diff --git a/include/HEJ/MatrixElement.hh b/include/HEJ/MatrixElement.hh
index 29a6306..7945e74 100644
--- a/include/HEJ/MatrixElement.hh
+++ b/include/HEJ/MatrixElement.hh
@@ -1,187 +1,189 @@
 /** \file
  *  \brief Contains the MatrixElement Class
  *
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #pragma once
 
 #include <functional>
 #include <vector>
 
 #include "fastjet/PseudoJet.hh"
 
 #include "HEJ/PDG_codes.hh"
 #include "HEJ/Parameters.hh"
 #include "HEJ/config.hh"
 
 namespace CLHEP {
   class HepLorentzVector;
 }
 
 namespace HEJ{
   class Event;
   class Particle;
 
   //! Class to calculate the squares of matrix elements
   class MatrixElement{
   public:
     /** \brief MatrixElement Constructor
      * @param alpha_s        Function taking the renormalisation scale
      *                       and returning the strong coupling constant
      * @param conf           General matrix element settings
      */
     MatrixElement(
         std::function<double (double)> alpha_s,
         MatrixElementConfig conf
     );
 
   /**
    * \brief squares of regulated HEJ matrix elements
    * @param event          The event for which to calculate matrix elements
    * @returns              The squares of HEJ matrix elements including virtual corrections
    *
    * This function returns one value for the central parameter choice
    * and one additional value for each entry in \ref Event.variations().
    * See eq. (22) in \cite Andersen:2011hs for the definition of the squared
    * matrix element.
    *
    * \internal Relation to standard HEJ Met2: MatrixElement = Met2*shat^2/(pdfta*pdftb)
    */
     Weights operator()(Event const & event) const;
 
   //! Squares of HEJ tree-level matrix elements
   /**
    * @param event          The event for which to calculate matrix elements
    * @returns              The squares of HEJ matrix elements without virtual corrections
    *
    * cf. eq. (22) in \cite Andersen:2011hs
    */
     Weights tree(Event const & event) const;
 
    /**
     * \brief Virtual corrections to matrix element squares
     * @param event         The event for which to calculate matrix elements
     * @returns             The virtual corrections to the squares of the matrix elements
     *
     * The all order virtual corrections to LL in the MRK limit is
     * given by replacing 1/t in the scattering amplitude according to the
     * lipatov ansatz.
     *
     * cf. second-to-last line of eq. (22) in \cite Andersen:2011hs
     * note that indices are off by one, i.e. out[0].p corresponds to p_1
     */
     Weights virtual_corrections(Event const & event) const;
 
    /**
     * \brief Scale-dependent part of tree-level matrix element squares
     * @param event         The event for which to calculate matrix elements
     * @returns             The scale-dependent part of the squares of the
     *                      tree-level matrix elements
     *
     * The tree-level matrix elements factorises into a renormalisation-scale
     * dependent part, given by the strong coupling to some power, and a
     * scale-independent remainder. This function only returns the former parts
     * for the central scale choice and all \ref Event.variations().
     *
     * @see tree, tree_kin
     */
     Weights tree_param(
         Event const & event
     ) const;
 
    /**
     * \brief Kinematic part of tree-level matrix element squares
     * @param event         The event for which to calculate matrix elements
     * @returns             The kinematic part of the squares of the
     *                      tree-level matrix elements
     *
     * The tree-level matrix elements factorises into a renormalisation-scale
     * dependent part, given by the strong coupling to some power, and a
     * scale-independent remainder. This function only returns the latter part.
     * Since it does not depend on the parameter variations, only a single value
     * is returned.
     *
     * @see tree, tree_param
     */
     double tree_kin(Event const & event) const;
 
   private:
 
     double tree_param(
         Event const & event,
         double mur
     ) const;
 
     double virtual_corrections_W(
         Event const & event,
         double mur,
         Particle const & WBoson
     ) const;
     double virtual_corrections(
         Event const & event,
         double mur
     ) const;
 
     //! \internal cf. last line of eq. (22) in \cite Andersen:2011hs
     double omega0(
         double alpha_s, double mur,
         fastjet::PseudoJet const & q_j
     ) const;
 
     double tree_kin_jets(
         Event const & ev
     ) const;
     double tree_kin_W(
         Event const & ev
     ) const;
     double tree_kin_Higgs(
         Event const & ev
     ) const;
     double tree_kin_Higgs_first(
         Event const & ev
     ) const;
     double tree_kin_Higgs_last(
         Event const & ev
     ) const;
 
     /**
      * \internal
      * \brief Higgs inbetween extremal partons.
      *
      * Note that in the case of unordered emission, the Higgs is *always*
      * treated as if in between the extremal (FKL) partons, even if its
      * rapidity is outside the extremal parton rapidities
      */
     double tree_kin_Higgs_between(
         Event const & ev
     ) const;
 
     double tree_param_partons(
         double alpha_s, double mur,
         std::vector<Particle> const & partons
     ) const;
 
     std::vector<int> in_extremal_jet_indices(
         std::vector<fastjet::PseudoJet> const & partons
     ) const;
 
     std::vector<Particle> tag_extremal_jet_partons(
         Event const & ev
     ) const;
 
     double MH2_forwardH(
-        CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in,
+        CLHEP::HepLorentzVector const & p1out,
+        CLHEP::HepLorentzVector const & p1in,
         pid::ParticleID type2,
-        CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in,
-        CLHEP::HepLorentzVector pH,
+        CLHEP::HepLorentzVector const & p2out,
+        CLHEP::HepLorentzVector const & p2in,
+        CLHEP::HepLorentzVector const & pH,
         double t1, double t2
     ) const;
 
     std::function<double (double)> alpha_s_;
 
     MatrixElementConfig param_;
   };
 
 }
diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc
index 98e4981..8f0233a 100644
--- a/src/MatrixElement.cc
+++ b/src/MatrixElement.cc
@@ -1,1738 +1,1747 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include "HEJ/MatrixElement.hh"
 
 #include <algorithm>
 #include <assert.h>
 #include <limits>
 #include <math.h>
 #include <stddef.h>
 #include <unordered_map>
 #include <utility>
 
 #include "CLHEP/Vector/LorentzVector.h"
 
 #include "fastjet/ClusterSequence.hh"
 
 #include "HEJ/Constants.hh"
 #include "HEJ/currents.hh"
 #include "HEJ/PDG_codes.hh"
 #include "HEJ/event_types.hh"
 #include "HEJ/Event.hh"
 #include "HEJ/exceptions.hh"
 #include "HEJ/Particle.hh"
 #include "HEJ/utility.hh"
 
 namespace HEJ{
   double MatrixElement::omega0(
       double alpha_s, double mur,
       fastjet::PseudoJet const & q_j
   ) const {
     const double lambda = param_.regulator_lambda;
     const double result = - alpha_s*N_C/M_PI*log(q_j.perp2()/(lambda*lambda));
     if(! param_.log_correction) return result;
     // use alpha_s(sqrt(q_j*lambda)), evolved to mur
     return (
         1. + alpha_s/(4.*M_PI)*beta0*log(mur*mur/(q_j.perp()*lambda))
     )*result;
   }
 
   Weights MatrixElement::operator()(
       Event const & event
   ) const {
     return tree(event)*virtual_corrections(event);
   }
 
   Weights MatrixElement::tree(
       Event const & event
   ) const {
     return tree_param(event)*tree_kin(event);
   }
 
   Weights MatrixElement::tree_param(
       Event const & event
   ) const {
     if(! is_HEJ(event.type())) {
       return Weights{0., std::vector<double>(event.variations().size(), 0.)};
     }
     Weights result;
     // only compute once for each renormalisation scale
     std::unordered_map<double, double> known;
     result.central = tree_param(event, event.central().mur);
     known.emplace(event.central().mur, result.central);
     for(auto const & var: event.variations()) {
       const auto ME_it = known.find(var.mur);
       if(ME_it == end(known)) {
         const double wt = tree_param(event, var.mur);
         result.variations.emplace_back(wt);
         known.emplace(var.mur, wt);
       }
       else {
         result.variations.emplace_back(ME_it->second);
       }
     }
     return result;
   }
 
