diff --git a/src/Event.cc b/src/Event.cc index be795e0..0cb4ca0 100644 --- a/src/Event.cc +++ b/src/Event.cc @@ -1,927 +1,870 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019 * \copyright GPLv2 or later */ #include "HEJ/Event.hh" #include <algorithm> #include <assert.h> #include <numeric> #include <utility> #include "LHEF/LHEF.h" #include "fastjet/JetDefinition.hh" #include "HEJ/Constants.hh" #include "HEJ/exceptions.hh" #include "HEJ/PDG_codes.hh" namespace HEJ{ namespace{ constexpr int status_in = -1; constexpr int status_decayed = 2; constexpr int status_out = 1; /// @name helper functions to determine event type //@{ /** * \brief check if final state valid for HEJ * * check if there is at most one photon, W, H, Z in the final state * and all the rest are quarks or gluons */ bool final_state_ok(std::vector<Particle> const & outgoing){ bool has_AWZH_boson = false; for(auto const & out: outgoing){ if(is_AWZH_boson(out.type)){ if(has_AWZH_boson) return false; has_AWZH_boson = true; } else if(! is_parton(out.type)) return false; } return true; } template<class Iterator> Iterator remove_AWZH(Iterator begin, Iterator end){ return std::remove_if( begin, end, [](Particle const & p){return is_AWZH_boson(p);} ); } template<class Iterator> bool valid_outgoing(Iterator begin, Iterator end){ return std::distance(begin, end) >= 2 && std::is_sorted(begin, end, rapidity_less{}) && std::count_if( begin, end, [](Particle const & s){return is_AWZH_boson(s);} ) < 2; } /** * \brief function which determines if type change is consistent with W emission. * @param in incoming Particle * @param out outgoing Particle * * Ensures that change type of quark line is possible by a flavour changing * W emission. */ bool is_W_Current(ParticleID in, ParticleID out){ if((in==1 && out==2)||(in==2 && out==1)){ return true; } else if((in==-1 && out==-2)||(in==-2 && out==-1)){ return true; } else if((in==3 && out==4)||(in==4 && out==3)){ return true; } else if((in==-3 && out==-4)||(in==-4 && out==-3)){ return true; } else{ return false; } } /** * \brief checks if particle type remains same from incoming to outgoing * @param in incoming Particle * @param out outgoing Particle */ bool is_Pure_Current(ParticleID in, ParticleID out){ if(abs(in)<=6 || in==21) return (in==out); else return false; } // @note that this changes the outgoing range! template<class ConstIterator, class Iterator> bool is_FKL( ConstIterator begin_incoming, ConstIterator end_incoming, Iterator begin_outgoing, Iterator end_outgoing ){ assert(std::distance(begin_incoming, end_incoming) == 2); assert(std::distance(begin_outgoing, end_outgoing) >= 2); // One photon, W, H, Z in the final state is allowed. // Remove it for remaining tests, end_outgoing = remove_AWZH(begin_outgoing, end_outgoing); if(std::all_of( begin_outgoing + 1, end_outgoing - 1, [](Particle const & p){ return p.type == pid::gluon; }) ){ // Test if this is a standard FKL configuration. if (is_Pure_Current(begin_incoming->type, begin_outgoing->type) && is_Pure_Current((end_incoming-1)->type, (end_outgoing-1)->type)){ return true; } } return false; } template<class ConstIterator, class Iterator> bool is_W_FKL( ConstIterator begin_incoming, ConstIterator end_incoming, Iterator begin_outgoing, Iterator end_outgoing ){ assert(std::distance(begin_incoming, end_incoming) == 2); assert(std::distance(begin_outgoing, end_outgoing) >= 2); // One photon, W, H, Z in the final state is allowed. // Remove it for remaining tests, end_outgoing = remove_AWZH(begin_outgoing, end_outgoing); if(std::all_of( begin_outgoing + 1, end_outgoing - 1, [](Particle const & p){ return p.type == pid::gluon; }) ){ // Test if this is a standard FKL configuration. if(is_W_Current(begin_incoming->type, begin_outgoing->type) && is_Pure_Current((end_incoming-1)->type, (end_outgoing-1)->type)){ return true; } else if(is_Pure_Current(begin_incoming->type, begin_outgoing->type) && is_W_Current((end_incoming-1)->type, (end_outgoing-1)->type)){ return true; } } return false; } bool is_FKL( std::array<Particle, 2> const & incoming, std::vector<Particle> outgoing ){ assert(std::is_sorted(begin(incoming), end(incoming), pz_less{})); assert(valid_outgoing(begin(outgoing), end(outgoing))); const auto WEmit = std::find_if( begin(outgoing), end(outgoing), [](Particle const & s){ return abs(s.type) == pid::Wp; } ); if (WEmit != end(outgoing) && abs(WEmit->type) == pid::Wp){ return is_W_FKL( begin(incoming), end(incoming), begin(outgoing), end(outgoing) ); } else{ return is_FKL( begin(incoming), end(incoming), begin(outgoing), end(outgoing) ); } } bool has_2_jets(Event const & event){ return event.jets().size() >= 2; } /** * \brief Checks whether event is unordered backwards * @param ev Event * @returns Is Event Unordered Backwards * * - Checks there is more than 3 constuents in the final state * - Checks there is more than 3 jets * - Checks the most backwards parton is a gluon * - Checks the most forwards jet is not a gluon * - Checks the rest of the event is FKL * - Checks the second most backwards is not a different boson * - Checks the unordered gluon actually forms a jet */ bool is_unordered_backward(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); if(out.size() < 3) return false; if(ev.jets().size() < 3) return false; if(in.front().type == pid::gluon) return false; if(out.front().type != pid::gluon) return false; // When skipping the unordered emission // the remainder should be a regular FKL event, // except that the (new) first outgoing particle must not be a A,W,Z,H. const auto FKL_begin = next(begin(out)); if(is_AWZH_boson(*FKL_begin)) return false; if(!is_FKL(in, {FKL_begin, end(out)})) return false; // check that the unordered gluon forms an extra jet const auto & jets = ev.jets(); const auto indices = ev.particle_jet_indices({jets.front()}); return indices[0] >= 0 && indices[1] == -1; } /** * \brief Checks for a forward unordered gluon emission * @param ev Event * @returns Is the event a forward unordered emission * * \see is_unordered_backward */ bool is_unordered_forward(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); if(out.size() < 3) return false; if(ev.jets().size() < 3) return false; if(in.back().type == pid::gluon) return false; if(out.back().type != pid::gluon) return false; // When skipping the unordered emission // the remainder should be a regular FKL event, // except that the (new) last outgoing particle must not be a A,W,Z,H. const auto FKL_end = prev(end(out)); if(is_AWZH_boson(*prev(FKL_end))) return false; if(!is_FKL(in, {begin(out), FKL_end})) return false; // check that the unordered gluon forms an extra jet const auto & jets = ev.jets(); const auto indices = ev.particle_jet_indices({jets.back()}); return indices.back() >= 0 && indices[indices.size()-2] == -1; } - /** - * \brief Checks for a forward extremal qqx + * \brief Checks for an extremal qqx (forwards, reverse input for back) * @param ev Event * @returns Is the event a forward extremal qqx event * * Checks there is 3 or more than 3 constituents in the final state * Checks there is 3 or more than 3 jets * Checks most forwards incoming is gluon * Checks most extremal particle is not a Higgs (either direction) * Checks the second most forwards particle is not Higgs boson * Checks remaining chain is pure gluon * Checks the most forwards parton is a either quark or anti-quark. * Checks the second most forwards parton is anti-quark or quark. * Checks the qqbar pair form 2 separate jets. + * Checks other current logically consistent (with/out W emission.) */ - bool is_Ex_qqxf(Event const & ev){ - auto const & in = ev.incoming(); - auto const & out = ev.outgoing(); - assert(std::is_sorted(begin(in), end(in), pz_less{})); - assert(valid_outgoing(begin(out), end(out))); - - int fkl_start=is_AWZ_boson(out.front()); + template<class InIterator, class OutIterator, class JetIterator, class IndIterator> + bool is_Ex_qqx( + InIterator begin_in, InIterator end_in, + OutIterator begin_out, OutIterator end_out, + JetIterator begin_jets, JetIterator end_jets, + IndIterator end_indices + ){ + int fkl_start=is_AWZ_boson(begin_out->type); int fkl_end=2; - if(out.size() < 3) return false; - if(ev.jets().size() < 3) return false; - if(in.back().type != pid::gluon) return false; - if(out.back().type == pid::Higgs || out.front().type == pid::Higgs - || out.rbegin()[1].type == pid::Higgs) return false; + if(std::distance(begin_out, (end_out)) < 3) return false; + if(std::distance(begin_jets, (end_jets)) < 3) return false; + if((end_in-1)->type != pid::gluon) return false; + if((end_out-1)->type == pid::Higgs || begin_out->type == pid::Higgs + || (end_out-2)->type == pid::Higgs) return false; - // if extremal AWZ - if(is_AWZ_boson(out.back())){ // if extremal AWZ + if(is_AWZ_boson((end_out-1)->type)){ // if extremal AWZ ++fkl_end; - if (is_quark(out.rbegin()[1])){ //if second quark - if (!(is_antiquark(out.rbegin()[2]))) return false;// third must be anti-quark + if (is_quark((end_out-2)->type)){ //if second quark + if (!(is_antiquark((end_out-3)->type))) return false;// third must be anti-quark } - else if (is_antiquark(out.rbegin()[1])){ //if second anti-quark - if (!(is_quark(out.rbegin()[2]))) return false;// third must be quark + else if (is_antiquark((end_out-2)->type)){ //if second anti-quark + if (!(is_quark((end_out-3)->type))) return false;// third must be quark } else return false; } - else if (is_quark(out.rbegin()[0])){ //if extremal quark - if(is_AWZ_boson(out.rbegin()[1])){ // if second AWZ + else if (is_quark((end_out-1)->type)){ //if extremal quark + if(is_AWZ_boson((end_out-2)->type)){ // if second AWZ ++fkl_end; - if (!(is_antiquark(out.rbegin()[2]))) return false;// third must be anti-quark + if (!(is_antiquark((end_out-3)->type))) return false;// third must be anti-quark } - else if (!(is_antiquark(out.rbegin()[1]))) return false;// second must be anti-quark + else if (!(is_antiquark((end_out-2)->type))) return false;// second must be anti-quark } - else if (is_antiquark(out.rbegin()[0])){ //if extremal anti-quark - if(is_AWZ_boson(out.rbegin()[1])){ // if second AWZ + else if (is_antiquark((end_out-1)->type)){ //if extremal anti-quark + if(is_AWZ_boson((end_out-2)->type)){ // if second AWZ ++fkl_end; - if (!(is_quark(out.rbegin()[2]))) return false;// third must be quark + if (!(is_quark((end_out-3)->type))) return false;// third must be quark } - else if (!(is_quark(out.rbegin()[1]))) return false;// second must be quark + else if (!(is_quark((end_out-2)->type))) return false;// second must be quark } else return false; - // When skipping the qqbar - // New last outgoing particle must not be a Higgs - if (out.rbegin()[fkl_end].type == pid::Higgs) return false; - // no other quark emission (first doesn't matter) if(std::any_of( - out.begin()+1+fkl_start, out.end()-fkl_end, + begin_out+1+fkl_start, end_out-1-fkl_end, [](Particle const & p){ return is_anyquark(p); }) ) return false; - const auto & jets = ev.jets(); - const auto indices = ev.particle_jet_indices({jets}); - - // Ensure qqbar pair are in separate jets - if(indices[indices.size()-2] != indices[indices.size()-1]-1) return false; + // // Ensure qqbar pair are in separate jets + if((end_indices-3)[0] != (end_indices-2)[0]-1) return false; // Opposite current should be logical to process - if (is_AWZ_boson(out.front().type)){ - return (is_Pure_Current(in.front().type, out[1].type) - || is_W_Current(in.front().type,out[1].type)); + if (is_AWZ_boson(begin_out->type)){ + return (is_Pure_Current(begin_in->type, (begin_out+1)->type) + || is_W_Current(begin_in->type,(begin_out+1)->type)); } - return (is_Pure_Current(in.front().type, out[0].type) - || is_W_Current(in.front().type,out[0].type)); + return (is_Pure_Current(begin_in->type, begin_out->type) + || is_W_Current(begin_in->type,begin_out->type)); + } + + /** + * \brief Checks for a forward extremal qqx + * @param ev Event + * @returns Is the event a forward extremal qqx event + * + * \see is_Ex_qqx() + */ + bool is_Ex_qqxf(Event const & ev){ + // const auto & indices = ev.particle_jet_indices({ev.jets()}); + assert(std::is_sorted(begin(in), end(in), pz_less{})); + assert(valid_outgoing(begin(out), end(out))); + return is_Ex_qqx(cbegin(ev.incoming()), cend(ev.incoming()), + cbegin(ev.outgoing()), cend(ev.outgoing()), + cbegin(ev.jets()), cend(ev.jets()), + cend(ev.particle_jet_indices({ev.jets()}))); } /** * \brief Checks for a backward extremal qqx * @param ev Event * @returns Is the event a backward extremal qqx event * - * Checks there is 3 or more than 3 constituents in the final state - * Checks there is 3 or more than 3 jets - * Checks most backwards incoming is gluon - * Checks most extremal particle is not a Higgs (either direction) y - * Checks the second most backwards particle is not Higgs boson y - * Checks remaining chain is pure gluon - * Checks the most backwards parton is a either quark or anti-quark. y - * Checks the second most backwards parton is anti-quark or quark. y - * Checks the qqbar pair form 2 separate jets. + * \see is_Ex_qqx() */ bool is_Ex_qqxb(Event const & ev){ - auto const & in = ev.incoming(); - auto const & out = ev.outgoing(); + // const auto & indices = ev.particle_jet_indices({ev.jets()}); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); - - int fkl_start=2; - int fkl_end=is_AWZ_boson(out.back()); - - if(out.size() < 3) return false; - if(ev.jets().size() < 3) return false; - if(in.front().type != pid::gluon) return false; - if(out.back().type == pid::Higgs || out.front().type == pid::Higgs - || out[1].type == pid::Higgs) return false; - - // @TODO why don't we test to the Higgs as well? i.e. is_AWZH_boson - if(is_AWZ_boson(out.front())){ // if extremal AWZ - ++fkl_start; - if (is_quark(out[1])){ //if second quark - if (!(is_antiquark(out[2]))) return false;// third must be anti-quark - } - else if (is_antiquark(out[1])){ //if second anti-quark - if (!(is_quark(out[2]))) return false;// third must be quark - } - else return false; - } - else if (is_quark(out[0])){ // if extremal quark - if(is_AWZ_boson(out[1])){ // if second AWZ - ++fkl_start; - if (!(is_antiquark(out[2]))) return false;// third must be anti-quark - } - else if (!(is_antiquark(out[1]))) return false;// second must be anti-quark - } - else if (is_antiquark(out[0])){ //if extremal anti-quark - if(is_AWZ_boson(out[1])){ // if second AWZ - ++fkl_start; - if (!(is_quark(out[2]))) return false;// third must be quark - } - else if (!(is_quark(out[1]))) return false;// second must be quark - } - else return false; - - // When skipping the qqbar - // New last outgoing particle must not be a Higgs. - if (out[fkl_start].type == pid::Higgs) return false; - - // no other quark emission (last doesn't matter) - if(std::any_of( - out.cbegin()+fkl_start, out.cend()-1-fkl_end, - [](Particle const & p){ return is_anyquark(p); }) - ) return false; - - const auto & jets = ev.jets(); - const auto indices = ev.particle_jet_indices({jets}); - - // Ensure qqbar pair form separate jets. - if(indices[0] != indices[1]-1) return false; - - // Other current should be logical to process - if (is_AWZ_boson(out.back())){ - return (is_Pure_Current(in.back().type, out.rbegin()[1].type) - || is_W_Current(in.back().type,out.rbegin()[1].type)); - } - else - return (is_Pure_Current(in.back().type, out.rbegin()[0].type) - || is_W_Current(in.back().type, out.rbegin()[0].type)); + return is_Ex_qqx(crbegin(ev.incoming()), crend(ev.incoming()), + crbegin(ev.outgoing()), crend(ev.outgoing()), + crbegin(ev.jets()), crend(ev.jets()), + cend(ev.particle_jet_indices({ev.jets()}))); } - /** * \brief Checks for a central qqx * @param ev Event * @returns Is the event a central extremal qqx event * * Checks there is 4 or more than 4 constuents in the final state * Checks there is 4 or more than 4 jets * Checks most extremal particle is not a Higgs (either direction) y * Checks for a central quark in the outgoing states * Checks for adjacent anti-quark parton. (allowing for AWZ boson emission between) * Check that other partons are only gluons in chain * Checks external currents are logically sound. */ bool is_Mid_qqx(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); if(out.size() < 4) return false; if(ev.jets().size() < 4) return false; if(out.back().type == pid::Higgs || out.front().type == pid::Higgs) return false; size_t start_FKL=0; size_t end_FKL=0; if (is_AWZ_boson(out.back())){ ++end_FKL; } if (is_AWZ_boson(out.front())){ ++start_FKL; } if ((is_Pure_Current(in.back().type,out.rbegin()[end_FKL].type) && is_Pure_Current(in.front().type,out[start_FKL].type))){ //nothing to do } else if (is_W_Current(in.back().type,out.rbegin()[end_FKL].type) && is_Pure_Current(in.front().type,out[start_FKL].type)){ //nothing to do } else if (!(is_Pure_Current(in.back().type,out.rbegin()[end_FKL].type) && is_W_Current(in.front().type,out[start_FKL].type))){ return false; } const auto & jets = ev.jets(); const auto indices = ev.particle_jet_indices({jets}); auto const out_partons = filter_partons(out); // search for qqx pair for (size_t i = 1; i<out_partons.size()-2; ++i){ if ((is_quark(out_partons[i]) && (is_antiquark(out_partons[i+1]))) || (is_antiquark(out_partons[i]) && (is_quark(out_partons[i+1]))) ){ // no quarks before qqx (beside first) if(std::any_of( out_partons.cbegin()+1, out_partons.cbegin()+i, [](Particle const & p){ return is_anyquark(p); }) ) return false; // no quarks after qqx (beside last) if(std::any_of( out_partons.cbegin()+i+2, out_partons.cend()-1, [](Particle const & p){ return is_anyquark(p); }) ) return false; // should be in seperate jets return (indices[i+1] == indices[i]+1 && indices[i] != -1); } } return false; } using event_type::EventType; EventType classify(Event const & ev){ if(! final_state_ok(ev.outgoing())) return EventType::bad_final_state; if(! has_2_jets(ev)) return EventType::no_2_jets; if(is_FKL(ev.incoming(), ev.outgoing())) return EventType::FKL; if(is_unordered_backward(ev)) return EventType::unordered_backward; if(is_unordered_forward(ev)) return EventType::unordered_forward; if(is_Ex_qqxb(ev)) return EventType::extremal_qqxb; if(is_Ex_qqxf(ev)) return EventType::extremal_qqxf; if(is_Mid_qqx(ev)) return EventType::central_qqx; return EventType::nonHEJ; } //@} Particle extract_particle(LHEF::HEPEUP const & hepeup, int i){ const ParticleID id = static_cast<ParticleID>(hepeup.IDUP[i]); const fastjet::PseudoJet momentum{ hepeup.PUP[i][0], hepeup.PUP[i][1], hepeup.PUP[i][2], hepeup.PUP[i][3] }; if(is_parton(id)) return Particle{ id, std::move(momentum), hepeup.ICOLUP[i] }; return Particle{ id, std::move(momentum), {} }; } bool is_decay_product(std::pair<int, int> const & mothers){ if(mothers.first == 0) return false; return mothers.second == 0 || mothers.first == mothers.second; } } // namespace anonymous Event::EventData::EventData(LHEF::HEPEUP const & hepeup){ parameters.central = EventParameters{ hepeup.scales.mur, hepeup.scales.muf, hepeup.weight() }; size_t