diff --git a/include/HEJ/jets.hh b/include/HEJ/jets.hh index 178a631..93a5381 100644 --- a/include/HEJ/jets.hh +++ b/include/HEJ/jets.hh @@ -1,339 +1,341 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019 * \copyright GPLv2 or later */ /** \file * \brief Functions computing the square of current contractions in pure jets. * * This file contains all the necessary functions to compute the * current contractions for all valid pure jet HEJ processes, which * so far is FKL and unordered processes. It will also contain some * pure jet ME components used in other process ME calculations * * @TODO add a namespace */ #pragma once #include <complex> #include <ostream> #include <CLHEP/Vector/LorentzVector.h> typedef std::complex<double> COM; typedef COM current[4]; typedef CLHEP::HepLorentzVector HLV; //! Square of qQ->qQ Pure Jets Scattering Current /** * @param p1out Momentum of final state quark * @param p1in Momentum of initial state quark * @param p2out Momentum of final state quark * @param p2in Momentum of intial state quark * @returns Square of the current contractions for qQ->qQ Scattering */ double ME_qQ (HLV p1out, HLV p1in, HLV p2out, HLV p2in); //! Square of qQbar->qQbar Pure Jets Scattering Current /** * @param p1out Momentum of final state quark * @param p1in Momentum of initial state quark * @param p2out Momentum of final state anti-quark * @param p2in Momentum of intial state anti-quark * @returns Square of the current contractions for qQbar->qQbar Scattering * * @note this can be used for qbarQ->qbarQ Scattering by inputting arguments * appropriately. */ double ME_qQbar (HLV p1out, HLV p1in, HLV p2out, HLV p2in); //! Square of qbarQbar->qbarQbar Pure Jets Scattering Current /** * @param p1out Momentum of final state anti-quark * @param p1in Momentum of initial state anti-quark * @param p2out Momentum of final state anti-quark * @param p2in Momentum of intial state anti-quark * @returns Square of the current contractions for qbarQbar->qbarQbar Scattering */ double ME_qbarQbar (HLV p1out, HLV p1in, HLV p2out, HLV p2in); //! Square of qg->qg Pure Jets Scattering Current /** * @param p1out Momentum of final state quark * @param p1in Momentum of initial state quark * @param p2out Momentum of final state gluon * @param p2in Momentum of intial state gluon * @returns Square of the current contractions for qg->qg Scattering * * @note this can be used for gq->gq Scattering by inputting arguments * appropriately. */ double ME_qg (HLV p1out, HLV p1in, HLV p2out, HLV p2in); //! Square of qbarg->qbarg Pure Jets Scattering Current /** * @param p1out Momentum of final state anti-quark * @param p1in Momentum of initial state anti-quark * @param p2out Momentum of final state gluon * @param p2in Momentum of intial state gluon * @returns Square of the current contractions for qbarg->qbarg Scattering * * @note this can be used for gqbar->gqbar Scattering by inputting arguments * appropriately. */ double ME_qbarg (HLV p1out, HLV p1in, HLV p2out, HLV p2in); //! Square of gg->gg Pure Jets Scattering Current /** * @param p1out Momentum of final state gluon * @param p1in Momentum of initial state gluon * @param p2out Momentum of final state gluon * @param p2in Momentum of intial state gluon * @returns Square of the current contractions for gg->gg Scattering */ double ME_gg (HLV p1out, HLV p1in, HLV p2out, HLV p2in); //Unordered Backwards contributions: //! Square of qQ->qQ Pure Jets Scattering Current /** * @param p1out Momentum of final state quark * @param p1in Momentum of initial state quark * @param pg Momentum of unordered gluon * @param p2out Momentum of final state quark * @param p2in Momentum of intial state quark * @returns Square of the current contractions for qQ->qQ Scattering */ double ME_unob_qQ (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in); //! Square of qbarQ->qbarQ Pure Jets Unordered backwards Scattering Current /** * @param p1out Momentum of final state anti-quark * @param p1in Momentum of initial state anti-quark * @param pg Momentum of unordered gluon * @param p2out Momentum of final state quark * @param p2in Momentum of intial state quark * @returns Square of the current contractions for qbarQ->qbarQ Scattering * * @note this can be used for unof contributions by inputting * arguments appropriately. */ double ME_unob_qbarQ (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in); //! Square of qQbar->qQbar Pure Jets Unordered backwards Scattering Current /** * @param p1out Momentum of final state quark * @param p1in Momentum of initial state quark * @param pg Momentum of unordered gluon * @param p2out Momentum of final state anti-quark * @param p2in Momentum of intial state anti-quark * @returns Square of the current contractions for qQbar->qQbar Scattering * * @note this can be used for unof contributions by inputting * arguments appropriately. */ double ME_unob_qQbar (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in); //! Square of qbarQbar->qbarQbar Pure Jets Unordered backwards Scattering Current /** * @param p1out Momentum of final state anti-quark * @param p1in Momentum of initial state anti-quark * @param pg Momentum of unordered gluon * @param p2out Momentum of final state anti-quark * @param p2in Momentum of intial state anti-quark * @returns Square of the current contractions for qbarQbar->qbarQbar Scattering * * @note this can be used for unof contributions by inputting * arguments appropriately. */ double ME_unob_qbarQbar (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in); //! Square of qg->qg Pure Jets Unordered backwards Scattering Current /** * @param p1out Momentum of final state gluon * @param p1in Momentum of initial state gluon * @param pg Momentum of unordered gluon * @param p2out Momentum of final state quark * @param p2in Momentum of intial state quark * @returns Square of the current contractions for qg->qg Scattering * * @note this can be used for unof contributions by inputting * arguments appropriately. */ double ME_unob_qg (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in); //! Square of qbarg->qbarg Pure Jets Unordered backwards Scattering Current /** * @param p1out Momentum of final state gluon * @param p1in Momentum of initial state gluon * @param pg Momentum of unordered gluon * @param p2out Momentum of final state anti-quark * @param p2in Momentum of intial state anti-quark * @returns Square of the current contractions for qbarg->qbarg Scattering * * @note this can be used for unof contributions by inputting * arguments appropriately. */ double ME_unob_qbarg (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in); /** \class