   Weights MatrixElement::virtual_corrections(
       Event const & event
   ) const {
     if(! is_HEJ(event.type())) {
       return Weights{0., std::vector<double>(event.variations().size(), 0.)};
     }
     Weights result;
     // only compute once for each renormalisation scale
     std::unordered_map<double, double> known;
     result.central = virtual_corrections(event, event.central().mur);
     known.emplace(event.central().mur, result.central);
     for(auto const & var: event.variations()) {
       const auto ME_it = known.find(var.mur);
       if(ME_it == end(known)) {
         const double wt = virtual_corrections(event, var.mur);
         result.variations.emplace_back(wt);
         known.emplace(var.mur, wt);
       }
       else {
         result.variations.emplace_back(ME_it->second);
       }
     }
     return result;
   }
 
   double MatrixElement::virtual_corrections_W(
       Event const & event,
       double mur,
       Particle const & WBoson
   ) const{
     auto const & in = event.incoming();
     const auto partons = filter_partons(event.outgoing());
     fastjet::PseudoJet const & pa = in.front().p;
 #ifndef NDEBUG
     fastjet::PseudoJet const & pb = in.back().p;
     double const norm = (in.front().p + in.back().p).E();
 #endif
 
     assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{}));
     assert(partons.size() >= 2);
     assert(pa.pz() < pb.pz());
 
     fastjet::PseudoJet q = pa - partons[0].p;
     size_t first_idx = 0;
     size_t last_idx = partons.size() - 1;
 
     bool wc = true;
     bool wqq = false;
 
     // With extremal qqx or unordered gluon outside the extremal
     // partons then it is not part of the FKL ladder and does not
     // contribute to the virtual corrections. W emitted from the
     // most backward leg must be taken into account in t-channel
     if (event.type() == event_type::FKL) {
       if (in[0].type != partons[0].type ){
         q -= WBoson.p;
         wc = false;
       }
     }
 
     else if (event.type() == event_type::unob) {
       q -= partons[1].p;
       ++first_idx;
       if (in[0].type != partons[1].type ){
         q -= WBoson.p;
         wc = false;
       }
     }
 
     else if (event.type() == event_type::qqxexb) {
       q -= partons[1].p;
       ++first_idx;
       if (abs(partons[0].type) != abs(partons[1].type)){
         q -= WBoson.p;
         wc = false;
       }
     }
 
     if(event.type() == event_type::unof
        || event.type() == event_type::qqxexf){
       --last_idx;
     }
 
     size_t first_idx_qqx = last_idx;
     size_t last_idx_qqx = last_idx;
 
     //if qqxMid event, virtual correction do not occur between
     //qqx pair.
     if(event.type() == event_type::qqxmid){
       const auto backquark = std::find_if(
         begin(partons) + 1, end(partons) - 1 ,
         [](Particle const & s){ return (s.type != pid::gluon); }
       );
       if(backquark == end(partons) || (backquark+1)->type==pid::gluon) return 0;
       if(abs(backquark->type) != abs((backquark+1)->type)) {
         wqq=true;
         wc=false;
       }
       last_idx = std::distance(begin(partons), backquark);
       first_idx_qqx = last_idx+1;
     }
     double exponent = 0;
     const double alpha_s = alpha_s_(mur);
     for(size_t j = first_idx; j < last_idx; ++j){
       exponent += omega0(alpha_s, mur, q)*(
           partons[j+1].rapidity() - partons[j].rapidity()
       );
       q -=partons[j+1].p;
     } // End Loop one
 
     if (last_idx != first_idx_qqx) q -= partons[last_idx+1].p;
     if (wqq)  q -= WBoson.p;
 
     for(size_t j = first_idx_qqx; j < last_idx_qqx; ++j){
       exponent += omega0(alpha_s, mur, q)*(
           partons[j+1].rapidity() - partons[j].rapidity()
       );
       q -= partons[j+1].p;
     }
 
     if (wc) q -= WBoson.p;
 
     assert(
         nearby(q, -1*pb, norm)
         || is_AWZH_boson(partons.back().type)
         || event.type() == event_type::unof
         || event.type() == event_type::qqxexf
     );
 
     return exp(exponent);
   }
 
   double MatrixElement::virtual_corrections(
       Event const & event,
       double mur
   ) const{
     auto const & in = event.incoming();
     auto const & out = event.outgoing();
     fastjet::PseudoJet const & pa = in.front().p;
 #ifndef NDEBUG
     fastjet::PseudoJet const & pb = in.back().p;
     double const norm = (in.front().p + in.back().p).E();
 #endif
 
     const auto AWZH_boson = std::find_if(
         begin(out), end(out),
         [](Particle const & p){ return is_AWZH_boson(p); }
     );
 
     if(AWZH_boson != end(out) && abs(AWZH_boson->type) == pid::Wp){
       return virtual_corrections_W(event, mur, *AWZH_boson);
     }
 
     assert(std::is_sorted(out.begin(), out.end(), rapidity_less{}));
     assert(out.size() >= 2);
     assert(pa.pz() < pb.pz());
 
     fastjet::PseudoJet q = pa - out[0].p;
     size_t first_idx = 0;
     size_t last_idx = out.size() - 1;
 
     // if there is a Higgs boson, extremal qqx or unordered gluon
     // outside the extremal partons then it is not part of the FKL
     // ladder and does not contribute to the virtual corrections
     if((out.front().type == pid::Higgs)
        || event.type() == event_type::unob
        || event.type() == event_type::qqxexb){
       q -= out[1].p;
       ++first_idx;
     }
     if((out.back().type == pid::Higgs)
        || event.type() == event_type::unof
        || event.type() == event_type::qqxexf){
       --last_idx;
     }
 
     size_t first_idx_qqx = last_idx;
     size_t last_idx_qqx = last_idx;
 
     //if qqxMid event, virtual correction do not occur between
     //qqx pair.
     if(event.type() == event_type::qqxmid){
       const auto backquark = std::find_if(
         begin(out) + 1, end(out) - 1 ,
         [](Particle const & s){ return (s.type != pid::gluon && is_parton(s.type)); }
       );
       if(backquark == end(out) || (backquark+1)->type==pid::gluon) return 0;
       last_idx = std::distance(begin(out), backquark);
       first_idx_qqx = last_idx+1;
     }
     double exponent = 0;
     const double alpha_s = alpha_s_(mur);
     for(size_t j = first_idx; j < last_idx; ++j){
       exponent += omega0(alpha_s, mur, q)*(
           out[j+1].rapidity() - out[j].rapidity()
       );
       q -= out[j+1].p;
     }
 
     if (last_idx != first_idx_qqx) q -= out[last_idx+1].p;
 
     for(size_t j = first_idx_qqx; j < last_idx_qqx; ++j){
       exponent += omega0(alpha_s, mur, q)*(
           out[j+1].rapidity() - out[j].rapidity()
       );
       q -= out[j+1].p;
     }
     assert(
         nearby(q, -1*pb, norm)
         || out.back().type == pid::Higgs
         || event.type() == event_type::unof
         || event.type() == event_type::qqxexf
     );
     return exp(exponent);
   }
 } // namespace HEJ
 
 namespace {
   //! Lipatov vertex for partons emitted into extremal jets
-  double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv,
-    CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2)
-  {
+  double C2Lipatov(
+    CLHEP::HepLorentzVector const & qav,
+    CLHEP::HepLorentzVector const & qbv,
+    CLHEP::HepLorentzVector const & p1,
+    CLHEP::HepLorentzVector const & p2
+  ){
     CLHEP::HepLorentzVector temptrans=-(qav+qbv);
     CLHEP::HepLorentzVector p5=qav-qbv;
     CLHEP::HepLorentzVector CL=temptrans
       + p1*(qav.m2()/p5.dot(p1) + 2.*p5.dot(p2)/p1.dot(p2))
       - p2*(qbv.m2()/p5.dot(p2) + 2.*p5.dot(p1)/p1.dot(p2));
     return -CL.dot(CL);
   }
 
