diff --git a/FixedOrderGen/src/PhaseSpacePoint.cc b/FixedOrderGen/src/PhaseSpacePoint.cc index fad6bbe..3ae9d00 100644 --- a/FixedOrderGen/src/PhaseSpacePoint.cc +++ b/FixedOrderGen/src/PhaseSpacePoint.cc @@ -1,916 +1,920 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019-2020 * \copyright GPLv2 or later */ #include "PhaseSpacePoint.hh" #include #include #include #include #include #include #include #include #include #include #include "fastjet/ClusterSequence.hh" #include "HEJ/Constants.hh" #include "HEJ/EWConstants.hh" #include "HEJ/exceptions.hh" #include "HEJ/kinematics.hh" #include "HEJ/Particle.hh" #include "HEJ/PDF.hh" #include "HEJ/RNG.hh" #include "HEJ/utility.hh" #include "JetParameters.hh" #include "Process.hh" namespace { using namespace HEJ; static_assert( std::numeric_limits::has_quiet_NaN, "no quiet NaN for double" ); constexpr double NaN = std::numeric_limits::quiet_NaN(); } // namespace anonymous namespace HEJFOG { Event::EventData to_EventData(PhaseSpacePoint psp){ //! @TODO Same function already in HEJ Event::EventData result; result.incoming = std::move(psp).incoming_; assert(result.incoming.size() == 2); result.outgoing = std::move(psp).outgoing_; // technically Event::EventData doesn't have to be sorted, // but PhaseSpacePoint should be anyway assert( std::is_sorted( begin(result.outgoing), end(result.outgoing), rapidity_less{} ) ); assert(result.outgoing.size() >= 2); result.decays = std::move(psp).decays_; result.parameters.central = {NaN, NaN, psp.weight()}; return result; } PhaseSpacePoint::ConstPartonIterator PhaseSpacePoint::begin_partons() const { return cbegin_partons(); } PhaseSpacePoint::ConstPartonIterator PhaseSpacePoint::cbegin_partons() const { return boost::make_filter_iterator( static_cast(HEJ::is_parton), cbegin(outgoing()), cend(outgoing()) ); } PhaseSpacePoint::ConstPartonIterator PhaseSpacePoint::end_partons() const { return cend_partons(); } PhaseSpacePoint::ConstPartonIterator PhaseSpacePoint::cend_partons() const { return boost::make_filter_iterator( static_cast(HEJ::is_parton), cend(outgoing()), cend(outgoing()) ); } PhaseSpacePoint::ConstReversePartonIterator PhaseSpacePoint::rbegin_partons() const { return crbegin_partons(); } PhaseSpacePoint::ConstReversePartonIterator PhaseSpacePoint::crbegin_partons() const { return std::reverse_iterator( cend_partons() ); } PhaseSpacePoint::ConstReversePartonIterator PhaseSpacePoint::rend_partons() const { return crend_partons(); } PhaseSpacePoint::ConstReversePartonIterator PhaseSpacePoint::crend_partons() const { return std::reverse_iterator( cbegin_partons() ); } PhaseSpacePoint::PartonIterator PhaseSpacePoint::begin_partons() { return boost::make_filter_iterator( static_cast(HEJ::is_parton), begin(outgoing_), end(outgoing_) ); } PhaseSpacePoint::PartonIterator PhaseSpacePoint::end_partons() { return boost::make_filter_iterator( static_cast(HEJ::is_parton), end(outgoing_), end(outgoing_) ); } PhaseSpacePoint::ReversePartonIterator PhaseSpacePoint::rbegin_partons() { return std::reverse_iterator( end_partons() ); } PhaseSpacePoint::ReversePartonIterator PhaseSpacePoint::rend_partons() { return std::reverse_iterator( begin_partons() ); } namespace { bool can_swap_to_uno( Particle const & p1, Particle const & p2 ){ assert(is_parton(p1) && is_parton(p2)); return p1.type != pid::gluon && p2.type == pid::gluon; } size_t count_gluons(PhaseSpacePoint::ConstPartonIterator first, PhaseSpacePoint::ConstPartonIterator last ){ return std::count_if(first, last, [](Particle const & p) {return p.type == pid::gluon;}); } /** assumes FKL