CCurrent jets.hh "include/HEJ/jets.hh" * \brief This is the a new class structure for currents. */ class CCurrent { public: CCurrent(COM sc0, COM sc1, COM sc2, COM sc3) :c0(sc0),c1(sc1),c2(sc2),c3(sc3) {}; CCurrent(const HLV p) { c0=p.e(); c1=p.px(); c2=p.py(); c3=p.pz(); }; CCurrent() {}; CCurrent operator+(const CCurrent& other); CCurrent operator-(const CCurrent& other); CCurrent operator*(const double x); CCurrent operator*(const COM x); CCurrent operator/(const double x); CCurrent operator/(const COM x); friend std::ostream& operator<<(std::ostream& os, const CCurrent& cur); COM dot(HLV p1); COM dot(CCurrent p1); COM c0,c1,c2,c3; }; /* std::ostream& operator <<(std::ostream& os, const CCurrent& cur); */ CCurrent operator * ( double x, CCurrent& m); CCurrent operator * ( COM x, CCurrent& m); CCurrent operator / ( double x, CCurrent& m); CCurrent operator / ( COM x, CCurrent& m); //! Current <incoming state | mu | outgoing state> /** * This is a wrapper function around \see joi() note helicity flip to * give same answer. */ void jio(HLV pin, bool helin, HLV pout, bool helout, current &cur); //! Current <outgoing state | mu | outgoing state> /** * @param pi bra state momentum * @param heli helicity of pi * @param pj ket state momentum * @param helj helicity of pj. (must be same as heli) * @param cur reference to current which is saved. * * This function is for building <i (out)| mu |j (out)> currents. It * must be called with pi as the bra, and pj as the ket. * * @TODO Remove heli/helj and just have helicity of current as argument. */ void joo(HLV pi, bool heli, HLV pj, bool helj, current &cur); //! Current <outgoing state | mu | incoming state> /** * @param pout bra state momentum * @param helout helicity of pout * @param pin ket state momentum * @param helin helicity of pin. (must be same as helout) * @param cur reference to current which is saved. * * This function is for building <out| mu |in> currents. It must be * called with pout as the bra, and pin as the ket. jio calls this * with flipped helicity * * @TODO Remove helout/helin and just have helicity of current as argument. */ void joi(HLV pout, bool helout, HLV pin, bool helin, current &cur); //! Current <outgoing state | mu | incoming state> /** * This is a wrapper function around the void function of the same name. \see joi + * + * @TODO This is never used */ CCurrent joi (HLV pout, bool helout, HLV pin, bool helin); //! Current <incoming state | mu | outgoing state> /** * This is a wrapper function around the void function of the same name. \see jio */ CCurrent jio (HLV pout, bool helout, HLV pin, bool helin); //! Current <outgoing state | mu | outgoing state> /** * This is a wrapper function around the void function of the same name. \see joo */ CCurrent joo (HLV pout, bool helout, HLV pin, bool helin); inline COM cdot(const current & j1, const current & j2) { return j1[0]*j2[0]-j1[1]*j2[1]-j1[2]*j2[2]-j1[3]*j2[3]; } inline COM cdot(const HLV & p, const current & j1) { return j1[0]*p.e()-j1[1]*p.x()-j1[2]*p.y()-j1[3]*p.z(); } inline void cmult(const COM & factor, const current & j1, current &cur) { cur[0]=factor*j1[0]; cur[1]=factor*j1[1]; cur[2]=factor*j1[2]; cur[3]=factor*j1[3]; } // WHY!?! inline void cadd(const current & j1, const current & j2, const current & j3, const