diff --git a/src/jets.cc b/src/jets.cc
index 083fb12..38a6774 100644
--- a/src/jets.cc
+++ b/src/jets.cc
@@ -1,688 +1,696 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include "HEJ/jets.hh"
 
 #include "HEJ/Constants.hh"
 
 // Colour acceleration multiplier for gluons see eq. (7) in arXiv:0910.5113
 // @TODO: this is not a current and should be moved somewhere else
 double K_g(double p1minus, double paminus) {
     return 1./2.*(p1minus/paminus + paminus/p1minus)*(HEJ::C_A - 1./HEJ::C_A) + 1./HEJ::C_A;
 }
 double K_g(
   HLV const & pout,
   HLV const & pin
   ) {
   if(pin.z() > 0) return K_g(pout.plus(), pin.plus());
   return K_g(pout.minus(), pin.minus());
 }
 
 CCurrent CCurrent::operator+(const CCurrent& other)
 {
     COM result_c0=c0 + other.c0;
     COM result_c1=c1 + other.c1;
     COM result_c2=c2 + other.c2;
     COM result_c3=c3 + other.c3;
 
     return CCurrent(result_c0,result_c1,result_c2,result_c3);
 }
 
 CCurrent CCurrent::operator-(const CCurrent& other)
 {
     COM result_c0=c0 - other.c0;
     COM result_c1=c1 - other.c1;
     COM result_c2=c2 - other.c2;
     COM result_c3=c3 - other.c3;
 
     return CCurrent(result_c0,result_c1,result_c2,result_c3);
 }
 
 CCurrent CCurrent::operator*(const double x)
 {
     COM result_c0=x*CCurrent::c0;
     COM result_c1=x*CCurrent::c1;
     COM result_c2=x*CCurrent::c2;
     COM result_c3=x*CCurrent::c3;
 
     return CCurrent(result_c0,result_c1,result_c2,result_c3);
 }
 
 CCurrent CCurrent::operator/(const double x)
 {
     COM result_c0=CCurrent::c0/x;
     COM result_c1=CCurrent::c1/x;
     COM result_c2=CCurrent::c2/x;
     COM result_c3=CCurrent::c3/x;
 
     return CCurrent(result_c0,result_c1,result_c2,result_c3);
 }
 
 CCurrent CCurrent::operator*(const COM x)
 {
     COM result_c0=x*CCurrent::c0;
     COM result_c1=x*CCurrent::c1;
     COM result_c2=x*CCurrent::c2;
     COM result_c3=x*CCurrent::c3;
 
     return CCurrent(result_c0,result_c1,result_c2,result_c3);
 }
 
 CCurrent CCurrent::operator/(const COM x)
 {
     COM result_c0=(CCurrent::c0)/x;
     COM result_c1=(CCurrent::c1)/x;
     COM result_c2=(CCurrent::c2)/x;
     COM result_c3=(CCurrent::c3)/x;
 
     return CCurrent(result_c0,result_c1,result_c2,result_c3);
 }
 
 std::ostream& operator <<(std::ostream& os, const CCurrent& cur)
 {
     os << "("<<cur.c0<< " ; "<<cur.c1<<" , "<<cur.c2<<" , "<<cur.c3<<")";
     return os;
 }
 
 CCurrent operator * ( double x, CCurrent& m)
 {
     return m*x;
 }
 
 CCurrent operator * ( COM x, CCurrent& m)
 {
     return m*x;
 }
 
 CCurrent operator / ( double x, CCurrent& m)
 {
     return m/x;
 }
 
 CCurrent operator / ( COM x, CCurrent& m)
 {
     return m/x;
 }
 
 COM CCurrent::dot(HLV p1)
 {
     //  Current goes (E,px,py,pz)
     //  Vector goes (px,py,pz,E)
     return p1[3]*c0-p1[0]*c1-p1[1]*c2-p1[2]*c3;
 }
 
 COM CCurrent::dot(CCurrent p1)
 {
     return p1.c0*c0-p1.c1*c1-p1.c2*c2-p1.c3*c3;
 }
 
