diff --git a/include/HEJ/Event.hh b/include/HEJ/Event.hh
index 71c58e8..d187f0b 100644
--- a/include/HEJ/Event.hh
+++ b/include/HEJ/Event.hh
@@ -1,317 +1,339 @@
 /** \file
  *  \brief Declares the Event class and helpers
  *
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #pragma once
 
 #include <array>
 #include <memory>
 #include <string>
 #include <unordered_map>
 #include <vector>
 
 #include <boost/iterator/filter_iterator.hpp>
 
 #include "HEJ/event_types.hh"
 #include "HEJ/Parameters.hh"
 #include "HEJ/Particle.hh"
 #include "HEJ/RNG.hh"
 
 #include "fastjet/ClusterSequence.hh"
 
 namespace LHEF{
   class HEPEUP;
   class HEPRUP;
 }
 
 namespace fastjet{
   class JetDefinition;
 }
 
 namespace HEJ{
 
   struct UnclusteredEvent;
 
   /** @brief An event with clustered jets
     *
     * This is the main HEJ 2 event class.
     * It contains kinematic information including jet clustering,
     * parameter (e.g. scale) settings and the event weight.
     */
   class Event{
   public:
     class EventData;
 
     using ConstPartonIterator = boost::filter_iterator<
       bool (*)(Particle const &),
       std::vector<Particle>::const_iterator
       >;
     //! No default Constructor
     Event() = delete;
     //! Event Constructor adding jet clustering to an unclustered event
     //! @deprecated UnclusteredEvent will be replaced by EventData in HEJ 2.2.0
     [[deprecated("UnclusteredEvent will be replaced by EventData")]]
     Event(
       UnclusteredEvent const & ev,
       fastjet::JetDefinition const & jet_def, double min_jet_pt
     );
 
     //! @name Particle Access
     //! @{
 
     //! Incoming particles
     std::array<Particle, 2> const &  incoming() const{
       return incoming_;
     }
     //! Outgoing particles
     std::vector<Particle> const &  outgoing() const{
       return outgoing_;
     }
     //! Iterator to the first outgoing parton
     ConstPartonIterator begin_partons() const;
     //! Iterator to the first outgoing parton
     ConstPartonIterator cbegin_partons() const;
 
     //! Iterator to the end of the outgoing partons
     ConstPartonIterator end_partons() const;
     //! Iterator to the end of the outgoing partons
     ConstPartonIterator cend_partons() const;
 
     //! Particle decays
     /**
      *  The key in the returned map corresponds to the index in the
      *  vector returned by outgoing()
      */
     std::unordered_map<size_t, std::vector<Particle>> const &  decays() const{
       return decays_;
     }
     //! The jets formed by the outgoing partons, sorted in rapidity
     std::vector<fastjet::PseudoJet> const & jets() const{
       return jets_;
     }
     //! @}
 
     //! @name Weight variations
     //! @{
 
     //! All chosen parameter, i.e. scale choices (const version)
     Parameters<EventParameters> const & parameters() const{
       return parameters_;
     }
     //! All chosen parameter, i.e. scale choices
     Parameters<EventParameters> & parameters(){
       return parameters_;
     }
 
     //! Central parameter choice (const version)
     EventParameters const & central() const{
       return parameters_.central;
     }
     //! Central parameter choice
     EventParameters & central(){
       return parameters_.central;
     }
 
     //! Parameter (scale) variations (const version)
     std::vector<EventParameters> const & variations() const{
       return parameters_.variations;
     }
     //! Parameter (scale) variations
     std::vector<EventParameters> & variations(){
       return parameters_.variations;
     }
 
     //! Parameter (scale) variation (const version)
     /**
      *  @param i   Index of the requested variation
      */
     EventParameters const & variations(size_t i) const{
       return parameters_.variations.at(i);
     }
     //! Parameter (scale) variation
     /**
      *  @param i   Index of the requested variation
      */
     EventParameters & variations(size_t i){
       return parameters_.variations.at(i);
     }
     //! @}
 
     //! Indices of the jets the outgoing partons belong to
     /**
      *  @param jets   Jets to be tested
      *  @returns      A vector containing, for each outgoing parton,
      *                the index in the vector of jets the considered parton
      *                belongs to. If the parton is not inside any of the
      *                passed jets, the corresponding index is set to -1.
      */
     std::vector<int> particle_jet_indices(
         std::vector<fastjet::PseudoJet> const & jets
     ) const{
       return cs_.particle_jet_indices(jets);
     }
 