   //! Lipatov vertex with soft subtraction for partons emitted into extremal jets
   double C2Lipatovots(
-      CLHEP::HepLorentzVector qav,
-      CLHEP::HepLorentzVector qbv,
-      CLHEP::HepLorentzVector p1,
-      CLHEP::HepLorentzVector p2,
+      CLHEP::HepLorentzVector const & qav,
+      CLHEP::HepLorentzVector const & qbv,
+      CLHEP::HepLorentzVector const & p1,
+      CLHEP::HepLorentzVector const & p2,
       double lambda
   ) {
     double kperp=(qav-qbv).perp();
     if (kperp>lambda)
       return C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2());
 
     double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2()));
     return Cls-4./(kperp*kperp);
   }
 
   //! Lipatov vertex
-  double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv,
-    CLHEP::HepLorentzVector pim, CLHEP::HepLorentzVector pip,
-    CLHEP::HepLorentzVector pom, CLHEP::HepLorentzVector pop) // B
-  {
+  double C2Lipatov( // B
+    CLHEP::HepLorentzVector const & qav,
+    CLHEP::HepLorentzVector const & qbv,
+    CLHEP::HepLorentzVector const & pim,
+    CLHEP::HepLorentzVector const & pip,
+    CLHEP::HepLorentzVector const & pom,
+    CLHEP::HepLorentzVector const & pop
+  ){
     CLHEP::HepLorentzVector temptrans=-(qav+qbv);
     CLHEP::HepLorentzVector p5=qav-qbv;
     CLHEP::HepLorentzVector CL=temptrans
       + qav.m2()*(1./p5.dot(pip)*pip + 1./p5.dot(pop)*pop)/2.
       - qbv.m2()*(1./p5.dot(pim)*pim + 1./p5.dot(pom)*pom)/2.
       + ( pip*(p5.dot(pim)/pip.dot(pim) + p5.dot(pom)/pip.dot(pom))
         + pop*(p5.dot(pim)/pop.dot(pim) + p5.dot(pom)/pop.dot(pom))
         - pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim))
         - pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.;
 
     return -CL.dot(CL);
   }
 
   //! Lipatov vertex with soft subtraction
   double C2Lipatovots(
-      CLHEP::HepLorentzVector qav,
-      CLHEP::HepLorentzVector qbv,
-      CLHEP::HepLorentzVector pa,
-      CLHEP::HepLorentzVector pb,
-      CLHEP::HepLorentzVector p1,
-      CLHEP::HepLorentzVector p2,
+      CLHEP::HepLorentzVector const & qav,
+      CLHEP::HepLorentzVector const & qbv,
+      CLHEP::HepLorentzVector const & pa,
+      CLHEP::HepLorentzVector const & pb,
+      CLHEP::HepLorentzVector const & p1,
+      CLHEP::HepLorentzVector const & p2,
       double lambda
   ) {
     double kperp=(qav-qbv).perp();
     if (kperp>lambda)
       return C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2());
 
     double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()));
     double temp=Cls-4./(kperp*kperp);
     return temp;
   }
 
   /** Matrix element squared for tree-level current-current scattering
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    */
   double ME_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa
   ){
     if (aptype==21&&bptype==21) {
       return ME_gg(pn,pb,p1,pa);
     } else if (aptype==21&&bptype!=21) {
       if (bptype > 0)
         return ME_qg(pn,pb,p1,pa);
       else
         return ME_qbarg(pn,pb,p1,pa);
     }
     else if (bptype==21&&aptype!=21) { // ----- || -----
       if (aptype > 0)
         return ME_qg(p1,pa,pn,pb);
       else
         return ME_qbarg(p1,pa,pn,pb);
     }
     else { // they are both quark
       if (bptype>0) {
         if (aptype>0)
           return ME_qQ(pn,pb,p1,pa);
         else
           return ME_qQbar(pn,pb,p1,pa);
       }
       else {
         if (aptype>0)
           return ME_qQbar(p1,pa,pn,pb);
         else
           return ME_qbarQbar(pn,pb,p1,pa);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** Matrix element squared for tree-level current-current scattering With W+Jets
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    */
   double ME_W_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
       bool const wc
   ){
     // We know it cannot be gg incoming.
     assert(!(aptype==21 && bptype==21));
     if (aptype==21&&bptype!=21) {
       if (bptype > 0)
         return ME_W_qg(pn,plbar,pl,pb,p1,pa);
       else
         return ME_W_qbarg(pn,plbar,pl,pb,p1,pa);
     }
     else if (bptype==21&&aptype!=21) { // ----- || -----
       if (aptype > 0)
         return ME_W_qg(p1,plbar,pl,pa,pn,pb);
       else
         return ME_W_qbarg(p1,plbar,pl,pa,pn,pb);
     }
     else { // they are both quark
       if (wc==true){ // emission off b, (first argument pbout)
         if (bptype>0) {
           if (aptype>0)
             return ME_W_qQ(pn,plbar,pl,pb,p1,pa);
           else
             return ME_W_qQbar(pn,plbar,pl,pb,p1,pa);
         }
         else {
           if (aptype>0)
             return ME_W_qbarQ(pn,plbar,pl,pb,p1,pa);
           else
             return ME_W_qbarQbar(pn,plbar,pl,pb,p1,pa);
         }
       }
       else{ // emission off a, (first argument paout)
         if (aptype > 0) {
           if (bptype > 0)
             return ME_W_qQ(p1,plbar,pl,pa,pn,pb);
           else
             return ME_W_qQbar(p1,plbar,pl,pa,pn,pb);
         }
         else {  // a is anti-quark
           if (bptype > 0)
             return ME_W_qbarQ(p1,plbar,pl,pa,pn,pb);
           else
             return ME_W_qbarQbar(p1,plbar,pl,pa,pn,pb);
         }
 
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** Matrix element squared for backwards uno tree-level current-current
    *  scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param pg              Unordered gluon momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for unob Tree-Level Current-Current Scattering
    */
   double ME_W_unob_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pg,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
       bool const wc
   ){
     // we know they are not both gluons
     if (bptype == 21 && aptype != 21) { // b gluon => W emission off a
       if (aptype > 0)
         return ME_Wuno_qg(p1,pa,pn,pb,pg,plbar,pl);
       else
         return ME_Wuno_qbarg(p1,pa,pn,pb,pg,plbar,pl);
     }
 