configurations between first and last, * else there can be a quark in a non-extreme position * e.g. uno configuration gqg would pass */ Subleading possible_qqx( PhaseSpacePoint::ConstPartonIterator first, PhaseSpacePoint::ConstReversePartonIterator last ){ using namespace subleading; assert( std::distance( first,last.base() )>2 ); Subleading channels(~0l); channels.reset(eqqx); channels.reset(cqqx); auto const ngluon = count_gluons(first,last.base()); if(ngluon < 2) return channels; if(first->type==pid::gluon || last->type==pid::gluon){ channels.set(eqqx); } if(std::distance(first,last.base())>=4){ channels.set(cqqx); } return channels; } bool is_AWZ_proccess(Process const & proc){ return proc.boson && is_AWZ_boson(*proc.boson); } bool is_up_type(Particle const & part){ return is_anyquark(part) && !(std::abs(part.type)%2); } bool is_down_type(Particle const & part){ return is_anyquark(part) && std::abs(part.type)%2; } bool can_couple_to_W(Particle const & part, pid::ParticleID const W_id){ const int W_charge = W_id>0?1:-1; return std::abs(part.type)<5 && ( (W_charge*part.type > 0 && is_up_type(part)) || (W_charge*part.type < 0 && is_down_type(part)) ); } } void PhaseSpacePoint::maybe_turn_to_subl( double chance, Subleading channels, Process const & proc, RNG & ran ){ if(proc.njets <= 2) return; assert(outgoing_.size() >= 2); // decide what kind of subleading process is allowed bool can_be_uno_backward = can_swap_to_uno( *cbegin_partons(), *(++cbegin_partons()) ); bool can_be_uno_forward = can_swap_to_uno( *crbegin_partons(), *(++crbegin_partons()) ); // Special case: Higgs can not be outside of uno if(proc.boson && *proc.boson==pid::Higgs){ if(outgoing_.begin()->type == pid::Higgs || (++outgoing_.begin())->type==pid::Higgs){ can_be_uno_backward = false; } if(outgoing_.rbegin()->type == pid::Higgs || (++outgoing_.rbegin())->type==pid::Higgs){ can_be_uno_forward = false; } } if(channels[subleading::uno]){ channels.set(subleading::uno, can_be_uno_backward || can_be_uno_forward); } channels &= possible_qqx(cbegin_partons(), crbegin_partons()); bool allow_strange = true; if(is_AWZ_proccess(proc)) { if(std::none_of(cbegin_partons(), cend_partons(), [&proc](Particle const & p){ return can_couple_to_W(p, *proc.boson);})) { // enforce qqx if A/W/Z can't couple somewhere else // this is ensured to work through filter_partons in reconstruct_incoming channels.reset(subleading::uno); assert(channels.any()); chance = 1.; // strange not allowed for W if(std::abs(*proc.boson)== pid::Wp) allow_strange = false; } } std::size_t const nchannels = channels.count(); // no subleading if(nchannels==0) return; if(ran.flat() >= chance){ weight_ /= 1 - chance; return; } weight_ /= chance; // select channel double const step = 1./nchannels; weight_*=nchannels; unsigned selected = subleading::first; double rnd = nchannels>1?ran.flat():0.; for(; selected<=subleading::last; ++selected){ assert(rnd>=0); if(channels[selected]){ if(rndtype, (++begin_partons())->type); } return std::swap(rbegin_partons()->type, (++rbegin_partons())->type); } if(can_be_uno_backward){ return std::swap(begin_partons()->type, (++begin_partons())->type); } assert(can_be_uno_forward); std::swap(rbegin_partons()->type, (++rbegin_partons())->type); } //! select flavour of quark int PhaseSpacePoint::select_qqx_flavour(const bool allow_strange, RNG & ran){ const double r1 = 2.*ran.flat()-1.; const double max_flavour = allow_strange?N_F:N_F-1; weight_ *= max_flavour*2; int flavour = pid::down + std::floor(std::abs(r1)*max_flavour); return flavour*(r1<0.?