     //! Jet definition used for clustering
     fastjet::JetDefinition const & jet_def() const{
       return cs_.jet_def();
     }
 
     //! Minimum jet transverse momentum
     double min_jet_pt() const{
       return min_jet_pt_;
     }
 
     //! Event type
     event_type::EventType type() const{
       return type_;
     }
 
     //! Give colours to each particle
     /**
      * @returns true if new colours are generated, i.e. same as is_resummable()
      * @details Colour ordering is done according to leading colour in the MRK
      *          limit, see \cite Andersen:2011zd. This only affects \ref
      *          is_resummable() "HEJ" configurations, all other \ref event_type
      *          "EventTypes" will be ignored.
      * @note    This overwrites all previously set colours.
      */
     bool generate_colours(HEJ::RNG &);
 
     //! Check that current colours are leading in the high energy limit
     /**
      * @detail Checks that the colour configuration can be split up in multiple,
      *         rapidity ordered, non-overlapping ladders. Such configurations
      *         are leading in the MRK limit, see \cite Andersen:2011zd
      *
      * @note This is _not_ to be confused with \ref is_resummable(), however
      *       for all resummable states it is possible to create a leading colour
      *       configuration, see generate_colours()
      */
     bool is_leading_colour() const;
+
+    /**
+     * @brief Check if given event could have been produced by HEJ
+     * @details A HEJ state has to fulfil:
+     *          1. type() has to be \ref is_resummable() "resummable"
+     *          2. Soft radiation in the tagging jets contributes at most to
+     *             `max_ext_soft_pt_fraction` of the total jet \f$ p_\perp \f$
+     *
+     * @note This is true for any resummed stated produced by the
+     *       EventReweighter or any \ref is_resummable() "resummable" Leading
+     *       Order state.
+     *
+     * @param max_ext_soft_pt_fraction Maximum transverse momentum fraction from
+     *                                 soft radiation in extremal jets
+     * @param min_extparton_pt         Absolute minimal \f$ p_\perp \f$,
+     *                                 \b deprecated use max_ext_soft_pt_fraction
+     *                                 instead
+     * @return True if this state could have been produced by HEJ
+     */
+    bool valid_hej_state(
+      double max_ext_soft_pt_fraction, double min_extparton_pt=0. ) const;
+
   private:
     //! \internal
     //! @brief Construct Event explicitly from input.
     /** This is only intended to be called from EventData.
      *
      * \warning The input is taken _as is_, sorting and classification has to be
      *          done externally, i.e. by EventData
      */
     Event(
       std::array<Particle, 2> && incoming,
       std::vector<Particle> && outgoing,
       std::unordered_map<size_t, std::vector<Particle>> && decays,
       Parameters<EventParameters> && parameters,
       fastjet::JetDefinition const & jet_def,
       double const min_jet_pt
     );
 
     std::array<Particle, 2> incoming_;
     std::vector<Particle> outgoing_;
     std::unordered_map<size_t, std::vector<Particle>> decays_;
     std::vector<fastjet::PseudoJet> jets_;
     Parameters<EventParameters> parameters_;
     fastjet::ClusterSequence cs_;
     double min_jet_pt_;
     event_type::EventType type_;
   }; // end class Event
 
   //! Class to store general Event setup, i.e. Phase space and weights
   class Event::EventData{
   public:
     //! Default Constructor
     EventData() = default;
     //! Constructor from LesHouches event information
     EventData(LHEF::HEPEUP const & hepeup);
     //! Constructor with all values given
     EventData(
       std::array<Particle, 2> const & incoming_,
       std::vector<Particle> const & outgoing_,
       std::unordered_map<size_t, std::vector<Particle>> const & decays_,
       Parameters<EventParameters> const & parameters_
     ):
       incoming(incoming_), outgoing(outgoing_),
       decays(decays_), parameters(parameters_)
     {};
     //! Move Constructor with all values given
     EventData(
       std::array<Particle, 2> && incoming_,
       std::vector<Particle> && outgoing_,
       std::unordered_map<size_t, std::vector<Particle>> && decays_,
       Parameters<EventParameters> && parameters_
     ):
       incoming(std::move(incoming_)), outgoing(std::move(outgoing_)),
       decays(std::move(decays_)), parameters(std::move(parameters_))
     {};
 