     else { // they are both quark
       if (wc) {// emission off b, i.e. b is first current
         if (bptype>0){
           if (aptype>0)
             return ME_W_unob_qQ(p1,pa,pn,pb,pg,plbar,pl);
           else
             return ME_W_unob_qQbar(p1,pa,pn,pb,pg,plbar,pl);
         }
         else{
           if (aptype>0)
             return ME_W_unob_qbarQ(p1,pa,pn,pb,pg,plbar,pl);
           else
             return ME_W_unob_qbarQbar(p1,pa,pn,pb,pg,plbar,pl);
         }
       }
       else {// wc == false, emission off a, i.e. a is first current
         if (aptype > 0) {
           if (bptype > 0) //qq
             return ME_Wuno_qQ(p1,pa,pn,pb,pg,plbar,pl);
           else //qqbar
             return ME_Wuno_qQbar(p1,pa,pn,pb,pg,plbar,pl);
         }
         else {  // a is anti-quark
           if (bptype > 0) //qbarq
             return ME_Wuno_qbarQ(p1,pa,pn,pb,pg,plbar,pl);
           else //qbarqbar
             return ME_Wuno_qbarQbar(p1,pa,pn,pb,pg,plbar,pl);
         }
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** Matrix element squared for uno forward tree-level current-current
    *  scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param pg              Unordered gluon momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for unof Tree-Level Current-Current Scattering
    */
   double ME_W_unof_current(
                            int aptype, int bptype,
                            CLHEP::HepLorentzVector const & pn,
                            CLHEP::HepLorentzVector const & pb,
                            CLHEP::HepLorentzVector const & p1,
                            CLHEP::HepLorentzVector const & pa,
                            CLHEP::HepLorentzVector const & pg,
                            CLHEP::HepLorentzVector const & plbar,
                            CLHEP::HepLorentzVector const & pl,
                            bool const wc
   ){
     // we know they are not both gluons
     if (aptype==21 && bptype!=21) {//a gluon => W emission off b
       if (bptype > 0)
         return ME_Wuno_qg(pn, pb, p1, pa, pg, plbar, pl);
       else
         return ME_Wuno_qbarg(pn, pb, p1, pa, pg, plbar, pl);
     }
     else { // they are both quark
       if (wc) {// emission off b, i.e. b is first current
         if (bptype>0){
           if (aptype>0)
             return ME_Wuno_qQ(pn, pb, p1, pa, pg, plbar, pl);
           else
             return ME_Wuno_qQbar(pn, pb, p1, pa, pg, plbar, pl);
         }
         else{
           if (aptype>0)
             return ME_Wuno_qbarQ(pn, pb, p1, pa, pg, plbar, pl);
           else
             return ME_Wuno_qbarQbar(pn, pb, p1, pa, pg, plbar, pl);
         }
       }
       else {// wc == false, emission off a, i.e. a is first current
         if (aptype > 0) {
           if (bptype > 0) //qq
             return ME_W_unof_qQ(p1, pa, pn, pb, pg, plbar, pl);
             // return ME_W_unof_qQ(pn,pb,p1,pa,pg,plbar,pl);
           else //qqbar
             return ME_W_unof_qQbar(p1, pa, pn, pb, pg, plbar, pl);
         }
         else {  // a is anti-quark
           if (bptype > 0) //qbarq
             return ME_W_unof_qbarQ(p1, pa, pn, pb, pg, plbar, pl);
           else //qbarqbar
             return ME_W_unof_qbarQbar(p1, pa, pn, pb, pg, plbar, pl);
         }
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** \brief Matrix element squared for backward qqx tree-level current-current
    *         scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pa              Initial state a Momentum
    *  @param pb              Initial state b Momentum
    *  @param pq              Final state q Momentum
    *  @param pqbar           Final state qbar Momentum
    *  @param pn              Final state n Momentum
    *  @param plbar           Final state anti-lepton momentum
    *  @param pl              Final state lepton momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for qqxb Tree-Level Current-Current Scattering
    */
   double ME_W_qqxb_current(
                            int aptype, int bptype,
                            CLHEP::HepLorentzVector const & pa,
                            CLHEP::HepLorentzVector const & pb,
                            CLHEP::HepLorentzVector const & pq,
                            CLHEP::HepLorentzVector const & pqbar,
                            CLHEP::HepLorentzVector const & pn,
                            CLHEP::HepLorentzVector const & plbar,
                            CLHEP::HepLorentzVector const & pl,
                            bool const wc
   ){
     // CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal)
     bool swapQuarkAntiquark=false;
     double CFbackward;
     if (pqbar.rapidity() > pq.rapidity()){
       swapQuarkAntiquark=true;
       CFbackward = (0.5*(3.-1./3.)*(pa.minus()/(pq.minus())+(pq.minus())/pa.minus())+1./3.)*3./4.;
     }
     else{
       CFbackward = (0.5*(3.-1./3.)*(pa.minus()/(pqbar.minus())+(pqbar.minus())/pa.minus())+1./3.)*3./4.;
     }
     // With qqbar we could have 2 incoming gluons and W Emission
     if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg
       // This will be a wqqx emission as there is no other possible W Emission Site.
       if (swapQuarkAntiquark)
         return ME_WExqqx_qqbarg(pa, pqbar, plbar, pl, pq, pn, pb)*CFbackward;
       else
         return ME_WExqqx_qbarqg(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward;
     }
     else if (aptype==21&&bptype!=21 ) {//a gluon => W emission off b leg or qqx
       if (!wc){ // W Emitted from backwards qqx
         if (swapQuarkAntiquark)
           return ME_WExqqx_qqbarQ(pa, pqbar, plbar, pl, pq, pn, pb)*CFbackward;
         else
           return ME_WExqqx_qbarqQ(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward;
       }
       else {   // W Must be emitted from forwards leg.
         if(bptype > 0){
           if (swapQuarkAntiquark)
             return ME_W_Exqqx_QQq(pb, pa, pn, pqbar, pq, plbar, pl, false)*CFbackward;
           else
             return ME_W_Exqqx_QQq(pb, pa, pn, pq, pqbar, plbar, pl, false)*CFbackward;
         } else {
           if (swapQuarkAntiquark)
             return ME_W_Exqqx_QQq(pb, pa, pn, pqbar, pq, plbar, pl, true)*CFbackward;
           else
             return ME_W_Exqqx_QQq(pb, pa, pn, pq, pqbar, plbar, pl, true)*CFbackward;
         }
       }
     }
     throw std::logic_error("Incompatible incoming particle types with qqxb");
   }
 
   /*  \brief Matrix element squared for forward qqx tree-level current-current
    *         scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pa              Initial state a Momentum
    *  @param pb              Initial state b Momentum
    *  @param pq              Final state q Momentum
    *  @param pqbar           Final state qbar Momentum
    *  @param p1              Final state 1 Momentum
    *  @param plbar           Final state anti-lepton momentum
    *  @param pl              Final state lepton momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for qqxf Tree-Level Current-Current Scattering
    */
   double ME_W_qqxf_current(
                            int aptype, int bptype,
                            CLHEP::HepLorentzVector const & pa,
                            CLHEP::HepLorentzVector const & pb,
                            CLHEP::HepLorentzVector const & pq,
                            CLHEP::HepLorentzVector const & pqbar,
                            CLHEP::HepLorentzVector const & p1,
                            CLHEP::HepLorentzVector const & plbar,
                            CLHEP::HepLorentzVector const & pl,
                            bool const wc
   ){
     // CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal)
     bool swapQuarkAntiquark=false;
     double CFforward;
     if (pqbar.rapidity() < pq.rapidity()){
       swapQuarkAntiquark=true;
       CFforward = (0.5*(3.-1./3.)*(pb.plus()/(pq.plus())+(pq.plus())/pb.plus())+1./3.)*3./4.;
     }
     else{
       CFforward = (0.5*(3.-1./3.)*(pb.plus()/(pqbar.plus())+(pqbar.plus())/pb.plus())+1./3.)*3./4.;
     }
 
     // With qqbar we could have 2 incoming gluons and W Emission
     if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg
       // This will be a wqqx emission as there is no other possible W Emission Site.
       if (swapQuarkAntiquark)
         return ME_WExqqx_qqbarg(pb, pqbar, plbar, pl, pq, p1, pa)*CFforward;
       else
         return ME_WExqqx_qbarqg(pb, pq, plbar, pl, pqbar, p1, pa)*CFforward;
     }
     else if (bptype==21&&aptype!=21) {// b gluon => W emission off a or qqx
       if (wc){ // W Emitted from forwards qqx
         if (swapQuarkAntiquark)
           return ME_WExqqx_qqbarQ(pb, pqbar, plbar, pl, pq, p1, pa)*CFforward;
         else
           return ME_WExqqx_qbarqQ(pb, pq, plbar, pl, pqbar, p1, pa)*CFforward;
       }
       // W Must be emitted from backwards leg.
       if (aptype > 0){
         if (swapQuarkAntiquark)
           return ME_W_Exqqx_QQq(pa, pb, p1, pqbar, pq, plbar, pl, false)*CFforward;
         else
           return ME_W_Exqqx_QQq(pa, pb, p1, pq, pqbar, plbar, pl, false)*CFforward;
       } else {
         if (swapQuarkAntiquark)
           return ME_W_Exqqx_QQq(pa, pb, p1, pqbar, pq, plbar, pl, true)*CFforward;
         else
           return ME_W_Exqqx_QQq(pa, pb, p1, pq, pqbar, plbar, pl, true)*CFforward;
       }
     }
     throw std::logic_error("Incompatible incoming particle types with qqxf");
   }
 
