diff --git a/current_generator/jphoton_juno.frm b/current_generator/jphoton_juno.frm
index 8fe7fb2..98339ba 100644
--- a/current_generator/jphoton_juno.frm
+++ b/current_generator/jphoton_juno.frm
@@ -1,74 +1,76 @@
 */**
 *  \brief Contraction of vector boson current (photon) with unordered current
 *
 *  \authors   The HEJ collaboration (see AUTHORS for details)
 *  \date      2025
 *  \copyright GPLv2 or later
 *
 *  Current obtained from jphoton_j.frm and jV_juno.frm
 *
 */
 #include- include/helspin.frm
 #include- include/write.frm
 
 v pb,p2,pa,p1,pphoton,pr,pg,pr1,q2,q3;
 i mu,nu;
 s h;
 
 #do h2={+,-}
 *  eq:juno in developer manual with pa -> pb, p1 -> pg
    l [U1_jphoton `h2'] = (
       + Current(`h2'1, p2, nu, pg)*Current(`h2'1, pg, mu, pb)
       + 2*p2(nu)*Current(`h2'1, p2, mu, pb)
    )/m2(p2 + pg);
    l [U2_jphoton `h2'] = (
       + 2*Current(`h2'1, p2, mu, pb)*pb(nu)
       - Current(`h2'1, p2, mu, pg)*Current(`h2'1, pg, nu, pb)
    )/m2(pb - pg);
    l [L_jphoton `h2'] = (
       - (q2(nu) + q3(nu))*Current(`h2'1, p2, mu, pb)
       - 2*pg(mu)*Current(`h2'1, p2, nu, pb)
       + 2*Current(`h2'1, p2, pg, pb)*d_(mu, nu)
       + m2(q2)*Current(`h2'1, p2, mu, pb)*(p1(nu)/m2(p1+pg) + pa(nu)/m2(pa+pg))
    )/m2(q3);
 #enddo
 .sort
 drop;
 
 * multiply with polarisation vector and other currents
 #do h1={+,-}
    #do hphoton={+,-}
       #do h2={+,-}
          #do hg={+,-}
             #do TENSOR={U1_jphoton,U2_jphoton,L_jphoton}
                l [`TENSOR' `h1'`hphoton'`h2'`hg'] = (
                   [`TENSOR' `h2']
                   *Jgamma(`h1'1, `hphoton'1, mu, pa, p1, pphoton, pr)
                   *Eps(`hg'1, nu, pr1)
                );
             #enddo
          #enddo
       #enddo
    #enddo
 #enddo
 
 *choice of auxiliary vector
 id Eps(h?, mu?, pr1)*Current(h?, ?a) = Eps(h, mu, pg, p2)*Current(h, ?a);
 also Eps(h?, mu?, pr1) = Eps(h, mu, pg, pb);
 
+id pa?.pb? = dot(pa, pb);
+
 multiply replace_(
    pr, p1,
    q2, p2+pg-pb,
    q3, p2-pb	
 );
 .sort
 #call ContractCurrents
 .sort
 format O4;
 format c;
 #call WriteHeader(`OUTPUT')
 #call WriteOptimised(`OUTPUT',U1_jphoton,4,pa,pb,pphoton,p1,p2,pg)
 #call WriteOptimised(`OUTPUT',U2_jphoton,4,pa,pb,pphoton,p1,p2,pg)
 #call WriteOptimised(`OUTPUT',L_jphoton,4,pa,pb,pphoton,p1,p2,pg)
 #call WriteFooter(`OUTPUT')
 .end
diff --git a/current_generator/jphotonuno_j.frm b/current_generator/jphotonuno_j.frm
index e56ed5f..306a9f5 100644
--- a/current_generator/jphotonuno_j.frm
+++ b/current_generator/jphotonuno_j.frm
@@ -1,110 +1,110 @@
 */**
 *  \brief Contraction of vector boson (photon) unordered current with FKL current
 *
 *  TODO: unify conventions with developer manual
 *  the current dictionary is as follows:
 *
 *  code  | manual
 *  pg    | p_1
 *  p1    | p_2
 *  pa    | p_a
 *
 *  \authors   The HEJ collaboration (see AUTHORS for details)
 *  \date      2020
 *  \copyright GPLv2 or later
 *
 *  Current contraction derived from jVuno_j.frm
 *
 */
 #include- include/helspin.frm
 #include- include/write.frm
 
 s h,s2g,sbg,taV1;
 v p,p1,p2,pa,pb,pg,pV,pr,q1,q1g,q2,pr1,pr2;
 i mu,nu,rho,sigma;
 cf m2inv;
 
 #do h1={+,-}
 *  eq:U1tensor in developer manual, up to factors 1/sij, 1/tij
    l [U1_jphotonuno `h1'] = (
       + Current(`h1'1, p1, nu, p1+pg, mu, pa-pV, rho, pa)
       + Current(`h1'1, p1, nu, p1+pg, rho, p1+pg+pV, mu, pa)
       + Current(`h1'1, p1, rho, p1+pV, nu, p1+pg+pV, mu, pa)
    );
 
 *  eq:U2tensor in developer manual, up to factors 1/sij, 1/tij
    l [U2_jphotonuno `h1'] = (
       + Current(`h1'1, p1, mu, pa - pV - pg, nu, pa - pV, rho, pa)
       + Current(`h1'1, p1, mu, pa - pV - pg, rho, pa - pg, nu, pa)
       + Current(`h1'1, p1, rho, p1 + pV, mu, pa - pg, nu, pa)
    );
 
 *  eq:Ltensor in developer manual, up to factors 1/sij, 1/tij
    l [L_jphotonuno `h1'] = (
       Current(`h1'1, p1, sigma, pa - pV, rho, pa) +
       Current(`h1'1, p1, rho, p1 + pV, sigma, pa)
    )*(
       ((pb(nu)/sbg + p2(nu)/s2g)*m2(q1g) + 2*q1(nu) - pg(nu))*d_(mu, sigma)
       - 2*pg(mu)*d_(nu, sigma)
       + (2*pg(sigma) - q1(sigma))*d_(mu, nu)
    )/taV1;
 #enddo
 .sort
 * restore kinematic factors
 id Current(h?, p1, mu?, q1?, nu?, q2?, rho?, pa) = (
    Current(h, p1, mu, q1, nu, q2, rho, pa)*m2inv(q1)*m2inv(q2)
 );
 id Current(h?, p1, mu?, q1?, nu?, pa) = (
    Current(h, p1, mu, q1, nu, pa)*m2inv(q1)
 );
 .sort
 drop;
 
 * multiply with polarisation vector and other currents
 #do h1={+,-}
    #do hp={+,-}
       #do h2={+,-}
          #do hg={+,-}
             #do TENSOR={U1_jphotonuno,U2_jphotonuno,L_jphotonuno}
                l [`TENSOR' `h1'`hp'`h2'`hg'] = (
                   [`TENSOR' `h1']
                   *Eps(`hg'1, nu, pr1)
                   *Current(`h2'1, p2, mu, pb)
                   *Eps(`hp'1, rho, pr2)
                );
             #enddo
          #enddo
       #enddo
    #enddo
 #enddo
 
 * choice of best reference vector (p2 or pb)
 id Eps(h?, nu?, pr1)*Current(h?, p2, mu?, pb) = Eps(h, nu, pg, p2)*Current(h, p2, mu, pb);
 also Eps(h?, nu?, pr1) = Eps(h, nu, pg, pb);
 
 * choice of best reference vector (p2 or pb)
-id Eps(h?, nu?, pr2)*Current(h?, p2, mu?, pb) = Eps(h, nu, pg, p2)*Current(h, p2, mu, pb);
-also Eps(h?, nu?, pr2) = Eps(h, nu, pg, pb);
+id Eps(h?, nu?, pr2)*Current(h?, p2, mu?, pb) = Eps(h, nu, pV, p1)*Current(h, p2, mu, pb);
+also Eps(h?, nu?, pr2) = Eps(h, nu, pV, pa);
 
 multiply replace_(q1g,q1-pg);
 multiply replace_(q1,pa-p1-pV);
 
 .sort
 #call ContractCurrents
 multiply replace_(
    s2g,m2(p2+pg),
    sbg,m2(pb+pg),
    taV1,m2(pa-pV-p1)
 );
 
 id m2inv(q1?) = 1/m2(q1);
 
 .sort
 format O4;
 format c;
 #call WriteHeader(`OUTPUT')
 #call WriteOptimised(`OUTPUT',U1_jphotonuno,4,p1,p2,pa,pb,pg,pV)
 #call WriteOptimised(`OUTPUT',U2_jphotonuno,4,p1,p2,pa,pb,pg,pV)
 #call WriteOptimised(`OUTPUT',L_jphotonuno,4,p1,p2,pa,pb,pg,pV)
 #call WriteFooter(`OUTPUT')
 .end
\ No newline at end of file
diff --git a/include/HEJ/Photonjets.hh b/include/HEJ/Photonjets.hh
index 12dfa78..ff82555 100644
--- a/include/HEJ/Photonjets.hh
+++ b/include/HEJ/Photonjets.hh
@@ -1,85 +1,108 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2020-2023
  *  \copyright GPLv2 or later
  */
 /** \file
  *  \brief Functions computing the square of current contractions in Photon+Jets.
  */
 
 #pragma once
 
 #include <vector>
 
 #include "CLHEP/Vector/LorentzVector.h"
 #include "HEJ/PDG_codes.hh"
 
 namespace HEJ::currents {
   using HLV = CLHEP::HepLorentzVector;
 
   //! Square of qQ->qQphoton Photon+Jets Scattering Current
   /**
    *  @param pa        Momentum of initial state quark
    *  @param pb        Momentum of initial state quark
    *  @param p1        Momentum of final state quark
    *  @param p2        Momentum of final state quark
    *  @param pphoton   Momentum of final state photon
    *  @param aptype    Initial particle 1 type
    *  @param bptype    Initial particle 2 type
    *  @returns         Square of the current contractions for qQ->qQphoton Scattering
    *
    *  This returns the square of the current contractions in qQ->qQ scattering
    *  with an emission of a photon.
    */
   std::vector <double> ME_photon_qQ(
     const HLV & pa, const HLV & pb,
     const HLV & p1, const HLV & p2,
     const HLV & pphoton,
     ParticleID aptype, ParticleID bptype
   );
 
   //! Square of qg->qgphoton Photon+Jets Scattering Current
   /**
    *  @param pa        Momentum of initial state quark
    *  @param pb        Momentum of initial state gluon
    *  @param p1        Momentum of final state quark
    *  @param p2        Momentum of final state gluon
    *  @param pphoton   Momentum of final state photon
    *  @param aptype    Initial particle 1 type
    *  @param bptype    Initial particle 2 type
    *  @returns         Square of the current contractions for qg->qgphoton Scattering
    *
    *  This returns the square of the current contractions in qg->qg scattering
    *  with an emission of a photon.
    */
   double ME_photon_qg(
     const HLV & pa, const HLV & pb,
     const HLV & p1, const HLV & p2,
     const HLV & pp, 
     ParticleID aptype, ParticleID bptype
   );
 
   //! Photon+Jets UNO Contributions
   /**
    * @brief Photon+Jets Unordered Contribution, unordered opposite to Photon side
    * @param pa             Incoming Particle 1 (photon emission)
    * @param pb             Incoming Particle 2 (unorderd emission)
    * @param p1             Outgoing Particle 1 (photon emission)
    * @param p2             Outgoing Particle 2 (unordered emission)
    * @param pg             Unordered Gluon
    * @param pp             Outgoing Photon
    * @param aptype         Initial particle 1 type
    * @param bptype         Initial particle 2 type
    *
    * @returns              Square of the current contractions for for qQ -> photon qQ g
    *
    *  This returns the square of the current contractions in qQ->qQg scattering
    *  with an emission of a photon.
    */ 
   std::vector <double> ME_photon_uno_qQ(
     const HLV & pa, const HLV & pb,
     const HLV & p1, const HLV & p2,
     const HLV & pp, const HLV & pg,
     ParticleID aptype, ParticleID bptype
   );
+
+ /**
+   * @brief Photon+Jets Unordered Contribution, unordered same to Photon side
+   * @param pa             Incoming Particle 1 (photon and unordered emission)
+   * @param pb             Incoming Particle 2 
+   * @param p1             Outgoing Particle 1 (photon emission and unordered)
+   * @param p2             Outgoing Particle 2 
+   * @param pg             Unordered Gluon
+   * @param pp             Outgoing Photon
+   * @param aptype         Initial particle 1 type
+   * @param bptype         Initial particle 2 type
+   *
+   * @returns              Square of the current contractions for for qg -> photon g qg
+   *
+   *  This returns the square of the current contractions in qQ->qQg scattering
+   *  with an emission of a photon.
+   */ 
+  double ME_photon_uno_qg(
+    const HLV & pa, const HLV & pb, const HLV & pg,
+    const HLV & p1, const HLV & p2, const HLV & pp,
+    const ParticleID aptype, const ParticleID /*bptype*/
+  );
+
 } // namespace HEJ::currents
diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc
index 93c2d81..14fdce9 100644
--- a/src/MatrixElement.cc
+++ b/src/MatrixElement.cc
@@ -1,3252 +1,3261 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019-2025
  *  \copyright GPLv2 or later
  */
 #include "HEJ/MatrixElement.hh"
 
 #include <algorithm>
 #include <cassert>
 #include <cmath>
 #include <cstddef>
 #include <cstdlib>
 #include <iterator>
 #include <limits>
 #include <unordered_map>
 #include <utility>
 
 #include "fastjet/PseudoJet.hh"
 
 #include "HEJ/ConfigFlags.hh"
 #include "HEJ/Constants.hh"
 #include "HEJ/EWConstants.hh"
 #include "HEJ/Event.hh"
 #include "HEJ/HiggsCouplingSettings.hh"
 #include "HEJ/Hjets.hh"
 #include "HEJ/LorentzVector.hh"
 #include "HEJ/PDG_codes.hh"
 #include "HEJ/Particle.hh"
 #include "HEJ/Photonjets.hh"
 #include "HEJ/WWjets.hh"
 #include "HEJ/Wjets.hh"
 #include "HEJ/Zjets.hh"
 #include "HEJ/event_types.hh"
 #include "HEJ/exceptions.hh"
 #include "HEJ/jets.hh"
 #include "HEJ/utility.hh"
 
 namespace HEJ {
   namespace {
 
     // Colour acceleration multiplier for gluons
     // see eq:K_g in developer manual
     double K_g(double p1minus, double paminus) {
       return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A;
     }
     double K_g(
       CLHEP::HepLorentzVector const & pout,
       CLHEP::HepLorentzVector const & pin
     ) {
       if(pin.z() > 0) return K_g(pout.plus(), pin.plus());
       return K_g(pout.minus(), pin.minus());
     }
 
     // Colour acceleration multiplier for quarks
     // see eq:K_q in developer manual
     constexpr double K_q = C_F;
 
     // Colour acceleration multipliers
     double K(
         ParticleID type,
         CLHEP::HepLorentzVector const & pout,
         CLHEP::HepLorentzVector const & pin
     ){
       if(type == pid::gluon) return K_g(pout, pin);
       return K_q;
     }
   } // namespace
 
   double MatrixElement::omega0(
       double alpha_s, double mur,
       fastjet::PseudoJet const & q_j
   ) const {
     const double lambda = param_.regulator_lambda;
     const double result = - alpha_s*N_C/M_PI*std::log(q_j.perp2()/(lambda*lambda));
     if(! param_.log_correction) return result;
     return (
         1. + alpha_s/(4.*M_PI)*BETA0*std::log(mur*mur/(q_j.perp()*lambda))
     )*result;
   }
 
   Weights MatrixElement::operator()(Event const & event) const {
     std::vector <double> tree_kin_part=tree_kin(event);
     std::vector <Weights> virtual_part=virtual_corrections(event);
     if(tree_kin_part.size() != virtual_part.size()) {
       throw std::logic_error("tree and virtuals have different sizes");
     }
     Weights sum = Weights{0., std::vector<double>(event.variations().size(), 0.)};
     for(size_t i=0; i<tree_kin_part.size(); ++i) {
       sum += tree_kin_part.at(i)*virtual_part.at(i);
     }
     return tree_param(event)*sum;
   }
 
   Weights MatrixElement::tree(Event const & event) const {
     std::vector <double> tree_kin_part=tree_kin(event);
     double sum = 0.;
     for(double i : tree_kin_part) {
       sum += i;
     }
     return tree_param(event)*sum;
   }
 