 //Current Functions
 void joi(HLV pout, bool helout, HLV pin, bool helin, current &cur) {
   cur[0]=0.;
   cur[1]=0.;
   cur[2]=0.;
   cur[3]=0.;
 
   const double sqpop = sqrt(pout.plus());
   const double sqpom = sqrt(pout.minus());
-  const COM poperp = pout.x() + COM(0, 1) * pout.y();
+  COM poperp = pout.x() + COM(0, 1) * pout.y();
+
+  //Add here a bit if want to create a jii, in effect
+  if(pout.x()==0 && pout.y() ==0){
+    poperp = -1.;
+  }
+  else {
+    poperp=pout.x()+COM(0,1)*pout.y();
+  }
 
   if (helout != helin) {
     throw std::invalid_argument{"Non-matching helicities"};
   } else if (helout == false) { // negative helicity
     if (pin.plus() > pin.minus()) { // if forward
       const double sqpip = sqrt(pin.plus());
       cur[0] = sqpop * sqpip;
       cur[1] = sqpom * sqpip * poperp / abs(poperp);
       cur[2] = -COM(0,1) * cur[1];
       cur[3] = cur[0];
     } else { // if backward
       const double sqpim = sqrt(pin.minus());
       cur[0] = -sqpom * sqpim * poperp / abs(poperp);
       cur[1] = -sqpim * sqpop;
       cur[2] = COM(0,1) * cur[1];
       cur[3] = -cur[0];
     }
   } else { // positive helicity
     if (pin.plus() > pin.minus()) { // if forward
       const double sqpip = sqrt(pin.plus());
       cur[0] = sqpop * sqpip;
       cur[1] = sqpom * sqpip * conj(poperp) / abs(poperp);
       cur[2] = COM(0,1) * cur[1];
       cur[3] = cur[0];
     } else { // if backward
       const double sqpim = sqrt(pin.minus());
       cur[0] = -sqpom * sqpim * conj(poperp) / abs(poperp);
       cur[1] = -sqpim * sqpop;
       cur[2] = -COM(0,1) * cur[1];
       cur[3] = -cur[0];
     }
   }
 }
 
 CCurrent joi (HLV pout, bool helout, HLV pin, bool helin)
 {
   current cur;
   joi(pout, helout, pin, helin, cur);
   return CCurrent(cur[0],cur[1],cur[2],cur[3]);
 }
 
 void jio(HLV pin, bool helin, HLV pout, bool helout, current &cur) {
   joi(pout, !helout, pin, !helin, cur);
 }
 
 CCurrent jio (HLV pin, bool helin, HLV pout, bool helout)
 {
     current cur;
     jio(pin, helin, pout, helout, cur);
     return CCurrent(cur[0],cur[1],cur[2],cur[3]);
 }
 
 void joo(HLV pi, bool heli, HLV pj, bool helj, current &cur) {
 
   // Zero our current
   cur[0] = 0.0;
   cur[1] = 0.0;
   cur[2] = 0.0;
   cur[3] = 0.0;
   if (heli!=helj) {
     throw std::invalid_argument{"Non-matching helicities"};
   } else if ( heli == true ) { // If positive helicity swap momenta
     std::swap(pi,pj);
   }
 
   const double sqpjp = sqrt(pj.plus());
   const double sqpjm = sqrt(pj.minus());
   const double sqpip = sqrt(pi.plus());
   const double sqpim = sqrt(pi.minus());
 
   const COM piperp = pi.x() + COM(0,1) * pi.y();
   const COM pjperp = pj.x() + COM(0,1) * pj.y();
   const COM phasei = piperp / abs(piperp);
   const COM phasej = pjperp / abs(pjperp);
 
   cur[0] = sqpim * sqpjm * phasei * conj(phasej) + sqpip * sqpjp;
   cur[1] = sqpim * sqpjp * phasei + sqpip * sqpjm * conj(phasej);
   cur[2] = -COM(0, 1) * (sqpim * sqpjp * phasei - sqpip * sqpjm * conj(phasej));
   cur[3] = -sqpim * sqpjm * phasei * conj(phasej) + sqpip * sqpjp;
 }
 
 CCurrent joo (HLV pi, bool heli, HLV pj, bool helj)
 {
   current cur;
   joo(pi, heli, pj, helj, cur);
   return CCurrent(cur[0],cur[1],cur[2],cur[3]);
 }
 namespace{
 //@{
   /**
    * @brief Pure Jet FKL Contributions, function to handle all incoming types.
    * @param p1out             Outgoing Particle 1.
    * @param p1in              Incoming Particle 1.
    * @param p2out             Outgoing Particle 2
    * @param p2in              Incoming Particle 2
    *
    * Calculates j_\mu    j^\mu.
    * Handles all possible incoming states. Helicity doesn't matter since we sum
    * over all of them.
    */
   double j_j(HLV const & p1out, HLV const & p1in,
              HLV const & p2out, HLV const & p2in
   ){
     HLV const q1=p1in-p1out;
     HLV const q2=-(p2in-p2out);
     current mj1m,mj1p,mj2m,mj2p;
 