   /*  \brief Matrix element squared for central qqx tree-level current-current
    *         scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param nabove          Number of gluons emitted before central qqxpair
    *  @param nbelow          Number of gluons emitted after central qqxpair
    *  @param pa              Initial state a Momentum
    *  @param pb              Initial state b Momentum\
    *  @param pq              Final state qbar Momentum
    *  @param pqbar           Final state q Momentum
    *  @param partons         Vector of all outgoing partons
    *  @param plbar           Final state anti-lepton momentum
    *  @param pl              Final state lepton momentum
    *  @param wqq             Boolean. True siginfies W boson is emitted from Central qqx
    *  @param wc              Boolean. wc=true signifies w boson emitted from leg b; if wqq=false.
    *  @returns               ME Squared for qqxmid Tree-Level Current-Current Scattering
    */
   double ME_W_qqxmid_current(
                            int aptype, int bptype,
                            int nabove, int nbelow,
                            CLHEP::HepLorentzVector const & pa,
                            CLHEP::HepLorentzVector const & pb,
                            CLHEP::HepLorentzVector const & pq,
                            CLHEP::HepLorentzVector const & pqbar,
-                           std::vector<HLV> partons,
+                           std::vector<HLV> const & partons,
                            CLHEP::HepLorentzVector const & plbar,
                            CLHEP::HepLorentzVector const & pl,
                            bool const wqq, bool const wc
   ){
     // CAM factors for the qqx amps, and qqbar ordering (default, pq backwards)
     bool swapQuarkAntiquark=false;
     if (pqbar.rapidity() < pq.rapidity()){
       swapQuarkAntiquark=true;
     }
     double wt=1.;
 
     if (aptype==21)  wt*=K_g(partons.front(),pa)/HEJ::C_F;
     if (bptype==21)  wt*=K_g(partons.back(),pb)/HEJ::C_F;
 
     if (aptype <=0 && bptype <=0){ // Both External AntiQuark
       if (wqq==1){//emission from central qqbar
         return wt*ME_WCenqqx_qq(pa, pb, pl, plbar, partons,true,true,
                                 swapQuarkAntiquark, nabove);
       }
       else if (wc==1){//emission from b leg
         return wt*ME_W_Cenqqx_qq(pa, pb, pl, plbar, partons, true,true,
                                 swapQuarkAntiquark, nabove, nbelow, true);
       }
       else { // emission from a leg
         return wt*ME_W_Cenqqx_qq(pa, pb, pl,plbar, partons, true,true,
                                 swapQuarkAntiquark, nabove, nbelow, false);
       }
     } // end both antiquark
     else if (aptype<=0){ // a is antiquark
       if (wqq==1){//emission from central qqbar
         return wt*ME_WCenqqx_qq(pa, pb, pl, plbar, partons, false, true,
                                 swapQuarkAntiquark, nabove);
       }
       else if (wc==1){//emission from b leg
         return wt*ME_W_Cenqqx_qq(pa, pb, pl, plbar, partons,false,true,
                                 swapQuarkAntiquark, nabove, nbelow, true);
       }
       else { // emission from a leg
         return wt*ME_W_Cenqqx_qq(pa, pb, pl, plbar, partons, false, true,
                                 swapQuarkAntiquark, nabove, nbelow, false);
       }
     } // end a is antiquark
 
     else if (bptype<=0){ // b is antiquark
       if (wqq==1){//emission from central qqbar
         return wt*ME_WCenqqx_qq(pa, pb, pl, plbar, partons, true, false,
                                 swapQuarkAntiquark, nabove);
       }
       else if (wc==1){//emission from b leg
         return wt*ME_W_Cenqqx_qq(pa, pb, pl, plbar, partons, true, false,
                                 swapQuarkAntiquark, nabove, nbelow, true);
       }
       else { // emission from a leg
         return wt*ME_W_Cenqqx_qq(pa, pb, pl, plbar, partons, true, false,
                                 swapQuarkAntiquark, nabove, nbelow, false);
       }
 
     } //end b is antiquark
     else{ //Both Quark or gluon
       if (wqq==1){//emission from central qqbar
         return wt*ME_WCenqqx_qq(pa, pb, pl, plbar, partons, false, false,
                                 swapQuarkAntiquark, nabove);}
       else if (wc==1){//emission from b leg
         return wt*ME_W_Cenqqx_qq(pa, pb, pl, plbar, partons, false, false,
                                 swapQuarkAntiquark, nabove, nbelow, true);
       }
       else { // emission from a leg
         return wt*ME_W_Cenqqx_qq(pa, pb, pl, plbar, partons, false, false,
                                 swapQuarkAntiquark, nabove, nbelow, false);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** \brief Matrix element squared for tree-level current-current scattering with Higgs
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param qH              t-channel momentum before Higgs
    *  @param qHp1            t-channel momentum after Higgs
    *  @returns               ME Squared for Tree-Level Current-Current Scattering with Higgs
    */
   double ME_Higgs_current(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & qH,  // t-channel momentum before Higgs
       CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
       double mt, bool include_bottom, double mb
   ){
     if (aptype==21&&bptype==21) // gg initial state
       return ME_H_gg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
     else if (aptype==21&&bptype!=21) {
       if (bptype > 0)
         return ME_H_qg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.;
       else
         return ME_H_qbarg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.;
     }
     else if (bptype==21&&aptype!=21) {
       if (aptype > 0)
         return ME_H_qg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.;
       else
         return ME_H_qbarg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.;
     }
     else { // they are both quark
       if (bptype>0) {
         if (aptype>0)
           return ME_H_qQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
         else
           return ME_H_qQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
       }
       else {
         if (aptype>0)
           return ME_H_qQbar(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4.*4./(9.*9.);
         else
           return ME_H_qbarQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** \brief  Current matrix element squared with Higgs and unordered forward emission
    *  @param aptype          Particle A PDG ID
    *  @param bptype          Particle B PDG ID
    *  @param punof           Unordered Particle Momentum
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param qH              t-channel momentum before Higgs
    *  @param qHp1            t-channel momentum after Higgs
    *  @returns               ME Squared with Higgs and unordered forward emission
    */
   double ME_Higgs_current_unof(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & punof,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & qH,  // t-channel momentum before Higgs
       CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
       double mt, bool include_bottom, double mb
   ){
     if (aptype==21&&bptype!=21) {
       if (bptype > 0)
         return ME_H_unof_qg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       else
         return ME_H_unof_qbarg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
     }
     else { // they are both quark
       if (bptype>0) {
         if (aptype>0)
           return ME_H_unof_qQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
         else
           return ME_H_unof_qQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       }
       else {
         if (aptype>0)
           return ME_H_unof_qbarQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
         else
           return ME_H_unof_qbarQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   /** \brief Current matrix element squared with Higgs and unordered backward emission
    *  @param aptype          Particle A PDG ID
    *  @param bptype          Particle B PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param punob           Unordered back Particle Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param qH              t-channel momentum before Higgs
    *  @param qHp1            t-channel momentum after Higgs
    *  @returns               ME Squared with Higgs and unordered backward emission
    */
   double ME_Higgs_current_unob(
       int aptype, int bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & punob,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & qH,  // t-channel momentum before Higgs
       CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
       double mt, bool include_bottom, double mb
   ){
     if (bptype==21&&aptype!=21) {
       if (aptype > 0)
         return ME_H_unob_gQ(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       else
         return ME_H_unob_gQbar(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
     }
     else { // they are both quark
       if (aptype>0) {
         if (bptype>0)
           return ME_H_unob_qQ(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
         else
           return ME_H_unob_qbarQ(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       }
       else {
         if (bptype>0)
           return ME_H_unob_qQbar(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
         else
           return ME_H_unob_qbarQbar(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
       }
     }
     throw std::logic_error("unknown particle types");
   }
 