   Weights MatrixElement::tree_param(Event const & event) const {
     if(! is_resummable(event.type())) {
       return Weights{0., std::vector<double>(event.variations().size(), 0.)};
     }
     Weights result;
     // only compute once for each renormalisation scale
     std::unordered_map<double, double> known;
     result.central = tree_param(event, event.central().mur);
     known.emplace(event.central().mur, result.central);
     for(auto const & var: event.variations()) {
       const auto ME_it = known.find(var.mur);
       if(ME_it == end(known)) {
         const double wt = tree_param(event, var.mur);
         result.variations.emplace_back(wt);
         known.emplace(var.mur, wt);
       }
       else {
         result.variations.emplace_back(ME_it->second);
       }
     }
     return result;
   }
 
   std::vector<Weights> MatrixElement::virtual_corrections(Event const & event) const {
     if(!event.valid_hej_state(param_.soft_pt_regulator)) {
       return {Weights{0., std::vector<double>(event.variations().size(), 0.)}};
     }
     // only compute once for each renormalisation scale
     std::unordered_map<double, std::vector<double> > known_vec;
     std::vector<double> central_vec=virtual_corrections(event, event.central().mur);
     known_vec.emplace(event.central().mur, central_vec);
     for(auto const & var: event.variations()) {
       const auto ME_it = known_vec.find(var.mur);
       if(ME_it == end(known_vec)) {
         known_vec.emplace(var.mur, virtual_corrections(event, var.mur));
       }
     }
     // At this stage known_vec contains one vector of virtual corrections for each mur value
     // Now put this into a vector of Weights
     std::vector<Weights> result_vec;
     for(size_t i=0; i<central_vec.size(); ++i) {
       Weights result;
       result.central = central_vec.at(i);
       for(auto const & var: event.variations()) {
         const auto ME_it = known_vec.find(var.mur);
         result.variations.emplace_back(ME_it->second.at(i));
       }
       result_vec.emplace_back(result);
     }
     return result_vec;
   }
 
   template<class InputIterator>
   double MatrixElement::virtual_corrections_no_interference(
       InputIterator begin_parton, InputIterator end_parton,
       fastjet::PseudoJet & q,
       const double mur
   ) const{
     const double alpha_s = alpha_s_(mur);
 
     double exponent = 0.;
     for(auto parton_it = begin_parton; parton_it != end_parton; ++parton_it){
       exponent += omega0(alpha_s, mur, q)*(
           (parton_it+1)->rapidity() - parton_it->rapidity()
       );
       q -= (parton_it+1)->p;
     }
 
     return exponent;
   }
 
   template<class InputIterator>
   std::vector <double> MatrixElement::virtual_corrections_interference(
       InputIterator begin_parton, InputIterator end_parton,
       fastjet::PseudoJet & q_t,
       fastjet::PseudoJet & q_b,
       const double mur
   ) const{
     const double alpha_s = alpha_s_(mur);
 
     double sum_top = 0.;
     double sum_bot = 0.;
     double sum_mix = 0.;
     for(auto parton_it = begin_parton; parton_it != end_parton; ++parton_it){
       const double dy = (parton_it+1)->rapidity() - parton_it->rapidity();
       const double tmp_top = omega0(alpha_s, mur, q_t) * dy;
       const double tmp_bot = omega0(alpha_s, mur, q_b) * dy;
       sum_top += tmp_top;
       sum_bot += tmp_bot;
       sum_mix += (tmp_top + tmp_bot) / 2.;
       q_t -= (parton_it+1)->p;
       q_b -= (parton_it+1)->p;
     }
 
     return {sum_top, sum_bot, sum_mix};
   }
 
   double MatrixElement::virtual_corrections_W(
       Event const & event,
       const double mur,
       Particle const & WBoson
   ) const{
     auto const & in = event.incoming();
     const auto partons = filter_partons(event.outgoing());
     fastjet::PseudoJet const & pa = in.front().p;
 #ifndef NDEBUG
     fastjet::PseudoJet const & pb = in.back().p;
     double const norm = (in.front().p + in.back().p).E();
 #endif
 
     assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{}));
     assert(partons.size() >= 2);
     assert(pa.pz() < pb.pz());
 
     fastjet::PseudoJet q = pa - partons[0].p;
 
     auto first_idx = cbegin(partons);
     auto last_idx  = cend(partons) - 1;
 
 #ifndef NDEBUG
     bool wc = true;
 #endif
 
     // With extremal qqbar or unordered gluon outside the extremal
     // partons then it is not part of the FKL ladder and does not
     // contribute to the virtual corrections. W emitted from the
     // most backward leg must be taken into account in t-channel
     if (event.type() == event_type::unob) {
       q -= partons[1].p;
       ++first_idx;
       if (in[0].type != partons[1].type ){
         q -= WBoson.p;
 #ifndef NDEBUG
         wc=false;
 #endif
       }
     }
     else if (event.type() == event_type::qqbar_exb) {
       q -= partons[1].p;
       ++first_idx;
       if (std::abs(partons[0].type) != std::abs(partons[1].type)){
         q -= WBoson.p;
 #ifndef NDEBUG
         wc=false;
 #endif
       }
     }
     else {
       if(event.type() == event_type::unof
          || event.type() == event_type::qqbar_exf){
         --last_idx;
       }
       if (in[0].type != partons[0].type ){
         q -= WBoson.p;
 #ifndef NDEBUG
         wc=false;
 #endif
       }
     }
 
     auto first_idx_qqbar = last_idx;
     auto last_idx_qqbar  = last_idx;
 
     bool wqq = false;
 
     //if qqbarMid event, virtual correction do not occur between qqbar pair.
     if(event.type() == event_type::qqbar_mid){
       const auto backquark = std::find_if(
         begin(partons) + 1, end(partons) - 1 ,
         [](Particle const & s){ return (s.type != pid::gluon); }
       );
       assert(backquark!=end(partons)-1 && (backquark+1)->type!=pid::gluon);
       if(std::abs(backquark->type) != std::abs((backquark+1)->type)) {
         wqq=true;
 #ifndef NDEBUG
         wc=false;
 #endif
       }
       last_idx = backquark;
       first_idx_qqbar = last_idx+1;
     }
 
     double exponent = virtual_corrections_no_interference(first_idx, last_idx, q, mur);
 
     if(last_idx != first_idx_qqbar) {
       q -= (last_idx+1)->p;
       if(wqq) q -= WBoson.p;
       exponent += virtual_corrections_no_interference(first_idx_qqbar, last_idx_qqbar, q, mur);
     }
 
 #ifndef NDEBUG
     if (wc) q -= WBoson.p;
     assert(
         nearby(q, -1*pb, norm)
         || is_AWZH_boson(partons.back().type)
         || event.type() == event_type::unof
         || event.type() == event_type::qqbar_exf
     );
 #endif
 
     if(param_.nlo.enabled) {
       double nlo_virtual = 1.;
       // Only apply virtual corrections to a nlo order event.
       if(partons.size() == param_.nlo.nj) nlo_virtual += exponent;
       return nlo_virtual;
     }
 
     return std::exp(exponent);
   }
 
 
 
   std::vector <double> MatrixElement::virtual_corrections_WW(
       Event const & event,
       const double mur
   ) const{
     auto const & in = event.incoming();
     const auto partons = filter_partons(event.outgoing());
     fastjet::PseudoJet const & pa = in.front().p;
 #ifndef NDEBUG
     fastjet::PseudoJet const & pb = in.back().p;
 #endif
 
     assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{}));
     assert(partons.size() >= 2);
     assert(pa.pz() < pb.pz());
     assert(event.decays().size() == 2);
 
     std::vector<fastjet::PseudoJet> plbar;
     std::vector<fastjet::PseudoJet> pl;
 
     for(auto const & decay_pair : event.decays()) {
       auto const decay = decay_pair.second;
       if(decay.at(0).type < 0) {
         plbar.emplace_back(decay.at(0).p);
         pl   .emplace_back(decay.at(1).p);
       }
       else {
         pl   .emplace_back(decay.at(0).p);
         plbar.emplace_back(decay.at(1).p);
       }
     }
 
     fastjet::PseudoJet q_t = pa - partons[0].p - pl[0] - plbar[0];
     fastjet::PseudoJet q_b = pa - partons[0].p - pl[1] - plbar[1];
 
     auto const begin_parton = cbegin(partons);
     auto const end_parton = cend(partons) - 1;
 
     auto res = virtual_corrections_interference(begin_parton, end_parton, q_t, q_b, mur);
 
     if(param_.nlo.enabled) {
       if(partons.size() > param_.nlo.nj) return std::vector(res.size(), 1.);
       assert(partons.size() == param_.nlo.nj);
       for(double & virt: res) virt += 1.;
     } else {
       for(double & virt: res) virt = exp(virt);
     }
 
     return res;
   }
 
   // Virtual corrections for Z or photon emission processes without
   // interference (only one contribution)
   double MatrixElement::virtual_corrections_Zphoton_single(
       Event const & event,
       const double mur,
       Particle const & boson,
       const bool emit_fwd
   ) const{
     auto const & in = event.incoming();
     const auto partons = filter_partons(event.outgoing());
     fastjet::PseudoJet const & pa = in.front().p;
 #ifndef NDEBUG
     fastjet::PseudoJet const & pb = in.back().p;
 #endif
 
     assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{}));
     assert(partons.size() >= 2);
     assert(pa.pz() < pb.pz());
 
     // If the boson is emitted from forward leg or central qqbar
     // don't subtract the boson momentum from first q
     fastjet::PseudoJet q;
     if(emit_fwd || event.type()==event_type::central_qqbar) {
       q = pa - partons[0].p;
     } else {
       q = pa - partons[0].p - boson.p;
     }
 
     auto first_idx = cbegin(partons);
     auto last_idx  = cend(partons) - 1;
 
     // for uno/exqqbar the two extremal partons do not contribute to the virtual corrections
     if (event.type() == event_type::unob
         || event.type() == event_type::qqbar_exb) {
       // unordered gluon or first quark is partons[0] and is already subtracted
       // partons[1] is the backward quark (uno case) or the second quark (exqqbar case)
       q -= partons[1].p;
       ++first_idx;
     } else if (event.type() == event_type::unof
                || event.type() == event_type::qqbar_exf) {
       // end sum at next to last parton
       --last_idx;
     }
 
     // if central qqbar event, virtual correction do not occur between qqbar pair
     auto first_idx_qqbar = last_idx;
     auto last_idx_qqbar  = last_idx;
     if(event.type() == event_type::central_qqbar){
       const auto backquark = std::find_if(
         begin(partons) + 1, end(partons) - 1 ,
         [](Particle const & s){ return (s.type != pid::gluon); }
       );
       assert(backquark!=end(partons)-1 && (backquark+1)->type!=pid::gluon);
       last_idx = backquark;
       first_idx_qqbar = last_idx+1;
     }
 
     double exponent = virtual_corrections_no_interference(first_idx, last_idx, q, mur);
 
     if(last_idx != first_idx_qqbar) {
       q -= (last_idx+1)->p;
       q -= boson.p;
       exponent += virtual_corrections_no_interference(first_idx_qqbar, last_idx_qqbar, q, mur);
     }
 
     if(param_.nlo.enabled) {
       double nlo_virtual = 1.;
       // Only apply virtual corrections to a nlo order event.
       if(partons.size() == param_.nlo.nj) nlo_virtual += exponent;
       return nlo_virtual;
     }
 
     return exp(exponent);
   }
 
   // Virtual corrections for Z or photon processes with 2 interfering
   // contributions
   // Returns 3 values (2 squares + 1 interference term)
   std::vector<double> MatrixElement::virtual_corrections_Zphoton_double(
       Event const & event,
       const double mur,
       Particle const & boson
   ) const{
     auto const & in = event.incoming();
     const auto partons = filter_partons(event.outgoing());
     fastjet::PseudoJet const & pa = in.front().p;
 #ifndef NDEBUG
     fastjet::PseudoJet const & pb = in.back().p;
 #endif
 
     assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{}));
     assert(partons.size() >= 2);
     assert(pa.pz() < pb.pz());
 
     fastjet::PseudoJet q_t;
     if(event.type() == event_type::central_qqbar && is_gluon(in.front().type)) {
       // gq initiated central qqbar event -> "top" emission from qqbar
       q_t = pa - partons[0].p;
     } else {
       // top emission from top quark leg
       q_t = pa - partons[0].p - boson.p;
     }
     fastjet::PseudoJet q_b = pa - partons[0].p;
 
     auto first_idx = cbegin(partons);
     auto last_idx = cend(partons) - 1;
 
     // for uno/exqqbar the two extremal partons do not contribute to the virtual corrections
     if (event.type() == event_type::unob
         || event.type() == event_type::qqbar_exb) {
       // unordered gluon or first quark is partons[0] and is already subtracted
       // partons[1] is the backward quark (uno case) or the second quark (exqqbar case)
       q_t -= partons[1].p;
       q_b -= partons[1].p;
       ++first_idx;
     } else if (event.type() == event_type::unof
                || event.type() == event_type::qqbar_exf) {
       // end sum at next to last parton
       --last_idx;
     }
 
     // if central qqbar event, virtual correction do not occur between qqbar pair
     auto first_idx_qqbar = last_idx;
     auto last_idx_qqbar  = last_idx;
     if(event.type() == event_type::central_qqbar){
       const auto backquark = std::find_if(
         begin(partons) + 1, end(partons) - 1 ,
         [](Particle const & s){ return (s.type != pid::gluon); }
       );
       assert(backquark!=end(partons)-1 && (backquark+1)->type!=pid::gluon);
       last_idx = backquark;
       first_idx_qqbar = last_idx+1;
     }
 
     auto res = virtual_corrections_interference(first_idx, last_idx, q_t, q_b, mur);
 
     if(last_idx != first_idx_qqbar) {
       q_t -= (last_idx+1)->p;
       q_b -= (last_idx+1)->p;
 
       if(is_gluon(in.front().type)) {
         // "top" emission from qqbar, "bot" emission from bottom quark leg
         q_t -= boson.p;
       } else {
         // "top" emission from top quark leg, "bot" emission from qqbar
         q_b -= boson.p;
       }
 
       auto res_2 = virtual_corrections_interference(first_idx_qqbar, last_idx_qqbar, q_t, q_b, mur);
 
       for(std::size_t i=0; i<res.size(); ++i){
         res[i] += res_2[i];
       }
     }
 
     if(param_.nlo.enabled) {
       if(partons.size() > param_.nlo.nj) return std::vector(res.size(), 1.);
       assert(partons.size() == param_.nlo.nj);
       for(double & virt: res) virt += 1.;
     } else {
       for(double & virt: res) virt = exp(virt);
     }
 
     return res;
   }
 
   // Virtual corrections for Z or photon processes with 3 interfering
   // contributions
   // Returns 6 values (3 squares + 3 interference terms)
   std::vector <double> MatrixElement::virtual_corrections_Zphoton_triple(
       Event const & event,
       const double mur,
       Particle const & boson
   ) const{
     assert(event.type() == event_type::central_qqbar);
 
     auto const & in = event.incoming();
     const auto partons = filter_partons(event.outgoing());
     fastjet::PseudoJet const & pa = in.front().p;
 #ifndef NDEBUG
     fastjet::PseudoJet const & pb = in.back().p;
 #endif
 
     assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{}));
     assert(partons.size() >= 2);
     assert(pa.pz() < pb.pz());
 
     enum emission_site {top, mid, bot};
 
     fastjet::PseudoJet q_t = pa - partons[0].p - boson.p;
     fastjet::PseudoJet q_b = pa - partons[0].p;
 
     auto first_idx = cbegin(partons);
     auto last_idx = cend(partons) - 1;
 
     auto first_idx_qqbar = last_idx;
     auto last_idx_qqbar  = last_idx;
 
     const auto backquark = std::find_if(
       begin(partons) + 1, end(partons) - 1 ,
       [](Particle const & s){ return (s.type != pid::gluon); }
     );
     assert(backquark!=end(partons)-1 && (backquark+1)->type!=pid::gluon);
     last_idx = backquark;
     first_idx_qqbar = last_idx+1;
 
     // here q[bot] = q[mid], thus we only need to evaluate virtual_corrections_interference[top][mid]
     const auto res_1_top_mid = virtual_corrections_interference(first_idx, last_idx, q_t, q_b, mur);
 
     double res_tmp[3][3];
     res_tmp[top][top] = res_1_top_mid.at(0);
     res_tmp[mid][mid] = res_1_top_mid.at(1);
     res_tmp[bot][bot] = res_tmp[mid][mid];
 
     res_tmp[top][mid] = res_1_top_mid.at(2);
     res_tmp[top][bot] = res_tmp[top][mid];
     res_tmp[mid][bot] = res_tmp[mid][mid];
 
     if(last_idx != first_idx_qqbar) {
       q_t -= (last_idx+1)->p;
       q_b -= (last_idx+1)->p;
 
       // here q[mid] = q[top], thus we only need to evaluate virtual_corrections_interference[top][bot]
       const auto res_2_top_bot = virtual_corrections_interference(first_idx_qqbar, last_idx_qqbar,
                                                                   q_t, q_b, mur);
 
       res_tmp[top][top] += res_2_top_bot.at(0);
       res_tmp[mid][mid] += res_2_top_bot.at(0); // same as [top][top]
       res_tmp[bot][bot] += res_2_top_bot.at(1);
 
       res_tmp[top][mid] += res_2_top_bot.at(0); // same as [top][top]
       res_tmp[top][bot] += res_2_top_bot.at(2);
       res_tmp[mid][bot] += res_2_top_bot.at(2); // same as [top][bot]
     }
 
     std::vector<double> res = {res_tmp[top][top], res_tmp[mid][mid], res_tmp[bot][bot],
                                res_tmp[top][mid], res_tmp[top][bot], res_tmp[mid][bot]};
 
     if(param_.nlo.enabled) {
       if(partons.size() > param_.nlo.nj) return std::vector(res.size(), 1.);
       assert(partons.size() == param_.nlo.nj);
       for(double & virt: res) virt += 1.;
     } else {
       for(double & virt: res) virt = exp(virt);
     }
 
     return res;
   }
 
   std::vector<double> MatrixElement::virtual_corrections_Zphoton(
       Event const & event,
       const double mur,
       Particle const & boson
   ) const{
     using namespace event_type;
     auto const & in = event.incoming();
 
     if(event.type() == central_qqbar) {
       if(is_gluon(in.front().type)) {
         if(is_gluon(in.back().type)) {
           // gg event
           return {virtual_corrections_Zphoton_single(event, mur, boson, false)};
         } else {
           // gq event
           return virtual_corrections_Zphoton_double(event, mur, boson);
         }
       } else {
         if(is_gluon(in.back().type)) {
           // qg event
           return virtual_corrections_Zphoton_double(event, mur, boson);
         } else {
           // qq event
           return virtual_corrections_Zphoton_triple(event, mur, boson);
         }
       }
     }
 
     if(event.type() == qqbar_exb && is_gluon(in.back().type)) {
       // gg event, emission from backward leg
       return {virtual_corrections_Zphoton_single(event, mur, boson, false)};
     }
 
     if(event.type() == qqbar_exf && is_gluon(in.front().type)) {
       // gg event, emission from forward leg
       return {virtual_corrections_Zphoton_single(event, mur, boson, true)};
     }
 
     if(event.type() == FKL || event.type() == unob || event.type() == unof) {
       if(is_gluon(in.back().type)) {
         // qg event, emission from backward leg
         return {virtual_corrections_Zphoton_single(event, mur, boson, false)};
       }
       if(is_gluon(in.front().type)) {
         // gq event, emission from forward leg
         return {virtual_corrections_Zphoton_single(event, mur, boson, true)};
       }
     }
 