in_idx = 0; for (int i = 0; i < hepeup.NUP; ++i) { // skip decay products // we will add them later on, but we have to ensure that // the decayed particle is added before if(is_decay_product(hepeup.MOTHUP[i])) continue; auto particle = extract_particle(hepeup, i); // needed to identify mother particles for decay products particle.p.set_user_index(i+1); if(hepeup.ISTUP[i] == status_in){ if(in_idx > incoming.size()) { throw std::invalid_argument{ "Event has too many incoming particles" }; } incoming[in_idx++] = std::move(particle); } else outgoing.emplace_back(std::move(particle)); } // add decay products for (int i = 0; i < hepeup.NUP; ++i) { if(!is_decay_product(hepeup.MOTHUP[i])) continue; const int mother_id = hepeup.MOTHUP[i].first; const auto mother = std::find_if( begin(outgoing), end(outgoing), [mother_id](Particle const & particle){ return particle.p.user_index() == mother_id; } ); if(mother == end(outgoing)){ throw std::invalid_argument{"invalid decay product parent"}; } const int mother_idx = std::distance(begin(outgoing), mother); assert(mother_idx >= 0); decays[mother_idx].emplace_back(extract_particle(hepeup, i)); } } Event::Event( UnclusteredEvent const & ev, fastjet::JetDefinition const & jet_def, double const min_jet_pt ): Event( Event::EventData{ ev.incoming, ev.outgoing, ev.decays, Parameters<EventParameters>{ev.central, ev.variations} }.cluster(jet_def, min_jet_pt) ) {} //! @TODO remove in HEJ 2.2.0 UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){ Event::EventData const evData{hepeup}; incoming = evData.incoming; outgoing = evData.outgoing; decays = evData.decays; central = evData.parameters.central; variations = evData.parameters.variations; } void Event::EventData::sort(){ // sort particles std::sort( begin(incoming), end(incoming), [](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();} ); auto old_outgoing = std::move(outgoing); std::vector<size_t> idx(old_outgoing.size()); std::iota(idx.begin(), idx.end(), 0); std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){ return old_outgoing[i].rapidity() < old_outgoing[j].rapidity(); }); outgoing.clear(); outgoing.reserve(old_outgoing.size()); for(size_t i: idx) { outgoing.emplace_back(std::move(old_outgoing[i])); } // find decays again if(!decays.empty()){ auto old_decays = std::move(decays); decays.clear(); for(size_t i=0; i<idx.size(); ++i) { auto decay = old_decays.find(idx[i]); if(decay != old_decays.end()) decays.emplace(i, std::move(decay->second)); } assert(old_decays.size() == decays.size()); } } namespace { Particle reconstruct_boson(std::vector<Particle> const & leptons) { HEJ::Particle decayed_boson; decayed_boson.p = leptons[0].p + leptons[1].p; const int pidsum = leptons[0].type + leptons[1].type; if(pidsum == +1) { assert(is_antilepton(leptons[0])); if(is_antineutrino(leptons[0])) { throw HEJ::not_implemented{"lepton-flavour violating final state"}; } assert(is_neutrino(leptons[1])); // charged antilepton + neutrino means we had a W+ decayed_boson.type = HEJ::pid::Wp; } else if(pidsum == -1) { assert(is_antilepton(leptons[0])); if(is_neutrino(leptons[1])) { throw HEJ::not_implemented{"lepton-flavour violating final state"}; } assert(is_antineutrino(leptons[0])); // charged lepton + antineutrino means we had a W- decayed_boson.type = HEJ::pid::Wm; } else { throw HEJ::not_implemented{ "final state with leptons " + HEJ::name(leptons[0].type) + " and " + HEJ::name(leptons[1].type) }; } return decayed_boson; } } void HEJ::Event::EventData::reconstruct_intermediate() { const auto begin_leptons = std::partition( begin(outgoing), end(outgoing), [](HEJ::Particle const & p) {return !HEJ::is_anylepton(p);} ); if(begin_leptons == end(outgoing)) return; assert(is_anylepton(*begin_leptons)); std::vector<HEJ::Particle> leptons(begin_leptons, end(outgoing)); outgoing.erase(begin_leptons, end(outgoing)); if(leptons.size() != 