     //! Generate an Event from the stored EventData.
     /**
      * @details          Do jet clustering and classification.
      *                   Use this to generate an Event.
      *
      * @note             Calling this function destroys EventData
      *
      * @param jet_def    Jet definition
      * @param min_jet_pt minimal \f$p_T\f$ for each jet
      *
      * @returns          Full clustered and classified event.
      */
     Event cluster(
       fastjet::JetDefinition const & jet_def, double const min_jet_pt);
 
     //! Alias for cluster()
     Event operator()(
       fastjet::JetDefinition const & jet_def, double const min_jet_pt){
       return cluster(jet_def, min_jet_pt);
     };
 
     //! Sort particles in rapidity
     void sort();
 
     //! Reconstruct intermediate particles from final-state leptons
     /**
      *  Final-state leptons are created from virtual photons, W, or Z bosons.
      *  This function tries to reconstruct such intermediate bosons if they
      *  are not part of the event record.
      */
     void reconstruct_intermediate();
 
     std::array<Particle, 2> incoming;
     std::vector<Particle> outgoing;
     std::unordered_map<size_t, std::vector<Particle>> decays;
     Parameters<EventParameters> parameters;
   }; // end class EventData
 
   //! Print Event
   std::ostream& operator<<(std::ostream & os, Event const & ev);
 
   //! Square of the partonic centre-of-mass energy \f$\hat{s}\f$
   double shat(Event const & ev);
 
   //! Convert an event to a LHEF::HEPEUP
   LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP *);
 
   // put deprecated warning at the end, so don't get the warning inside Event.hh,
   // additionally doxygen can not identify [[deprecated]] correctly
   struct [[deprecated("UnclusteredEvent will be replaced by EventData")]]
     UnclusteredEvent;
   //! An event before jet clustering
   //! @deprecated UnclusteredEvent will be replaced by EventData in HEJ 2.2.0
   struct UnclusteredEvent{
     //! Default Constructor
     UnclusteredEvent() = default;
     //! Constructor from LesHouches event information
     UnclusteredEvent(LHEF::HEPEUP const & hepeup);
 
     std::array<Particle, 2> incoming;          /**< Incoming Particles */
     std::vector<Particle> outgoing;            /**< Outgoing Particles */
     //! Particle decays in the format {outgoing index, decay products}
     std::unordered_map<size_t, std::vector<Particle>> decays;
     //! Central parameter (e.g. scale) choice
     EventParameters central;
     std::vector<EventParameters> variations;    /**< For parameter variation */
   };
 
 }
diff --git a/src/Event.cc b/src/Event.cc
index 8d04a70..5193452 100644
--- a/src/Event.cc
+++ b/src/Event.cc
@@ -1,941 +1,968 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include "HEJ/Event.hh"
 
 #include <algorithm>
 #include <assert.h>
+#include <iterator>
 #include <numeric>
 #include <unordered_set>
 #include <utility>
 
 #include "LHEF/LHEF.h"
 
 #include "fastjet/JetDefinition.hh"
 
 #include "HEJ/Constants.hh"
 #include "HEJ/exceptions.hh"
 #include "HEJ/PDG_codes.hh"
 
 namespace HEJ{
 
   namespace {
     constexpr int status_in = -1;
     constexpr int status_decayed = 2;
     constexpr int status_out = 1;
 
     //! true if leptonic W decay
     bool valid_W_decay( int const w_type, // sign of W
                         std::vector<Particle> const & decays
     ){
       if(decays.size() != 2) // no 1->2 decay
         return false;
       const int pidsum = decays[0].type + decays[1].type;
       if( std::abs(pidsum) != 1 || pidsum != w_type ) // correct charge
         return false;
       // leptonic decay (only check first, second follows from pidsum)
       if( w_type == 1 ) // W+
         return is_antilepton(decays[0]) || is_neutrino(decays[0]);
       // W-
       return is_lepton(decays[0]) || is_antineutrino(decays[0]);
     }
 
     /// @name helper functions to determine event type
     //@{
 
     /**
      * \brief check if final state valid for HEJ
      *
      * check if there is at most one photon, W, H, Z in the final state
      * and all the rest are quarks or gluons
      */
     bool final_state_ok(Event const & ev){
       std::vector<Particle> const & outgoing = ev.outgoing();
       if(ev.decays().size() > 1) // at most one decay
         return false;
       bool has_AWZH_boson = false;
       for( size_t i=0; i<outgoing.size(); ++i ){
         auto const & out{ outgoing[i] };
         if(is_AWZH_boson(out.type)){
           // at most one boson
           if(has_AWZH_boson) return false;
           has_AWZH_boson = true;
 