     // qq initiated FKL/uno or qg/gq initiated exqqbar
     return virtual_corrections_Zphoton_double(event, mur, boson);
   }
 
   std::vector<double> MatrixElement::virtual_corrections(
       Event const & event,
       const double mur
   ) const{
     auto const & in = event.incoming();
     auto const & out = event.outgoing();
     fastjet::PseudoJet const & pa = in.front().p;
 #ifndef NDEBUG
     fastjet::PseudoJet const & pb = in.back().p;
     double const norm = (in.front().p + in.back().p).E();
 #endif
 
     std::vector<Particle> bosons = filter_AWZH_bosons(out);
 
     if(event.jets().size() != param_.nlo.nj && param_.nlo.enabled) {
         throw std::logic_error{
           "Input event has number of jets different to stated NLO "
           "input in config file: " + std::to_string(event.jets().size())
           + " vs "  +std::to_string(param_.nlo.nj) + "\n"
         };
     }
     if(bosons.size() > 2) {
       throw not_implemented("Emission of >2 bosons is unsupported");
     }
 
     if(bosons.size() == 2) {
       if(bosons[0].type == pid::Wp && bosons[1].type == pid::Wp) {
         return virtual_corrections_WW(event, mur);
       }
       else if(bosons[0].type == pid::Wm && bosons[1].type == pid::Wm) {
         return virtual_corrections_WW(event, mur);
       }
       throw not_implemented("Emission of bosons of unsupported type");
     }
 
     if(bosons.size() == 1) {
       const auto AWZH_boson = bosons[0];
 
       if(std::abs(AWZH_boson.type) == pid::Wp){
         return {virtual_corrections_W(event, mur, AWZH_boson)};
       }
 
       if(
         AWZH_boson.type == pid::Z_photon_mix
         || AWZH_boson.type == pid::Z
         || AWZH_boson.type == pid::photon
       ){
         return virtual_corrections_Zphoton(event, mur, AWZH_boson);
       }
     }
 
     assert(std::is_sorted(out.begin(), out.end(), rapidity_less{}));
     assert(out.size() >= 2);
     assert(pa.pz() < pb.pz());
 
     fastjet::PseudoJet q = pa - out[0].p;
 
     auto first_idx = cbegin(out);
     auto last_idx  = cend(out) - 1;
 
     // if there is a Higgs boson _not_ emitted off an incoming gluon,
     // extremal qqbar or unordered gluon outside the extremal partons
     // then it is not part of the FKL ladder
     // and does not contribute to the virtual corrections
     if((out.front().type == pid::Higgs && in.front().type != pid::gluon)
        || event.type() == event_type::unob
        || event.type() == event_type::qqbar_exb){
       q -= out[1].p;
       ++first_idx;
     }
     if((out.back().type == pid::Higgs && in.back().type != pid::gluon)
        || event.type() == event_type::unof
        || event.type() == event_type::qqbar_exf){
       --last_idx;
     }
 
     auto first_idx_qqbar = last_idx;
     auto last_idx_qqbar  = last_idx;
 
     //if central qqbar event, virtual correction do not occur between q-qbar.
     if(event.type() == event_type::qqbar_mid){
       const auto backquark = std::find_if(
         begin(out) + 1, end(out) - 1 ,
         [](Particle const & s){ return (s.type != pid::gluon && is_parton(s.type)); }
       );
       assert(backquark!=end(out)-1 && (backquark+1)->type!=pid::gluon);
       last_idx = backquark;
       first_idx_qqbar = last_idx+1;
     }
 
     double exponent = virtual_corrections_no_interference(first_idx, last_idx, q, mur);
 
     if(last_idx != first_idx_qqbar) {
       q -= (last_idx+1)->p;
       exponent += virtual_corrections_no_interference(first_idx_qqbar, last_idx_qqbar, q, mur);
     }
 
     assert(
         nearby(q, -1*pb, norm)
         || (out.back().type == pid::Higgs && in.back().type != pid::gluon)
         || event.type() == event_type::unof
         || event.type() == event_type::qqbar_exf
     );
 
     if (param_.nlo.enabled){
       const auto partons = filter_partons(event.outgoing());
       double nlo_virtual = 1.;
       // Only apply virtual corrections to a nlo order event.
       if(partons.size() == param_.nlo.nj) nlo_virtual += exponent;
       return {nlo_virtual};
     }
 
     return {std::exp(exponent)};
   }
 
 namespace {
 
   //! Lipatov vertex for partons emitted into extremal jets
   CLHEP::HepLorentzVector CLipatov(
       CLHEP::HepLorentzVector const & qav, CLHEP::HepLorentzVector const & qbv,
       CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2
   ) {
     const CLHEP::HepLorentzVector p5 = qav-qbv;
     const CLHEP::HepLorentzVector CL = -(qav+qbv)
       + p1*(qav.m2()/p5.dot(p1) + 2.*p5.dot(p2)/p1.dot(p2))
       - p2*(qbv.m2()/p5.dot(p2) + 2.*p5.dot(p1)/p1.dot(p2));
     return CL;
   }
 
   double C2Lipatov(
       CLHEP::HepLorentzVector const & qav,
       CLHEP::HepLorentzVector const & qbv,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & p2
   ){
     const CLHEP::HepLorentzVector CL = CLipatov(qav, qbv, p1, p2);
     return -CL.dot(CL);
   }
 
   //! Lipatov vertex with soft subtraction for partons emitted into extremal jets
   double C2Lipatovots(
       CLHEP::HepLorentzVector const & qav,
       CLHEP::HepLorentzVector const & qbv,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & p2,
       const double lambda
   ) {
     const double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2()));
 
     const double kperp=(qav-qbv).perp();
     if (kperp>lambda)
       return Cls;
 
     return Cls-4./(kperp*kperp);
   }
 
   double C2Lipatov_Mix(
       CLHEP::HepLorentzVector const & qav_t, CLHEP::HepLorentzVector const & qbv_t,
       CLHEP::HepLorentzVector const & qav_b, CLHEP::HepLorentzVector const & qbv_b,
       CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2
   ) {
     const CLHEP::HepLorentzVector CL_t = CLipatov(qav_t, qbv_t, p1, p2);
     const CLHEP::HepLorentzVector CL_b = CLipatov(qav_b, qbv_b, p1, p2);
     return -CL_t.dot(CL_b);
   }
 
   double C2Lipatovots_Mix(
       CLHEP::HepLorentzVector const & qav_t, CLHEP::HepLorentzVector const & qbv_t,
       CLHEP::HepLorentzVector const & qav_b, CLHEP::HepLorentzVector const & qbv_b,
       CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2,
       const double lambda
   ) {
     const double Cls = C2Lipatov_Mix(qav_t, qbv_t, qav_b, qbv_b, p1, p2)
                        / sqrt(qav_t.m2() * qbv_t.m2() * qav_b.m2() * qbv_b.m2());
     const double kperp = (qav_t - qbv_t).perp();
     if (kperp > lambda){
       return Cls;
     }
     return Cls - 4.0 / (kperp * kperp);
 
   }
 
   CLHEP::HepLorentzVector CLipatov(
       CLHEP::HepLorentzVector const & qav, CLHEP::HepLorentzVector const & qbv,
       CLHEP::HepLorentzVector const & pim, CLHEP::HepLorentzVector const & pip,
       CLHEP::HepLorentzVector const & pom, CLHEP::HepLorentzVector const & pop
   ){
     const CLHEP::HepLorentzVector p5 = qav-qbv;
     const CLHEP::HepLorentzVector CL = -(qav+qbv)
       + qav.m2()*(1./p5.dot(pip)*pip + 1./p5.dot(pop)*pop)/2.
       - qbv.m2()*(1./p5.dot(pim)*pim + 1./p5.dot(pom)*pom)/2.
       + ( pip*(p5.dot(pim)/pip.dot(pim) + p5.dot(pom)/pip.dot(pom))
           + pop*(p5.dot(pim)/pop.dot(pim) + p5.dot(pom)/pop.dot(pom))
           - pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim))
           - pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.;
     return CL;
   }
 
   //! Lipatov vertex
   double C2Lipatov( // B
       CLHEP::HepLorentzVector const & qav,
       CLHEP::HepLorentzVector const & qbv,
       CLHEP::HepLorentzVector const & pim,
       CLHEP::HepLorentzVector const & pip,
       CLHEP::HepLorentzVector const & pom,
       CLHEP::HepLorentzVector const & pop
   ){
     const CLHEP::HepLorentzVector CL = CLipatov(qav, qbv, pim, pip, pom, pop);
     return -CL.dot(CL);
   }
 
   //! Lipatov vertex with soft subtraction
   double C2Lipatovots(
       CLHEP::HepLorentzVector const & qav,
       CLHEP::HepLorentzVector const & qbv,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & p2,
       const double lambda
   ) {
     const double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()));
 
     const double kperp=(qav-qbv).perp();
     if (kperp>lambda)
       return Cls;
     return Cls-4./(kperp*kperp);
   }
 
   double C2Lipatov_Mix(
       CLHEP::HepLorentzVector const & qav_t, CLHEP::HepLorentzVector const & qbv_t,
       CLHEP::HepLorentzVector const & qav_b, CLHEP::HepLorentzVector const & qbv_b,
       CLHEP::HepLorentzVector const & pim, CLHEP::HepLorentzVector const & pip,
       CLHEP::HepLorentzVector const & pom, CLHEP::HepLorentzVector const & pop
   ) {
     const CLHEP::HepLorentzVector CL_t = CLipatov(qav_t, qbv_t, pim, pip, pom, pop);
     const CLHEP::HepLorentzVector CL_b = CLipatov(qav_b, qbv_b, pim, pip, pom, pop);
     return -CL_t.dot(CL_b);
   }
 
   double C2Lipatovots_Mix(
       CLHEP::HepLorentzVector const & qav_t, CLHEP::HepLorentzVector const & qbv_t,
       CLHEP::HepLorentzVector const & qav_b, CLHEP::HepLorentzVector const & qbv_b,
       CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2,
       const double lambda
   ) {
     const double Cls = C2Lipatov_Mix(qav_t, qbv_t, qav_b, qbv_b, pa, pb, p1, p2)
                        / sqrt(qav_t.m2() * qbv_t.m2() * qav_b.m2() * qbv_b.m2());
     const double kperp = (qav_t - qbv_t).perp();
     if (kperp > lambda) {
       return Cls;
     }
     return Cls - 4.0 / (kperp * kperp);
 
   }
 
   /** Matrix element squared for tree-level current-current scattering
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pg              Unordered gluon momentum
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    *
    *  @note The unof contribution can be calculated by reversing the argument ordering.
    */
   double ME_uno_current(
       [[maybe_unused]] ParticleID aptype,
       ParticleID bptype,
       CLHEP::HepLorentzVector const & pg,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa
   ){
     assert(aptype!=pid::gluon); // aptype cannot be gluon
 
     const double t1 = (pa - p1 - pg).m2();
     const double t2 = (pb - pn).m2();
 
     return K_q * K(bptype, pn, pb)*currents::ME_unob_qq(pg, p1, pa, pn, pb) / (t1 * t2);
   }
 
   /** Matrix element squared for tree-level current-current scattering
    *  @param bptype   Particle b PDG ID
    *  @param pgin     Incoming gluon momentum
    *  @param p1       More backward (anti-)quark from splitting Momentum
    *  @param p2       Less backward (anti-)quark from splitting Momentum
    *  @param pn       Particle n Momentum
    *  @param pb       Particle b Momentum
    *  @returns        ME Squared for Tree-Level Current-Current Scattering
    *
    *  @note The forward qqbar contribution can be calculated by reversing the
    *        argument ordering.
    */
   double ME_qqbar_current(
       ParticleID bptype,
       CLHEP::HepLorentzVector const & pgin,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & p2,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb
   ){
     const double t1 = (pgin - p1 - p2).m2();
     const double t2 = (pn - pb).m2();
 
     return K_q * K(bptype, pn, pb)*currents::ME_qqbar_qg(pgin, pb, p1, p2, pn) / (t1 * t2);
   }
 
   /*  \brief Matrix element squared for central qqbar tree-level current-current
    *         scattering
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param nabove          Number of gluons emitted before central qqbarpair
    *  @param nbelow          Number of gluons emitted after central qqbarpair
    *  @param pa              Initial state a Momentum
    *  @param pb              Initial state b Momentum
    *  @param partons         Vector of all outgoing partons
    *  @param qbar_first      Ordering of the qqbar pair (true: qbar-q, false: q-qbar)
    *  @returns               ME Squared for qqbar_mid Tree-Level Current-Current Scattering
    */
   double ME_qqbar_mid_current(
       ParticleID aptype, ParticleID bptype, int nabove,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pb,
       std::vector<CLHEP::HepLorentzVector> const & partons,
       bool const qbar_first
   ){
     using namespace currents;
 
     CLHEP::HepLorentzVector const & p1 = partons.front();
     CLHEP::HepLorentzVector const & pn = partons.back();
 
     const double t1 = (p1 - pa).m2();
     const double t2 = (pb - pn).m2();
 
     return K(aptype, p1, pa)
       *K(bptype, pn, pb)
       *ME_Cenqqbar_qq(
         pa, pb, partons,
         qbar_first, nabove
       ) / (t1 * t2 * (4.*(N_C*N_C - 1)));
   }
 
 
   /** Matrix element squared for tree-level current-current scattering
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    */
   double ME_current(
       ParticleID aptype, ParticleID bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa
   ){
     const double t1 = (p1 - pa).m2();
     const double t2 = (pb - pn).m2();
 
     return K(aptype, p1, pa)
       * K(bptype, pn, pb)
       * currents::ME_qq(p1, pa, pn, pb)/(t1 * t2);
   }
 
   /** Matrix element squared for tree-level current-current scattering With W+Jets
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    */
   double ME_W_current(
       ParticleID aptype, ParticleID bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
       bool const wc, ParticleProperties const & Wprop
   ){
     using namespace currents;
     assert(!(aptype==pid::gluon && bptype==pid::gluon));
 
     if(aptype == pid::gluon || wc) {
       // swap currents to ensure that the W is emitted off the first one
       return ME_W_current(bptype, aptype, p1, pa, pn, pb, plbar, pl, false, Wprop);
     }
 
     // we assume that the W is emitted off a quark line
     // if this is not the case, we have to apply CP conjugation,
     // which is equivalent to swapping lepton and antilepton momenta
     const double current_contr = is_quark(aptype)?
       ME_W_qQ(p1,plbar,pl,pa,pn,pb,Wprop):
       ME_W_qQ(p1,pl,plbar,pa,pn,pb,Wprop);
 
     const double t1 = (pa - p1 - pl - plbar).m2();
     const double tn = (pn - pb).m2();
 
     return K(aptype, p1, pa)
       * K(bptype, pn, pb)
       * current_contr/(4.*(N_C*N_C - 1) * t1 * tn);
   }
 
   /** Matrix element squared for backwards uno tree-level current-current
    *  scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param pg              Unordered gluon momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for unob Tree-Level Current-Current Scattering
    *
    *  @note The unof contribution can be calculated by reversing the argument ordering.
    */
   double ME_W_uno_current(
       ParticleID aptype, ParticleID bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pg,
       CLHEP::HepLorentzVector plbar,
       CLHEP::HepLorentzVector pl,
       bool const wc, ParticleProperties const & Wprop
   ){
     using namespace currents;
     assert(bptype != pid::gluon || aptype != pid::gluon);
 
     if(aptype == pid::gluon || wc) {
       // emission off pb -- pn line
       // we assume that the W is emitted off a quark line
       // if this is not the case, we have to apply CP conjugation,
       // which is equivalent to swapping lepton and antilepton momenta
       if(is_antiquark(bptype)) std::swap(plbar, pl);
       const double t1 = (pa - p1 - pg).m2();
       const double tn = (pb - pn - plbar - pl).m2();
 
       return K_q*K_q*ME_W_unob_qQ(p1,pa,pn,pb,pg,plbar,pl,Wprop)/(4.*(N_C*N_C - 1) * t1 * tn);
     }
 
     // emission off pa -- p1 line
     if(is_antiquark(aptype)) std::swap(plbar, pl);
     const double t1 = (pa - p1 - pg - plbar - pl).m2();
     const double tn = (pb - pn).m2();
     return K(bptype, pn, pb)/C_F*ME_Wuno_qQ(p1,pa,pn,pb,pg,plbar,pl,Wprop)/(t1 * tn);
   }
 
   /** \brief Matrix element squared for backward qqbar tree-level current-current
    *         scattering With W+Jets
    *
    *  @param bptype          Particle b PDG ID
    *  @param pa              Initial state a Momentum
    *  @param pb              Initial state b Momentum
    *  @param pq              Final state q Momentum
    *  @param pqbar           Final state qbar Momentum
    *  @param pn              Final state n Momentum
    *  @param plbar           Final state anti-lepton momentum
    *  @param pl              Final state lepton momentum
    *  @param wc              Boolean. True->W Emitted from b. Else; emitted from leg a
    *  @returns               ME Squared for qqbarb Tree-Level Current-Current Scattering
    *
    *  @note calculate forwards qqbar contribution by reversing argument ordering.
    */
   double ME_W_qqbar_current(
       ParticleID bptype,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & pq,
       CLHEP::HepLorentzVector const & pqbar,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
       bool const wc,
       ParticleProperties const & Wprop
   ){
     using namespace currents;
     if(is_anyquark(bptype) && wc) {
       // W Must be emitted from forwards leg.
       const double t1 = (pa - pq - pqbar).m2();
       const double tn = (pb - pn - pl - plbar).m2();
 
       return K_q * K_q * ME_W_Exqqbar_QQq(
         pb, pa, pn, pq, pqbar, plbar, pl, is_antiquark(bptype), Wprop
       ) / (4.*(N_C*N_C - 1) * t1 * tn);
     }
 
     const double t1 = (pa - pl - plbar - pq - pqbar).m2();
     const double tn = (pb - pn).m2();
 
     return K(bptype, pn, pb)/C_F
       * ME_WExqqbar_qqbarQ(pa, pqbar, plbar, pl, pq, pn, pb, Wprop) / (t1 * tn);
   }
 