current & j4, const current & j5, current &sum) { sum[0]=j1[0]+j2[0]+j3[0]+j4[0]+j5[0]; sum[1]=j1[1]+j2[1]+j3[1]+j4[1]+j5[1]; sum[2]=j1[2]+j2[2]+j3[2]+j4[2]+j5[2]; sum[3]=j1[3]+j2[3]+j3[3]+j4[3]+j5[3]; } inline void cadd(const current & j1, const current & j2, const current & j3, const current & j4, current &sum) { sum[0] = j1[0] + j2[0] + j3[0] + j4[0]; sum[1] = j1[1] + j2[1] + j3[1] + j4[1]; sum[2] = j1[2] + j2[2] + j3[2] + j4[2]; sum[3] = j1[3] + j2[3] + j3[3] + j4[3]; } inline void cadd(const current & j1, const current & j2, const current & j3, current &sum) { sum[0]=j1[0]+j2[0]+j3[0]; sum[1]=j1[1]+j2[1]+j3[1]; sum[2]=j1[2]+j2[2]+j3[2]; sum[3]=j1[3]+j2[3]+j3[3]; } inline void cadd(const current & j1, const current & j2, current &sum) { sum[0]=j1[0]+j2[0]; sum[1]=j1[1]+j2[1]; sum[2]=j1[2]+j2[2]; sum[3]=j1[3]+j2[3]; } inline double abs2(const COM & a) { return (a*conj(a)).real(); } inline double vabs2(const CCurrent & cur) { return abs2(cur.c0)-abs2(cur.c1)-abs2(cur.c2)-abs2(cur.c3); } inline double vre(const CCurrent & a, const CCurrent & b) { return real(a.c0*conj(b.c0)-a.c1*conj(b.c1)-a.c2*conj(b.c2)-a.c3*conj(b.c3)); } //! @TODO These are not currents and should be moved elsewhere. double K_g(double p1minus, double paminus); double K_g(HLV const & pout, HLV const & pin); diff --git a/src/jets.cc b/src/jets.cc index c97ca19..a530a60 100644 --- a/src/jets.cc +++ b/src/jets.cc @@ -1,369 +1,371 @@ /** * \authors The HEJ collaboration (see AUTHORS for details) * \date 2019 * \copyright GPLv2 or later */ #include "HEJ/jets.hh" + #include "HEJ/Constants.hh" // Colour acceleration multiplier for gluons see eq. (7) in arXiv:0910.5113 // @TODO: this is not a current and should be moved somewhere else double K_g(double p1minus, double paminus) { return 1./2.*(p1minus/paminus + paminus/p1minus)*(HEJ::C_A - 1./HEJ::C_A) + 1./HEJ::C_A; } double K_g( HLV const & pout, HLV const & pin ) { if(pin.z() > 0) return K_g(pout.plus(), pin.plus()); return K_g(pout.minus(), pin.minus()); } CCurrent CCurrent::operator+(const CCurrent& other) { COM result_c0=c0 + other.c0; COM result_c1=c1 + other.c1; COM result_c2=c2 + other.c2; COM result_c3=c3 + other.c3; return CCurrent(result_c0,result_c1,result_c2,result_c3); } CCurrent CCurrent::operator-(const CCurrent& other) { COM result_c0=c0 - other.c0; COM result_c1=c1 - other.c1; COM result_c2=c2 - other.c2; COM result_c3=c3 - other.c3; return CCurrent(result_c0,result_c1,result_c2,result_c3); } CCurrent CCurrent::operator*(const double x) { COM result_c0=x*CCurrent::c0; COM result_c1=x*CCurrent::c1; COM result_c2=x*CCurrent::c2; COM result_c3=x*CCurrent::c3; return CCurrent(result_c0,result_c1,result_c2,result_c3); } CCurrent CCurrent::operator/(const double x) { COM result_c0=CCurrent::c0/x; COM result_c1=CCurrent::c1/x; COM result_c2=CCurrent::c2/x; COM result_c3=CCurrent::c3/x; return CCurrent(result_c0,result_c1,result_c2,result_c3); } CCurrent CCurrent::operator*(const COM x) { COM result_c0=x*CCurrent::c0; COM result_c1=x*CCurrent::c1; COM result_c2=x*CCurrent::c2; COM result_c3=x*CCurrent::c3; return CCurrent(result_c0,result_c1,result_c2,result_c3); } CCurrent CCurrent::operator/(const COM x) { COM result_c0=(CCurrent::c0)/x; COM result_c1=(CCurrent::c1)/x; COM result_c2=(CCurrent::c2)/x; COM result_c3=(CCurrent::c3)/x; return