           // valid decay for W
           if(std::abs(out.type) == ParticleID::Wp){
             // exactly 1 decay of W
             if( ev.decays().size() != 1 || ev.decays().cbegin()->first != i )
               return false;
             if( !valid_W_decay(out.type>0?+1:-1, ev.decays().cbegin()->second) )
               return false;
           }
         }
         else if(! is_parton(out.type)) return false;
       }
       return true;
     }
 
     /**
      * returns all EventTypes implemented in HEJ
      */
     size_t implemented_types(std::vector<Particle> const & bosons){
       using namespace event_type;
       if(bosons.empty()) return FKL | unob | unof; // pure jets
       if(bosons.size()>1) return non_resummable; // multi boson
       switch (bosons[0].type) {
         case ParticleID::Wp:
         case ParticleID::Wm:
           return FKL | unob | unof | qqxexb | qqxexf | qqxmid;
         case ParticleID::h:
           return FKL | unob | unof;
         default:
           return non_resummable;
       }
     }
 
     /**
      * \brief function which determines if type change is consistent with Wp emission.
      * @param in                      incoming Particle id
      * @param out                     outgoing Particle id
      * @param qqx                     Current both incoming/both outgoing?
      *
      * \see is_Wm_Change
      */
     bool is_Wp_Change(ParticleID in, ParticleID out, bool qqx){
       if(!qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out== (in-1);
       if( qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out==-(in+1);
       return false;
     }
 
     /**
      * \brief function which determines if type change is consistent with Wm emission.
      * @param in                      incoming Particle id
      * @param out                     outgoing Particle id
      * @param qqx                     Current both incoming/both outgoing?
      *
      * Ensures that change type of quark line is possible by a flavour changing
      * Wm emission. Allows checking of qqx currents also.
      */
     bool is_Wm_Change(ParticleID in, ParticleID out, bool qqx){
       if(!qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out== (in+1);
       if( qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out==-(in-1);
       return false;
     }
 
     /**
      * \brief checks if particle type remains same from incoming to outgoing
      * @param in                      incoming Particle
      * @param out                     outgoing Particle
      * @param qqx                     Current both incoming/outgoing?
      */
     bool no_flavour_change(ParticleID in, ParticleID out, bool qqx){
       const int qqxCurrent = qqx?-1:1;
       if(abs(in)<=6 || in==pid::gluon) return (in==out*qqxCurrent);
       else return false;
     }
 
     bool has_2_jets(Event const & event){
       return event.jets().size() >= 2;
     }
 
     /**
      * \brief check if we have a valid Impact factor
      * @param in                      incoming Particle
      * @param out                     outgoing Particle
      * @param qqx                     Current both incoming/outgoing?
      * @param qqx                     returns +1 if Wp, -1 if Wm, else 0
      */
     bool is_valid_impact_factor(
       ParticleID in, ParticleID out, bool qqx, int & W_change
     ){
       if( no_flavour_change(in, out, qqx) ){
         return true;
       }
       if( is_Wp_Change(in, out, qqx) ) {
         W_change+=1;
         return true;
       }
       if( is_Wm_Change(in, out, qqx) ) {
         W_change-=1;
         return true;
       }
       return false;
     }
 
     //! Returns all possible classifications from the impact factors
     // the beginning points are changed s.t. after the the classification they
     // point to the beginning of the (potential) FKL chain
     // sets W_change: + if Wp change
     //                0 if no change
     //                - if Wm change
     // This function can be used with forward & backwards iterators
     template<class OutIterator>
     size_t possible_impact_factors(
       ParticleID incoming_id,                                   // incoming
       OutIterator   & begin_out, OutIterator   const & end_out, // outgoing
       int & W_change, std::vector<Particle> const & boson,
       bool const backward                                       // backward?
     ){
       using namespace event_type;
       assert(boson.size() < 2);
       // keep track of all states that we don't test
       size_t not_tested = qqxmid;
       if(backward)
         not_tested |= unof | qqxexf;
       else
         not_tested |= unob | qqxexb;
 
       // Is this LL current?
       if( is_valid_impact_factor(incoming_id, begin_out->type, false, W_change) ){
         ++begin_out;
         return not_tested | FKL;
       }
 