   /*  \brief Matrix element squared for central qqbar tree-level current-current
    *         scattering With W+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param nabove          Number of gluons emitted before central qqbarpair
    *  @param nbelow          Number of gluons emitted after central qqbarpair
    *  @param pa              Initial state a Momentum
    *  @param pb              Initial state b Momentum\
    *  @param partons         Vector of all outgoing partons
    *  @param plbar           Final state anti-lepton momentum
    *  @param pl              Final state lepton momentum
    *  @param qbar_first      Ordering of the qqbar pair (true: qbar-q, false: q-qbar)
    *  @param wqq             Boolean. True siginfies W boson is emitted from Central qqbar
    *  @param wc              Boolean. wc=true signifies w boson emitted from leg b; if wqq=false.
    *  @returns               ME Squared for qqbar_mid Tree-Level Current-Current Scattering
    */
   double ME_W_qqbar_mid_current(
       ParticleID aptype, ParticleID bptype,
       int nabove, int nbelow,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pb,
       std::vector<CLHEP::HepLorentzVector> const & partons,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
       bool const qbar_first, bool const wqq, bool const wc,
       ParticleProperties const & Wprop
   ){
     using namespace currents;
 
     const double wt = K(aptype, partons.front(), pa) * K(bptype, partons.back(), pb) / (4.*(N_C*N_C - 1));
 
     if(wqq)
       return wt*ME_WCenqqbar_qq(pa, pb, pl, plbar, partons,
                                 is_antiquark(aptype),is_antiquark(bptype),
                                 qbar_first, nabove, Wprop);
     return wt*ME_W_Cenqqbar_qq(pa, pb, pl, plbar, partons,
                                is_antiquark(aptype), is_antiquark(bptype),
                                qbar_first, nabove, nbelow, wc, Wprop);
   }
 
   /** Matrix element squared for tree-level current-current scattering With Z+Jets
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param plbar           Final state positron momentum
    *  @param pl              Final state electron momentum
    *  @param Zprop           Z properties
    *  @param stw2            Value of sin(theta_w)^2
    *  @param ctw             Value of cos(theta_w)
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    */
   std::vector<double> ME_Z_current(
       const ParticleID aptype, const ParticleID bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       const ParticleID ltype,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
       ParticleProperties const & Zprop,
       const double stw2, const double ctw
   ){
     using namespace currents;
 
     const auto pZ = pl + plbar;
 
     const double pref = K(aptype, p1, pa) * K(bptype, pn, pb)/(4.*(N_C*N_C-1));
 
     // we know they are not both gluons
     assert(!is_gluon(aptype) || !is_gluon(bptype));
 
     if(is_anyquark(aptype) && is_gluon(bptype)){
       // This is a qg event
       const double t1 = (pa-p1-pZ).m2();
       const double tn = (pb-pn   ).m2();
       return { pref*ME_Z_qg(pa,pb,p1,pn,plbar,pl,aptype,bptype,ltype,Zprop,stw2,ctw)/(t1 * tn) };
     }
 
     if(is_gluon(aptype) && is_anyquark(bptype)){
       // This is a gq event
       const double t1 = (pa-p1   ).m2();
       const double tn = (pb-pn-pZ).m2();
       return { pref*ME_Z_qg(pb,pa,pn,p1,plbar,pl,bptype,aptype,ltype,Zprop,stw2,ctw)/(t1 * tn) };
     }
 
     // This is a qq event
     assert(is_anyquark(aptype) && is_anyquark(bptype));
     const double t1_top = (pa-p1-pZ).m2();
     const double t2_top = (pb-pn   ).m2();
 
     const double t1_bot = (pa-p1   ).m2();
     const double t2_bot = (pb-pn-pZ).m2();
     std::vector<double> res = ME_Z_qQ(pa,pb,p1,pn,plbar,pl,aptype,bptype,ltype,Zprop,stw2,ctw);
     assert(res.size() == 3);
 
     res[0] *= pref/(t1_top * t2_top);
     res[1] *= pref/(t1_bot * t2_bot);
     res[2] *= pref/sqrt(t1_top * t2_top * t1_bot * t2_bot);
 
     return res;
   }
 
   /** Matrix element squared for backwards uno tree-level current-current
    *  scattering With Z+Jets
    *
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param pg              Unordered gluon momentum
    *  @param plbar           Final state positron momentum
    *  @param pl              Final state electron momentum
    *  @param Zprop           Z properties
    *  @param stw2            Value of sin(theta_w)^2
    *  @param ctw             Value of cos(theta_w)
    *  @returns               ME Squared for unob Tree-Level Current-Current Scattering
    *
    *  @note The unof contribution can be calculated by reversing the argument ordering.
    */
 
   std::vector<double> ME_Z_uno_current(
       const ParticleID aptype, const ParticleID bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pg,
       const ParticleID ltype,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
       ParticleProperties const & Zprop,
       const double stw2, const double ctw
   ){
     using namespace currents;
 
     const auto pZ = pl + plbar;
 
     const double pref = K(aptype, p1, pa)/C_F * K(bptype, pn, pb)/C_F;
 
     // we only evaluate unordered backward -> first incoming particle must be a quark
     assert(is_anyquark(aptype));
 
     const double t1_top = (pa-pg-p1-pZ).m2();
     const double t2_top = (pb-pn      ).m2();
 
     if (is_gluon(bptype)) {
       // This is a qg event -> Z emission from top leg
       return {
         pref*ME_Zuno_qg(
           pa,pb,pg,p1,pn,plbar,pl,
           aptype,bptype,ltype,
           Zprop,stw2,ctw
         )/(t1_top * t2_top)
       };
     }
 
     // This is a qq event
     assert(is_anyquark(bptype));
 
     const double t1_bot = (pa-pg-p1).m2();
     const double t2_bot = (pb-pn-pZ).m2();
 
     std::vector<double> res = ME_Zuno_qQ(
       pa,pb,pg,p1,pn,plbar,pl,
       aptype,bptype,ltype,
       Zprop,stw2,ctw
     );
     assert(res.size() == 3);
 
     res[0] *= pref/(t1_top * t2_top);
     res[1] *= pref/(t1_bot * t2_bot);
     res[2] *= pref/sqrt(t1_top * t2_top * t1_bot * t2_bot);
 
     return res;
   }
 
   /** Matrix element squared for backwards extremal qqbar tree-level current-current
    *  scattering With Z+Jets
    *
    *  @param qptype          PDG ID of final state quark in qqbar pair
    *  @param bptype          Incoming particle b PDG ID
    *  @param pa              Incoming particle a momentum
    *  @param pb              Incoming particle b momentum
    *  @param pq              Final state quark momentum
    *  @param pqbar           Final state anti-quark momentum
    *  @param pn              Final state particle n momentum
    *  @param plbar           Final state positron momentum
    *  @param pl              Final state electron momentum
    *  @param Zprop           Z properties
    *  @param stw2            Value of sin(theta_w)^2
    *  @param ctw             Value of cos(theta_w)
    *  @returns               ME Squared for qqbar_exb Tree-Level Current-Current Scattering
    *
    *  @note The qqbar_exf contribution can be calculated by reversing the argument ordering.
    */
   std::vector<double> ME_Z_exqqbar_current(
       const ParticleID qptype, const ParticleID bptype,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & pq,
       CLHEP::HepLorentzVector const & pqbar,
       CLHEP::HepLorentzVector const & pn,
       const ParticleID ltype,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
       ParticleProperties const & Zprop,
       const double stw2, const double ctw
   ){
     using namespace currents;
 
     const auto pZ = pl + plbar;
 
     const double t1_top = (pa-pq-pqbar-pZ).m2();
     const double t2_top = (pb-pn).m2();
 
     if (is_gluon(bptype)) {
       // This is a gg event -> Z emission from top leg
       return { K(bptype, pn, pb)/C_F
                * ME_ZExqqbar_gg(pa,pb,pq,pqbar,pn,plbar,pl,qptype,ltype,Zprop,stw2,ctw)
                / (t1_top * t2_top) };
     }
 
     // This is a gq event
     assert(is_anyquark(bptype));
 
     const double t1_bot = (pa-pq-pqbar).m2();
     const double t2_bot = (pb-pn-pZ).m2();
 
     std::vector<double> res = ME_ZExqqbar_gq(
       pa,pb,pq,pqbar,pn,plbar,pl,
       qptype,bptype,ltype,
       Zprop,stw2,ctw
     );
     assert(res.size() == 3);
 
     res[0] /= (t1_top * t2_top);
     res[1] /= (t1_bot * t2_bot);
     res[2] /= sqrt(t1_top * t2_top * t1_bot * t2_bot);
 
     return res;
   }
 
   /** Matrix element squared for central qqbar tree-level current-current
    *  scattering With Z+Jets
    *
    *  @param aptype          Incoming particle a PDG ID
    *  @param bptype          Incoming particle b PDG ID
    *  @param qptype          PDG ID of final state quark in qqbar pair
    *  @param qbar_first      Ordering of the qqbar pair (true: qbar-q, false: q-qbar)
    *  @param nabove          Number of gluons emitted before central qqbarpair
    *  @param pa              Incoming particle a momentum
    *  @param pb              Incoming particle b momentum
    *  @param partons         Vector of all outgoing partons
    *  @param plbar           Final state positron momentum
    *  @param pl              Final state electron momentum
    *  @param Zprop           Z properties
    *  @param stw2            Value of sin(theta_w)^2
    *  @param ctw             Value of cos(theta_w)
    *  @returns               ME Squared for central qqbar Tree-Level Current-Current Scattering
    */
   std::vector<double> ME_Z_qqbar_mid_current(
       const ParticleID aptype, const ParticleID bptype,
       const ParticleID qptype,
       const bool qbar_first, const int nabove,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pb,
       std::vector<CLHEP::HepLorentzVector> const & partons,
       const ParticleID ltype,
       CLHEP::HepLorentzVector const & plbar,
       CLHEP::HepLorentzVector const & pl,
       ParticleProperties const & Zprop,
       const double stw2, const double ctw
   ){
     using namespace currents;
 
     std::vector<double> res;
     if(is_gluon(aptype)) {
       if(is_gluon(bptype)) {
         // gg event
         res = {
           ME_ZCenqqbar_gg(
             pa,pb,plbar,pl,
             partons,qbar_first,nabove,
             qptype,ltype,
             Zprop,stw2,ctw
           )
         };
       } else {
         // gq event
         res = ME_ZCenqqbar_gq(
           pa,pb,plbar,pl,
           partons,qbar_first,nabove,
           bptype,qptype,ltype,
           Zprop,stw2,ctw
         );
       }
     } else {
       assert(is_anyquark(bptype));
       // qq event
       res = ME_ZCenqqbar_qq(
         pa,pb,plbar,pl,
         partons,qbar_first,nabove,
         aptype,bptype,qptype,ltype,
         Zprop,stw2,ctw
       );
     }
 
     const double wt = K(aptype, partons.front(), pa) * K(bptype, partons.back(), pb) / (4.*(N_C*N_C - 1));
 
     for(double & me: res) me *= wt;
 
     return res;
   }
 
   /** Matrix element squared for tree-level current-current scattering With photon+Jets
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param p_photon        Final state photon momentum
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    */
   std::vector<double> ME_photon_current(
       const ParticleID aptype, const ParticleID bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & p_photon
   ){
     using namespace currents;
 
     const double pref = K(aptype, p1, pa) * K(bptype, pn, pb)/(4.*(N_C*N_C-1));
 
     // we know they are not both gluons
     assert(!is_gluon(aptype) || !is_gluon(bptype));
 
     if(is_anyquark(aptype) && is_gluon(bptype)){
       // This is a qg event
       const double t1 = (pa-p1-p_photon).m2();
       const double tn = (pb-pn   ).m2();
       return { pref*ME_photon_qg(pa,pb,p1,pn,p_photon,aptype,bptype)/(t1 * tn) };
     }
 
     if(is_gluon(aptype) && is_anyquark(bptype)){
       // This is a gq event
       const double t1 = (pa-p1   ).m2();
       const double tn = (pb-pn-p_photon).m2();
       return { pref*ME_photon_qg(pb,pa,pn,p1,p_photon,bptype,aptype)/(t1 * tn) };
     }
 
     // This is a qq event
     assert(is_anyquark(aptype) && is_anyquark(bptype));
     const double t1_top = (pa-p1-p_photon).m2();
     const double t2_top = (pb-pn   ).m2();
 
     const double t1_bot = (pa-p1   ).m2();
     const double t2_bot = (pb-pn-p_photon).m2();
     std::vector<double> res = ME_photon_qQ(pa,pb,p1,pn,p_photon,aptype,bptype);
     assert(res.size() == 3);
 
     res[0] *= pref/(t1_top * t2_top);
     res[1] *= pref/(t1_bot * t2_bot);
     res[2] *= pref/sqrt(t1_top * t2_top * t1_bot * t2_bot);
 
     return res;
   }
   
   /** Matrix element squared for tree-level current-current scattering With photon+Jets (UNO)
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param p_photon        Final state photon momentum
    *
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    *
    *  @note The unof contribution can be calculated by reversing the argument ordering.
    */
   std::vector<double> ME_photon_uno_current(
       const ParticleID aptype, const ParticleID bptype,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & p_photon,
       CLHEP::HepLorentzVector const & pg
   ){
     using namespace currents;
 
     const double pref = K(aptype, p1, pa)/C_F * K(bptype, pn, pb)/C_F;
 
     // we know they are not both gluons
     assert(!is_gluon(aptype) || !is_gluon(bptype));
 
     // we only evaluate unordered backward -> first incoming particle must be a quark
     assert(is_anyquark(aptype));
 
     if(is_anyquark(aptype) && is_gluon(bptype)){
       // This is a qg event
-      const double t1 = (pa-p1-p_photon).m2();
+      const double t1 = (pa-p1-p_photon-pg).m2();
       const double tn = (pb-pn   ).m2();
-      return { pref/**ME_photon_qg(pa,pb,p1,pn,p_photon,aptype,bptype)/(t1 * tn)*/ };
+      return { pref*ME_photon_uno_qg(pa,pb,pg,p1,pn,p_photon,aptype,bptype)/(t1 * tn) };
     }
 
     if(is_gluon(aptype) && is_anyquark(bptype)){
       // This is a gq event
       const double t1 = (pa-p1   ).m2();
-      const double tn = (pb-pn-p_photon).m2();
-      return { pref/**ME_photon_qg(pb,pa,pn,p1,p_photon,bptype,aptype)/(t1 * tn)*/ };
+      const double tn = (pb-pn-p_photon-pg).m2();
+      return { pref*ME_photon_uno_qg(pb,pa,pg,pn,p1,p_photon,bptype,aptype)/(t1 * tn)};
     }
 
     // This is a qq event
     assert(is_anyquark(aptype) && is_anyquark(bptype));
 
     const double t1_top = (pa-p1-pg-p_photon).m2();
     const double t2_top = (pb-pn).m2();
 
     const double t1_bot = (pa-p1-pg).m2();
     const double t2_bot = (pb-pn-p_photon).m2();
     std::vector<double> res = ME_photon_uno_qQ(pa,pb,p1,pn,p_photon,pg,aptype,bptype);
     assert(res.size() == 3);
 
     res[0] *= pref/(t1_top * t2_top);
     res[1] *= pref/(t1_bot * t2_bot);
     res[2] *= pref/sqrt(t1_top * t2_top * t1_bot * t2_bot);
 
     return res;
   }
 
   /** \brief Matrix element squared for tree-level current-current scattering with Higgs
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param qH              t-channel momentum before Higgs
    *  @param qHp1            t-channel momentum after Higgs
    *  @returns               ME Squared for Tree-Level Current-Current Scattering with Higgs
    */
   double ME_Higgs_current(
       ParticleID aptype, ParticleID bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & qH,  // t-channel momentum before Higgs
       CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
       double mt, bool include_bottom, double mb, double vev
   ){
     const double t1 = (pa - p1).m2();
     const double tn = (pb - pn).m2();
 
     return
       K(aptype, p1, pa)
       *K(bptype, pn, pb)
       *currents::ME_H_qQ(
         pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev
       ) / (t1 * tn * qH.m2() * qHp1.m2());
   }
 
   /** \brief Current matrix element squared with Higgs and unordered backward emission
    *  @param aptype          Particle A PDG ID
    *  @param bptype          Particle B PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param pg              Unordered back Particle Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param qH              t-channel momentum before Higgs
    *  @param qHp1            t-channel momentum after Higgs
    *  @returns               ME Squared with Higgs and unordered backward emission
    *
    *  @note This function assumes unordered gluon backwards from pa-p1 current.
    *        For unof, reverse call order
    */
   double ME_Higgs_current_uno(
       ParticleID aptype, ParticleID bptype,
       CLHEP::HepLorentzVector const & pg,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & qH,  // t-channel momentum before Higgs
       CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
       double mt, bool include_bottom, double mb, double vev
   ){
     const double t1 = (pa - p1 - pg).m2();
     const double tn = (pn - pb).m2();
 
     return
       K(aptype, p1, pa)
       *K(bptype, pn, pb)
       *currents::ME_H_unob_qQ(
         pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev
       ) / (t1 * qH.m2() * qHp1.m2() * tn);
   }
 
   /** Matrix element squared for tree-level scattering with WW+Jets
    *  @param aptype          Particle a PDG ID
    *  @param bptype          Particle b PDG ID
    *  @param pn              Particle n Momentum
    *  @param pb              Particle b Momentum
    *  @param p1              Particle 1 Momentum
    *  @param pa              Particle a Momentum
    *  @param pl1bar          Particle l1bar Momentum
    *  @param pl1             Particle l1 Momentum
    *  @param pl2bar          Particle l2bar Momentum
    *  @param pl2             Particle l2 Momentum
    *  @returns               ME Squared for Tree-Level Current-Current Scattering
    */
   std::vector <double> ME_WW_current(
       ParticleID aptype, ParticleID bptype,
       CLHEP::HepLorentzVector const & pn,
       CLHEP::HepLorentzVector const & pb,
       CLHEP::HepLorentzVector const & p1,
       CLHEP::HepLorentzVector const & pa,
       CLHEP::HepLorentzVector const & pl1bar,
       CLHEP::HepLorentzVector const & pl1,
       CLHEP::HepLorentzVector const & pl2bar,
       CLHEP::HepLorentzVector const & pl2,
       ParticleProperties const & Wprop
   ){
     using namespace currents;
 
     if (aptype > 0 && bptype > 0)
       return ME_WW_qQ(p1, pl1bar, pl1, pa, pn, pl2bar, pl2, pb, Wprop);
     if (aptype < 0 && bptype > 0)
       return ME_WW_qbarQ(p1, pl1bar, pl1, pa, pn, pl2bar, pl2, pb, Wprop);
     if (aptype > 0 && bptype < 0)
       return ME_WW_qQbar(p1, pl1bar, pl1, pa, pn, pl2bar, pl2, pb, Wprop);
     if (aptype < 0 && bptype < 0)
       return ME_WW_qbarQbar(p1, pl1bar, pl1, pa, pn, pl2bar, pl2, pb, Wprop);
 
     throw std::logic_error("unreachable");
   }
 
   void validate(MatrixElementConfig const & config) {
 #ifndef HEJ_BUILD_WITH_QCDLOOP
     if(!config.Higgs_coupling.use_impact_factors) {
       throw std::invalid_argument{
         "Invalid Higgs coupling settings.\n"
         "HEJ without QCDloop support can only use impact factors.\n"
         "Set use_impact_factors to true or recompile HEJ.\n"
        };
     }
 #endif
     if(config.Higgs_coupling.use_impact_factors
       && config.Higgs_coupling.mt != std::numeric_limits<double>::infinity()) {
       throw std::invalid_argument{
         "Conflicting settings: "
           "impact factors may only be used in the infinite top mass limit"
       };
     }
   }
 } // namespace
 