CCurrent(result_c0,result_c1,result_c2,result_c3); } std::ostream& operator <<(std::ostream& os, const CCurrent& cur) { os << "("<<cur.c0<< " ; "<<cur.c1<<" , "<<cur.c2<<" , "<<cur.c3<<")"; return os; } CCurrent operator * ( double x, CCurrent& m) { return m*x; } CCurrent operator * ( COM x, CCurrent& m) { return m*x; } CCurrent operator / ( double x, CCurrent& m) { return m/x; } CCurrent operator / ( COM x, CCurrent& m) { return m/x; } COM CCurrent::dot(HLV p1) { // Current goes (E,px,py,pz) // Vector goes (px,py,pz,E) return p1[3]*c0-p1[0]*c1-p1[1]*c2-p1[2]*c3; } COM CCurrent::dot(CCurrent p1) { return p1.c0*c0-p1.c1*c1-p1.c2*c2-p1.c3*c3; } //Current Functions void joi(HLV pout, bool helout, HLV pin, bool helin, current &cur) { cur[0]=0.; cur[1]=0.; cur[2]=0.; cur[3]=0.; const double sqpop = sqrt(pout.plus()); const double sqpom = sqrt(pout.minus()); const COM poperp = pout.x() + COM(0, 1) * pout.y(); if (helout != helin) { throw std::invalid_argument{"Non-matching helicities"}; } else if (helout == false) { // negative helicity if (pin.plus() > pin.minus()) { // if forward const double sqpip = sqrt(pin.plus()); cur[0] = sqpop * sqpip; cur[1] = sqpom * sqpip * poperp / abs(poperp); cur[2] = -COM(0,1) * cur[1]; cur[3] = cur[0]; } else { // if backward const double sqpim = sqrt(pin.minus()); cur[0] = -sqpom * sqpim * poperp / abs(poperp); cur[1] = -sqpim * sqpop; cur[2] = COM(0,1) * cur[1]; cur[3] = -cur[0]; } } else { // positive helicity if (pin.plus() > pin.minus()) { // if forward const double sqpip = sqrt(pin.plus()); cur[0] = sqpop * sqpip; cur[1] = sqpom * sqpip * conj(poperp) / abs(poperp); cur[2] = COM(0,1) * cur[1]; cur[3] = cur[0]; } else { // if backward const double sqpim = sqrt(pin.minus()); cur[0] = -sqpom * sqpim * conj(poperp) / abs(poperp); cur[1] = -sqpim * sqpop; cur[2] = -COM(0,1) * cur[1]; cur[3] = -cur[0]; } } } CCurrent joi (HLV pout, bool helout, HLV pin, bool helin) { current cur; joi(pout, helout, pin, helin, cur); return CCurrent(cur[0],cur[1],cur[2],cur[3]); } void jio(HLV pin, bool helin, HLV pout, bool helout, current &cur) { joi(pout, !helout, pin, !helin, cur); } CCurrent jio (HLV pin, bool helin, HLV pout, bool helout) { current cur; jio(pin, helin, pout, helout, cur); return CCurrent(cur[0],cur[1],cur[2],cur[3]); } void joo(HLV pi, bool heli, HLV pj, bool helj, current &cur) { // Zero our current cur[0] = 0.0; cur[1] = 0.0; cur[2] = 0.0; cur[3] = 0.0; if (heli!=helj) { throw std::invalid_argument{"Non-matching helicities"}; } else if ( heli == true ) { // If positive helicity swap momenta std::swap(pi,pj); } const double sqpjp = sqrt(pj.plus()); const double sqpjm = sqrt(pj.minus()); const double sqpip = sqrt(pi.plus()); const double sqpim = sqrt(pi.minus()); const COM piperp = pi.x() + COM(0,1) * pi.y(); const COM pjperp = pj.x() + COM(0,1) * pj.y(); const COM phasei = piperp / abs(piperp); const COM phasej = pjperp / abs(pjperp); cur[0] = sqpim * sqpjm * phasei * conj(phasej) + sqpip * sqpjp; cur[1] = sqpim * sqpjp * phasei + sqpip * sqpjm * conj(phasej); cur[2] = -COM(0, 1) * (sqpim * sqpjp * phasei - sqpip * sqpjm * conj(phasej)); cur[3] = -sqpim * sqpjm * phasei * conj(phasej) + sqpip * sqpjp; } CCurrent joo (HLV pi, bool heli, HLV pj, bool helj) { current cur; joo(pi, heli, pj, helj, cur); return