumdijetFKLmatched2}), the jet multiplicity and the rapidity of each jet are conserved when adding resummation. This implies that additional hard radiation is restricted to rapidities $y$ within a region $y_{j_b} \lesssim y \lesssim y_{j_f}$. Within \HEJ, we require the most forward and most backward emissions to be hard \todo{specify how hard} in order to avoid divergences, so this constraint in fact applies to \emph{all} additional radiation. To simplify the remaining discussion, let us remove the FKL rapidity ordering \begin{equation} \label{eq:remove_y_order} \mathbf{T}_y \prod_{i=1}^n\int \frac{\mathrm{d}y_i}{2} = \frac{1}{n!}\prod_{i=1}^n\int \frac{\mathrm{d}y_i}{2}\,, \end{equation} where all rapidity integrals now cover a region which is approximately bounded by $y_{j_b}$ and $y_{j_f}$. Each of the $m$ jets has to contain at least one parton; selecting random emissions we can rewrite the phase space integrals as \begin{equation} \label{eq:select_jets} \frac{1}{n!}\prod_{i=1}^n\int [\mathrm{d}p_i] = \left(\prod_{i=1}^{m}\int [\mathrm{d}p_i]\ {\cal J}_i(p_i)\right) \frac{1}{n_g!}\prod_{i=m+1}^{m+n_g}\int [\mathrm{d}p_i] \end{equation} with jet selection functions \begin{equation} \label{eq:def_jet_selection} {\cal J}_i(p) = \begin{cases} 1 &p\text{ clustered into jet }i\\ 0 & \text{otherwise} \end{cases} \end{equation} and $n_g \equiv n - m$. Here and in the following we use the short-hand notation $[\mathrm{d}p_i]$ to denote the phase-space measure for parton $i$. As is evident from eq.~\eqref{eq:select_jets}, adding an extra emission $n_g+1$ introduces a suppression factor $\tfrac{1}{n_g+1}$. However, the additional phase space integral also results in an enhancement proportional to $\Delta y_{j_f j_b} = y_{j_f} - y_{j_b}$. This is a result of the rapidity-independence of the MRK limit of the integrand, consisting of the matrix elements divided by the flux factor. Indeed, we observe that the typical number of gluon emissions is to a good approximation proportional to the rapidity separation and the phase space integral is dominated by events with $n_g \approx \Delta y_{j_f j_b}$. For the actual phase space sampling, we assume a Poisson distribution and extract the mean number of gluon emissions in different rapidity bins and fit the results to a linear function in $\Delta y_{j_f j_b}$, finding a coefficient of $0.975$ for the inclusive production of a Higgs boson with two jets. Here are the observed and fitted average gluon multiplicities as a function of $\Delta y_{j_f j_b}$: \begin{center} \includegraphics[width=.75\textwidth]{ng_mean} \end{center} As shown for two rapidity slices the assumption of a Poisson distribution is also a good approximation: \begin{center} \includegraphics[width=.49\textwidth]{{ng_1.5}.pdf}\hfill \includegraphics[width=.49\textwidth]{{ng_5.5}.pdf} \end{center} \subsubsection{Number of Gluons inside Jets} \label{sec:psp_ng_jet} For each of the $n_g$ gluon emissions we can split the phase-space integral into a (disconnected) region inside the jets and a remainder: \begin{equation} \label{eq:psp_split} \int [\mathrm{d}p_i] = \int [\mathrm{d}p_i]\, \theta\bigg(\sum_{j=1}^{m}{\cal J}_j(p_i)\bigg) + \int [\mathrm{d}p_i]\, \bigg[1-\theta\bigg(\sum_{j=1}^{m}{\cal J}_j(p_i)\bigg)\bigg]\,. \end{equation} The next step is to decide how many of the gluons will form part of a jet. This is done in the \lstinline!PhaseSpacePoint::sample_ng_jets! function. We choose an importance sampling which is flat in the plane spanned by the azimuthal angle $\phi$ and the rapidity $y$. This is observed in BFKL and valid in the limit of Multi-Regge-Kinematics (MRK). Furthermore, we assume anti-$k_t$ jets, which cover