     // Note need to flip helicities in anti-quark case.
     joi(p1out, false, p1in, false, mj1p);
     joi(p1out, true,  p1in, true,  mj1m);
     joi(p2out, false, p2in, false, mj2p);
     joi(p2out, true,  p2in, true,  mj2m);
 
     COM const Mmp=cdot(mj1m,mj2p);
     COM const Mmm=cdot(mj1m,mj2m);
     COM const Mpp=cdot(mj1p,mj2p);
     COM const Mpm=cdot(mj1p,mj2m);
 
     double const sst=abs2(Mmm)+abs2(Mmp)+abs2(Mpp)+abs2(Mpm);
 
     // Multiply by Cf^2
     return HEJ::C_F*HEJ::C_F*(sst)/(q1.m2()*q2.m2());
   }
 } //anonymous namespace
 double ME_qQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in){
   return j_j(p1out, p1in, p2out, p2in);
 }
 
 double ME_qQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in){
   return j_j(p1out, p1in, p2out, p2in);
 }
 
 double ME_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in){
   return j_j(p1out, p1in, p2out, p2in);
 }
 
 double ME_qg(HLV p1out, HLV p1in, HLV p2out, HLV p2in){
   return j_j(p1out, p1in, p2out, p2in)*K_g(p2out, p2in)/HEJ::C_F;
 }
 
 double ME_qbarg(HLV p1out, HLV p1in, HLV p2out, HLV p2in){
   return j_j(p1out, p1in, p2out, p2in)*K_g(p2out, p2in)/(HEJ::C_F);
 }
 
 double ME_gg(HLV p1out, HLV p1in, HLV p2out, HLV p2in){
   return j_j(p1out, p1in, p2out, p2in)*K_g(p1out, p1in)*K_g(p2out, p2in)/(HEJ::C_F*HEJ::C_F);
 }
 //@}
 
 namespace{
   double juno_j(HLV const & pg, HLV const & p1out,
                 HLV const & p1in, HLV const & p2out, HLV const & p2in
   ){
     //  This construction is taking rapidity order: pg > p1out >> p2out
     HLV q1=p1in-p1out;  // Top End
     HLV q2=-(p2in-p2out);   // Bottom End
     HLV qg=p1in-p1out-pg;  // Extra bit post-gluon
 
     // Note <p1|eps|pa> current split into two by gauge choice.
     // See James C's Thesis (p72). <p1|eps|pa> -> <p1|pg><pg|pa>
     CCurrent mj1p=joi(p1out, false, p1in, false);
     CCurrent mj1m=joi(p1out,  true, p1in,  true);
     CCurrent jgap=joi(pg,    false, p1in, false);
     CCurrent jgam=joi(pg,     true, p1in,  true);
 
     // Note for function joo(): <p1+|pg+> = <pg-|p1->.
     CCurrent j2gp=joo(p1out, false, pg, false);
     CCurrent j2gm=joo(p1out,  true, pg,  true);
 
     CCurrent mj2p=joi(p2out, false, p2in, false);
     CCurrent mj2m=joi(p2out,  true, p2in,  true);
 
     // Dot products of these which occur again and again
     COM Mmp=mj1m.dot(mj2p);
     COM Mmm=mj1m.dot(mj2m);
     COM Mpp=mj1p.dot(mj2p);
     COM Mpm=mj1p.dot(mj2m);
 
     CCurrent p1o(p1out),p2o(p2out),p2i(p2in),qsum(q1+qg),p1i(p1in);
 
     CCurrent Lmm=(qsum*(Mmm)+(-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m
                   +(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*Mmm/2.))/q1.m2();
     CCurrent Lmp=(qsum*(Mmp) + (-2.*mj2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2p
                   +(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*Mmp/2.))/q1.m2();
     CCurrent Lpm=(qsum*(Mpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m
                   +(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*Mpm/2.))/q1.m2();
     CCurrent Lpp=(qsum*(Mpp) + (-2.*mj2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2p
                   +(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*Mpp/2.))/q1.m2();
 