       // or NLL current?
       // -> needs two partons in two different jets
       if( std::distance(begin_out, end_out)>=2
       ){
         // Is this unordered emisson?
         if( incoming_id!=pid::gluon && begin_out->type==pid::gluon ){
           if( is_valid_impact_factor(
                 incoming_id, (begin_out+1)->type, false, W_change )
           ){
             // veto Higgs inside uno
             assert((begin_out+1)<end_out);
             if( !boson.empty() && boson.front().type == ParticleID::h
             ){
               if(  (backward && boson.front().rapidity() < (begin_out+1)->rapidity())
                 ||(!backward && boson.front().rapidity() > (begin_out+1)->rapidity()))
               return non_resummable;
             }
             begin_out+=2;
             return not_tested | (backward?unob:unof);
           }
         }
         // Is this QQbar?
         else if( incoming_id==pid::gluon ){
           if( is_valid_impact_factor(
                 begin_out->type, (begin_out+1)->type, true, W_change )
           ){
             // veto Higgs inside qqx
             assert((begin_out+1)<end_out);
             if( !boson.empty() && boson.front().type == ParticleID::h
             ){
               if(  (backward && boson.front().rapidity() < (begin_out+1)->rapidity())
                 ||(!backward && boson.front().rapidity() > (begin_out+1)->rapidity()))
               return non_resummable;
             }
             begin_out+=2;
             return not_tested | (backward?qqxexb:qqxexf);
           }
         }
       }
       return non_resummable;
     }
 
     //! Returns all possible classifications from central emissions
     // the beginning points are changed s.t. after the the classification they
     // point to the end of the emission chain
     // sets W_change: + if Wp change
     //               0 if no change
     //               - if Wm change
     template<class OutIterator>
     size_t possible_central(
       OutIterator   & begin_out, OutIterator const & end_out,
       int & W_change, std::vector<Particle> const & boson,
       OutIterator & qqx_pos
     ){
       using namespace event_type;
       assert(boson.size() < 2);
       // if we already passed the central chain,
       // then it is not a valid all-order state
       if(std::distance(begin_out, end_out) < 0) return non_resummable;
       // keep track of all states that we don't test
       size_t possible = unob | unof
                           | qqxexb | qqxexf;
 
       // Find the first non-gluon/non-FKL
       while( (begin_out->type==pid::gluon) && (begin_out<end_out) ){
         ++begin_out;
       }
       // end of chain -> FKL
       if( begin_out==end_out ){
         return possible | FKL;
       }
 
       // is this a qqbar-pair?
       // needs two partons in two separate jets
       if( is_valid_impact_factor(
             begin_out->type, (begin_out+1)->type, true, W_change )
       ){
         // veto Higgs inside qqx
         if( !boson.empty() && boson.front().type == ParticleID::h
             && boson.front().rapidity() > begin_out->rapidity()
             && boson.front().rapidity() < (begin_out+1)->rapidity()
         ){
           return non_resummable;
         }
         qqx_pos=begin_out;
         begin_out+=2;
         // remaining chain should be pure gluon/FKL
         for(; begin_out<end_out; ++begin_out){
           if(begin_out->type != pid::gluon) return non_resummable;
         }
         return possible | qqxmid;
       }
       return non_resummable;
     }
 
     bool invalid_jet(std::unordered_set<int> & other, int const idx){
       if(idx<0) return true;
       if(other.find(idx) != other.cend()) return true;
       other.insert(idx);
       return false;
     }
 
     bool jets_ok( size_t const final_type,
       std::vector<int> const & jet_idx, size_t const qqx_pos
     ){
       using namespace event_type;
 
       std::unordered_set<int> other;
       auto idx_begin{jet_idx.cbegin()};
       auto idx_end{jet_idx.crbegin()};
 
       // always seperate extremal jets
       if(invalid_jet(other, *idx_begin)) return false;
       if(invalid_jet(other, *idx_end)) return false;
 