-1:1); } void PhaseSpacePoint::turn_to_cqqx(const bool allow_strange, RNG & ran){ // we assume all FKL partons to be gluons auto first = ++begin_partons(); auto last = ++rbegin_partons(); auto const ng = std::distance(first, last.base()); if(ng < 2) throw std::logic_error("not enough gluons to create qqx"); int flavour = select_qqx_flavour(allow_strange, ran); // select gluon for switch if(ng!=2){ const double steps = 1./(ng-1); weight_ /= steps; for(auto rnd = ran.flat(); rnd>steps; ++first){ rnd-=steps; } } first->type = static_cast(flavour); (++first)->type = static_cast(-flavour); } void PhaseSpacePoint::turn_to_eqqx(const bool allow_strange, RNG & ran){ /// find first and last gluon in FKL chain auto first = begin_partons(); const bool can_forward = !is_anyquark(*first); auto last = rbegin_partons(); const bool can_backward = !is_anyquark(*last); if(std::distance(first, last.base()) < 2) throw std::logic_error("not enough gluons to create qqx"); int flavour = select_qqx_flavour(allow_strange, ran); // select gluon for switch if(can_forward && !can_backward){ first->type = static_cast(flavour); (++first)->type = static_cast(-flavour); return; } if(!can_forward && can_backward){ last->type = static_cast(flavour); (++last)->type = static_cast(-flavour); return; } assert(can_forward && can_backward); weight_*=2.; if(ran.flat()>0.5){ first->type = static_cast(flavour); (++first)->type = static_cast(-flavour); return; } last->type = static_cast(flavour); (++last)->type = static_cast(-flavour); } template fastjet::PseudoJet PhaseSpacePoint::gen_last_momentum( ParticleMomenta const & other_momenta, const double mass_square, const double y ) const { std::array pt{0.,0.}; for (auto const & p: other_momenta) { pt[0]-= p.px(); pt[1]-= p.py(); } const double mperp = std::sqrt(pt[0]*pt[0]+pt[1]*pt[1]+mass_square); const double pz=mperp*std::sinh(y); const double E=mperp*std::cosh(y); return {pt[0], pt[1], pz, E}; } namespace { //! adds a particle to target (in correct rapidity ordering) //! @returns positon of insertion auto insert_particle(std::vector & target, Particle && particle ){ const auto pos = std::upper_bound( begin(target),end(target),particle,rapidity_less{} ); target.insert(pos, std::move(particle)); return pos; } } PhaseSpacePoint::PhaseSpacePoint( Process const & proc, JetParameters const & jet_param, PDF & pdf, double E_beam, double const subl_chance, - Subleading const subl_channels, + Subleading subl_channels, ParticlesDecayMap const & particle_decays, EWConstants const & ew_parameters, RNG & ran ){ assert(proc.njets >= 2); status_ = Status::good; weight_ = 1; + // ensure that all setting are consistent + if(subl_chance == 0.) + subl_channels.reset(); + const int nout = proc.njets + (proc.boson?1:0) + proc.boson_decay.size(); outgoing_.reserve(nout); // generate parton momenta const bool is_pure_jets = (nout == proc.njets); auto partons = gen_LO_partons( proc.njets, is_pure_jets, jet_param, E_beam, ran ); // pre fill flavour with gluons for(auto&& p_out: partons) { outgoing_.emplace_back(Particle{pid::gluon, std::move(p_out), {}}); } if(status_ != Status::good) return; if(proc.boson){ // decay boson auto const & boson_prop = ew_parameters.prop(*proc.boson) ; auto boson{ gen_boson(*proc.boson, boson_prop.mass, boson_prop.width, ran) }; const auto pos{insert_particle(outgoing_, std::move(boson))}; const size_t boson_idx = std::distance(begin(outgoing_), pos); auto const & boson_decay = particle_decays.find(*proc.boson); if( !proc.boson_decay.empty() ){ // decay given in proc decays_.emplace( boson_idx, decay_boson(outgoing_[boson_idx], proc.boson_decay, ran) ); } else