     CCurrent U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*Mmm)/(p1out+pg).m2();
     CCurrent U1mp=(jgam.dot(mj2p)*j2gm+2.*p1o*Mmp)/(p1out+pg).m2();
     CCurrent U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*Mpm)/(p1out+pg).m2();
     CCurrent U1pp=(jgap.dot(mj2p)*j2gp+2.*p1o*Mpp)/(p1out+pg).m2();
     CCurrent U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*Mmm)/(p1in-pg).m2();
     CCurrent U2mp=((-1.)*j2gm.dot(mj2p)*jgam+2.*p1i*Mmp)/(p1in-pg).m2();
     CCurrent U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*Mpm)/(p1in-pg).m2();
     CCurrent U2pp=((-1.)*j2gp.dot(mj2p)*jgap+2.*p1i*Mpp)/(p1in-pg).m2();
 
     constexpr double cf=HEJ::C_F;
 
     double amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
     double amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
     double apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
     double app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
     double ampsq=-(amm+amp+apm+app);
 
     //Divide by t-channels
     ampsq/=q2.m2()*qg.m2();
     ampsq/=16.;
 
     // Factor of (Cf/Ca) for each quark to match j_j.
     ampsq*=(HEJ::C_F*HEJ::C_F)/(HEJ::C_A*HEJ::C_A);
 
     return ampsq;
 
   }
 }
 
 //Unordered bits for pure jet
 double ME_unob_qQ (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in){
   return juno_j(pg, p1out, p1in, p2out, p2in);
 }
 
 double ME_unob_qbarQ (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in){
   return juno_j(pg, p1out, p1in, p2out, p2in);
 }
 
 double ME_unob_qQbar (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in){
   return juno_j(pg, p1out, p1in, p2out, p2in);
 }
 
 double ME_unob_qbarQbar (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in){
   return juno_j(pg, p1out, p1in, p2out, p2in);
 }
 
 double ME_unob_qg (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in){
   return juno_j(pg, p1out, p1in, p2out, p2in)*K_g(p2out,p2in)/HEJ::C_F;
 }
 
 double ME_unob_qbarg (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in){
   return juno_j(pg, p1out, p1in, p2out, p2in)*K_g(p2out,p2in)/HEJ::C_F;
 }
 
 
 void j (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pin, bool helin,current &cur) {
 
 	cur[0]=0.;
 	cur[1]=0.;
 	cur[2]=0.;
 	cur[3]=0.;
 
 	double sqpop=sqrt(pout.plus());
 	double sqpom=sqrt(pout.minus());
 	COM poperp;
     //Add here a bit if want to create a jii, in effect
     if(pout.x()==0 && pout.y() ==0){
         poperp = -1.;
     }
     else {
    poperp=pout.x()+COM(0,1)*pout.y();
     }
 
 	if (helout!=helin) {
 		std::cerr<< "void j : Non-matching helicities at line " << __LINE__ << std::endl;
 	} else if (helout==false) { // negative helicity
 		if (pin.plus()>pin.minus()) { // if forward
 			double sqpip=sqrt(pin.plus());
 			cur[0]=sqpop*sqpip;
 			cur[1]=sqpom*sqpip*poperp/abs(poperp);
 			cur[2]=-COM(0,1)*cur[1];
 			cur[3]=cur[0];
 		} else { // if backward
 			double sqpim=sqrt(pin.minus());
 			cur[0]=-sqpom*sqpim*poperp/abs(poperp);
 			cur[1]=-sqpim*sqpop;
 			cur[2]=COM(0,1)*cur[1];
 			cur[3]=-cur[0];
 		}
 	} else { // positive helicity
 		if (pin.plus()>pin.minus()) { // if forward
 			double sqpip=sqrt(pin.plus());
 			cur[0]=sqpop*sqpip;
 			cur[1]=sqpom*sqpip*conj(poperp)/abs(poperp);
 			cur[2]=COM(0,1)*cur[1];
 			cur[3]=cur[0];
 		} else { // if backward
 			double sqpim=sqrt(pin.minus());
 			cur[0]=-sqpom*sqpim*conj(poperp)/abs(poperp);
 			cur[1]=-sqpim*sqpop;
 			cur[2]=-COM(0,1)*cur[1];
 			cur[3]=-cur[0];
 		}
 	}
 }
 