an area of $\pi R^2$. In principle, the total accessible area in the $y$-$\phi$ plane is given by $2\pi \Delta y_{fb}$, where $\Delta y_{fb}\geq \Delta y_{j_f j_b}$ is the a priori unknown rapidity separation between the most forward and backward partons. In most cases the extremal jets consist of single partons, so that $\Delta y_{fb} = \Delta y_{j_f j_b}$. For the less common case of two partons forming a jet we observe a maximum distance of $R$ between the constituents and the jet centre. In rare cases jets have more than two constituents. Empirically, they are always within a distance of $\tfrac{5}{3}R$ to the centre of the jet, so $\Delta y_{fb} \leq \Delta y_{j_f j_b} + \tfrac{10}{3} R$. In practice, the extremal partons are required to carry a large fraction of the jet transverse momentum and will therefore be much closer to the jet axis. In summary, for sufficiently large rapidity separations we can use the approximation $\Delta y_{fb} \approx \Delta y_{j_f j_b}$. This scenario is depicted here: \begin{center} \includegraphics[width=0.5\linewidth]{ps_large_y} \end{center} If there is no overlap between jets, the probability $p_{\cal J, >}$ for an extra gluon to end up inside a jet is then given by \begin{equation} \label{eq:p_J_large} p_{\cal J, >} = \frac{(m - 1)\*R^2}{2\Delta y_{j_f j_b}}\,. \end{equation} For a very small rapidity separation, eq.~\eqref{eq:p_J_large} obviously overestimates the true probability. The maximum phase space covered by jets in the limit of a vanishing rapidity distance between all partons is $2mR \Delta y_{fb}$: \begin{center} \includegraphics[width=0.5\linewidth]{ps_small_y} \end{center} We therefore estimate the probability for a parton to end up inside a jet as \begin{equation} \label{eq:p_J} p_{\cal J} = \min\bigg(\frac{(m - 1)\*R^2}{2\Delta y_{j_f j_b}}, \frac{mR}{\pi}\bigg)\,. \end{equation} Here we compare this estimate with the actually observed fraction of additional emissions into jets as a function of the rapidity separation: \begin{center} \includegraphics[width=0.75\linewidth]{pJ} \end{center} \subsubsection{Gluons outside Jets} \label{sec:gluons_nonjet} Using our estimate for the probability of a gluon to be a jet constituent, we choose a number $n_{g,{\cal J}}$ of gluons inside jets, which also fixes the number $n_g - n_{g,{\cal J}}$ of gluons outside jets. As explained later on, we need to generate the momenta of the gluons outside jets first. This is done in \lstinline!PhaseSpacePoint::gen_non_jet!. The azimuthal angle $\phi$ is generated flat within $0\leq \phi \leq 2 \pi$. The allowed rapidity interval is set by the most forward and backward partons, which are necessarily inside jets. Since these parton rapidities are not known at this point, we also have to postpone the rapidity generation for the gluons outside jets. For the scalar transverse momentum $p_\perp = |\mathbf{p}_\perp|$ of a gluon outside jets we use the parametrisation \begin{equation} \label{eq:p_nonjet} p_\perp = \lambda + \tilde{p}_\perp\*\tan(\tau\*r)\,, \qquad \tau = \arctan\bigg(\frac{p_{\perp{\cal J}_\text{min}} - \lambda}{\tilde{p}_\perp}\bigg)\,. \end{equation} For $r \in [0,1)$, $p_\perp$ is always less than the minimum momentum $p_{\perp{\cal J}_\text{min}}$ required for a jet. $\tilde{p}_\perp$ is a free parameter, a good empirical value is $\tilde{p}_\perp = [1.3 + 0.2\*(n_g - n_{g,\cal J})]\,$GeV \subsubsection{Resummation jet momenta} \label{sec:ptj_res} On the one hand, each jet momentum is given by the sum of its constituent momenta. On the other hand, the resummation jet momenta are fixed by the constraints in line five of the master equation~\eqref{eq:resumdijetFKLmatched2}. We therefore have to calculate the resummation jet momenta from these constraints before generating the momenta of the gluons inside jets. This is done in \lstinline!PhaseSpacePoint::reshuffle! and in the free \lstinline!resummation_jet_momenta! function (declared in \texttt{resummation\_jet.hh}). The resummation jet momenta are determined by the $\delta$ functions in line five of eq.