CCurrent(cur[0],cur[1],cur[2],cur[3]); } namespace{ //@{ /** * @brief Pure Jet FKL Contributions, function to handle all incoming types. * @param p1out Outgoing Particle 1. * @param p1in Incoming Particle 1. * @param p2out Outgoing Particle 2 * @param p2in Incoming Particle 2 - * @param aqlineb Bool. Is Backwards quark line an anti-quark line? - * @param aqlinef Bool. Is Forwards quark line an anti-quark line? * * Calculates j_\mu j^\mu. - * Handles all possible incoming states. + * Handles all possible incoming states. Helicity doesn't matter since we sum + * over all of them. */ - double j_j(HLV p1out, HLV p1in, HLV p2out, HLV p2in, bool aqlineb, bool aqlinef){ - HLV q1=p1in-p1out; - HLV q2=-(p2in-p2out); + double j_j(HLV const & p1out, HLV const & p1in, + HLV const & p2out, HLV const & p2in + ){ + HLV const q1=p1in-p1out; + HLV const q2=-(p2in-p2out); current mj1m,mj1p,mj2m,mj2p; // Note need to flip helicities in anti-quark case. - joi(p1out,!aqlineb, p1in,!aqlineb, mj1p); - joi(p1out, aqlineb, p1in, aqlineb, mj1m); - joi(p2out,!aqlinef, p2in,!aqlinef, mj2p); - joi(p2out, aqlinef, p2in, aqlinef, mj2m); + joi(p1out, false, p1in, false, mj1p); + joi(p1out, true, p1in, true, mj1m); + joi(p2out, false, p2in, false, mj2p); + joi(p2out, true, p2in, true, mj2m); - COM Mmp=cdot(mj1m,mj2p); - COM Mmm=cdot(mj1m,mj2m); - COM Mpp=cdot(mj1p,mj2p); - COM Mpm=cdot(mj1p,mj2m); + COM const Mmp=cdot(mj1m,mj2p); + COM const Mmm=cdot(mj1m,mj2m); + COM const Mpp=cdot(mj1p,mj2p); + COM const Mpm=cdot(mj1p,mj2m); - double sst=abs2(Mmm)+abs2(Mmp)+abs2(Mpp)+abs2(Mpm); + double const sst=abs2(Mmm)+abs2(Mmp)+abs2(Mpp)+abs2(Mpm); // Multiply by Cf^2 return HEJ::C_F*HEJ::C_F*(sst)/(q1.m2()*q2.m2()); } } //anonymous namespace double ME_qQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in){ - return j_j(p1out, p1in, p2out, p2in, false, false); + return j_j(p1out, p1in, p2out, p2in); } double ME_qQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in){ - return j_j(p1out, p1in, p2out, p2in, false, true); + return j_j(p1out, p1in, p2out, p2in); } double ME_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in){ - return j_j(p1out, p1in, p2out, p2in, true, true); + return j_j(p1out, p1in, p2out, p2in); } double ME_qg(HLV p1out, HLV p1in, HLV p2out, HLV p2in){ - return j_j(p1out, p1in, p2out, p2in, false, false)*K_g(p2out, p2in)/HEJ::C_F; + return j_j(p1out, p1in, p2out, p2in)*K_g(p2out, p2in)/HEJ::C_F; } double ME_qbarg(HLV p1out, HLV p1in, HLV p2out, HLV p2in){ - return j_j(p1out, p1in, p2out, p2in, true, false)*K_g(p2out, p2in)/(HEJ::C_F); + return j_j(p1out, p1in, p2out, p2in)*K_g(p2out, p2in)/(HEJ::C_F); } double ME_gg(HLV p1out, HLV p1in, HLV p2out, HLV p2in){ - return j_j(p1out, p1in, p2out, p2in, false, false)*K_g(p1out, p1in)*K_g(p2out, p2in)/(HEJ::C_F*HEJ::C_F); + return j_j(p1out, p1in, p2out, p2in)*K_g(p1out, p1in)*K_g(p2out, p2in)/(HEJ::C_F*HEJ::C_F); } //@} namespace{ double juno_j(HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in, bool aqlinea, bool aqlineb){ // This construction is taking rapidity order: pg > p1out >> p2out HLV q1=p1in-p1out; // Top End HLV q2=-(p2in-p2out); // Bottom End HLV qg=p1in-p1out-pg; // Extra bit post-gluon // Note <p1|eps|pa> current split into two by gauge choice. // See James C's Thesis (p72). <p1|eps|pa> -> <p1|pg><pg|pa> CCurrent