   CLHEP::HepLorentzVector to_HepLorentzVector(HEJ::Particle const & particle){
     return {particle.p.px(), particle.p.py(), particle.p.pz(), particle.p.E()};
   }
 
   void validate(HEJ::MatrixElementConfig const & config) {
 #ifndef HEJ_BUILD_WITH_QCDLOOP
     if(!config.Higgs_coupling.use_impact_factors) {
       throw std::invalid_argument{
         "Invalid Higgs coupling settings.\n"
         "HEJ without QCDloop support can only use impact factors.\n"
         "Set use_impact_factors to true or recompile HEJ.\n"
        };
     }
 #endif
     if(config.Higgs_coupling.use_impact_factors
       && config.Higgs_coupling.mt != std::numeric_limits<double>::infinity()) {
       throw std::invalid_argument{
         "Conflicting settings: "
           "impact factors may only be used in the infinite top mass limit"
       };
     }
   }
 } // namespace anonymous
 
 namespace HEJ{
   MatrixElement::MatrixElement(
       std::function<double (double)> alpha_s,
       MatrixElementConfig conf
   ):
     alpha_s_{std::move(alpha_s)},
     param_{std::move(conf)}
   {
     validate(param_);
   }
 
   double MatrixElement::tree_kin(
       Event const & ev
   ) const {
     if(! is_HEJ(ev.type())) return 0.;
 
     auto AWZH_boson = std::find_if(
         begin(ev.outgoing()), end(ev.outgoing()),
         [](Particle const & p){return is_AWZH_boson(p);}
     );
 
     if(AWZH_boson == end(ev.outgoing()))
       return tree_kin_jets(ev);
 
     switch(AWZH_boson->type){
     case pid::Higgs:
       return tree_kin_Higgs(ev);
     case pid::Wp:
     case pid::Wm:
       return tree_kin_W(ev);
     // TODO
     case pid::photon:
     case pid::Z:
     default:
       throw not_implemented("Emission of boson of unsupported type");
     }
   }
 
   namespace{
     constexpr int extremal_jet_idx = 1;
     constexpr int no_extremal_jet_idx = 0;
 
     bool treat_as_extremal(Particle const & parton){
       return parton.p.user_index() == extremal_jet_idx;
     }
 
     template<class InputIterator>
       double FKL_ladder_weight(
           InputIterator begin_gluon, InputIterator end_gluon,
           CLHEP::HepLorentzVector const & q0,
           CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
           CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn,
           double lambda
       ){
       double wt = 1;
       auto qi = q0;
       for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){
         assert(gluon_it->type == pid::gluon);
         const auto g = to_HepLorentzVector(*gluon_it);
         const auto qip1 = qi - g;
 
         if(treat_as_extremal(*gluon_it)){
           wt *= C2Lipatovots(qip1, qi, pa, pb, lambda)*C_A;
         } else{
           wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn, lambda)*C_A;
         }
 
         qi = qip1;
       }
       return wt;
     }
 
   }  // namespace anonymous
 
   std::vector<Particle> MatrixElement::tag_extremal_jet_partons(
       Event const & ev
   ) const{
     auto out_partons = filter_partons(ev.outgoing());
     if(out_partons.size() == ev.jets().size()){
       // no additional emissions in extremal jets, don't need to tag anything
       for(auto & parton: out_partons){
         parton.p.set_user_index(no_extremal_jet_idx);
       }
       return out_partons;
     }
     // TODO: avoid reclustering
     fastjet::ClusterSequence cs(to_PseudoJet(out_partons), ev.jet_def());
     const auto jets = sorted_by_rapidity(cs.inclusive_jets(ev.min_jet_pt()));
     assert(jets.size() >= 2);
     auto most_backward = begin(jets);
     auto most_forward = end(jets) - 1;
     // skip jets caused by unordered emission or qqx
     if(ev.type() == event_type::unob || ev.type() == event_type::qqxexb){
       assert(jets.size() >= 3);
       ++most_backward;
     }
     else if(ev.type() == event_type::unof || ev.type() == event_type::qqxexf){
       assert(jets.size() >= 3);
       --most_forward;
     }
     const auto extremal_jet_indices = cs.particle_jet_indices(
         {*most_backward, *most_forward}
     );
     assert(extremal_jet_indices.size() == out_partons.size());
     for(size_t i = 0; i < out_partons.size(); ++i){
       assert(HEJ::is_parton(out_partons[i]));
       const int idx = (extremal_jet_indices[i]>=0)?
         extremal_jet_idx:
         no_extremal_jet_idx;
       out_partons[i].p.set_user_index(idx);
     }
     return out_partons;
   }
 
   double MatrixElement::tree_kin_jets(
       Event const & ev
   ) const {
     auto const & incoming = ev.incoming();
     const auto partons = tag_extremal_jet_partons(ev);
     if(is_uno(ev.type())){
       throw not_implemented("unordered emission not implemented for pure jets");
     }
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     const auto p1 = to_HepLorentzVector(partons.front());
     const auto pn = to_HepLorentzVector(partons.back());
 
     return ME_current(
         incoming[0].type, incoming[1].type,
         pn, pb, p1, pa
     )/(4.*(N_C*N_C - 1.))*FKL_ladder_weight(
         begin(partons) + 1, end(partons) - 1,
         pa - p1, pa, pb, p1, pn,
         param_.regulator_lambda
     );
   }
 
   namespace{
     double tree_kin_W_FKL(
           int aptype, int bptype, HLV pa, HLV pb,
           std::vector<Particle> const & partons,
           HLV plbar, HLV pl,
           double lambda
     ) {
       auto p1 = to_HepLorentzVector(partons[0]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       const auto begin_ladder = cbegin(partons) + 1;
       const auto end_ladder = cend(partons) - 1;
 
       bool wc = aptype==partons[0].type; //leg b emits w
       auto q0 = pa - p1;
       if(!wc)
         q0 -= pl + plbar;
 
       const double current_factor = ME_W_current(
           aptype, bptype, pn, pb,
           p1, pa, plbar, pl, wc
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*ladder_factor;
     }
 
     double tree_kin_W_unob(
         int aptype, int bptype, HLV pa, HLV pb,
         std::vector<Particle> const & partons,
         HLV plbar, HLV pl,
         double lambda
     ) {
       auto pg = to_HepLorentzVector(partons[0]);
       auto p1 = to_HepLorentzVector(partons[1]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       const auto begin_ladder = cbegin(partons) + 2;
       const auto end_ladder = cend(partons) - 1;
 
       bool wc = aptype==partons[1].type; //leg b emits w
       auto q0 = pa - p1 -pg;
       if(!wc)
         q0 -= pl + plbar;
 
       const double current_factor = ME_W_unob_current(
           aptype, bptype, pn, pb,
           p1, pa, pg, plbar, pl, wc
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
     }
 
     double tree_kin_W_unof(
         int aptype, int bptype, HLV pa, HLV pb,
         std::vector<Particle> const & partons,
         HLV plbar, HLV pl,
         double lambda
     ) {
       auto p1 = to_HepLorentzVector(partons[0]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 2]);
       auto pg = to_HepLorentzVector(partons[partons.size() - 1]);
 
       const auto begin_ladder = cbegin(partons) + 1;
       const auto end_ladder = cend(partons) - 2;
 
       bool wc = aptype==partons[0].type; //leg b emits w
       auto q0 = pa - p1;
       if(!wc)
         q0 -= pl + plbar;
 
       const double current_factor = ME_W_unof_current(
           aptype, bptype, pn, pb,
           p1, pa, pg, plbar, pl, wc
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
     }
 