   MatrixElement::MatrixElement(
       std::function<double (double)> alpha_s,
       MatrixElementConfig conf
   ):
     alpha_s_{std::move(alpha_s)},
     param_{std::move(conf)}
   {
     validate(param_);
   }
 
   std::vector<double> MatrixElement::tree_kin(
       Event const & ev
   ) const {
     if(!ev.valid_hej_state(param_.soft_pt_regulator)) return {0.};
 
     if(!ev.valid_incoming()){
       throw std::invalid_argument{
         "Invalid momentum for one or more incoming particles. "
         "Incoming momenta must have vanishing mass and transverse momentum."
       };
     }
 
     std::vector<Particle> bosons = filter_AWZH_bosons(ev.outgoing());
 
     if(bosons.empty()) {
       return {tree_kin_jets(ev)};
     }
 
     if(bosons.size() == 1) {
       switch(bosons[0].type){
       case pid::Higgs:
         return {tree_kin_Higgs(ev)};
       case pid::Wp:
       case pid::Wm:
         return {tree_kin_W(ev)};
       case pid::Z:
       case pid::Z_photon_mix:
         return tree_kin_Z(ev);
       case pid::photon:
         return tree_kin_photon(ev);
       default:
         throw not_implemented("Emission of boson of unsupported type");
       }
     }
 
     if(bosons.size() == 2) {
       if(bosons[0].type == pid::Wp && bosons[1].type == pid::Wp){
         return tree_kin_WW(ev);
       }
       else if(bosons[0].type == pid::Wm && bosons[1].type == pid::Wm){
         return tree_kin_WW(ev);
       }
 
       throw not_implemented("Emission of bosons of unsupported type");
     }
 
     throw not_implemented("Emission of >2 bosons is unsupported");
   }
 
   namespace {
     constexpr int EXTREMAL_JET_IDX = 1;
     constexpr int NO_EXTREMAL_JET_IDX = 0;
 
     bool treat_as_extremal(Particle const & parton){
       return parton.p.user_index() == EXTREMAL_JET_IDX;
     }
 
     template<class InputIterator>
     double FKL_ladder_weight(
         InputIterator begin_gluon, InputIterator end_gluon,
         CLHEP::HepLorentzVector const & q0,
         CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
         CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn,
         double lambda
     ){
       double wt = 1;
       auto qi = q0;
       for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){
         assert(gluon_it->type == pid::gluon);
         const auto g = to_HepLorentzVector(*gluon_it);
         const auto qip1 = qi - g;
 
         if(treat_as_extremal(*gluon_it)){
           wt *= C2Lipatovots(qip1, qi, pa, pb, lambda)*C_A;
         } else{
           wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn, lambda)*C_A;
         }
 
         qi = qip1;
       }
       return wt;
     }
 
     template<class InputIterator>
     std::vector <double> FKL_ladder_weight_mix(
         InputIterator begin_gluon, InputIterator end_gluon,
         CLHEP::HepLorentzVector const & q0_t, CLHEP::HepLorentzVector const & q0_b,
         CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
         CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn,
         const double lambda
     ){
       double wt_top = 1;
       double wt_bot = 1;
       double wt_mix = 1;
       auto qi_t = q0_t;
       auto qi_b = q0_b;
       for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){
         assert(gluon_it->type == pid::gluon);
         const auto g = to_HepLorentzVector(*gluon_it);
         const auto qip1_t = qi_t - g;
         const auto qip1_b = qi_b - g;
         if(treat_as_extremal(*gluon_it)){
           wt_top *= C2Lipatovots(qip1_t, qi_t, pa, pb, lambda)*C_A;
           wt_bot *= C2Lipatovots(qip1_b, qi_b, pa, pb, lambda)*C_A;
           wt_mix *= C2Lipatovots_Mix(qip1_t, qi_t, qip1_b, qi_b, pa, pb, lambda)*C_A;
         } else{
           wt_top *= C2Lipatovots(qip1_t, qi_t, pa, pb, p1, pn, lambda)*C_A;
           wt_bot *= C2Lipatovots(qip1_b, qi_b, pa, pb, p1, pn, lambda)*C_A;
           wt_mix *= C2Lipatovots_Mix(qip1_t, qi_t, qip1_b, qi_b, pa, pb, p1, pn, lambda)*C_A;
         }
         qi_t = qip1_t;
         qi_b = qip1_b;
       }
       return {wt_top, wt_bot, wt_mix};
     }
 
     std::vector<Particle> tag_extremal_jet_partons( Event const & ev ){
       auto out_partons = filter_partons(ev.outgoing());
       if(out_partons.size() == ev.jets().size()){
         // no additional emissions in extremal jets, don't need to tag anything
         for(auto & parton: out_partons){
           parton.p.set_user_index(NO_EXTREMAL_JET_IDX);
         }
         return out_partons;
       }
       auto const & jets = ev.jets();
       std::vector<fastjet::PseudoJet> extremal_jets;
       if(! is_backward_g_to_h(ev)) {
         auto most_backward = begin(jets);
         // skip jets caused by unordered emission or qqbar
         if(ev.type() == event_type::unob || ev.type() == event_type::qqbar_exb){
           assert(jets.size() >= 2);
           ++most_backward;
         }
         extremal_jets.emplace_back(*most_backward);
       }
       if(! is_forward_g_to_h(ev)) {
         auto most_forward = end(jets) - 1;
         if(ev.type() == event_type::unof || ev.type() == event_type::qqbar_exf){
           assert(jets.size() >= 2);
           --most_forward;
         }
         extremal_jets.emplace_back(*most_forward);
       }
       const auto extremal_jet_indices = ev.particle_jet_indices(
         extremal_jets
       );
       assert(extremal_jet_indices.size() == out_partons.size());
       for(std::size_t i = 0; i < out_partons.size(); ++i){
         assert(is_parton(out_partons[i]));
         const int idx = (extremal_jet_indices[i]>=0)?
           EXTREMAL_JET_IDX:
           NO_EXTREMAL_JET_IDX;
         out_partons[i].p.set_user_index(idx);
       }
       return out_partons;
     }
 
     double tree_kin_jets_qqbar_mid(
         ParticleID aptype, ParticleID bptype,
         CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
         std::vector<Particle> const & partons,
         double lambda
     ){
       const auto backmidquark = std::find_if(
           begin(partons)+1, end(partons)-1,
           [](Particle const & s){ return s.type != pid::gluon; }
       );
 
       assert(backmidquark!=end(partons)-1);
 
       const bool qbar_first = is_antiquark(backmidquark->type);
 
       const auto pq    = to_HepLorentzVector(*(backmidquark+(qbar_first?1:0)));
       const auto pqbar = to_HepLorentzVector(*(backmidquark+(qbar_first?0:1)));
 
       const auto p1 = to_HepLorentzVector(partons[0]);
       const auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       const auto begin_ladder_1 = cbegin(partons) + 1;
       const auto end_ladder_1   = (backmidquark);
       const auto begin_ladder_2 = (backmidquark+2);
       const auto end_ladder_2   = cend(partons) - 1;
 
       const int nabove = std::distance(begin_ladder_1, end_ladder_1);
 
       const auto q0 = pa - p1;
       // t-channel momentum after qqbar
       auto q3 = q0;
       for(auto parton_it = begin_ladder_1; parton_it != begin_ladder_2; ++parton_it){
         q3 -= to_HepLorentzVector(*parton_it);
       }
 
       std::vector<CLHEP::HepLorentzVector> partonsHLV;
       partonsHLV.reserve(partons.size());
       for(Particle const & parton: partons) {
         partonsHLV.push_back(to_HepLorentzVector(parton));
       }
 
       const double current_factor = ME_qqbar_mid_current(
           aptype, bptype, nabove, pa, pb,
           partonsHLV, qbar_first
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder_1, end_ladder_1,
           q0, pa, pb, p1, pn,
           lambda
       )*FKL_ladder_weight(
           begin_ladder_2, end_ladder_2,
           q3, pa, pb, p1, pn,
           lambda
         );
       return current_factor*ladder_factor;
     }
 
 
     template<class InIter, class partIter>
     double tree_kin_jets_qqbar(InIter begin_in, InIter end_in, partIter begin_part,
                                partIter end_part, double lambda){
       const auto pgin = to_HepLorentzVector(*begin_in);
       const auto pb   = to_HepLorentzVector(*(end_in-1));
       const auto p1   = to_HepLorentzVector(*begin_part);
       const auto p2   = to_HepLorentzVector(*(begin_part+1));
       const auto pn   = to_HepLorentzVector(*(end_part-1));
 
       assert((begin_in)->type==pid::gluon); // Incoming a must be gluon.
       const double current_factor = ME_qqbar_current(
         (end_in-1)->type, pgin, p1, p2, pn, pb
         )/(4.*(N_C*N_C - 1.));
       const double ladder_factor = FKL_ladder_weight(
           (begin_part+2), (end_part-1),
           pgin-p1-p2, pgin, pb, p1, pn, lambda
           );
 
       return current_factor*ladder_factor;
     }
 
     template<class InIter, class partIter>
     double tree_kin_jets_uno(InIter begin_in, InIter end_in, partIter begin_part,
                              partIter end_part, double lambda
     ){
 
       const auto pa = to_HepLorentzVector(*begin_in);
       const auto pb = to_HepLorentzVector(*(end_in-1));
 
       const auto pg = to_HepLorentzVector(*begin_part);
       const auto p1 = to_HepLorentzVector(*(begin_part+1));
       const auto pn = to_HepLorentzVector(*(end_part-1));
 
       const double current_factor = ME_uno_current(
         (begin_in)->type, (end_in-1)->type, pg, pn, pb, p1, pa
       )/(4.*(N_C*N_C - 1.));
       const double ladder_factor = FKL_ladder_weight(
           (begin_part+2), (end_part-1),
           pa-p1-pg, pa, pb, p1, pn, lambda
           );
 
       return current_factor*ladder_factor;
     }
   } // namespace
 
   double MatrixElement::tree_kin_jets(Event const & ev) const {
     auto const & incoming = ev.incoming();
     const auto partons = tag_extremal_jet_partons(ev);
 
     if (ev.type()==event_type::FKL){
       const auto pa = to_HepLorentzVector(incoming[0]);
       const auto pb = to_HepLorentzVector(incoming[1]);
 
       const auto p1 = to_HepLorentzVector(partons.front());
       const auto pn = to_HepLorentzVector(partons.back());
       return ME_current(
         incoming[0].type, incoming[1].type,
         pn, pb, p1, pa
         )/(4.*(N_C*N_C - 1.))*FKL_ladder_weight(
           begin(partons) + 1, end(partons) - 1,
           pa - p1, pa, pb, p1, pn,
           param_.regulator_lambda
         );
     }
     if (ev.type()==event_type::unordered_backward){
       return tree_kin_jets_uno(incoming.begin(), incoming.end(),
                                partons.begin(), partons.end(),
                                param_.regulator_lambda);
     }
     if (ev.type()==event_type::unordered_forward){
       return tree_kin_jets_uno(incoming.rbegin(), incoming.rend(),
                                partons.rbegin(), partons.rend(),
                                param_.regulator_lambda);
     }
     if (ev.type()==event_type::extremal_qqbar_backward){
       return tree_kin_jets_qqbar(incoming.begin(), incoming.end(),
                                  partons.begin(), partons.end(),
                                  param_.regulator_lambda);
     }
     if (ev.type()==event_type::extremal_qqbar_forward){
       return tree_kin_jets_qqbar(incoming.rbegin(), incoming.rend(),
                                  partons.rbegin(), partons.rend(),
                                  param_.regulator_lambda);
     }
     if (ev.type()==event_type::central_qqbar){
       return tree_kin_jets_qqbar_mid(incoming[0].type, incoming[1].type,
                                      to_HepLorentzVector(incoming[0]),
                                      to_HepLorentzVector(incoming[1]),
                                      partons, param_.regulator_lambda);
    }
     throw std::logic_error("Cannot reweight non-resummable processes in Pure Jets");
   }
 
   namespace {
     double tree_kin_W_FKL(
         ParticleID aptype, ParticleID bptype,
         CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
         std::vector<Particle> const & partons,
         CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl,
         double lambda, ParticleProperties const & Wprop
     ){
       auto p1 = to_HepLorentzVector(partons[0]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       const auto begin_ladder = cbegin(partons) + 1;
       const auto end_ladder = cend(partons) - 1;
 
       bool wc = aptype==partons[0].type; //leg b emits w
       auto q0 = pa - p1;
       if(!wc)
         q0 -= pl + plbar;
 
       const double current_factor = ME_W_current(
           aptype, bptype, pn, pb,
           p1, pa, plbar, pl, wc, Wprop
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder, end_ladder,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*ladder_factor;
     }
 
 
     template<class InIter, class partIter>
     double tree_kin_W_uno(InIter begin_in, partIter begin_part,
                           partIter end_part,
                           const CLHEP::HepLorentzVector & plbar,
                           const CLHEP::HepLorentzVector & pl,
                           double lambda, ParticleProperties const & Wprop
     ){
       const auto pa = to_HepLorentzVector(*begin_in);
       const auto pb = to_HepLorentzVector(*(begin_in+1));
 
       const auto pg = to_HepLorentzVector(*begin_part);
       const auto p1 = to_HepLorentzVector(*(begin_part+1));
       const auto pn = to_HepLorentzVector(*(end_part-1));
 
       bool wc = (begin_in)->type==(begin_part+1)->type; //leg b emits w
       auto q0 = pa - p1 - pg;
       if(!wc)
         q0 -= pl + plbar;
 
       const double current_factor = ME_W_uno_current(
           (begin_in)->type, (begin_in+1)->type, pn, pb,
           p1, pa, pg, plbar, pl, wc, Wprop
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_part+2, end_part-1,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*ladder_factor;
     }
 
     template<class InIter, class partIter>
     double tree_kin_W_qqbar(InIter begin_in, partIter begin_part,
                             partIter end_part,
                             const CLHEP::HepLorentzVector & plbar,
                             const CLHEP::HepLorentzVector & pl,
                             double lambda, ParticleProperties const & Wprop
     ){
       const bool qbar_first=is_quark(*begin_part);
       const auto pa = to_HepLorentzVector(*begin_in);
       const auto pb = to_HepLorentzVector(*(begin_in+1));
       const auto pq = to_HepLorentzVector(*(begin_part+(qbar_first?0:1)));
       const auto pqbar = to_HepLorentzVector(*(begin_part+(qbar_first?1:0)));
       const auto p1 = to_HepLorentzVector(*(begin_part));
       const auto pn = to_HepLorentzVector(*(end_part-1));
 
       const bool wc = (begin_in+1)->type!=(end_part-1)->type; //leg b emits w
       auto q0 = pa - pq - pqbar;
       if(!wc)
         q0 -= pl + plbar;
 
       const double current_factor = ME_W_qqbar_current(
         (begin_in+1)->type, pa, pb,
         pq, pqbar, pn, plbar, pl, wc, Wprop
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_part+2, end_part-1,
           q0, pa, pb, p1, pn,
           lambda
       );
       return current_factor*ladder_factor;
     }
 
     double tree_kin_W_qqbar_mid(
         ParticleID aptype, ParticleID bptype,
         CLHEP::HepLorentzVector const & pa,
         CLHEP::HepLorentzVector const & pb,
         std::vector<Particle> const & partons,
         CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl,
         double lambda, ParticleProperties const & Wprop
     ){
       const auto backmidquark = std::find_if(
           begin(partons)+1, end(partons)-1,
           [](Particle const & s){ return s.type != pid::gluon; }
       );
 
       assert(backmidquark!=end(partons)-1);
 
       const bool qbar_first = is_antiquark(backmidquark->type);
 
       const auto pq    = to_HepLorentzVector(*(backmidquark+(qbar_first?1:0)));
       const auto pqbar = to_HepLorentzVector(*(backmidquark+(qbar_first?0:1)));
 
       const auto p1 = to_HepLorentzVector(partons.front());
       const auto pn = to_HepLorentzVector(partons.back());
 
       const auto begin_ladder_1 = cbegin(partons) + 1;
       const auto end_ladder_1   = (backmidquark);
       const auto begin_ladder_2 = (backmidquark+2);
       const auto end_ladder_2   = cend(partons) - 1;
 
       const int nabove = std::distance(begin_ladder_1, end_ladder_1);
       const int nbelow = std::distance(begin_ladder_2, end_ladder_2);
 
       const bool wqq = backmidquark->type != -(backmidquark+1)->type; // qqbar emit W
       const bool wc = !wqq && (aptype==partons.front().type); //leg b emits w
       assert(!wqq || !wc);
 
       auto q0 = pa - p1;
       // t-channel momentum after qqbar
       auto q3 = q0;
       if(wqq){ // emission from qqbar
         q3 -= pl + plbar;
       } else if(!wc) { // emission from leg a
         q0 -= pl + plbar;
         q3 -= pl + plbar;
       }
 
       for(auto parton_it = begin_ladder_1; parton_it != begin_ladder_2; ++parton_it){
         q3 -= to_HepLorentzVector(*parton_it);
       }
 
       std::vector<CLHEP::HepLorentzVector> partonsHLV;
       partonsHLV.reserve(partons.size());
       for(Particle const & parton: partons) {
         partonsHLV.push_back(to_HepLorentzVector(parton));
       }
 
       const double current_factor = ME_W_qqbar_mid_current(
           aptype, bptype, nabove, nbelow, pa, pb, partonsHLV,
           plbar, pl, qbar_first, wqq, wc, Wprop
       );
 
       const double ladder_factor = FKL_ladder_weight(
           begin_ladder_1, end_ladder_1,
           q0, pa, pb, p1, pn,
           lambda
       )*FKL_ladder_weight(
           begin_ladder_2, end_ladder_2,
           q3, pa, pb, p1, pn,
           lambda
         );
       return current_factor*ladder_factor;
     }
   } // namespace
 
   double MatrixElement::tree_kin_W(Event const & ev) const {
     using namespace event_type;
     auto const & incoming(ev.incoming());
 