mj1p=joi(p1out,!aqlinea,p1in,!aqlinea); CCurrent mj1m=joi(p1out,aqlinea,p1in,aqlinea); CCurrent jgap=joi(pg,!aqlinea,p1in,!aqlinea); CCurrent jgam=joi(pg,aqlinea,p1in,aqlinea); // Note for function joo(): <p1+|pg+> = <pg-|p1->. CCurrent j2gp=joo(p1out,!aqlinea,pg,!aqlinea); CCurrent j2gm=joo(p1out,aqlinea,pg,aqlinea); CCurrent mj2p=joi(p2out,!aqlineb,p2in,!aqlineb); CCurrent mj2m=joi(p2out,aqlineb,p2in,aqlineb); // Dot products of these which occur again and again COM Mmp=mj1m.dot(mj2p); COM Mmm=mj1m.dot(mj2m); COM Mpp=mj1p.dot(mj2p); COM Mpm=mj1p.dot(mj2m); CCurrent p1o(p1out),p2o(p2out),p2i(p2in),qsum(q1+qg),p1i(p1in); CCurrent Lmm=(qsum*(Mmm)+(-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m +(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*Mmm/2.))/q1.m2(); CCurrent Lmp=(qsum*(Mmp) + (-2.*mj2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2p +(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*Mmp/2.))/q1.m2(); CCurrent Lpm=(qsum*(Mpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m +(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*Mpm/2.))/q1.m2(); CCurrent Lpp=(qsum*(Mpp) + (-2.*mj2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2p +(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*Mpp/2.))/q1.m2(); CCurrent U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*Mmm)/(p1out+pg).m2(); CCurrent U1mp=(jgam.dot(mj2p)*j2gm+2.*p1o*Mmp)/(p1out+pg).m2(); CCurrent U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*Mpm)/(p1out+pg).m2(); CCurrent U1pp=(jgap.dot(mj2p)*j2gp+2.*p1o*Mpp)/(p1out+pg).m2(); CCurrent U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*Mmm)/(p1in-pg).m2(); CCurrent U2mp=((-1.)*j2gm.dot(mj2p)*jgam+2.*p1i*Mmp)/(p1in-pg).m2(); CCurrent U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*Mpm)/(p1in-pg).m2(); CCurrent U2pp=((-1.)*j2gp.dot(mj2p)*jgap+2.*p1i*Mpp)/(p1in-pg).m2(); constexpr double cf=HEJ::C_F; double amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm); double amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp); double apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm); double app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp); double ampsq=-(amm+amp+apm+app); //Divide by t-channels ampsq/=q2.m2()*qg.m2(); ampsq/=16.; // Factor of (Cf/Ca) for each quark to match j_j. ampsq*=(HEJ::C_F*HEJ::C_F)/(HEJ::C_A*HEJ::C_A); return ampsq; } } //Unordered bits for pure jet double ME_unob_qQ (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in){ return juno_j(pg, p1out, p1in, p2out, p2in, false, false); } double ME_unob_qbarQ (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in){ return juno_j(pg, p1out, p1in, p2out, p2in, true, false); } double ME_unob_qQbar (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in){ return juno_j(pg, p1out, p1in, p2out, p2in, false, true); } double ME_unob_qbarQbar (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in){ return juno_j(pg, p1out, p1in, p2out, p2in, true, true); } double ME_unob_qg (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in){ return juno_j(pg, p1out, p1in, p2out, p2in, false, false)*K_g(p2out,p2in)/HEJ::C_F; } double ME_unob_qbarg (HLV pg, HLV p1out, HLV p1in, HLV p2out, HLV p2in){ return juno_j(pg, p1out, p1in, p2out, p2in, true, false)*K_g(p2out,p2in)/HEJ::C_F; }