~(\ref{eq:resumdijetFKLmatched2}). The rapidities are fixed to the rapidities of the jets in the input fixed-order events, so that the FKL ordering is guaranteed to be preserved. In traditional \HEJ reshuffling the transverse momentum are given through \begin{equation} \label{eq:ptreassign_old} \mathbf{p}^B_{\mathcal{J}_{l\perp}} = \mathbf{j}_{l\perp} \equiv \mathbf{p}_{\mathcal{J}_{l}\perp} + \mathbf{q}_\perp \,\frac{|\mathbf{p}_{\mathcal{J}_{l}\perp}|}{P_\perp}, \end{equation} where $\mathbf{q}_\perp = \sum_{j=1}^n \mathbf{p}_{i\perp} \bigg[1-\theta\bigg(\sum_{j=1}^{m}{\cal J}_j(p_i)\bigg)\bigg] $ is the total transverse momentum of all partons \emph{outside} jets and $P_\perp = \sum_{j=1}^m |\mathbf{p}_{\mathcal{J}_{j}\perp}|$. Since the total transverse momentum of an event vanishes, we can also use $\mathbf{q}_\perp = - \sum_{j=1}^m \mathbf{p}_{\mathcal{J}_{j}\perp}$. Eq.~(\ref{eq:ptreassign}) is a non-linear system of equations in the resummation jet momenta $\mathbf{p}_{\mathcal{J}_{l}\perp}$. Hence we would have to solve \begin{equation} \label{eq:ptreassign_eq} \mathbf{p}_{\mathcal{J}_{l}\perp}=\mathbf{j}^B_{l\perp} \equiv\mathbf{j}_{l\perp}^{-1} \left(\mathbf{p}^B_{\mathcal{J}_{l\perp}}\right) \end{equation} numerically. Since solving such a system is computationally expensive, we instead change the reshuffling around to be linear in the resummation jet momenta. Hence~\eqref{eq:ptreassign_eq} gets replaces by \begin{equation} \label{eq:ptreassign} \mathbf{p}_{\mathcal{J}_{l\perp}} = \mathbf{j}^B_{l\perp} \equiv \mathbf{p}^B_{\mathcal{J}_{l}\perp} - \mathbf{q}_\perp \,\frac{|\mathbf{p}^B_{\mathcal{J}_{l}\perp}|}{P^B_\perp}, \end{equation} which is linear in the resummation momentum. Consequently the equivalent of~\eqref{eq:ptreassign_old} is non-linear in the Born momentum. However the exact form of~\eqref{eq:ptreassign_old} is not relevant for the resummation. Both methods have been tested for two and three jets with the \textsc{rivet} standard analysis \texttt{MC\_JETS}. They didn't show any differences even after $10^9$ events. The reshuffling relation~\eqref{eq:ptreassign} allows the transverse momenta $p^B_{\mathcal{J}_{l\perp}}$ of the fixed-order jets to be somewhat below the minimum transverse momentum of resummation jets. It is crucial that this difference does not become too large, as the fixed-order cross section diverges for vanishing transverse momenta. In the production of a Higgs boson with resummation jets above $30\,$GeV we observe that the contribution from fixed-order events with jets softer than about $20\,$GeV can be safely neglected. This is shown in the following plot of the differential cross section over the transverse momentum of the softest fixed-order jet: \begin{center} \includegraphics[width=.75\textwidth]{ptBMin} \end{center} Finally, we have to account for the fact that the reshuffling relation~\eqref{eq:ptreassign} is non-linear in the Born momenta. To arrive at the master formula~\eqref{eq:resumdijetFKLmatched2} for the cross section, we have introduced unity in the form of an integral over the Born momenta with $\delta$ functions in the integrand, that is \begin{equation} \label{eq:delta_intro} 1 = \int_{p_{j\perp}^B=0}^{p_{j\perp}^B=\infty} \mathrm{d}^2\mathbf{p}_{j\perp}^B\delta^{(2)}(\mathbf{p}_{\mathcal{J}_{j\perp}}^B - \mathbf{j}_{j\perp})\,. \end{equation} If the arguments of the $\delta$ functions are not linear in the Born momenta, we have to compensate with additional Jacobians as factors. Explicitly, for the reshuffling relation~\eqref{eq:ptreassign} we have \begin{equation} \label{eq:delta_rewrite} \prod_{l=1}^m \delta^{(2)}(\mathbf{p}_{\mathcal{J}_{l\perp}}^B - \mathbf{j}_{l\perp}) = \Delta \prod_{l=1}^m \delta^{(2)}(\mathbf{p}_{\mathcal{J}_{l\perp}} - \mathbf{j}_{l\perp}^B)\,, \end{equation} where $\mathbf{j}_{l\perp}^B$ is given by~\eqref{eq:ptreassign_eq} and only depends on the Born momenta. We have extended the product to run to $m$ instead of $m-1$ by eliminating the last $\delta$ function $\delta^{(2)}\!\!\left(\sum_{k=1}^n \mathbf{p}_{k\perp}\right )$. The Jacobian $\Delta$ is the determinant of a $2m \times 2m$ matrix with $l, l' = 1,\dots,m$ and $X, X' = x,y$. \begin{equation} \label{eq:jacobian} \Delta = \left|\frac{\partial\,\mathbf{j}^B_{l'\perp}}{\partial\, \mathbf{p}^B_{{\cal J}_l \perp}} \right| = \left| \delta_{l l'} \delta_{X X'} - \frac{q_X\, p^B_{{\cal J}_{l'}X'}}{\left|\mathbf{p}^B_{{\cal J}_{l'} \perp}\right| P^B_\perp}\left(\delta_{l l'} - \frac{\left|\mathbf{p}^B_{{\cal J}_l \perp}\right|}{P^B_\perp}\right)\right|\,. \end{equation} The determinant is calculated in \lstinline!resummation_jet_weight!, again coming from the \texttt{resummation\_jet.hh} header. Having to introduce this Jacobian is not a disadvantage specific to the new reshuffling. If we instead use the old reshuffling relation~\eqref{eq:ptreassign_old} we \emph{also} have to introduce a similar Jacobian since we actually want to integrate over the resummation phase space and need to transform the argument of the $\delta$ function to be linear in the resummation momenta for this. \subsubsection{Gluons inside Jets} \label{sec:gluons_jet} After the steps outlined in section~\ref{sec:psp_ng_jet}, we have a total number of $m + n_{g,{\cal J}}$ constituents. In \lstinline!PhaseSpacePoint::distribute_jet_partons! we distribute them randomly among the jets such that each jet has at least one constituent. We then generate their momenta in \lstinline!PhaseSpacePoint::split! using the \lstinline!Splitter! class. The phase space integral for a jet ${\cal J}$ is given by \begin{equation} \label{eq:ps_jetparton} \prod_{i\text{ in }{\cal J}} \bigg(\int \mathrm{d}\mathbf{p}_{i\perp}\ \int \mathrm{d} y_i \bigg)\delta^{(2)}\Big(\sum_{i\text{ in }{\cal J}} \mathbf{p}_{i\perp} - \mathbf{j}_{\perp}^B\Big)\delta(y_{\mathcal{J}}-y^B_{\mathcal{J}})\,. \end{equation} For jets with a single constituent, the parton momentum is obiously equal to the jet momentum. In the case of two constituents, we observe that the partons are always inside the jet cone with radius $R$ and often very close to the jet centre. The following plots show the typical relative distance $\Delta R/R$ for this scenario: \begin{center} \includegraphics[width=0.45\linewidth]{dR_2} \includegraphics[width=0.45\linewidth]{dR_2_small} \end{center} According to this preference for small values of $\Delta R$, we parametrise the $\Delta R$ integrals as \begin{equation} \label{eq:dR_sampling} \frac{\Delta R}{R} = \begin{cases} 0.25\,x_R & x_R < 0.4 \\ 1.5\,x_R - 0.5 & x_R \geq 0.4 \end{cases}\,. \end{equation} Next, we generate $\Theta_1 \equiv \Theta$ and use the constraint $\Theta_2 = \Theta \pm \pi$. The transverse momentum of the first parton is then given by \begin{equation} \label{eq:delta_constraints} p_{1\perp} = \frac{p_{\mathcal{J} y} - \tan(\phi_2) p_{\mathcal{J} x}}{\sin(\phi_1) - \tan(\phi_2)\cos(\phi_1)}\,. \end{equation} We get $p_{2\perp}$ by exchanging $1 \leftrightarrow 2$ in the indices. To obtain the Jacobian of the transformation, we start from the single jet phase space eq.