2) { throw HEJ::not_implemented{"Final states with one or more than two leptons"}; } std::sort( begin(leptons), end(leptons), [](HEJ::Particle const & p0, HEJ::Particle const & p1) { return p0.type < p1.type; } ); outgoing.emplace_back(reconstruct_boson(leptons)); decays.emplace(outgoing.size()-1, std::move(leptons)); } Event Event::EventData::cluster( fastjet::JetDefinition const & jet_def, double const min_jet_pt ){ sort(); Event ev{ std::move(incoming), std::move(outgoing), std::move(decays), std::move(parameters), jet_def, min_jet_pt }; assert(std::is_sorted(begin(ev.outgoing_), end(ev.outgoing_), rapidity_less{})); ev.type_ = classify(ev); return ev; } Event::Event( std::array<Particle, 2> && incoming, std::vector<Particle> && outgoing, std::unordered_map<size_t, std::vector<Particle>> && decays, Parameters<EventParameters> && parameters, fastjet::JetDefinition const & jet_def, double const min_jet_pt ): incoming_{std::move(incoming)}, outgoing_{std::move(outgoing)}, decays_{std::move(decays)}, parameters_{std::move(parameters)}, cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def }, min_jet_pt_{min_jet_pt} { jets_ = sorted_by_rapidity(cs_.inclusive_jets(min_jet_pt_)); } namespace { void connect_incoming(Particle & in, int & colour, int & anti_colour){ in.colour = std::make_pair(anti_colour, colour); // gluon if(in.type == pid::gluon) return; if(in.type > 0){ // quark assert(is_quark(in)); in.colour->second = 0; colour*=-1; return; } // anti-quark assert(is_antiquark(in)); in.colour->first = 0; anti_colour*=-1; return; } } bool Event::generate_colours(RNG & ran){ // generate only for HEJ events if(!event_type::is_HEJ(type())) return false; assert(std::is_sorted( begin(outgoing()), end(outgoing()), rapidity_less{})); assert(incoming()[0].pz() < incoming()[1].pz()); // positive (anti-)colour -> can connect // negative (anti-)colour -> not available/used up by (anti-)quark int colour = COLOUR_OFFSET; int anti_colour = colour+1; // initialise first connect_incoming(incoming_[0], colour, anti_colour); for(auto & part: outgoing_){ assert(colour>0 || anti_colour>0); if(part.type == ParticleID::gluon){ // gluon if(colour>0 && anti_colour>0){ // on g line => connect to colour OR anti-colour (random) if(ran.flat() < 0.5){ part.colour = std::make_pair(colour+2,colour); colour+=2; } else { part.colour = std::make_pair(anti_colour, anti_colour+2); anti_colour+=2; } } else if(colour > 0){ // on q line => connect to available colour part.colour = std::make_pair(colour+2, colour); colour+=2; } else { assert(colour<0 && anti_colour>0); // on qx line => connect to available anti-colour part.colour = std::make_pair(anti_colour, anti_colour+2); anti_colour+=2; } } else if(is_quark(part)) { // quark assert(anti_colour>0); if(colour>0){ // on g line => connect and remove anti-colour part.colour = std::make_pair(anti_colour, 0); anti_colour+=2; anti_colour*=-1; } else { // on qx line => new colour colour*=-1; part.colour = std::make_pair(colour, 0); } } else if(is_antiquark(part)) { // anti-quark assert(colour>0); if(anti_colour>0){ // on g line => connect and remove colour part.colour = std::make_pair(0, colour); colour+=2; colour*=-1; } else { // on q line => new anti-colour anti_colour*=-1; part.colour = std::make_pair(0, anti_colour); } } // else not a parton } // Connect last connect_incoming(incoming_[1], anti_colour, colour); return true; } // generate_colours namespace { void print_momentum(std::ostream & os, fastjet::PseudoJet const & part){ const std::streamsize orig_prec = os.precision(); os <<std::scientific<<std::setprecision(6) << "[" <<std::setw(13)<<std::right<< part.px() << ", " <<std::setw(13)<<std::right<< part.py() << ", " <<std::setw(13)<<std::right<< part.pz() << ", " <<std::setw(13)<<std::right<< part.E() << "]"<< std::fixed; os.precision(orig_prec); } } std::ostream& operator<<(std::ostream & os, Event const & ev){ const std::streamsize orig_prec = os.precision(); os <<std::setprecision(4)<<std::fixed; std::cout << "########## " << event_type::names[ev.type()] << " ##########" << std::endl; std::cout << "Incoming particles:\n"; for(auto const & in: ev.incoming()){ std::cout <<std::setw(3)<< in.type << ": "; print_momentum(os, in.p); std::cout << std::endl; } std::cout << "\nOutgoing particles: " << ev.outgoing().size() << "\n"; for(auto const & out: ev.outgoing()){ std::cout <<std::setw(3)<< out.type << ": "; print_momentum(os, out.p); std::cout << " => rapidity=" <<std::setw(7)<<std::right<< out.rapidity() << std::endl; } std::cout << "\nForming Jets: " << ev.jets().size() << "\n"; for(auto const & jet: ev.jets()){ print_momentum(os, jet); std::cout << " => rapidity=" <<std::setw(7)<<std::right<< jet.rapidity() << std::endl; } os << std::defaultfloat; os.precision(orig_prec); return os; } double shat(Event const & ev){ return (ev.incoming()[0].p + ev.incoming()[1].p).m2(); } LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){ LHEF::HEPEUP result; result.heprup = heprup; result.weights = {{event.central().weight, nullptr}}; for(auto const & var: event.variations()){ result.weights.emplace_back(var.weight, nullptr); } size_t num_particles = event.incoming().size() + event.outgoing().size(); for(auto const & decay: event.decays()) num_particles += decay.second.size(); result.NUP = num_particles; // the following entries are pretty much meaningless result.IDPRUP = event.type()+1; // event ID result.AQEDUP = 1./128.; // alpha_EW //result.AQCDUP = 0.118 // alpha_QCD // end meaningless part result.XWGTUP = event.central().weight; result.SCALUP = event.central().muf; result.scales.muf = event.central().muf; result.scales.mur = event.central().mur; result.scales.SCALUP = event.central().muf; result.pdfinfo.p1 = event.incoming().front().type; result.pdfinfo.p2 = event.incoming().back().type; result.pdfinfo.scale = event.central().muf; result.IDUP.reserve(num_particles); // PID result.ISTUP.reserve(num_particles); // status (in, out, decay) result.PUP.reserve(num_particles); // momentum result.MOTHUP.reserve(num_particles); // index mother particle result.ICOLUP.reserve(num_particles); // colour // incoming for(Particle const & in: event.incoming()){ result.IDUP.emplace_back(in.type); result.ISTUP.emplace_back(status_in); result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()}); result.MOTHUP.emplace_back(0, 0); assert(in.colour); result.ICOLUP.emplace_back(*in.colour); } // outgoing for(size_t i = 0; i < event.outgoing().size(); ++i){ Particle const & out = event.outgoing()[i]; result.IDUP.emplace_back(out.type); const int status = event.decays().count(i)?status_decayed:status_out; result.ISTUP.emplace_back(status); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); result.MOTHUP.emplace_back(1, 2); if(out.colour) result.ICOLUP.emplace_back(*out.colour); else{ assert(is_AWZH_boson(out)); result.ICOLUP.emplace_back(std::make_pair(0,0)); } } // decays for(auto const & decay: event.decays()){ for(auto const out: decay.second){ result.IDUP.emplace_back(out.type); result.ISTUP.emplace_back(status_out); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); const size_t mother_idx = 1 + event.incoming().size() + decay.first; result.MOTHUP.emplace_back(mother_idx, mother_idx); result.ICOLUP.emplace_back(0,0); } } assert(result.ICOLUP.size() == num_particles); static constexpr double unknown_spin = 9.; //per Les Houches accord result.VTIMUP = std::vector<double>(num_particles, unknown_spin); result.SPINUP = result.VTIMUP; return result; } }