 
 // qg -> qQQ~
 
 //First, a function for generating polarisation tensors. Output as 'current'. Should be general for any refmom now that I've added a bit to the j function.
 
 void eps(CLHEP::HepLorentzVector refmom, CLHEP::HepLorentzVector kb, bool hel, current &ep){
   current curm,curp;
   //Recall - positive helicity eps has negative helicity choices for spinors and vice versa
-  j(refmom,true,kb,true,curm);
-  j(refmom,false,kb,false,curp);
+  joi(refmom,true,kb,true,curm);
+  joi(refmom,false,kb,false,curp);
   double norm=1.;
   if(kb.z()<0.)
     norm *= sqrt(2.*refmom.plus()*kb.minus());
   if(kb.z()>0.)
     norm = sqrt(2.*refmom.minus()*kb.plus());
   if(hel==false){
     ep[0] = curm[0]/norm;
     ep[1] = curm[1]/norm;
     ep[2] = curm[2]/norm;
     ep[3] = curm[3]/norm;
   }
   if(hel==true){
     ep[0] = curp[0]/norm;
     ep[1] = curp[1]/norm;
     ep[2] = curp[2]/norm;
     ep[3] = curp[3]/norm;
   }
 }
 
 //Now build up each part of the sqaured amplitude
 
 COM qggm1(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, bool helchain, bool heltop, bool helb,CLHEP::HepLorentzVector refmom, bool aqline){
   //Since everything is defined with currents, need to use compeleness relation to expand p slash. i.e. pslash = |p><p|. Only one helicity 'survives' as defined by the helicities of the spinors at the end of the chain.
   current cur33, cur23, curb3, cur2b, cur1a, ep;
   joo(p3, helchain, p3, helchain,cur33);
   joo(p2,helchain,p3,helchain,cur23);
   jio(pb,helchain,p3,helchain,curb3);
   joi(p2,helchain,pb,helchain,cur2b);
   if(aqline==true)
     jio(pa, heltop, p1, heltop,cur1a);
   if(aqline==false)
     joi(p1, heltop, pa, heltop,cur1a);
 
   double t2 = (p3-pb)*(p3-pb);
   //Create vertex
   COM v1[4][4];
   for(int u=0; u<4;u++)
   {
     for(int v=0; v<4; v++)
     {
       v1[u][v]=(cur23[u]*cur33[v]-cur2b[u]*curb3[v])/t2*(-1.);
     }
   }
   //Dot in current and eps
   //Metric tensor
   double eta[4][4]={};
   eta[0][0]=1.;
   eta[1][1]=-1.;
   eta[2][2]=-1.;
   eta[3][3]=-1.;
   //eps
   eps(refmom,pb,helb, ep);
   COM M1=0.;
   for(int i=0;i<4;i++){
     for(int j=0;j<4;j++){
       for(int k=0; k<4; k++){
         for(int l=0; l<4;l++){
           M1+= eta[i][k]*cur1a[k]*(v1[i][j])*ep[l]*eta[l][j];
         }
       }
     }
   }
   return M1;
 }
 
 COM qggm2(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, bool helchain, bool heltop, bool helb,CLHEP::HepLorentzVector refmom, bool aqline){
   //Since everything is defined with currents, need to use compeleness relation to expand p slash. i.e. pslash = |p><p|. Only one helicity 'survives' as defined by the helicities of the spinors at the end of the chain.
   current cur22, cur23, curb3, cur2b, cur1a, ep;
   joo(p2, helchain, p2, helchain,cur22);
   joo(p2,helchain,p3,helchain,cur23);
   jio(pb,helchain,p3,helchain,curb3);
   joi(p2,helchain,pb,helchain,cur2b);
 
   if(aqline==true)
     jio(pa, heltop, p1, heltop,cur1a);
   if(aqline==false)
     joi(p1, heltop, pa, heltop,cur1a);
 
   double t2t = (p2-pb)*(p2-pb);
   //Create vertex
   COM v2[4][4]={};
   for(int u=0; u<4;u++)
   {
     for(int v=0; v<4; v++)
     {
       v2[u][v]=(cur22[v]*cur23[u]-cur2b[v]*curb3[u])/t2t;
     }
   }
   //Dot in current and eps
   //Metric tensor
   double eta[4][4]={};
   eta[0][0]=1.;
   eta[1][1]=-1.;
   eta[2][2]=-1.;
   eta[3][3]=-1.;
   //eps
   eps(refmom,pb,helb, ep);
   COM M2=0.;
   for(int i=0;i<4;i++){
     for(int j=0;j<4;j++){
       for(int k=0; k<4; k++){
         for(int l=0; l<4;l++){
           M2+= eta[i][k]*cur1a[k]*(v2[i][j])*ep[l]*eta[l][j];
         }
       }
     }
   }
   return M2;
 }
 