     double tree_kin_W_qqxb(
         int aptype, int bptype, HLV pa, HLV pb,
         std::vector<Particle> const & partons,
         HLV plbar, HLV pl,
         double lambda
     ) {
       HLV pq,pqbar;
       if(is_quark(partons[0])){
         pq = to_HepLorentzVector(partons[0]);
         pqbar = to_HepLorentzVector(partons[1]);
       }
       else{
         pq = to_HepLorentzVector(partons[1]);
         pqbar = to_HepLorentzVector(partons[0]);
       }
       auto p1 = to_HepLorentzVector(partons[0]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       const auto begin_ladder = cbegin(partons) + 2;
       const auto end_ladder = cend(partons) - 1;
 
       bool wc = bptype!=partons.back().type; //leg b emits w
       auto q0 = pa - pq - pqbar;
       if(!wc)
         q0 -= pl + plbar;
 
       const double current_factor = ME_W_qqxb_current(
           aptype, bptype, pa, pb,
           pq, pqbar, pn, plbar, pl, wc
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
     }
 
     double tree_kin_W_qqxf(
         int aptype, int bptype, HLV pa, HLV pb,
         std::vector<Particle> const & partons,
         HLV plbar, HLV pl,
         double lambda
     ) {
       HLV pq,pqbar;
       if(is_quark(partons[partons.size() - 1])){
         pq = to_HepLorentzVector(partons[partons.size() - 1]);
         pqbar = to_HepLorentzVector(partons[partons.size() - 2]);
       }
       else{
         pq = to_HepLorentzVector(partons[partons.size() - 2]);
         pqbar = to_HepLorentzVector(partons[partons.size() - 1]);
       }
       auto p1 = to_HepLorentzVector(partons[0]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       const auto begin_ladder = cbegin(partons) + 1;
       const auto end_ladder = cend(partons) - 2;
 
       bool wc = aptype==partons.front().type; //leg b emits w
       auto q0 = pa - p1;
       if(!wc)
         q0 -= pl + plbar;
 
       const double current_factor = ME_W_qqxf_current(
           aptype, bptype, pa, pb,
           pq, pqbar, p1, plbar, pl, wc
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
     }
 
     double tree_kin_W_qqxmid(
         int aptype, int bptype, HLV pa, HLV pb,
         std::vector<Particle> const & partons,
         HLV plbar, HLV pl,
         double lambda
     ) {
      HLV pq,pqbar;
       const auto backmidquark = std::find_if(
           begin(partons)+1, end(partons)-1,
           [](Particle const & s){ return s.type != pid::gluon; }
       );
 
       assert(backmidquark!=end(partons)-1);
 
       if (is_quark(backmidquark->type)){
         pq = to_HepLorentzVector(*backmidquark);
         pqbar = to_HepLorentzVector(*(backmidquark+1));
       }
       else {
         pqbar = to_HepLorentzVector(*backmidquark);
         pq = to_HepLorentzVector(*(backmidquark+1));
       }
 
       auto p1 = to_HepLorentzVector(partons[0]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       auto q0 = pa - p1;
       // t-channel momentum after qqx
       auto qqxt = q0;
 
       bool wc, wqq;
       if (backmidquark->type == -(backmidquark+1)->type){ // Central qqx does not emit
         wqq=false;
         if (aptype==partons[0].type) {
           wc = true;
         }
         else{
           wc = false;
           q0-=pl+plbar;
         }
       }
       else{
         wqq = true;
         wc  = false;
         qqxt-=pl+plbar;
       }
 
       const auto begin_ladder = cbegin(partons) + 1;
       const auto end_ladder_1 = (backmidquark);
       const auto begin_ladder_2 = (backmidquark+2);
       const auto end_ladder = cend(partons) - 1;
       for(auto parton_it = begin_ladder; parton_it < begin_ladder_2; ++parton_it){
         qqxt -= to_HepLorentzVector(*parton_it);
       }
 
       int nabove = std::distance(begin_ladder, backmidquark);
       int nbelow = std::distance(begin_ladder_2, end_ladder);
 
       std::vector<HLV> partonsHLV;
       partonsHLV.reserve(partons.size());
       for (size_t i = 0; i != partons.size(); ++i) {
         partonsHLV.push_back(to_HepLorentzVector(partons[i]));
       }
 
       const double current_factor = ME_W_qqxmid_current(
           aptype, bptype, nabove, nbelow, pa, pb,
           pq, pqbar, partonsHLV, plbar, pl, wqq, wc
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder_1,
           q0, pa, pb, p1, pn,
           lambda
       )*FKL_ladder_weight(
           begin_ladder_2, end_ladder,
           qqxt, pa, pb, p1, pn,
           lambda
         );
       return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
     }
   } // namespace anonymous
 
   double MatrixElement::tree_kin_W(Event const & ev) const {
     using namespace event_type;
     auto const & incoming(ev.incoming());
     auto const & decays(ev.decays());
     HLV plbar, pl;
     for (auto& x: decays) {
       if (x.second.at(0).type < 0){
         plbar = to_HepLorentzVector(x.second.at(0));
         pl = to_HepLorentzVector(x.second.at(1));
       }
       else{
         pl = to_HepLorentzVector(x.second.at(0));
         plbar = to_HepLorentzVector(x.second.at(1));
       }
     }
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     const auto partons = tag_extremal_jet_partons(ev);
 
     if(ev.type() == unordered_backward){
       return tree_kin_W_unob(incoming[0].type, incoming[1].type,
                              pa, pb, partons, plbar, pl,
                              param_.regulator_lambda);
     }
     if(ev.type() == unordered_forward){
       return tree_kin_W_unof(incoming[0].type, incoming[1].type,
                              pa, pb, partons, plbar, pl,
                              param_.regulator_lambda);
     }
     if(ev.type() == extremal_qqxb){
       return tree_kin_W_qqxb(incoming[0].type, incoming[1].type,
                              pa, pb, partons, plbar, pl,
                              param_.regulator_lambda);
     }
     if(ev.type() == extremal_qqxf){
       return tree_kin_W_qqxf(incoming[0].type, incoming[1].type,
                              pa, pb, partons, plbar, pl,
                              param_.regulator_lambda);
     }
     if(ev.type() == central_qqx){
       return tree_kin_W_qqxmid(incoming[0].type, incoming[1].type,
              pa, pb, partons, plbar, pl,
              param_.regulator_lambda);
     }
     return tree_kin_W_FKL(incoming[0].type, incoming[1].type,
         pa, pb, partons, plbar, pl,
         param_.regulator_lambda);
   }
 
   double MatrixElement::tree_kin_Higgs(
       Event const & ev
   ) const {
     if(is_uno(ev.type())){
       return tree_kin_Higgs_between(ev);
     }
     if(ev.outgoing().front().type == pid::Higgs){
       return tree_kin_Higgs_first(ev);
     }
     if(ev.outgoing().back().type == pid::Higgs){
       return tree_kin_Higgs_last(ev);
     }
     return tree_kin_Higgs_between(ev);
   }
 
   namespace {
     // Colour acceleration multipliers, for gluons see eq. (7) in arXiv:0910.5113
 #ifdef HEJ_BUILD_WITH_QCDLOOP
     // TODO: code duplication with currents.cc
     double K_g(double p1minus, double paminus) {
       return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A;
     }
     double K_g(
         CLHEP::HepLorentzVector const & pout,
         CLHEP::HepLorentzVector const & pin
     ) {
       if(pin.z() > 0) return K_g(pout.plus(), pin.plus());
       return K_g(pout.minus(), pin.minus());
     }
     double K(
         ParticleID type,
         CLHEP::HepLorentzVector const & pout,
         CLHEP::HepLorentzVector const & pin
     ) {
       if(type == ParticleID::gluon) return K_g(pout, pin);
       return C_F;
     }
 #endif
     // Colour factor in strict MRK limit
     double K_MRK(ParticleID type) {
       return (type == ParticleID::gluon)?C_A:C_F;
     }
   }
 