if( boson_decay != particle_decays.end() && !boson_decay->second.empty() ){ // decay given explicitly decays_.emplace( boson_idx, decay_boson(outgoing_[boson_idx], boson_decay->second, ran) ); } } // normalisation of momentum-conserving delta function weight_ *= std::pow(2*M_PI, 4); /** @TODO * uf (jet_param.min_pt) doesn't correspond to our final scale choice. * The HEJ scale generators currently expect a full event as input, * so fixing this is not completely trivial */ reconstruct_incoming(proc, subl_chance, subl_channels, pdf, E_beam, jet_param.min_pt, ran); if(status_ != Status::good) return; // set outgoing states begin_partons()->type = incoming_[0].type; rbegin_partons()->type = incoming_[1].type; maybe_turn_to_subl(subl_chance, subl_channels, proc, ran); if(proc.boson) couple_boson(*proc.boson, ran); } // pt generation, see eq:pt_sampling in developer manual double PhaseSpacePoint::gen_hard_pt( const int np , const double ptmin, const double ptmax, const double /* y */, RNG & ran ) { // heuristic parameter for pt sampling, see eq:pt_par in developer manual const double ptpar = ptmin + np/5.; const double arctan = std::atan((ptmax - ptmin)/ptpar); const double xpt = ran.flat(); const double pt = ptmin + ptpar*std::tan(xpt*arctan); const double cosine = std::cos(xpt*arctan); weight_ *= pt*ptpar*arctan/(cosine*cosine); return pt; } double PhaseSpacePoint::gen_soft_pt(int np, double max_pt, RNG & ran) { constexpr double ptpar = 4.; const double r = ran.flat(); const double pt = max_pt + ptpar/np*std::log(r); weight_ *= pt*ptpar/(np*r); return pt; } double PhaseSpacePoint::gen_parton_pt( int count, JetParameters const & jet_param, double max_pt, double y, RNG & ran ) { constexpr double p_small_pt = 0.02; if(! jet_param.peak_pt) { return gen_hard_pt(count, jet_param.min_pt, max_pt, y, ran); } const double r = ran.flat(); if(r > p_small_pt) { weight_ /= 1. - p_small_pt; return gen_hard_pt(count, *jet_param.peak_pt, max_pt, y, ran); } weight_ /= p_small_pt; const double pt = gen_soft_pt(count, *jet_param.peak_pt, ran); if(pt < jet_param.min_pt) { weight_=0.0; status_ = Status::not_enough_jets; return jet_param.min_pt; } return pt; } std::vector PhaseSpacePoint::gen_LO_partons( int np, bool is_pure_jets, JetParameters const & jet_param, double max_pt, RNG & ran ){ if (np<2) throw std::invalid_argument{"Not enough partons in gen_LO_partons"}; weight_ /= std::pow(16.*std::pow(M_PI,3),np); weight_ /= std::tgamma(np+1); //remove rapidity ordering std::vector partons; partons.reserve(np); for(int i = 0; i < np; ++i){ const double y = -jet_param.max_y + 2*jet_param.max_y*ran.flat(); weight_ *= 2*jet_param.max_y; const bool is_last_parton = i+1 == np; if(is_pure_jets && is_last_parton) { constexpr double parton_mass_sq = 0.; partons.emplace_back(gen_last_momentum(partons, parton_mass_sq, y)); break; } const double phi = 2*M_PI*ran.flat(); weight_ *= 2.0*M_PI; const double pt = gen_parton_pt(np, jet_param, max_pt, y, ran); if(weight_ == 0.0) return {}; partons.emplace_back(fastjet::PtYPhiM(pt, y, phi)); assert(jet_param.min_pt <= partons[i].pt()); assert(partons[i].pt() <= max_pt+1e-5); } // Need to check that at LO, the number of jets = number of partons; fastjet::ClusterSequence cs(partons, jet_param.def); auto cluster_jets=cs.inclusive_jets(jet_param.min_pt); if (cluster_jets.size()!=unsigned(np)){ weight_=0.0; status_ = Status::not_enough_jets; return {}; } std::sort(begin(partons), end(partons), rapidity_less{}); return partons; } Particle PhaseSpacePoint::gen_boson( ParticleID bosonid, double mass, double width, RNG & ran ){ // Usual phase space measure weight_ /= 16.