 COM qggm3(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, bool helchain, bool heltop, bool helb,CLHEP::HepLorentzVector refmom, bool aqline){
   //3 gluon vertex bit
   //Metric tensor
   double eta[4][4]={};
   eta[0][0]=1.;
   eta[1][1]=-1.;
   eta[2][2]=-1.;
   eta[3][3]=-1.;
   current spincur,ep,cur1a;
   double s23 = (p2+p3)*(p2+p3);
   joo(p2,helchain,p3,helchain,spincur);
   if(aqline==true)
     jio(pa, heltop, p1, heltop,cur1a);
   if(aqline==false)
     joi(p1, heltop, pa, heltop,cur1a);
   //Redefine relevant momenta as currents - for ease of calling correct part of vector
   current ka,k2,k3,kb;
   kb[0]=pb.e();
   kb[1]=pb.x();
   kb[2]=pb.y();
   kb[3]=pb.z();
   k2[0]=p2.e();
   k2[1]=p2.x();
   k2[2]=p2.y();
   k2[3]=p2.z();
   k3[0]=p3.e();
   k3[1]=p3.x();
   k3[2]=p3.y();
   k3[3]=p3.z();
   ka[0]=pa.e();
   ka[1]=pa.x();
   ka[2]=pa.y();
   ka[3]=pa.z();
   COM V3g[4][4]={};
   for(int u=0;u<4;u++){
     for(int v=0;v<4;v++){
       for(int p=0;p<4;p++){
         for(int r=0; r<4;r++){
           V3g[u][v] += COM(0.,1.)*(((2.*k2[v]+2.*k3[v])*eta[u][p] - (2.*kb[u])*eta[p][v]+2.*kb[p]*eta[u][v])*spincur[r]*eta[r][p])/s23;
         }
       }
     }
   }
   //Alternative extra bit - I will also choose the gauge such that this part vanishes
   COM diffextrabit[4][4]={};
   for(int u=0;u<4;u++) {
     for(int v=0;v<4;v++) {
       diffextrabit[u][v] = 0.;
     }
   }
   //Dot in current and eps
   //eps
   eps(refmom,pb,helb, ep);
   COM M3=0.;
   for(int i=0;i<4;i++){
     for(int j=0;j<4;j++){
       for(int k=0; k<4; k++){
         for(int l=0; l<4;l++){
           M3+= eta[i][k]*cur1a[k]*(V3g[i][j]+diffextrabit[i][j])*ep[l]*eta[l][j];
         }
       }
     }
   }
   return M3;
 }
 
 //Now the function to give helicity/colour sum/average
 double MqgtqQQ(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, bool aqline, bool qqxmarker)
 {
 
 
   //If qqxmarker is true, switch the order of quark and anti-quark
   CLHEP::HepLorentzVector ka,kb,k1,k2,k3;
 
   if(qqxmarker==true){
     ka=pa;
     kb=pb;
     k1=p1;
     k2=p3;
     k3=p2;
   } else {
     ka=pa;
     kb=pb;
     k1=p1;
     k2=p2;
     k3=p3;
   }
 
   // 4 indepedent helicity choices (complex conjugation related).
 