   #ifndef NDEBUG
     // assert that there is exactly one decay corresponding to the W
     assert(ev.decays().size() == 1);
     auto const & w_boson{
       std::find_if(ev.outgoing().cbegin(), ev.outgoing().cend(),
         [] (Particle const & p) -> bool {
           return std::abs(p.type) == ParticleID::Wp;
         }) };
     assert(w_boson != ev.outgoing().cend());
     assert( static_cast<long int>(ev.decays().cbegin()->first)
         == std::distance(ev.outgoing().cbegin(), w_boson) );
   #endif
 
     // find decay products of W
     auto const & decay{ ev.decays().cbegin()->second };
     assert(decay.size() == 2);
     assert( ( is_anylepton(decay.at(0)) && is_anyneutrino(decay.at(1)) )
         || ( is_anylepton(decay.at(1)) && is_anyneutrino(decay.at(0)) ) );
 
     // get lepton & neutrino
     CLHEP::HepLorentzVector plbar;
     CLHEP::HepLorentzVector pl;
     if (decay.at(0).type < 0){
       plbar = to_HepLorentzVector(decay.at(0));
       pl = to_HepLorentzVector(decay.at(1));
     }
     else{
       pl = to_HepLorentzVector(decay.at(0));
       plbar = to_HepLorentzVector(decay.at(1));
     }
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     const auto partons = tag_extremal_jet_partons(ev);
 
     if(ev.type() == FKL){
       return tree_kin_W_FKL(incoming[0].type, incoming[1].type,
                             pa, pb, partons, plbar, pl,
                             param_.regulator_lambda,
                             param_.ew_parameters.Wprop());
     }
     if(ev.type() == unordered_backward){
       return tree_kin_W_uno(cbegin(incoming), cbegin(partons),
                             cend(partons), plbar, pl,
                             param_.regulator_lambda,
                             param_.ew_parameters.Wprop());
     }
     if(ev.type() == unordered_forward){
       return tree_kin_W_uno(crbegin(incoming), crbegin(partons),
                             crend(partons), plbar, pl,
                             param_.regulator_lambda,
                             param_.ew_parameters.Wprop());
     }
     if(ev.type() == extremal_qqbar_backward){
       return tree_kin_W_qqbar(cbegin(incoming), cbegin(partons),
                               cend(partons), plbar, pl,
                               param_.regulator_lambda,
                               param_.ew_parameters.Wprop());
     }
     if(ev.type() == extremal_qqbar_forward){
       return tree_kin_W_qqbar(crbegin(incoming), crbegin(partons),
                               crend(partons), plbar, pl,
                               param_.regulator_lambda,
                               param_.ew_parameters.Wprop());
     }
     assert(ev.type() == central_qqbar);
     return tree_kin_W_qqbar_mid(incoming[0].type, incoming[1].type,
                                 pa, pb, partons, plbar, pl,
                                 param_.regulator_lambda,
                                 param_.ew_parameters.Wprop());
   }
 
   namespace /* WW */ {
     std::vector <double> tree_kin_WW_FKL(
         ParticleID aptype, ParticleID bptype,
         CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
         std::vector<Particle> const & partons,
         CLHEP::HepLorentzVector const & pl1bar, CLHEP::HepLorentzVector const & pl1,
         CLHEP::HepLorentzVector const & pl2bar, CLHEP::HepLorentzVector const & pl2,
         double lambda, ParticleProperties const & Wprop
     ){
       assert(is_anyquark(aptype));
       assert(is_anyquark(bptype));
 
       auto p1 = to_HepLorentzVector(partons[0]);
       auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       const std::vector <double> current_factor = ME_WW_current(
           aptype, bptype, pn, pb, p1, pa,
           pl1bar, pl1, pl2bar, pl2,
           Wprop
       );
 
       auto const begin_ladder = cbegin(partons) + 1;
       auto const end_ladder = cend(partons) - 1;
 
       // pa -> W1 p1, pb -> W2 + pn
       const auto q0 = pa - p1 - (pl1 + pl1bar);
       // pa -> W2 p1, pb -> W1 + pn
       const auto q1 = pa - p1 - (pl2 + pl2bar);
 
       const std::vector <double> ladder_factor = FKL_ladder_weight_mix(
         begin_ladder, end_ladder,
         q0, q1, pa, pb, p1, pn,
         lambda
       );
 
       assert(current_factor.size() == 3);
       assert(current_factor.size() == ladder_factor.size());
       std::vector<double> result(current_factor.size());
       for(size_t i=0; i<current_factor.size(); ++i){
         result[i] = K_q*K_q/(4.*(N_C*N_C - 1.))
           *current_factor.at(i)
           *ladder_factor.at(i);
       }
 
       const double t1_top = q0.m2();
       const double t2_top = (pb-pn-pl2bar-pl2).m2();
 
       const double t1_bot = q1.m2();
       const double t2_bot = (pb-pn-pl1bar-pl1).m2();
 
       result[0] /= t1_top * t2_top;
       result[1] /= t1_bot * t2_bot;
       result[2] /= sqrt(t1_top * t2_top * t1_bot * t2_bot);
       return result;
     }
   } // namespace
 
   std::vector <double> MatrixElement::tree_kin_WW(Event const & ev) const {
     using namespace event_type;
     auto const & incoming(ev.incoming());
 
     auto const pa = to_HepLorentzVector(incoming[0]);
     auto const pb = to_HepLorentzVector(incoming[1]);
 
     auto const partons = tag_extremal_jet_partons(ev);
 
     // W1 & W2
     assert(ev.decays().size() == 2);
 
     std::vector<CLHEP::HepLorentzVector> plbar;
     std::vector<CLHEP::HepLorentzVector> pl;
 
     for(auto const & decay_pair : ev.decays()) {
       auto const decay = decay_pair.second;
       // TODO: how to label W1, W2
       if(decay.at(0).type < 0) {
         plbar.emplace_back(to_HepLorentzVector(decay.at(0)));
         pl   .emplace_back(to_HepLorentzVector(decay.at(1)));
       }
       else {
         pl   .emplace_back(to_HepLorentzVector(decay.at(0)));
         plbar.emplace_back(to_HepLorentzVector(decay.at(1)));
       }
     }
 
     if(ev.type() == FKL) {
 
       return tree_kin_WW_FKL(
           incoming[0].type, incoming[1].type,
           pa, pb, partons,
           plbar[0], pl[0], plbar[1], pl[1],
           param_.regulator_lambda,
           param_.ew_parameters.Wprop()
       );
 
     }
     throw std::logic_error("Can only reweight FKL events in WW");
   }
 
   namespace{
     std::vector <double> tree_kin_Z_FKL(
         const ParticleID aptype, const ParticleID bptype,
         CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
         std::vector<Particle> const & partons,
         const ParticleID ltype,
         CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl,
         const double lambda, ParticleProperties const & Zprop,
         const double stw2, const double ctw
     ){
       const auto p1 = to_HepLorentzVector(partons[0]);
       const auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       const auto begin_ladder = cbegin(partons) + 1;
       const auto end_ladder = cend(partons) - 1;
 
       const std::vector <double> current_factor = ME_Z_current(
           aptype, bptype, pn, pb, p1, pa,
           ltype, plbar, pl, Zprop, stw2, ctw
       );
 
       std::vector <double> ladder_factor;
       if(is_gluon(bptype)){
         // This is a qg event
         const auto q0 = pa-p1-plbar-pl;
         ladder_factor.push_back(FKL_ladder_weight(begin_ladder, end_ladder,
                                                   q0, pa, pb, p1, pn, lambda));
       } else if(is_gluon(aptype)){
         // This is a gq event
         const auto q0 = pa-p1;
         ladder_factor.push_back(FKL_ladder_weight(begin_ladder, end_ladder,
                                                   q0, pa, pb, p1, pn, lambda));
       } else {
         // This is a qq event
         const auto q0 = pa-p1-plbar-pl;
         const auto q1 = pa-p1;
         ladder_factor=FKL_ladder_weight_mix(begin_ladder, end_ladder,
                                             q0, q1, pa, pb, p1, pn, lambda);
       }
 
       std::vector <double> result;
       for(size_t i=0; i<current_factor.size(); ++i){
         result.push_back(current_factor.at(i)*ladder_factor.at(i));
       }
       return result;
     }
 
     template<class InIter, class partIter>
     std::vector <double> tree_kin_Z_uno(
       InIter begin_in, partIter begin_part, partIter end_part,
       const ParticleID ltype,
       const CLHEP::HepLorentzVector & plbar,
       const CLHEP::HepLorentzVector & pl,
       const double lambda, ParticleProperties const & Zprop,
       const double stw2, const double ctw
     ){
       const auto pa = to_HepLorentzVector(*begin_in);
       const auto pb = to_HepLorentzVector(*(begin_in+1));
 
       const auto pg = to_HepLorentzVector(*begin_part);
       const auto p1 = to_HepLorentzVector(*(begin_part+1));
       const auto pn = to_HepLorentzVector(*(end_part-1));
 
       const ParticleID aptype = (begin_in)->type;
       const ParticleID bptype = (begin_in+1)->type;
 
       // we only evaluate unordered backward -> first incoming particle must be a quark
       assert(is_anyquark(aptype));
 
       const std::vector <double> current_factor = ME_Z_uno_current(
           aptype, bptype, pn, pb, p1, pa, pg,
           ltype, plbar, pl, Zprop, stw2, ctw
       );
 
       std::vector <double> ladder_factor;
       const auto q0 = pa-pg-p1-plbar-pl;
       if(is_gluon(bptype)){
         // This is a qg event
         ladder_factor.push_back(FKL_ladder_weight(begin_part+2, end_part-1,
                                                   q0, pa, pb, p1, pn, lambda));
       }else{
         // This is a qq event
         const auto q1 = pa-pg-p1;
         ladder_factor=FKL_ladder_weight_mix(begin_part+2, end_part-1,
                                             q0, q1, pa, pb, p1, pn, lambda);
       }
 
       std::vector <double> result;
       for(size_t i=0; i<current_factor.size(); ++i){
         result.push_back(current_factor.at(i)*ladder_factor.at(i));
       }
       return result;
     }
 
     template<class InIter, class partIter>
     std::vector <double> tree_kin_Z_qqbar(
       InIter begin_in, partIter begin_part, partIter end_part,
       const ParticleID ltype,
       const CLHEP::HepLorentzVector & plbar,
       const CLHEP::HepLorentzVector & pl,
       const double lambda, ParticleProperties const & Zprop,
       const double stw2, const double ctw
     ){
       const bool qbar_first = is_antiquark(*begin_part);
 
       const auto pa = to_HepLorentzVector(*begin_in);
       const auto pb = to_HepLorentzVector(*(begin_in+1));
 
       const auto pq    = to_HepLorentzVector(*(begin_part+(qbar_first?1:0)));
       const auto pqbar = to_HepLorentzVector(*(begin_part+(qbar_first?0:1)));
 
       const auto p1 = to_HepLorentzVector(*(begin_part));
       const auto pn = to_HepLorentzVector(*(end_part-1));
 
       const ParticleID qptype = (begin_part+(qbar_first?1:0))->type;
       const ParticleID bptype = (begin_in+1)->type;
 
       const std::vector <double> current_factor = ME_Z_exqqbar_current(
           qptype, bptype, pa, pb, pq, pqbar, pn,
           ltype, plbar, pl, Zprop, stw2, ctw
       );
 
       std::vector <double> ladder_factor;
       const auto q0 = pa-pq-pqbar-plbar-pl;
       if(is_gluon(bptype)){
         // This is a gg event
         ladder_factor.push_back(FKL_ladder_weight(begin_part+2, end_part-1,
                                                   q0, pa, pb, p1, pn, lambda));
       }else{
         // This is a gq event
         const auto q1 = pa-pq-pqbar;
         ladder_factor=FKL_ladder_weight_mix(begin_part+2, end_part-1,
                                             q0, q1, pa, pb, p1, pn, lambda);
       }
 
       std::vector <double> result;
       for(size_t i=0; i<current_factor.size(); ++i){
         result.push_back(current_factor.at(i)*ladder_factor.at(i));
       }
       return result;
     }
 
     template<class InIter, class partIter>
     std::vector<double> tree_kin_Z_qqbar_mid(
       InIter begin_in, partIter begin_part, partIter end_part,
       const ParticleID ltype,
       const CLHEP::HepLorentzVector & plbar,
       const CLHEP::HepLorentzVector & pl,
       const double lambda, ParticleProperties const & Zprop,
       const double stw2, const double ctw
     ){
       const ParticleID aptype = (begin_in)->type;
       const ParticleID bptype = (begin_in+1)->type;
 
       const auto pa = to_HepLorentzVector(*begin_in);
       const auto pb = to_HepLorentzVector(*(begin_in+1));
 
       const auto backmidquark = std::find_if(
           begin_part+1, end_part-1,
           [](Particle const & s){ return s.type != pid::gluon; }
       );
 
       assert(backmidquark!=end_part-1);
 
       const bool qbar_first = is_antiquark(backmidquark->type);
 
       const auto pq    = to_HepLorentzVector(*(backmidquark+(qbar_first?1:0)));
       const auto pqbar = to_HepLorentzVector(*(backmidquark+(qbar_first?0:1)));
 
       const ParticleID qptype = (backmidquark+(qbar_first?1:0))->type;
 
       const auto p1 = to_HepLorentzVector(*(begin_part));
       const auto pn = to_HepLorentzVector(*(end_part-1));
 
       const auto begin_ladder_1 = begin_part + 1;
       const auto end_ladder_1   = (backmidquark);
       const auto begin_ladder_2 = (backmidquark+2);
       const auto end_ladder_2   = end_part - 1;
 
       const int nabove = std::distance(begin_ladder_1, end_ladder_1);
 
       std::vector<CLHEP::HepLorentzVector> partonsHLV;
       partonsHLV.reserve(std::distance(begin_part, end_part));
       for(auto parton_it = begin_part; parton_it != end_part; ++parton_it){
         partonsHLV.push_back(to_HepLorentzVector(*parton_it));
       }
 
       const std::vector<double> current_factor = ME_Z_qqbar_mid_current(
           aptype, bptype, qptype, qbar_first, nabove, pa, pb,
           partonsHLV, ltype, plbar, pl, Zprop, stw2, ctw
       );
 
       std::vector<double> ladder_factor;
       if(is_gluon(aptype)) {
         if(is_gluon(bptype)) {
           // gg event -> Z emitted from central qqbar
 
           // first t-channel momentum
           const auto q0 = pa - p1;
 
           // t-channel momentum after qqbar
           auto q3 = q0 - pl - plbar;
           for(auto parton_it = begin_ladder_1; parton_it != begin_ladder_2; ++parton_it){
             q3 -= to_HepLorentzVector(*parton_it);
           }
 
           ladder_factor.push_back(
               FKL_ladder_weight(begin_ladder_1, end_ladder_1, q0, pa, pb, p1, pn, lambda)
               * FKL_ladder_weight(begin_ladder_2, end_ladder_2, q3, pa, pb, p1, pn, lambda)
           );
         } else {
           // gq event -> Z emitted from central qqbar or bottom leg
 
           auto q_bot = pa - p1;
 
           // q0_mid = q0_bot -> no need to evaluate FKL_ladder_weight_mix for the first ladder
           const double ladder_1 = FKL_ladder_weight(begin_ladder_1, end_ladder_1,
                                                     q_bot, pa, pb, p1, pn, lambda);
 
           for(auto parton_it = begin_ladder_1; parton_it != begin_ladder_2; ++parton_it) {
             q_bot -= to_HepLorentzVector(*parton_it);
           }
           auto q_mid = q_bot - pl - plbar;
 
           const auto ladder_2 = FKL_ladder_weight_mix(begin_ladder_2, end_ladder_2,
                                                       q_mid, q_bot, pa, pb, p1, pn, lambda);
 
           for(size_t i=0; i<ladder_2.size(); ++i){
             ladder_factor.push_back(ladder_1 * ladder_2.at(i));
           }
         }
       } else {
         assert(is_anyquark(bptype));
         // qq event -> 3 contributions
 
         auto q_t = pa - p1 - pl - plbar;
         auto q_b = pa - p1;
 
         // q0_bot = q0_mid -> only need to evaluate FKL_ladder_weight_mix[top][mid]
         const auto ladder_1_top_mid = FKL_ladder_weight_mix(begin_ladder_1, end_ladder_1,
                                                             q_t, q_b, pa, pb, p1, pn, lambda);
 
         enum emission_site {top, mid, bot};
 
         double ladder[3][3];
         ladder[top][top] = ladder_1_top_mid.at(0);
         ladder[mid][mid] = ladder_1_top_mid.at(1);
         ladder[bot][bot] = ladder[mid][mid];
 
         ladder[top][mid] = ladder_1_top_mid.at(2);
         ladder[top][bot] = ladder[top][mid];
         ladder[mid][bot] = ladder[mid][mid];
 
         for(auto parton_it = begin_ladder_1; parton_it != begin_ladder_2; ++parton_it) {
           q_b -= to_HepLorentzVector(*parton_it);
         }
         q_t = q_b - pl - plbar;
 
         // q3_mid = q3_top -> only need to evaluate FKL_ladder_weight_mix[top][bot]
         const auto ladder_2_top_bot = FKL_ladder_weight_mix(begin_ladder_2, end_ladder_2,
                                                             q_t, q_b, pa, pb, p1, pn, lambda);
 
         ladder[top][top] *= ladder_2_top_bot.at(0);
         ladder[mid][mid] *= ladder_2_top_bot.at(0); // same as [top][top]
         ladder[bot][bot] *= ladder_2_top_bot.at(1);
 
         ladder[top][mid] *= ladder_2_top_bot.at(0); // same as [top][top]
         ladder[top][bot] *= ladder_2_top_bot.at(2);
         ladder[mid][bot] *= ladder_2_top_bot.at(2); // same as [top][bot]
 
         ladder_factor = {ladder[top][top], ladder[mid][mid], ladder[bot][bot],
                          ladder[top][mid], ladder[top][bot], ladder[mid][bot]};
       }
       assert(current_factor.size() == ladder_factor.size());
 
       std::vector<double> res;
       for(size_t i=0; i<current_factor.size(); ++i) {
         res.push_back(current_factor.at(i)*ladder_factor.at(i));
       }
       return res;
     }
   } // namespace
 
   std::vector<double> MatrixElement::tree_kin_Z(Event const & ev) const {
     using namespace event_type;
     auto const & incoming(ev.incoming());
 