*std::pow(M_PI, 3); // Generate a y Gaussian distributed around 0 /// @TODO check magic numbers for different boson Higgs /// @TODO better sampling for W const double stddev_y = 1.6; const double y = random_normal(stddev_y, ran); const double r1 = ran.flat(); const double s_boson = mass*( mass + width*std::tan(M_PI/2.*r1 + (r1-1.)*std::atan(mass/width)) ); // off-shell s_boson sampling, compensates for Breit-Wigner /// @TODO use a flag instead if(std::abs(bosonid) == pid::Wp){ weight_/=M_PI*M_PI*16.; //Corrects B-W factors, see git issue 132 weight_*= mass*width*( M_PI+2.*std::atan(mass/width) ) / ( 1. + std::cos( M_PI*r1 + 2.*(r1-1.)*std::atan(mass/width) ) ); } auto p = gen_last_momentum(outgoing_, s_boson, y); return Particle{bosonid, std::move(p), {}}; } namespace { /// partons are ordered: even = anti, 0 = gluon ParticleID index_to_pid(size_t i){ if(!i) return pid::gluon; return static_cast( i%2 ? (i+1)/2 : -i/2 ); } /// partons are ordered: even = anti, 0 = gluon size_t pid_to_index(ParticleID id){ if(id==pid::gluon) return 0; return id>0 ? id*2-1 : std::abs(id)*2; } using part_mask = std::bitset<11>; //!< Selection mask for partons part_mask init_allowed(ParticleID const id){ if(std::abs(id) == pid::proton) return ~0; part_mask out{0}; if(is_parton(id)) out[pid_to_index(id)] = 1; return out; } /// decides which "index" (see index_to_pid) are allowed for process part_mask allowed_quarks(ParticleID const boson){ if(std::abs(boson) != pid::Wp){ return ~0; } // special case W: // Wp: anti-down or up-type quark, no b/t // Wm: down or anti-up-type quark, no b/t return boson>0?0b00011001101 :0b00100110011; } } /** * @brief Returns list of all allowed initial states partons * * checks which partons are allowed as initial state: * 1. only allow what is given in the Runcard (p -> all) * 2. A/W/Z require something to couple to * a) no qqx => no incoming gluon * b) 2j => no incoming gluon * c) 3j => can couple OR is gluon => 2 gluons become qqx later * 3. pure eqqx requires at least one gluon * 4. pure uno requires at least one quark */ std::array PhaseSpacePoint::filter_partons( Process const & proc, double const subl_chance, Subleading const subl_channels, RNG & ran ){ std::array allowed_partons{ init_allowed(proc.incoming[0]), init_allowed(proc.incoming[1]) }; // special case A/W/Z && central qqx not possible if(is_AWZ_proccess(proc) && ((proc.njets < 4) || !subl_channels[subleading::cqqx]) ){ // all possible incoming states auto allowed = allowed_quarks(*proc.boson); if(proc.njets == 2 || !subl_channels[subleading::eqqx]){ allowed.reset(0); } // possible states per leg std::array const maybe_partons{ allowed_partons[0]&allowed, allowed_partons[1]&allowed}; if(maybe_partons[0].any() && maybe_partons[1].any()){ // two options to get allowed initial state => choose one at random const size_t idx = ran.flat() < 0.5; allowed_partons[idx] = maybe_partons[idx]; //! @TODO Is this factor correct? I think so wasn't there before weight_*=2.; // else choose the possible } else if(maybe_partons[0].any()) { allowed_partons[0] = maybe_partons[0]; } else if(maybe_partons[1].any()) { allowed_partons[1] = maybe_partons[1]; } else{ throw std::invalid_argument{"Incoming state not allowed."}; } } // special case: pure subleading if(subl_chance!