~(\ref{eq:ps_jetparton}) with the rapidity delta function already rewritten to be linear in the rapidity of the last parton, i.e. \begin{equation} \label{eq:jet_2p} \prod_{i=1,2} \bigg(\int \mathrm{d}\mathbf{p}_{i\perp}\ \int \mathrm{d} y_i \bigg)\delta^{(2)}\Big(\mathbf{p}_{1\perp} + \mathbf{p}_{2\perp} - \mathbf{j}_{\perp}^B\Big)\delta(y_2- \dots)\,. \end{equation} The integral over the second parton momentum is now trivial; we can just replace the integral over $y_2$ with the equivalent constraint \begin{equation} \label{eq:R2} \int \mathrm{d}R_2 \ \delta\bigg(R_2 - \bigg[\phi_{\cal J} - \arctan \bigg(\frac{p_{{\cal J}y} - p_{1y}}{p_{{\cal J}x} - p_{1x}}\bigg)\bigg]/\cos \Theta\bigg) \,. \end{equation} In order to fix the integral over $p_{1\perp}$ instead, we rewrite this $\delta$ function. This introduces the Jacobian \begin{equation} \label{eq:jac_pt1} \bigg|\frac{\partial p_{1\perp}}{\partial R_2} \bigg| = \frac{\cos(\Theta)\mathbf{p}_{2\perp}^2}{p_{{\cal J}\perp}\sin(\phi_{\cal J}-\phi_1)}\,. \end{equation} The final form of the integral over the two parton momenta is then \begin{equation} \label{eq:ps_jet_2p} \int \mathrm{d}R_1\ R_1 \int \mathrm{d}R_2 \int \mathrm{d}x_\Theta\ 2\pi \int \mathrm{d}p_{1\perp}\ p_{1\perp} \int \mathrm{d}p_{2\perp} \ \bigg|\frac{\partial p_{1\perp}}{\partial R_2} \bigg|\delta(p_{1\perp} -\dots) \delta(p_{2\perp} - \dots)\,. \end{equation} As is evident from section~\ref{sec:psp_ng_jet}, jets with three or more constituents are rare and an efficient phase-space sampling is less important. For such jets, we exploit the observation that partons with a distance larger than $R_{\text{max}} = \tfrac{5}{3} R$ to the jet centre are never clustered into the jet. Assuming $N$ constituents, we generate all components for the first $N-1$ partons and fix the remaining parton with the $\delta$-functional. In order to end up inside the jet, we use the parametrisation \begin{align} \label{eq:ps_jet_param} \phi_i ={}& \phi_{\cal J} + \Delta \phi_i\,, & \Delta \phi_i ={}& \Delta R_i \cos(\Theta_i)\,, \\ y_i ={}& y_{\cal J} + \Delta y_i\,, & \Delta y_i ={}& \Delta R_i \sin(\Theta_i)\,, \end{align} and generate $\Theta_i$ and $\Delta R_i$ randomly with $\Delta R_i \leq R_{\text{max}}$ and the empiric value $R_{\text{max}} = 5\*R/3$. We can then write the phase space integral for a single parton as $(p_\perp = |\mathbf{p}_\perp|)$ \begin{equation} \label{eq:ps_jetparton_x} \int \mathrm{d}\mathbf{p}_{\perp}\ \int \mathrm{d} y \approx \int_{\Box} \mathrm{d}x_{\perp} \mathrm{d}x_{ R} \mathrm{d}x_{\theta}\ 2\*\pi\,\*R_{\text{max}}^2\,\*x_{R}\,\*p_{\perp}\,\*(p_{\perp,\text{max}} - p_{\perp,\text{min}}) \end{equation} with \begin{align} \label{eq:ps_jetparton_parameters} \Delta \phi ={}& R_{\text{max}}\*x_{R}\*\cos(2\*\pi\*x_\theta)\,,& \Delta y ={}& R_{\text{max}}\*x_{R}\*\sin(2\*\pi\*x_\theta)\,, \\ p_{\perp} ={}& (p_{\perp,\text{max}} - p_{\perp,\text{min}})\*x_\perp + p_{\perp,\text{min}}\,. \end{align} $p_{\perp,\text{max}}$ is determined from the requirement that the total contribution from the first $n-1$ partons --- i.e. the projection onto the jet $p_{\perp}$ axis --- must never exceed the jet $p_\perp$. This gives \todo{This bound is too high} \begin{equation} \label{eq:pt_max} p_{i\perp,\text{max}} = \frac{p_{{\cal J}\perp} - \sum_{j 0\,,\\ j^-_\mu(p_{\text{out}}, p_{\text{in}}) ={}& \begin{pmatrix} -\sqrt{p_{\text{in}}^-\,p_{\text{out}}^{-\phantom{+}}} \ \hat{p}_{\text{out}\,\perp}\\ - \sqrt{p_{\text{in}}^-\,p_{\text{out}}^+}\\ i\,j^-_1\\ -j^-_0 \end{pmatrix} & p_{\text{in}\,z} < 0\,. \end{align} \section{The fixed-order generator} \label{sec:HEJFOG} Even at leading order, standard fixed-order generators can only generate events with a limited number of final-state particles within reasonable CPU time. The purpose of the fixed-order generator is to supplement this with high-multiplicity input events according to the first two lines of eq.