     // find decay products of Z
     auto const & decay{ ev.decays().cbegin()->second };
     assert(decay.size() == 2);
     assert(is_anylepton(decay.at(0)) && decay.at(0).type==-decay.at(1).type);
 
     // get leptons
     CLHEP::HepLorentzVector plbar;
     CLHEP::HepLorentzVector pl;
     ParticleID ltype;
     if (decay.at(0).type < 0){
       plbar = to_HepLorentzVector(decay.at(0));
       pl = to_HepLorentzVector(decay.at(1));
       ltype = decay.at(1).type;
     }
     else{
       pl = to_HepLorentzVector(decay.at(0));
       ltype = decay.at(0).type;
       plbar = to_HepLorentzVector(decay.at(1));
     }
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     const auto partons = tag_extremal_jet_partons(ev);
 
     const double stw2 = param_.ew_parameters.sin2_tw();
     const double ctw  = param_.ew_parameters.cos_tw();
 
     if(ev.type() == FKL){
       return tree_kin_Z_FKL(incoming[0].type, incoming[1].type,
                             pa, pb, partons, ltype, plbar, pl,
                             param_.regulator_lambda,
                             param_.ew_parameters.Zprop(),
                             stw2, ctw);
     }
     if(ev.type() == unordered_backward){
       return tree_kin_Z_uno(cbegin(incoming), cbegin(partons),
                             cend(partons), ltype, plbar, pl,
                             param_.regulator_lambda,
                             param_.ew_parameters.Zprop(),
                             stw2, ctw);
     }
     if(ev.type() == unordered_forward){
       auto kin_rev = tree_kin_Z_uno(crbegin(incoming), crbegin(partons),
                                     crend(partons), ltype, plbar, pl,
                                     param_.regulator_lambda,
                                     param_.ew_parameters.Zprop(),
                                     stw2, ctw);
       if(!is_gluon(incoming[0].type)){
         // qq unordered forward: reorder contributions such that first/second
         // value corresponds to Z emission from top/bottom leg respectively
         std::swap(kin_rev[0], kin_rev[1]);
       }
       return kin_rev;
     }
     if(ev.type() == extremal_qqbar_backward){
       return tree_kin_Z_qqbar(cbegin(incoming), cbegin(partons),
                               cend(partons), ltype, plbar, pl,
                               param_.regulator_lambda,
                               param_.ew_parameters.Zprop(),
                               stw2, ctw);
     }
     if(ev.type() == extremal_qqbar_forward){
       auto kin_rev = tree_kin_Z_qqbar(crbegin(incoming), crbegin(partons),
                                       crend(partons), ltype, plbar, pl,
                                       param_.regulator_lambda,
                                       param_.ew_parameters.Zprop(),
                                       stw2, ctw);
       if(!is_gluon(incoming[0].type)){
         // qqbar forward with incoming qg: reorder contributions such that first/second
         // value corresponds to Z emission from top/bottom leg respectively
         std::swap(kin_rev[0], kin_rev[1]);
       }
       return kin_rev;
     }
     assert(ev.type() == central_qqbar);
     if(!is_gluon(incoming[0].type) && is_gluon(incoming[1].type)){
       // qg initiated central qqbar: reverse event to evaluate as gq
       auto kin_rev = tree_kin_Z_qqbar_mid(crbegin(incoming), crbegin(partons),
                                           crend(partons), ltype, plbar, pl,
                                           param_.regulator_lambda,
                                           param_.ew_parameters.Zprop(),
                                           stw2, ctw);
       std::swap(kin_rev[0], kin_rev[1]);
       return kin_rev;
     }
     return tree_kin_Z_qqbar_mid(cbegin(incoming), cbegin(partons),
                                 cend(partons), ltype, plbar, pl,
                                 param_.regulator_lambda,
                                 param_.ew_parameters.Zprop(),
                                 stw2, ctw);
   }
 
   namespace {
     std::vector <double> tree_kin_photon_FKL(
         const ParticleID aptype, const ParticleID bptype,
         CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
         std::vector<Particle> const & partons,
         CLHEP::HepLorentzVector const & p_photon,
         const double lambda
     ){
       const auto p1 = to_HepLorentzVector(partons[0]);
       const auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
 
       const auto begin_ladder = cbegin(partons) + 1;
       const auto end_ladder = cend(partons) - 1;
 
       const std::vector <double> current_factor = ME_photon_current(
           aptype, bptype, pn, pb, p1, pa, p_photon
       );
 
       std::vector <double> ladder_factor;
       if(is_gluon(bptype)){
         // This is a qg event
         const auto q0 = pa-p1-p_photon;
         ladder_factor.push_back(FKL_ladder_weight(begin_ladder, end_ladder,
                                                   q0, pa, pb, p1, pn, lambda));
       } else if(is_gluon(aptype)){
         // This is a gq event
         const auto q0 = pa-p1;
         ladder_factor.push_back(FKL_ladder_weight(begin_ladder, end_ladder,
                                                   q0, pa, pb, p1, pn, lambda));
       } else {
         // This is a qq event
         const auto q0 = pa-p1-p_photon;
         const auto q1 = pa-p1;
         ladder_factor=FKL_ladder_weight_mix(begin_ladder, end_ladder,
                                             q0, q1, pa, pb, p1, pn, lambda);
       }
 
       std::vector <double> result;
       for(size_t i=0; i<current_factor.size(); ++i){
         result.push_back(current_factor.at(i)*ladder_factor.at(i));
       }
       return result;
     }
 
    template<class InIter, class partIter>
     std::vector <double> tree_kin_photon_uno(
       InIter begin_in, partIter begin_part, partIter end_part,
       const CLHEP::HepLorentzVector & pp,
       const double lambda
     ){
       const auto pa = to_HepLorentzVector(*begin_in);
       const auto pb = to_HepLorentzVector(*(begin_in+1));
       
       const auto pg = to_HepLorentzVector(*begin_part);
       const auto p1 = to_HepLorentzVector(*(begin_part+1));
       const auto pn = to_HepLorentzVector(*(end_part-1));
 
       const ParticleID aptype = (begin_in)->type;
       const ParticleID bptype = (begin_in+1)->type;
 
       // we only evaluate unordered backward -> second incoming particle must be a quark
       assert(is_anyquark(aptype));
 
       const std::vector <double> current_factor = ME_photon_uno_current(
 	   aptype, bptype, pa, pb, p1, pn, pp, pg
       );
 
       std::vector <double> ladder_factor;
       const auto q0 = pa-pg-p1-pp;
       if(is_gluon(bptype)){
         // This is a qg event
         ladder_factor.push_back(FKL_ladder_weight(begin_part+2, end_part-1,
                                                   q0, pa, pb, p1, pn, lambda));
       }else{
         // This is a qq event
         const auto q1 = pa-pg-p1;
         ladder_factor=FKL_ladder_weight_mix(begin_part+2, end_part-1,
                                             q0, q1, pa, pb, p1, pn, lambda);
       }
 
       std::vector <double> result;
       for(size_t i=0; i<current_factor.size(); ++i){
         result.push_back(current_factor.at(i)*ladder_factor.at(i));
       }
       return result;
     }
   }
 
   std::vector<double> MatrixElement::tree_kin_photon(Event const & ev) const {
     using namespace event_type;
     auto const & incoming(ev.incoming());
     auto const & outgoing(ev.outgoing());
 
     assert(ev.decays().empty());
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     const auto partons = tag_extremal_jet_partons(ev);
 
     const auto the_photon = std::find_if(
         begin(outgoing), end(outgoing),
         [](Particle const & s){ return s.type == pid::photon; }
     );
     assert(the_photon != end(outgoing));
     const auto p_photon = to_HepLorentzVector(*the_photon);
 
     switch(ev.type()) {
-    case FKL:
+    case FKL:{
       return tree_kin_photon_FKL(
         incoming[0].type, incoming[1].type,
         pa, pb, partons, p_photon,
         param_.regulator_lambda
       );
-    case unob:
-      return tree_kin_photon_uno(
+    }
+    case unob:{
+      return  tree_kin_photon_uno(
 	cbegin(incoming), cbegin(partons), cend(partons),
         p_photon, param_.regulator_lambda
       );
-    case unof:
-      return tree_kin_photon_uno(
+    }
+    case unof:{
+      std::vector <double> kin_rev = tree_kin_photon_uno(
 	crbegin(incoming), crbegin(partons), crend(partons),
         p_photon, param_.regulator_lambda
       );
+       if(!is_gluon(incoming[0].type)){
+        // qq unordered forward: reorder contributions such that first/second
+        // value corresponds to Z emission from top/bottom leg respectively
+        std::swap(kin_rev[0], kin_rev[1]);
+      }
+      return kin_rev;
+    }
     default:
       // TODO: rest
       throw HEJ::not_implemented{"photon + jets matrix elements beyond LL"};
     }
   }
 
   double MatrixElement::tree_kin_Higgs(Event const & ev) const {
     if(ev.outgoing().front().type == pid::Higgs){
       return tree_kin_Higgs_first(ev);
     }
     if(ev.outgoing().back().type == pid::Higgs){
       return tree_kin_Higgs_last(ev);
     }
     return tree_kin_Higgs_between(ev);
   }
 
   // kinetic matrix element square for backward Higgs emission
   // cf. eq:ME_h_jets_peripheral in developer manual,
   // but without factors \alpha_s and the FKL ladder
   double MatrixElement::MH2_backwardH(
     const ParticleID type_forward,
     CLHEP::HepLorentzVector const & pa,
     CLHEP::HepLorentzVector const & pb,
     CLHEP::HepLorentzVector const & pH,
     CLHEP::HepLorentzVector const & pn
   ) const {
     using namespace currents;
     const double vev = param_.ew_parameters.vev();
     return K(type_forward, pn, pb)*ME_H_gq(
       pH, pa, pn, pb,
       param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom,
       param_.Higgs_coupling.mb, vev
     )/(4.*(N_C*N_C - 1)*(pa-pH).m2()*(pb-pn).m2());
   }
 
   // kinetic matrix element square for backward unordered emission
   // and forward g -> Higgs
   double MatrixElement::MH2_unob_forwardH(
     CLHEP::HepLorentzVector const & pa,
     CLHEP::HepLorentzVector const & pb,
     CLHEP::HepLorentzVector const & pg,
     CLHEP::HepLorentzVector const & p1,
     CLHEP::HepLorentzVector const & pH
   ) const {
     using namespace currents;
     const double vev = param_.ew_parameters.vev();
 
     constexpr double K_f1 = K_q;
 
     constexpr double nhel = 4.;
 
     return K_f1*ME_juno_jgH(
       pg, p1, pa, pH, pb,
       param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom,
       param_.Higgs_coupling.mb, vev
     )/(nhel*(N_C*N_C - 1)*(pa - p1 - pg).m2()*(pb - pH).m2());
   }
 
   double MatrixElement::tree_kin_Higgs_first(Event const & ev) const {
     auto const & incoming = ev.incoming();
     auto const & outgoing = ev.outgoing();
     assert(outgoing.front().type == pid::Higgs);
 
     if(is_anyquark(incoming.front())) {
       assert(incoming.front().type == outgoing[1].type);
       return tree_kin_Higgs_between(ev);
     }
 
     const auto partons = tag_extremal_jet_partons(ev);
 
     const auto pa = to_HepLorentzVector(incoming.front());
     const auto pb = to_HepLorentzVector(incoming.back());
 
     const auto pH = to_HepLorentzVector(outgoing.front());
 
     const auto end_ladder = end(partons) - ((ev.type() == event_type::unof)?2:1);
     const auto pn = to_HepLorentzVector(*end_ladder);
 
     const double ladder = FKL_ladder_weight(
         begin(partons), end_ladder,
         pa - pH, pa, pb, pa, pn,
         param_.regulator_lambda
     );
 
     if(ev.type() == event_type::unof) {
       const auto pg = to_HepLorentzVector(outgoing.back());
       return MH2_unob_forwardH(
         pb, pa, pg, pn, pH
       )*ladder;
     }
 
     return MH2_backwardH(
       incoming.back().type,
       pa, pb, pH, pn
     )*ladder;
   }
 
   double MatrixElement::tree_kin_Higgs_last(Event const & ev) const {
     auto const & incoming = ev.incoming();
     auto const & outgoing = ev.outgoing();
     assert(outgoing.back().type == pid::Higgs);
 
     if(is_anyquark(incoming.back())) {
       assert(incoming.back().type == outgoing[outgoing.size()-2].type);
       return tree_kin_Higgs_between(ev);
     }
 
     const auto partons = tag_extremal_jet_partons(ev);
 
     const auto pa = to_HepLorentzVector(incoming.front());
     const auto pb = to_HepLorentzVector(incoming.back());
 
     const auto pH = to_HepLorentzVector(outgoing.back());
 
     auto begin_ladder = begin(partons) + 1;
     auto q0 = pa - to_HepLorentzVector(partons.front());
     if(ev.type() == event_type::unob) {
       q0 -= to_HepLorentzVector(*begin_ladder);
       ++begin_ladder;
     }
     const auto p1 = to_HepLorentzVector(*(begin_ladder - 1));
 
     const double ladder = FKL_ladder_weight(
         begin_ladder, end(partons),
         q0, pa, pb, p1, pb,
         param_.regulator_lambda
     );
 
     if(ev.type() == event_type::unob) {
       const auto pg = to_HepLorentzVector(outgoing.front());
       return MH2_unob_forwardH(
         pa, pb, pg, p1, pH
       )*ladder;
     }
 
     return MH2_backwardH(
       incoming.front().type,
       pb, pa, pH, p1
     )*ladder;
   }
 
   namespace {
     template<class InIter, class partIter>
     double tree_kin_Higgs_uno(InIter begin_in, InIter end_in, partIter begin_part,
                               partIter end_part,
                               CLHEP::HepLorentzVector const & qH,
                               CLHEP::HepLorentzVector const & qHp1,
                               double mt, bool inc_bot, double mb, double vev
     ){
 
       const auto pa = to_HepLorentzVector(*begin_in);
       const auto pb = to_HepLorentzVector(*(end_in-1));
 
       const auto pg = to_HepLorentzVector(*begin_part);
       const auto p1 = to_HepLorentzVector(*(begin_part+1));
       const auto pn = to_HepLorentzVector(*(end_part-1));
 
       return ME_Higgs_current_uno(
         (begin_in)->type, (end_in-1)->type, pg, pn, pb, p1, pa,
         qH, qHp1, mt, inc_bot, mb, vev
         );
     }
   } // namespace
 
 
   double MatrixElement::tree_kin_Higgs_between(Event const & ev) const {
     using namespace event_type;
     auto const & incoming = ev.incoming();
     auto const & outgoing = ev.outgoing();
 
     const auto the_Higgs = std::find_if(
         begin(outgoing), end(outgoing),
         [](Particle const & s){ return s.type == pid::Higgs; }
     );
     assert(the_Higgs != end(outgoing));
     const auto pH = to_HepLorentzVector(*the_Higgs);
     const auto partons = tag_extremal_jet_partons(ev);
 
     const auto pa = to_HepLorentzVector(incoming[0]);
     const auto pb = to_HepLorentzVector(incoming[1]);
 
     auto p1 = to_HepLorentzVector(
         partons[(ev.type() == unob)?1:0]
     );
     auto pn = to_HepLorentzVector(
         partons[partons.size() - ((ev.type() == unof)?2:1)]
     );
 
     auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing));
     assert(
         (first_after_Higgs == end(partons) && (
             (ev.type() == unob)
             || partons.back().type != pid::gluon
         ))
         || first_after_Higgs->rapidity() >= the_Higgs->rapidity()
     );
     assert(
         (first_after_Higgs == begin(partons) && (
             (ev.type() == unof)
             || partons.front().type != pid::gluon
         ))
         || (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity()
     );
     // always treat the Higgs as if it were in between the extremal FKL partons
     if(first_after_Higgs == begin(partons)) ++first_after_Higgs;
     else if(first_after_Higgs == end(partons)) --first_after_Higgs;
 