=1.){ return allowed_partons; } auto other_channels = subl_channels; // pure eqqx other_channels.reset(subleading::eqqx); if(other_channels.none()){ auto const gluon_idx = pid_to_index(pid::gluon); auto & first_beam = allowed_partons[0]; auto & second_beam = allowed_partons[1]; if(first_beam[gluon_idx] && !second_beam[gluon_idx]){ first_beam.reset(); first_beam.set(gluon_idx); return allowed_partons; } if(!first_beam[gluon_idx] && second_beam[gluon_idx]) { second_beam.reset(); second_beam.set(gluon_idx); return allowed_partons; } if(first_beam[gluon_idx] && second_beam[gluon_idx]) { // both beams can be gluons // if one can't be a quark everything is good auto first_quarks = first_beam; first_quarks.reset(gluon_idx); auto second_quarks = second_beam; second_quarks.reset(gluon_idx); if(first_quarks.none() || second_quarks.none()){ return allowed_partons; } // else choose one to be a gluon double rnd = ran.flat(); weight_*=3.; if(rnd<1./3.){ allowed_partons[0].reset(); allowed_partons[0].set(gluon_idx); allowed_partons[1].reset(gluon_idx); } else if(rnd<2./3.){ allowed_partons[1].reset(); allowed_partons[1].set(gluon_idx); allowed_partons[0].reset(gluon_idx); } else { allowed_partons[0].reset(); allowed_partons[0].set(gluon_idx); allowed_partons[1].reset(); allowed_partons[1].set(gluon_idx); } return allowed_partons; } throw std::invalid_argument{ "Incoming state not allowed for pure central qqx."}; } other_channels = subl_channels; // pure uno other_channels.reset(subleading::uno); if(other_channels.none()){ auto const gluon_idx = pid_to_index(pid::gluon); auto & first_beam = allowed_partons[0]; auto first_quarks = first_beam; first_quarks.reset(gluon_idx); auto & second_beam = allowed_partons[1]; auto second_quarks = second_beam; second_quarks.reset(gluon_idx); if(first_quarks.any() && second_quarks.none()){ first_beam.reset(gluon_idx); return allowed_partons; } if(first_quarks.none() && second_quarks.any()) { second_beam.reset(gluon_idx); return allowed_partons; } if(first_quarks.any() && second_quarks.any()) { // both beams can be quarks // if one can't be gluon everything is good if(!first_beam[gluon_idx] || !second_beam[gluon_idx]){ return allowed_partons; } // else choose one to be a quark double rnd = ran.flat(); weight_*=3.; if(rnd<1./3.){ allowed_partons[0].reset(gluon_idx); allowed_partons[1].reset(); allowed_partons[1].set(gluon_idx); } else if(rnd<2./3.){ allowed_partons[1].reset(gluon_idx); allowed_partons[0].reset(); allowed_partons[0].set(gluon_idx); } else { allowed_partons[0].reset(gluon_idx); allowed_partons[1].reset(gluon_idx); } return allowed_partons; } throw std::invalid_argument{ "Incoming state not allowed for pure unordered."}; } return allowed_partons; } void PhaseSpacePoint::reconstruct_incoming( Process const & proc, double const subl_chance, Subleading const subl_channels, PDF & pdf, double E_beam, double uf, RNG & ran ){ std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_); // calculate xa, xb const double sqrts=2*E_beam; const double xa=(incoming_[0].E()-incoming_[0].pz())/sqrts; const double xb=(incoming_[1].E()+incoming_[1].pz())/sqrts; // abort if phase space point is outside of collider energy reach if (xa>1. || xb>1.){ weight_=0; status_ = Status::too_much_energy; return; } auto const & ids = proc.incoming; std::array allowed_partons = filter_partons(proc, subl_chance, subl_channels, ran); for(size_t i = 0; i < 2; ++i){ if(ids[i] == pid::proton || ids[i] == pid::p_bar){ // pick ids according to pdfs incoming_[i].type = generate_incoming_id(i, i?xb:xa, uf, pdf, allowed_partons[i], ran); } else { assert(allowed_partons[i][pid_to_index(ids[i])]); incoming_[i].type = ids[i]; } } assert(momentum_conserved(1e-7)); } ParticleID PhaseSpacePoint::generate_incoming_id( size_t const beam_idx, double const x, double const uf, PDF & pdf, part_mask allowed_partons, RNG & ran ){ std::array pdf_wt; pdf_wt[0] = allowed_partons[0]? std::fabs(pdf.pdfpt(beam_idx,x,uf,pid::gluon)):0.; double pdftot = pdf_wt[0]; for(size_t i = 1; i < pdf_wt.size(); ++i){ pdf_wt[i] = allowed_partons[i]? 