   //Need to evalute each independent hel configuration and store that result somewhere
 
   COM Mmmm1 = qggm1(ka,kb,k1,k2,k3,false,false,false, ka, aqline);
   COM Mmmm2 = qggm2(ka,kb,k1,k2,k3,false,false,false, ka, aqline);
   COM Mmmm3 = qggm3(ka,kb,k1,k2,k3,false,false,false, ka, aqline);
   COM Mmmp1 = qggm1(ka,kb,k1,k2,k3,false,true,false, ka, aqline);
   COM Mmmp2 = qggm2(ka,kb,k1,k2,k3,false,true,false, ka, aqline);
   COM Mmmp3 = qggm3(ka,kb,k1,k2,k3,false,true,false, ka, aqline);
   COM Mpmm1 = qggm1(ka,kb,k1,k2,k3,false,false,true, ka, aqline);
   COM Mpmm2 = qggm2(ka,kb,k1,k2,k3,false,false,true, ka, aqline);
   COM Mpmm3 = qggm3(ka,kb,k1,k2,k3,false,false,true, ka, aqline);
   COM Mpmp1 = qggm1(ka,kb,k1,k2,k3,false,true,true, ka, aqline);
   COM Mpmp2 = qggm2(ka,kb,k1,k2,k3,false,true,true, ka, aqline);
   COM Mpmp3 = qggm3(ka,kb,k1,k2,k3,false,true,true, ka, aqline);
 
   //Colour factors:
   COM cm1m1,cm2m2,cm3m3,cm1m2,cm1m3,cm2m3;
   cm1m1=8./3.;
   cm2m2=8./3.;
   cm3m3=6.;
   cm1m2 =-1./3.;
   cm1m3 = -3.*COM(0.,1.);
   cm2m3 = 3.*COM(0.,1.);
 
   //Sqaure and sum for each helicity config:
   double Mmmm,Mmmp,Mpmm,Mpmp;
   Mmmm = real(cm1m1*pow(abs(Mmmm1),2)+cm2m2*pow(abs(Mmmm2),2)+cm3m3*pow(abs(Mmmm3),2)+2.*real(cm1m2*Mmmm1*conj(Mmmm2))+2.*real(cm1m3*Mmmm1*conj(Mmmm3))+2.*real(cm2m3*Mmmm2*conj(Mmmm3)));
   Mmmp = real(cm1m1*pow(abs(Mmmp1),2)+cm2m2*pow(abs(Mmmp2),2)+cm3m3*pow(abs(Mmmp3),2)+2.*real(cm1m2*Mmmp1*conj(Mmmp2))+2.*real(cm1m3*Mmmp1*conj(Mmmp3))+2.*real(cm2m3*Mmmp2*conj(Mmmp3)));
   Mpmm = real(cm1m1*pow(abs(Mpmm1),2)+cm2m2*pow(abs(Mpmm2),2)+cm3m3*pow(abs(Mpmm3),2)+2.*real(cm1m2*Mpmm1*conj(Mpmm2))+2.*real(cm1m3*Mpmm1*conj(Mpmm3))+2.*real(cm2m3*Mpmm2*conj(Mpmm3)));
   Mpmp = real(cm1m1*pow(abs(Mpmp1),2)+cm2m2*pow(abs(Mpmp2),2)+cm3m3*pow(abs(Mpmp3),2)+2.*real(cm1m2*Mpmp1*conj(Mpmp2))+2.*real(cm1m3*Mpmp1*conj(Mpmp3))+2.*real(cm2m3*Mpmp2*conj(Mpmp3)));
 
   //Result (averaged, without coupling). Factor of 2 for the helicity configurations we didn't need to evalute explicity
 
   return (2.*(Mmmm+Mmmp+Mpmm+Mpmp)/24./4.)/(ka-k1).m2()/(k2+k3-kb).m2();
 }
 
 
 // Extremal qqx
 double ME_Exqqx_qbarqQ(HLV pgin, HLV pqout, HLV pqbarout, HLV p2out, HLV p2in){
  return MqgtqQQ(p2in, pgin, p2out, pqout, pqbarout, false, false);
 }
 
 double ME_Exqqx_qqbarQ(HLV pgin, HLV pqout, HLV pqbarout, HLV p2out, HLV p2in){
   return MqgtqQQ(p2in, pgin, p2out, pqout, pqbarout, false, true);
 }
 
 double ME_Exqqx_qbarqg(HLV pgin, HLV pqout, HLV pqbarout, HLV p2out, HLV p2in){
   return MqgtqQQ(p2in, pgin, p2out, pqout, pqbarout, false, false)*K_g(p2out,p2in)/HEJ::C_F;
 }
 
 double ME_Exqqx_qqbarg(HLV pgin, HLV pqout, HLV pqbarout, HLV p2out, HLV p2in){
   return MqgtqQQ(p2in, pgin, p2out, pqout, pqbarout, false, true)*K_g(p2out,p2in)/HEJ::C_F;
 }