   double MatrixElement::MH2_forwardH(
-      CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in,
+      CLHEP::HepLorentzVector const & p1out,
+      CLHEP::HepLorentzVector const & p1in,
       ParticleID type2,
-      CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in,
-      CLHEP::HepLorentzVector pH,
+      CLHEP::HepLorentzVector const & p2out,
+      CLHEP::HepLorentzVector const & p2in,
+      CLHEP::HepLorentzVector const & pH,
       double t1, double t2
   ) const{
     ignore(p2out, p2in);
     const double shat = p1in.invariantMass2(p2in);
     // gluon case
 #ifdef HEJ_BUILD_WITH_QCDLOOP
     if(!param_.Higgs_coupling.use_impact_factors){
       return K(type2, p2out, p2in)*C_A*1./(16*M_PI*M_PI)*t1/t2*ME_Houtside_gq(
           p1out, p1in, p2out, p2in, pH,
           param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom,
           param_.Higgs_coupling.mb
       )/(4*(N_C*N_C - 1));
     }
 #endif
     return K_MRK(type2)/C_A*9./2.*shat*shat*(
         C2gHgp(p1in,p1out,pH) + C2gHgm(p1in,p1out,pH)
     )/(t1*t2);
   }
 
   double MatrixElement::tree_kin_Higgs_first(
       Event const & ev
   ) const {
     auto const & incoming = ev.incoming();
     auto const & outgoing = ev.outgoing();
     assert(outgoing.front().type == pid::Higgs);
     if(outgoing[1].type != pid::gluon) {
       assert(incoming.front().type == outgoing[1].type);
       return tree_kin_Higgs_between(ev);
     }
     const auto pH = to_HepLorentzVector(outgoing.front());
     const auto partons = tag_extremal_jet_partons(
         ev
     );
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     const auto p1 = to_HepLorentzVector(partons.front());
     const auto pn = to_HepLorentzVector(partons.back());
 
     const auto q0 = pa - p1 - pH;
 
     const double t1 = q0.m2();
     const double t2 = (pn - pb).m2();
 
     return MH2_forwardH(
         p1, pa, incoming[1].type, pn, pb, pH,
         t1, t2
     )*FKL_ladder_weight(
         begin(partons) + 1, end(partons) - 1,
         q0, pa, pb, p1, pn,
         param_.regulator_lambda
     );
   }
 
   double MatrixElement::tree_kin_Higgs_last(
       Event const & ev
   ) const {
     auto const & incoming = ev.incoming();
     auto const & outgoing = ev.outgoing();
     assert(outgoing.back().type == pid::Higgs);
     if(outgoing[outgoing.size()-2].type != pid::gluon) {
       assert(incoming.back().type == outgoing[outgoing.size()-2].type);
       return tree_kin_Higgs_between(ev);
     }
     const auto pH = to_HepLorentzVector(outgoing.back());
     const auto partons = tag_extremal_jet_partons(
         ev
     );
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     auto p1 = to_HepLorentzVector(partons.front());
     const auto pn = to_HepLorentzVector(partons.back());
 
     auto q0 = pa - p1;
 
     const double t1 = q0.m2();
     const double t2 = (pn + pH - pb).m2();
 
     return MH2_forwardH(
         pn, pb, incoming[0].type, p1, pa, pH,
         t2, t1
     )*FKL_ladder_weight(
         begin(partons) + 1, end(partons) - 1,
         q0, pa, pb, p1, pn,
         param_.regulator_lambda
     );
   }
 
   double MatrixElement::tree_kin_Higgs_between(
       Event const & ev
   ) const {
     using namespace event_type;
     auto const & incoming = ev.incoming();
     auto const & outgoing = ev.outgoing();
 
     const auto the_Higgs = std::find_if(
         begin(outgoing), end(outgoing),
         [](Particle const & s){ return s.type == pid::Higgs; }
     );
     assert(the_Higgs != end(outgoing));
     const auto pH = to_HepLorentzVector(*the_Higgs);
     const auto partons = tag_extremal_jet_partons(ev);
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     auto p1 = to_HepLorentzVector(
         partons[(ev.type() == unob)?1:0]
     );
     auto pn = to_HepLorentzVector(
         partons[partons.size() - ((ev.type() == unof)?2:1)]
     );
 
     auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing));
     assert(
         (first_after_Higgs == end(partons) && (
             (ev.type() == unob)
             || partons.back().type != pid::gluon
         ))
         || first_after_Higgs->rapidity() >= the_Higgs->rapidity()
     );
     assert(
         (first_after_Higgs == begin(partons) && (
             (ev.type() == unof)
             || partons.front().type != pid::gluon
         ))
         || (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity()
     );
     // always treat the Higgs as if it were in between the extremal FKL partons
     if(first_after_Higgs == begin(partons)) ++first_after_Higgs;
     else if(first_after_Higgs == end(partons)) --first_after_Higgs;
 
     // t-channel momentum before Higgs
     auto qH = pa;
     for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){
       qH -= to_HepLorentzVector(*parton_it);
     }
 
     auto q0 = pa - p1;
     auto begin_ladder = begin(partons) + 1;
     auto end_ladder = end(partons) - 1;
 
     double current_factor;
     if(ev.type() == unob){
       current_factor = C_A*C_A/2.*ME_Higgs_current_unob( // 1/2 = "K_uno"
           incoming[0].type, incoming[1].type,
           pn, pb, to_HepLorentzVector(partons.front()), p1, pa, qH, qH - pH,
           param_.Higgs_coupling.mt,
           param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
       );
       const auto p_unob = to_HepLorentzVector(partons.front());
       q0 -= p_unob;
       p1 += p_unob;
       ++begin_ladder;
     }
     else if(ev.type() == unof){
       current_factor = C_A*C_A/2.*ME_Higgs_current_unof( // 1/2 = "K_uno"
           incoming[0].type, incoming[1].type,
           to_HepLorentzVector(partons.back()), pn, pb, p1, pa, qH, qH - pH,
           param_.Higgs_coupling.mt,
           param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
       );
       pn += to_HepLorentzVector(partons.back());
       --end_ladder;
     }
     else{
       current_factor = ME_Higgs_current(
           incoming[0].type, incoming[1].type,
           pn, pb, p1, pa, qH, qH - pH,
           param_.Higgs_coupling.mt,
           param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
       );
     }
 
     const double ladder_factor = FKL_ladder_weight(
         begin_ladder, first_after_Higgs,
         q0, pa, pb, p1, pn,
         param_.regulator_lambda
     )*FKL_ladder_weight(
         first_after_Higgs, end_ladder,
         qH - pH, pa, pb, p1, pn,
         param_.regulator_lambda
     );
     return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
   }
 
   namespace {
     double get_AWZH_coupling(Event const & ev, double alpha_s) {
       const auto AWZH_boson = std::find_if(
           begin(ev.outgoing()), end(ev.outgoing()),
           [](auto const & p){return is_AWZH_boson(p);}
       );
       if(AWZH_boson == end(ev.outgoing())) return 1.;
       switch(AWZH_boson->type){
       case pid::Higgs:
         return alpha_s*alpha_s;
       case pid::Wp:
       case pid::Wm:
         return gw*gw*gw*gw/4.;
         // TODO
       case pid::photon:
       case pid::Z:
       default:
         throw not_implemented("Emission of boson of unsupported type");
       }
     }
   }
 
   double MatrixElement::tree_param(
       Event const & ev,
       double mur
   ) const{
     assert(is_HEJ(ev.type()));
 
     const auto begin_partons = ev.begin_partons();
     const auto end_partons = ev.end_partons();
     const auto num_partons = std::distance(begin_partons, end_partons);
     const double alpha_s = alpha_s_(mur);
     const double gs2 = 4.*M_PI*alpha_s;
     double res = std::pow(gs2, num_partons);
     if(param_.log_correction){
       // use alpha_s(q_perp), evolved to mur
       assert(num_partons >= 2);
       const auto first_emission = std::next(begin_partons);
       const auto last_emission = std::prev(end_partons);
       for(auto parton = first_emission; parton != last_emission; ++parton){
         res *= 1. + alpha_s/(2.*M_PI)*beta0*log(mur/parton->perp());
       }
     }
     return get_AWZH_coupling(ev, alpha_s)*res;
   }
 
 } // namespace HEJ