       // unob -> second parton in own jet
       if( (final_type & (unob | qqxexb))
          && invalid_jet(other, *(idx_begin+1)) ) return false;
 
       if( (final_type & (unof | qqxexf))
           && invalid_jet(other, *(idx_end+1)) ) return false;
 
       assert( !(final_type & qqxmid) || jet_idx.size()>qqx_pos+1 );
       if( (final_type & qqxmid)
           && ( invalid_jet(other, *(idx_begin+qqx_pos))
             || invalid_jet(other, *(idx_begin+qqx_pos+1)) ) ) return false;
 
       return true;
     }
 
     /**
      * \brief Checks for all event types
      * @param ev          Event
      * @returns           Event Type
      *
      */
     event_type::EventType classify(Event const & ev){
       using namespace event_type;
       if(! has_2_jets(ev))
         return no_2_jets;
       // currently we can't handle multiple boson states in the ME. So they are
       // considered "bad_final_state" even though the "classify" could work with
       // them.
       if(! final_state_ok(ev))
         return bad_final_state;
 
       // initialise variables
       auto const & in = ev.incoming();
       auto const & out = filter_partons(ev.outgoing());
 
       assert(std::distance(begin(in), end(in)) == 2);
       assert(out.size() >= 2);
       assert(std::distance(begin(out), end(out)) >= 2);
       assert(std::is_sorted(begin(out), end(out), rapidity_less{}));
 
       auto const boson{ filter_AWZH_bosons(ev.outgoing()) };
       // we only allow one boson through final_state_ok
       assert(boson.size()<=1);
 
       // keep track of potential W couplings, at the end the sum should be 0
       int remaining_Wp = 0;
       int remaining_Wm = 0;
       if(!boson.empty() && abs(boson.front().type) == ParticleID::Wp ){
         if(boson.front().type>0) ++remaining_Wp;
         else ++remaining_Wm;
       }
       int W_change = 0;
 
       // range for current checks
       auto begin_out{out.cbegin()};
       auto end_out{out.crbegin()};
 
       size_t final_type = ~(no_2_jets | bad_final_state);
 
       // check forward impact factor
       final_type &= possible_impact_factors(
         in.front().type,
         begin_out, end_out.base(),
         W_change, boson, true );
       if( final_type == non_resummable )
         return non_resummable;
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
       W_change = 0;
 
       // check backward impact factor
       final_type &= possible_impact_factors(
         in.back().type,
         end_out, std::make_reverse_iterator(begin_out),
         W_change, boson, false );
       if( final_type == non_resummable )
         return non_resummable;
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
       W_change = 0;
 
       // check central emissions
       auto qqx_pos{out.cend()};
       final_type &= possible_central(
         begin_out, end_out.base(), W_change, boson, qqx_pos );
       if( final_type == non_resummable )
         return non_resummable;
       assert( !(final_type&qqxmid) || qqx_pos != out.cend() );
       if(W_change>0) remaining_Wp-=W_change;
       else if(W_change<0) remaining_Wm+=W_change;
 
       // Check whether the right number of Ws are present
       if( remaining_Wp != 0 || remaining_Wm != 0 ) return non_resummable;
 
       // result has to be unique
       if( (final_type & (final_type-1)) != 0) return non_resummable;
 
       // check jet configurations
       if(!jets_ok( final_type,
           ev.particle_jet_indices( ev.jets() ),
           std::distance( out.cbegin(), qqx_pos) ))
         return non_resummable;
 
       // check that each sub processes is implemented
       // (has to be done at the end)
       if( (final_type & ~implemented_types(boson)) != 0 )
         return non_resummable;
 
       return static_cast<EventType>(final_type);
     }
     //@}
 
     Particle extract_particle(LHEF::HEPEUP const & hepeup, int i){
       const ParticleID id = static_cast<ParticleID>(hepeup.IDUP[i]);
       const fastjet::PseudoJet momentum{
         hepeup.PUP[i][0], hepeup.PUP[i][1],
         hepeup.PUP[i][2], hepeup.PUP[i][3]
       };
       if(is_parton(id))
         return Particle{ id, std::move(momentum), hepeup.ICOLUP[i] };
       return Particle{ id, std::move(momentum), {} };
     }
 
     bool is_decay_product(std::pair<int, int> const & mothers){
       if(mothers.first == 0) return false;
       return mothers.second == 0 || mothers.first == mothers.second;
     }
 