~\eqref{eq:resumdijetFKLmatched2} with the \HEJ approximation $\mathcal{M}_\text{LO, HEJ}^{f_1f_2\to f_1g\cdots gf_2}$ instead of the full fixed-order matrix element $\mathcal{M}_\text{LO}^{f_1f_2\to f_1g\cdots gf_2}$. Its usage is described in the user documentation \url{https://hej.web.cern.ch/HEJ/doc/current/user/HEJFOG.html}. \subsection{File structure} \label{sec:HEJFOG_structure} The code for the fixed-order generator is in the \texttt{FixedOrderGen} directory, which contains the following: \begin{description} \item[include:] Contains the C++ header files. \item[src:] Contains the C++ source files. \item[t:] Contains the source code for the automated tests. \item[CMakeLists.txt:] Configuration file for the \cmake build system. \item[configFO.yml:] Sample configuration file for the fixed-order generator. \end{description} The code is generally in the \lstinline!HEJFOG! namespace. Functions and classes \lstinline!MyClass! are usually declared in \texttt{include/MyClass.hh} and implemented in \texttt{src/MyClass.cc}. \subsection{Program flow} \label{sec:prog_flow} A single run of the fixed-order generator consists of three or four stages. First, we perform initialisation similar to HEJ 2, see section~\ref{sec:init}. Since there is a lot of overlap we frequently reuse classes and functions from HEJ 2, i.e. from the \lstinline!HEJ! namespace. The code for parsing the configuration file is in \texttt{include/config.hh} and implemented in \texttt{src/config.cc}. If partial unweighting is requested in the user settings \url{https://hej.web.cern.ch/HEJ/doc/current/user/HEJFOG.html#settings}, the initialisation is followed by a calibration phase. We use a \lstinline!EventGenerator! to produce a number of trial events. We use these to calibrate the \lstinline!Unweighter! in its constructor and produce a first batch of partially unweighted events. This also allows us to estimate our unweighting efficiency. In the next step, we continue to generate events and potentially unweight them. Once the user-defined target number of events is reached, we adjust their weights according to the number of required trials. As in HEJ 2 (see section~\ref{sec:processing}), we pass the final events to a \lstinline!HEJ::Analysis! and a \lstinline!HEJ::CombinedEventWriter!. \subsection{Event generation} \label{sec:evgen} Event generation is performed by the \lstinline!EventGenerator::gen_event! member function. We begin by generating a \lstinline!PhaseSpacePoint!. This is not to be confused with the resummation phase space points represented by \lstinline!HEJ::PhaseSpacePoint!! After jet clustering, we compute the leading-order matrix element (see section~\ref{sec:ME}) and pdf factors. The phase space point generation is performed in the \lstinline!PhaseSpacePoint! constructor. We first construct the user-defined number of $n_p$ partons (by default gluons) in \lstinline!PhaseSpacePoint::gen_LO_partons!. We use flat sampling in rapidity and azimuthal angle. For the scalar transverse momenta, we distinguish between two cases. By default, they are generated based on a random variable $x_{p_\perp}$ according to \begin{equation} \label{eq:pt_sampling} p_\perp = p_{\perp,\text{min}} + \begin{cases} p_{\perp,\text{par}} \tan\left( x_{p_\perp} \arctan\left( \frac{p_{\perp,\text{max}} - p_{\perp,\text{min}}}{p_{\perp,\text{par}}} \right) \right) & y < y_\text{cut} \\ - \tilde{p}_{\perp,\text{par}}\log\left(1 - x_{p_\perp}\left[1 - \exp\left(\frac{p_{\perp,\text{min}} - p_{\perp,\text{max}}}{\tilde{p}_{\perp,\text{par}}}\right)\right]\right) & y \geq y_\text{cut} \end{cases}\,, \end{equation} where $p_{\perp,\text{min}}$ is the minimum jet transverse momentum, $p_{\perp,\text{max}}$ is the maximum transverse parton momentum, tentatively set to the beam energy, and $y_\text{cut}$, $p_{\perp,\text{par}}$ and $\tilde{p}_{\perp,\text{par}}$ are generation parameters set to heuristically determined values of \begin{align} y_\text{cut}&=3,\\ p_{\perp,\text{par}}&=p_{\perp,\min}+\frac{n_p}{5}, \\ \tilde{p}_{\perp,\text{par}}&=\frac{p_{\perp,\text{par}}}{1 + 5(y-y_\text{cut})}. \end{align} The problem with this generation is that the transverse momenta peak at the minimum transverse momentum required for fixed-order jets. However, if we use the generated events as input for \HEJ resummation, events with such soft transverse momenta hardly contribute, see section~\ref{sec:ptj_res}. To generate efficient input for resummation, there is the user option \texttt{peak pt}, which specifies the dominant transverse momentum for resummation jets. If this option is set, most jets will be generated as above, but with $p_{\perp,\text{min}}$ set to the peak transverse momentum $p_{\perp, \text{peak}}$. In addition, there is a small chance of around $2\%$ to generate softer jets. The heuristic ansatz for the transverse momentum distribution in the ``soft'' region is \begin{equation} \label{FO_pt_soft} \frac{\partial \sigma}{\partial p_\perp} \propto e^{n_p\frac{p_\perp- p_{\perp, \text{peak}}}{\bar{p}_\perp}}\,, \end{equation} where $n_p$ is the number of partons and $\bar{p}_\perp \approx 4\,$GeV. To achieve this distribution, we use \begin{equation} \label{eq:FO_pt_soft_sampling} p_\perp = p_{\perp, \text{peak}} + \bar{p}_\perp \frac{\log x_{p_\perp}}{n_p} \end{equation} and discard the phase space point if the parton is too soft, i.e. below the threshold for fixed-order jets. After ensuring that all partons form separate jets, we generate any potential colourless emissions. We then determine the incoming momenta and flavours in \lstinline!PhaseSpacePoint::reconstruct_incoming! and adjust the outgoing flavours to ensure an FKL configuration. Finally, we may reassign outgoing flavours to generate suppressed (for example unordered) configurations. \subsection{Unweighting} \label{sec:unweight} Straightforward event generation tends to produce many events with small weights. Those events have a negligible contribution to the final observables, but can take up considerable storage space and CPU time in later processing stages. This problem can be addressed by unweighting. For naive unweighting, one would determine the maximum weight $w_\text{max}$ of all events, discard each event with weight $w$ with a probability $p=w/w_\text{max}$, and set the weights of all remaining events to $w_\text{max}$. The downside to this procedure is that it also eliminates a sizeable fraction of events with moderate weight, so that the statistical convergence deteriorates. To ameliorate this problem, we perform unweighting only for events with sufficiently small weights. This is done by the \lstinline!Unweighter! class. In the constructor we estimate the mean and width of the weight-weight distribution from a sample of events. We use these estimates to determine the maximum weight below which unweighting is performed. The actual unweighting is the done in the \lstinline!Unweighter::unweight! function. \input{currents} \bibliographystyle{JHEP} \bibliography{biblio} \end{document}