     // t-channel momentum before Higgs
     auto qH = pa;
     for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){
       qH -= to_HepLorentzVector(*parton_it);
     }
 
     auto q0 = pa - p1;
     auto begin_ladder = begin(partons) + 1;
     auto end_ladder = end(partons) - 1;
 
     double current_factor = NAN;
     if(ev.type() == FKL){
       current_factor = ME_Higgs_current(
           incoming[0].type, incoming[1].type,
           pn, pb, p1, pa, qH, qH - pH,
           param_.Higgs_coupling.mt,
           param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb,
           param_.ew_parameters.vev()
       );
     }
     else if(ev.type() == unob){
       current_factor = tree_kin_Higgs_uno(
         begin(incoming), end(incoming), begin(partons),
         end(partons), qH, qH-pH, param_.Higgs_coupling.mt,
         param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb,
         param_.ew_parameters.vev()
         );
       const auto p_unob = to_HepLorentzVector(partons.front());
       q0 -= p_unob;
       p1 += p_unob;
       ++begin_ladder;
     }
     else if(ev.type() == unof){
       current_factor = tree_kin_Higgs_uno(
         rbegin(incoming), rend(incoming), rbegin(partons),
         rend(partons), qH-pH, qH, param_.Higgs_coupling.mt,
         param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb,
         param_.ew_parameters.vev()
         );
       pn += to_HepLorentzVector(partons.back());
       --end_ladder;
     }
     else{
       throw std::logic_error("Can only reweight FKL or uno processes in H+Jets");
     }
 
     const double ladder_factor = FKL_ladder_weight(
         begin_ladder, first_after_Higgs,
         q0, pa, pb, p1, pn,
         param_.regulator_lambda
     )*FKL_ladder_weight(
         first_after_Higgs, end_ladder,
         qH - pH, pa, pb, p1, pn,
         param_.regulator_lambda
     );
     return current_factor/(4.*(N_C*N_C-1.))*ladder_factor;
   }
 
   namespace {
     double get_AWZH_coupling(
       Event const & ev,
       double alpha_s,
       EWConstants const & ew
     ) {
       std::vector<Particle> bosons = filter_AWZH_bosons(ev.outgoing());
 
       if(bosons.empty()) {
         return 1.;
       }
 
       if(bosons.size() == 1) {
         switch(bosons[0].type){
         case pid::Higgs:
           return alpha_s*alpha_s;
         case pid::Wp:
         case pid::Wm:
         case pid::Z:
         case pid::Z_photon_mix: {
           const double alpha_w = ew.alpha_w();
           return alpha_w*alpha_w;
         }
         case pid::photon:
           // only one power of \alpha
           // in contrast to W/Z we don't have any coupling to decay products
           return 4.*M_PI*ew.alpha_em();
         default:
           throw not_implemented("Emission of boson of unsupported type");
         }
       }
 
       if(bosons.size() == 2) {
         const double alpha_w = ew.alpha_w();
         if(bosons[0].type == pid::Wp && bosons[1].type == pid::Wp) {
           return alpha_w*alpha_w*alpha_w*alpha_w;
         }
         else if(bosons[0].type == pid::Wm && bosons[1].type == pid::Wm) {
           return alpha_w*alpha_w*alpha_w*alpha_w;
         }
 
         throw not_implemented("Emission of bosons of unsupported type");
       }
 
 
       throw not_implemented("Emission of >2 bosons is unsupported");
     }
   } // namespace
 
   double MatrixElement::tree_param(Event const & ev, double mur) const {
     assert(is_resummable(ev.type()));
 
     const auto begin_partons = ev.begin_partons();
     const auto end_partons = ev.end_partons();
     const auto num_partons = std::distance(begin_partons, end_partons);
     const double alpha_s = alpha_s_(mur);
     const double gs2 = 4.*M_PI*alpha_s;
     double res = std::pow(gs2, num_partons);
     if(param_.log_correction){
       // use alpha_s(q_perp), evolved to mur
       assert(num_partons >= 2);
       const auto first_emission = std::next(begin_partons);
       const auto last_emission = std::prev(end_partons);
       for(auto parton = first_emission; parton != last_emission; ++parton){
         res *= 1. + alpha_s/(2.*M_PI)*BETA0*std::log(mur/parton->perp());
       }
     }
     return get_AWZH_coupling(ev, alpha_s, param_.ew_parameters)*res;
   }
 
 } // namespace HEJ
diff --git a/src/Photonjets.cc b/src/Photonjets.cc
index 0dabbb9..15dfd10 100644
--- a/src/Photonjets.cc
+++ b/src/Photonjets.cc
@@ -1,308 +1,339 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2024
  *  \copyright GPLv2 or later
  */
 
 #include <vector>
 
 #include "HEJ/Constants.hh"
 #include "HEJ/LorentzVector.hh"
 #include "HEJ/Photonjets.hh"
 
 // generated headers
 #include "HEJ/currents/jphoton_j.hh"
 #include "HEJ/currents/jphoton_juno.hh"
 #include "HEJ/currents/jphotonuno_j.hh"
 
 namespace HEJ::currents {
   namespace {
     using COM = std::complex<double>;
     
     // X and Y as used in contractions with unordered currents
     struct XY {
       COM X;
       COM Y;
     };
 
     //! Photon+Jets FKL Contribution
     /**
      * @brief Z+Jets FKL Contribution
      * @param pa             Incoming Particle 1 (photon emission)
      * @param pb             Incoming Particle 2
      * @param p1             Outgoing Particle 1 (photon emission)
      * @param p2             Outgoing Particle 2
      * @param pphoton        Outgoing photon
      * @returns              j_\gamma^\mu j_\mu for all helicities h1, h\gamma, h2
      */
     MultiArray<COM, 2, 2, 2> jgamma_j(
       const HLV & pa, const HLV & pb,
       const HLV & p1, const HLV & p2,
       const HLV & pphoton
     ){
       using helicity::plus;
       using helicity::minus;
 
       MultiArray<COM, 2, 2, 2> res;
 
 // NOLINTNEXTLINE
 #define ASSIGN_HEL(RES, J, H1, HL, H2) \
       RES[H1][HL][H2] = J<H1, HL, H2>(pa, p1, pb, p2, pphoton)
 
       ASSIGN_HEL(res, jphoton_j, plus, minus, minus);
       ASSIGN_HEL(res, jphoton_j, plus, minus, plus);
       ASSIGN_HEL(res, jphoton_j, plus, plus, minus);
       ASSIGN_HEL(res, jphoton_j, plus, plus, plus);
 
 #undef ASSIGN_HEL
 
       for(auto hphoton: {minus, plus}) {
         for(auto h2: {minus, plus}) {
           res[minus][hphoton][h2] = std::conj(res[plus][flip(hphoton)][flip(h2)]);
         }
       }
 
       return res;
     }
   } // Anonymous Namespace
 
   std::vector <double> ME_photon_qQ(
     const HLV & pa, const HLV & pb,
     const HLV & p1, const HLV & p2,
     const HLV & pphoton,
     const ParticleID aptype, const ParticleID bptype
   ) {
     using helicity::minus;
     using helicity::plus;
 
     MultiArray<COM, 2, 2, 2> hel_amp_top = jgamma_j(pa, pb, p1, p2, pphoton);
     MultiArray<COM, 2, 2, 2> hel_amp_bot = jgamma_j(pb, pa, p2, p1, pphoton);
     const auto charge_top = boost::rational_cast<double>(charge(aptype));
     const auto charge_bot = boost::rational_cast<double>(charge(bptype));
 
     double sum_top=0.;
     double sum_bot=0.;
     double sum_mix=0.;
     for(auto h1: {minus, plus}){
       for(auto hl: {minus, plus}){
         for(auto h2: {minus, plus}){
           const COM res_top = charge_top * hel_amp_top[h1][hl][h2];
           const COM res_bot = charge_bot * hel_amp_bot[h2][hl][h1];
           sum_top += norm(res_top);
           sum_bot += norm(res_bot);
           sum_mix += 2.0 * real(res_top * conj(res_bot));
         }
       }
     }
 
     return {sum_top, sum_bot, sum_mix};
   }
 
   double ME_photon_qg(
     const HLV & pa, const HLV & pb,
     const HLV & p1, const HLV & p2,
     const HLV & pphoton,
     const ParticleID aptype, const ParticleID /*bptype*/
   ){
     using helicity::minus;
     using helicity::plus;
 
     MultiArray<COM, 2, 2, 2> hel_amp = jgamma_j(pa, pb, p1, p2, pphoton);
     const auto q_charge = boost::rational_cast<double>(charge(aptype));
 
     double sum = 0.;
     for(auto h1: {minus, plus}){
       for(auto hphoton: {minus, plus}){
         for(auto h2: {minus, plus}){
           sum += norm(q_charge * hel_amp[h1][hphoton][h2]);
         }
       }
     }
 
     return sum;
   }
   
   namespace {
     //! Photon+Jets UNO Contributions
    /**
      * @brief Photon+Jets Unordered Contribution, unordered on Photon side
      * @tparam h1            Helicity of line 1 (Photon emission line)
      * @tparam hp            Photon Helicity
      * @tparam h2            Helicity of line 2
      * @tparam hg            Helicity of unordered gluon
      * @param pa             Incoming Particle 1 (Photon and Uno emission)
      * @param pb             Incoming Particle 2
      * @param pg             Unordered Gluon
      * @param p1             Outgoing Particle 1 (Photon and Uno emission)
      * @param p2             Outgoing Particle 2
      * @param pp             Outgoing Photon
      * @returns              X: (U1-L), Y: (U2+l)
      *
      * Calculates j_Gamma_{uno}^\mu j_\mu. Ie, unordered with Photon emission same side.
      */
     template<Helicity h1, Helicity hp, Helicity h2, Helicity hg>
     XY amp_jgammauno_j(
       const HLV & pa, const HLV & pb, const HLV & pg,
       const HLV & p1, const HLV & p2, const HLV & pp
     ){
       const COM u1 = U1_jphotonuno<h1, hp, h2, hg>(p1, p2, pa, pb, pg, pp);
       const COM u2 = U2_jphotonuno<h1, hp, h2, hg>(p1, p2, pa, pb, pg, pp);
       const COM l  = L_jphotonuno <h1, hp, h2, hg>(p1, p2, pa, pb, pg, pp);
 
       return {u1 - l, u2 + l};
     }
 
     MultiArray<XY, 2, 2, 2, 2> jgammauno_j(
       const HLV & pa, const HLV & pb, const HLV & pg,
       const HLV & p1, const HLV & p2, const HLV & pp
     ){
       using helicity::plus;
       using helicity::minus;
 
       MultiArray<XY, 2, 2, 2, 2> xy;
 
       // NOLINTNEXTLINE
 #define ASSIGN_HEL(XY, J, H1, H2, H3, H4) \
       XY[H1][H2][H3][H4] = J<H1, H2, H3, H4>(pa, pb, pg, p1, p2, pp) // NOLINT
 
       ASSIGN_HEL(xy, amp_jgammauno_j, minus, minus, minus, minus);
       ASSIGN_HEL(xy, amp_jgammauno_j, minus, minus, minus,  plus);
       ASSIGN_HEL(xy, amp_jgammauno_j, minus, minus,  plus, minus);
       ASSIGN_HEL(xy, amp_jgammauno_j, minus, minus,  plus,  plus);
       ASSIGN_HEL(xy, amp_jgammauno_j, minus,  plus, minus, minus);
       ASSIGN_HEL(xy, amp_jgammauno_j, minus,  plus, minus,  plus);
       ASSIGN_HEL(xy, amp_jgammauno_j, minus,  plus,  plus, minus);
       ASSIGN_HEL(xy, amp_jgammauno_j, minus,  plus,  plus,  plus);
       ASSIGN_HEL(xy, amp_jgammauno_j,  plus, minus, minus, minus);
       ASSIGN_HEL(xy, amp_jgammauno_j,  plus, minus, minus,  plus);
       ASSIGN_HEL(xy, amp_jgammauno_j,  plus, minus,  plus, minus);
       ASSIGN_HEL(xy, amp_jgammauno_j,  plus, minus,  plus,  plus);
       ASSIGN_HEL(xy, amp_jgammauno_j,  plus,  plus, minus, minus);
       ASSIGN_HEL(xy, amp_jgammauno_j,  plus,  plus, minus,  plus);
       ASSIGN_HEL(xy, amp_jgammauno_j,  plus,  plus,  plus, minus);
       ASSIGN_HEL(xy, amp_jgammauno_j,  plus,  plus,  plus,  plus);
 
 #undef ASSIGN_HEL
 
       return xy;
     }
 
    /**
      * @brief Photon+Jets Unordered Contribution, unordered opposite to Photon side
      * @tparam h1            Helicity of line 1 (photon emission)
      * @tparam hp            Helicity of the outgoing photon
      * @tparam h2            Helicity of line 2 (unordered emission)
      * @tparam hg            Helicity of unordered gluon
      * @param pa             Incoming Particle 1 (photon emission)
      * @param pb             Incoming Particle 2 (unorderd emission)
      * @param p1             Outgoing Particle 1 (photon emission)
      * @param p2             Outgoing Particle 2 (unordered emission)
      * @param pg             Unordered Gluon
      * @param pp             Outgoing Photon
      * 
      * @returns              X: (U1-L), Y: (U2+l)
      *
      * Calculates j_Gamma^\mu j_{uno}_\mu. Ie, unordered with Photon emission opposite side.
      */
     template<Helicity h1, Helicity hp, Helicity h2, Helicity hg>
     XY amp_jgamma_juno(
       const HLV & pa, const HLV & pb,
       const HLV & p1, const HLV & p2,
       const HLV & pp, const HLV & pg
     ){
       const COM u1 = U1_jphoton<h1, hp, h2, hg>(pa, pb, pp, p1, p2, pg);
       const COM u2 = U2_jphoton<h1, hp, h2, hg>(pa, pb, pp, p1, p2, pg);
       const COM l  = L_jphoton <h1, hp, h2, hg>(pa, pb, pp, p1, p2, pg);
 
       return {u1 - l, u2 + l};
     } 
 
     MultiArray<XY, 2, 2, 2, 2> jgamma_juno(
       const HLV & pa, const HLV & pb,
       const HLV & p1, const HLV & p2,
       const HLV & pp, const HLV & pg
     ){
       using helicity::plus;
       using helicity::minus;
 
       MultiArray<XY, 2, 2, 2, 2> xy;
 
 // NOLINTNEXTLINE
 #define ASSIGN_HEL(XY, J, H1, H2, H3, H4) \
       XY[H1][H2][H3][H4] = J<H1, H2, H3, H4>(pa, pb, p1, p2, pp, pg)
 
       ASSIGN_HEL(xy, amp_jgamma_juno, minus, minus, minus, minus);
       ASSIGN_HEL(xy, amp_jgamma_juno, minus, minus, minus,  plus);
       ASSIGN_HEL(xy, amp_jgamma_juno, minus, minus,  plus, minus);
       ASSIGN_HEL(xy, amp_jgamma_juno, minus, minus,  plus,  plus);
       ASSIGN_HEL(xy, amp_jgamma_juno, minus,  plus, minus, minus);
       ASSIGN_HEL(xy, amp_jgamma_juno, minus,  plus, minus,  plus);
       ASSIGN_HEL(xy, amp_jgamma_juno, minus,  plus,  plus, minus);
       ASSIGN_HEL(xy, amp_jgamma_juno, minus,  plus,  plus,  plus);
       ASSIGN_HEL(xy, amp_jgamma_juno,  plus, minus, minus, minus);
       ASSIGN_HEL(xy, amp_jgamma_juno,  plus, minus, minus,  plus);
       ASSIGN_HEL(xy, amp_jgamma_juno,  plus, minus,  plus, minus);
       ASSIGN_HEL(xy, amp_jgamma_juno,  plus, minus,  plus,  plus);
       ASSIGN_HEL(xy, amp_jgamma_juno,  plus,  plus, minus, minus);
       ASSIGN_HEL(xy, amp_jgamma_juno,  plus,  plus, minus,  plus);
       ASSIGN_HEL(xy, amp_jgamma_juno,  plus,  plus,  plus, minus);
       ASSIGN_HEL(xy, amp_jgamma_juno,  plus,  plus,  plus,  plus);
 
 #undef ASSIGN_HEL
 
       return xy;
     }
   } // Anonymous Namespace
 
   std::vector <double> ME_photon_uno_qQ(
     const HLV & pa, const HLV & pb,
     const HLV & p1, const HLV & p2,
     const HLV & pp, const HLV & pg,
     const ParticleID aptype, const ParticleID bptype
   ){
     using namespace std;
     using helicity::minus;
     using helicity::plus;
     
     MultiArray<XY, 2, 2, 2, 2> hel_amp_top = jgammauno_j(pa, pb, pg, p1, p2, pp);
     MultiArray<XY, 2, 2, 2, 2> hel_amp_bot = jgamma_juno(pb, pa, p2, p1, pp, pg);
     const auto charge_top = boost::rational_cast<double>(charge(aptype));
     const auto charge_bot = boost::rational_cast<double>(charge(bptype));
 
     double sum_top = 0.;
     double sum_bot = 0.;
     double sum_mix = 0.;
 
     for(auto h1: {minus, plus}){
       for(auto hp: {minus, plus}){
         for(auto h2: {minus, plus}){
           for(auto hg: {minus, plus}){
 
             const COM X_top = hel_amp_top[h1][hp][h2][hg].X;
             const COM Y_top = hel_amp_top[h1][hp][h2][hg].Y;
 
             const COM X_bot = hel_amp_bot[h2][hp][h1][hg].X;
             const COM Y_bot = hel_amp_bot[h2][hp][h1][hg].Y;
 
             // see eq:Z_uno_top, eq:Z_uno_bot & eq:Z_uno_int in developer manual
             sum_top += norm(charge_top) * (C_A*C_F*C_F/2.*(norm(X_top)+norm(Y_top))
                                         - C_F/2.*(X_top*conj(Y_top)).real());
             sum_bot += norm(charge_bot) *(C_A*C_F*C_F/2.*(norm(X_bot)+norm(Y_bot))
                                         - C_F/2.*(X_bot*conj(Y_bot)).real());
 
             const COM xx = C_A*C_F*C_F/2. * charge_top * X_top * conj(charge_bot * X_bot);
             const COM yy = C_A*C_F*C_F/2. * charge_top * Y_top * conj(charge_bot * Y_bot);
             const COM xy = -C_F/4. * (charge_top * X_top * conj(charge_bot * Y_bot)
                                       + charge_top * Y_top * conj(charge_bot * X_bot));
             sum_mix += 2.0 * real(xx + yy + xy);
           }
         }
       }
     }
 
     //Helicity sum and average over initial states
     const double pref = 1./(4.*C_A*C_A);
 
     return {sum_top*pref, sum_bot*pref, sum_mix*pref};
   }
+
+  double ME_photon_uno_qg(
+    const HLV & pa, const HLV & pb, const HLV & pg,
+    const HLV & p1, const HLV & p2, const HLV & pp,
+    const ParticleID aptype, const ParticleID /*bptype*/
+  ){
+    using namespace std;
+    using helicity::minus;
+    using helicity::plus;
+
+    MultiArray<XY, 2, 2, 2, 2> hel_amp = jgammauno_j(pa, pb, pg, p1, p2, pp);
+    const auto q_charge = boost::rational_cast<double>(charge(aptype));
+
+    double sum = 0.;
+    for(auto h1: {minus, plus}){
+      for(auto hp: {minus, plus}){
+        for(auto h2: {minus, plus}){
+          for(auto hg: {minus, plus}){
+            const COM X = hel_amp[h1][hp][h2][hg].X;
+            const COM Y = hel_amp[h1][hp][h2][hg].Y;
+            sum += norm(q_charge) * (C_A*C_F*C_F/2.*(norm(X)+norm(Y))
+                                        - C_F/2.*(X*conj(Y)).real());
+          }
+        }
+      }
+    }
+
+    //Helicity sum and average over initial states
+    return sum / (4.*C_A*C_A);
+  }
+
 } // namespace HEJ::currents