   } // namespace anonymous
 
   Event::EventData::EventData(LHEF::HEPEUP const & hepeup){
     parameters.central = EventParameters{
       hepeup.scales.mur, hepeup.scales.muf, hepeup.weight()
     };
     size_t in_idx = 0;
     for (int i = 0; i < hepeup.NUP; ++i) {
       // skip decay products
       // we will add them later on, but we have to ensure that
       // the decayed particle is added before
       if(is_decay_product(hepeup.MOTHUP[i])) continue;
 
       auto particle = extract_particle(hepeup, i);
       // needed to identify mother particles for decay products
       particle.p.set_user_index(i+1);
 
       if(hepeup.ISTUP[i] == status_in){
         if(in_idx > incoming.size()) {
           throw std::invalid_argument{
             "Event has too many incoming particles"
           };
         }
         incoming[in_idx++] = std::move(particle);
       }
       else outgoing.emplace_back(std::move(particle));
     }
 
     // add decay products
     for (int i = 0; i < hepeup.NUP; ++i) {
       if(!is_decay_product(hepeup.MOTHUP[i])) continue;
       const int mother_id = hepeup.MOTHUP[i].first;
       const auto mother = std::find_if(
           begin(outgoing), end(outgoing),
           [mother_id](Particle const & particle){
             return particle.p.user_index() == mother_id;
           }
       );
       if(mother == end(outgoing)){
         throw std::invalid_argument{"invalid decay product parent"};
       }
       const int mother_idx = std::distance(begin(outgoing), mother);
       assert(mother_idx >= 0);
       decays[mother_idx].emplace_back(extract_particle(hepeup, i));
     }
   }
 
   Event::Event(
     UnclusteredEvent const & ev,
     fastjet::JetDefinition const & jet_def, double const min_jet_pt
   ):
     Event( Event::EventData{
       ev.incoming, ev.outgoing, ev.decays,
       Parameters<EventParameters>{ev.central, ev.variations}
     }.cluster(jet_def, min_jet_pt) )
   {}
 
   //! @TODO remove in HEJ 2.2.0
   UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){
       Event::EventData const evData{hepeup};
       incoming = evData.incoming;
       outgoing = evData.outgoing;
       decays = evData.decays;
       central = evData.parameters.central;
       variations = evData.parameters.variations;
   }
 
   void Event::EventData::sort(){
     // sort particles
     std::sort(
         begin(incoming), end(incoming),
         [](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
     );
 
     auto old_outgoing = std::move(outgoing);
     std::vector<size_t> idx(old_outgoing.size());
     std::iota(idx.begin(), idx.end(), 0);
     std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){
       return old_outgoing[i].rapidity() < old_outgoing[j].rapidity();
     });
     outgoing.clear();
     outgoing.reserve(old_outgoing.size());
     for(size_t i: idx) {
       outgoing.emplace_back(std::move(old_outgoing[i]));
     }
 
     // find decays again
     if(!decays.empty()){
       auto old_decays = std::move(decays);
       decays.clear();
       for(size_t i=0; i<idx.size(); ++i) {
         auto decay = old_decays.find(idx[i]);
         if(decay != old_decays.end())
           decays.emplace(i, std::move(decay->second));
       }
       assert(old_decays.size() == decays.size());
     }
   }
 
   namespace {
     Particle reconstruct_boson(std::vector<Particle> const & leptons) {
       Particle decayed_boson;
       decayed_boson.p = leptons[0].p + leptons[1].p;
       const int pidsum = leptons[0].type + leptons[1].type;
       if(pidsum == +1) {
         assert(is_antilepton(leptons[0]));
         if(is_antineutrino(leptons[0])) {
           throw not_implemented{"lepton-flavour violating final state"};
         }
         assert(is_neutrino(leptons[1]));
         // charged antilepton + neutrino means we had a W+
         decayed_boson.type = pid::Wp;
       }
       else if(pidsum == -1) {
         assert(is_antilepton(leptons[0]));
         if(is_neutrino(leptons[1])) {
           throw not_implemented{"lepton-flavour violating final state"};
         }
         assert(is_antineutrino(leptons[0]));
         // charged lepton + antineutrino means we had a W-
         decayed_boson.type = pid::Wm;
       }
       else {
         throw not_implemented{
           "final state with leptons "
             + name(leptons[0].type)
             + " and "
             + name(leptons[1].type)
         };
       }
       return decayed_boson;
     }
   }
 
   void Event::EventData::reconstruct_intermediate() {
     const auto begin_leptons = std::partition(
         begin(outgoing), end(outgoing),
         [](Particle const & p) {return !is_anylepton(p);}
     );
     if(begin_leptons == end(outgoing)) return;
     assert(is_anylepton(*begin_leptons));
     std::vector<Particle> leptons(begin_leptons, end(outgoing));
     outgoing.erase(begin_leptons, end(outgoing));
     if(leptons.size() != 2) {
       throw not_implemented{"Final states with one or more than two leptons"};
     }
     std::sort(
         begin(leptons), end(leptons),
         [](Particle const & p0, Particle const & p1) {
           return p0.type < p1.type;
         }
     );
     outgoing.emplace_back(reconstruct_boson(leptons));
     decays.emplace(outgoing.size()-1, std::move(leptons));
   }
 