4./9.*std::fabs(pdf.pdfpt(beam_idx,x,uf,index_to_pid(i))):0; pdftot += pdf_wt[i]; } const double r1 = pdftot * ran.flat(); double sum = 0; for(size_t i=0; i < pdf_wt.size(); ++i){ if (r1 < (sum+=pdf_wt[i])){ weight_*= pdftot/pdf_wt[i]; return index_to_pid(i); } } std::cerr << "Error in choosing incoming parton: "< allowed_parts; for(auto part_it=begin_partons(); part_it!=end_partons(); ++part_it){ // Wp -> up OR anti-down, Wm -> anti-up OR down, no bottom if ( can_couple_to_W(*part_it, boson) ) allowed_parts.push_back(part_it); } if(allowed_parts.size() == 0){ throw std::logic_error{"Found no parton for coupling with boson"}; } // select one and flip it size_t idx = 0; if(allowed_parts.size() > 1){ /// @TODO more efficient sampling /// old code: probability[i] = exp(parton[i].y - W.y) idx = std::floor(ran.flat()*allowed_parts.size()); weight_ *= allowed_parts.size(); } const int W_charge = boson>0?1:-1; allowed_parts[idx]->type = static_cast( allowed_parts[idx]->type - W_charge ); } double PhaseSpacePoint::random_normal( double stddev, RNG & ran ){ const double r1 = ran.flat(); const double r2 = ran.flat(); const double lninvr1 = -std::log(r1); const double result = stddev*std::sqrt(2.*lninvr1)*std::cos(2.*M_PI*r2); weight_ *= exp(result*result/(2*stddev*stddev))*std::sqrt(2.*M_PI)*stddev; return result; } bool PhaseSpacePoint::momentum_conserved(double ep) const{ fastjet::PseudoJet diff; for(auto const & in: incoming()) diff += in.p; for(auto const & out: outgoing()) diff -= out.p; return nearby_ep(diff, fastjet::PseudoJet{}, ep); } Decay PhaseSpacePoint::select_decay_channel( std::vector const & decays, RNG & ran ){ double br_total = 0.; for(auto const & decay: decays) br_total += decay.branching_ratio; // adjust weight // this is given by (channel branching ratio)/(chance to pick channel) // where (chance to pick channel) = // (channel branching ratio)/(total branching ratio) weight_ *= br_total; if(decays.size()==1) return decays.front(); const double r1 = br_total*ran.flat(); double br_sum = 0.; for(auto const & decay: decays){ br_sum += decay.branching_ratio; if(r1 < br_sum) return decay; } throw std::logic_error{"unreachable"}; } std::vector PhaseSpacePoint::decay_boson( Particle const & parent, std::vector const & decays, RNG & ran ){ const auto channel = select_decay_channel(decays, ran); return decay_boson(parent, channel.products, ran); } std::vector PhaseSpacePoint::decay_boson( Particle const & parent, std::vector const & decays, RNG & ran ){ if(decays.size() != 2){ throw not_implemented{ "only decays into two particles are implemented" }; } std::vector decay_products(decays.size()); for(size_t i = 0; i < decays.size(); ++i){ decay_products[i].type = decays[i]; } // choose polar and azimuth angle in parent rest frame const double E = parent.m()/2; const double theta = 2.*M_PI*ran.flat(); const double cos_phi = 2.*ran.flat()-1.; // Jacobian Factors for W in line 418 const double sin_phi = std::sqrt(1. - cos_phi*cos_phi); // Know 0 < phi < pi const double px = E*std::cos(theta)*sin_phi; const double py = E*std::sin(theta)*sin_phi; const double pz = E*cos_phi; decay_products[0].p.reset(px, py, pz, E); decay_products[1].p.reset(-px, -py, -pz, E); for(auto & particle: decay_products) particle.p.boost(parent.p); return decay_products; } }