   Event Event::EventData::cluster(
       fastjet::JetDefinition const & jet_def, double const min_jet_pt
   ){
     sort();
     Event ev{ std::move(incoming), std::move(outgoing), std::move(decays),
       std::move(parameters),
       jet_def, min_jet_pt
     };
     assert(std::is_sorted(begin(ev.outgoing_), end(ev.outgoing_),
       rapidity_less{}));
     ev.type_ = classify(ev);
     return ev;
   }
 
   Event::Event(
       std::array<Particle, 2> && incoming,
       std::vector<Particle> && outgoing,
       std::unordered_map<size_t, std::vector<Particle>> && decays,
       Parameters<EventParameters> && parameters,
       fastjet::JetDefinition const & jet_def,
       double const min_jet_pt
     ): incoming_{std::move(incoming)},
        outgoing_{std::move(outgoing)},
        decays_{std::move(decays)},
        parameters_{std::move(parameters)},
        cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def },
        min_jet_pt_{min_jet_pt}
     {
       jets_ = sorted_by_rapidity(cs_.inclusive_jets(min_jet_pt_));
     }
 
   namespace {
     // check that Particles have a reasonable colour
     bool correct_colour(Particle const & part){
       ParticleID id{ part.type };
       if(!is_parton(id))
         return !part.colour;
 
       if(!part.colour)
         return false;
 
       Colour const & col{ *part.colour };
       if(is_quark(id))
         return col.first != 0 && col.second == 0;
       if(is_antiquark(id))
         return col.first == 0 && col.second != 0;
       assert(id==ParticleID::gluon);
       return col.first != 0 && col.second != 0 && col.first != col.second;
     }
   }
 
   bool Event::is_leading_colour() const {
     if( !correct_colour(incoming()[0]) || !correct_colour(incoming()[1]) )
       return false;
 
     Colour line_colour = *incoming()[0].colour;
     std::swap(line_colour.first, line_colour.second);
 
     for(auto const & part: outgoing()){
       // reasonable colour
       if(!correct_colour(part))
         return false;
       if(!is_parton(part)) // skip colour neutral particles
           continue;
 
        // if possible connect to line
       if( line_colour.first == part.colour->second )
         line_colour.first = part.colour->first;
       else if( line_colour.second == part.colour->first )
         line_colour.second = part.colour->second;
       else
         return false;
 
       // no colour singlet exchange/disconnected diagram
       if(line_colour.first == line_colour.second)
         return false;
     }
 
     return (incoming()[1].colour->first == line_colour.first)
         && (incoming()[1].colour->second == line_colour.second);
   }
 
   namespace {
     void connect_incoming(Particle & in, int & colour, int & anti_colour){
       in.colour = std::make_pair(anti_colour, colour);
       // gluon
       if(in.type == pid::gluon)
         return;
       if(in.type > 0){
         // quark
         assert(is_quark(in));
         in.colour->second = 0;
         colour*=-1;
         return;
       }
       // anti-quark
       assert(is_antiquark(in));
       in.colour->first = 0;
       anti_colour*=-1;
       return;
     }
   }
 
   bool Event::generate_colours(RNG & ran){
     // generate only for HEJ events
     if(!event_type::is_resummable(type()))
       return false;
     assert(std::is_sorted(
       begin(outgoing()), end(outgoing()), rapidity_less{}));
     assert(incoming()[0].pz() < incoming()[1].pz());
 
     // positive (anti-)colour -> can connect
     // negative (anti-)colour -> not available/used up by (anti-)quark
     int colour = COLOUR_OFFSET;
     int anti_colour = colour+1;
     // initialise first
     connect_incoming(incoming_[0], colour, anti_colour);
 
     for(auto & part: outgoing_){
       assert(colour>0 || anti_colour>0);
       if(part.type == ParticleID::gluon){
         // gluon
         if(colour>0 && anti_colour>0){
           // on g line => connect to colour OR anti-colour (random)
           if(ran.flat() < 0.5){
             part.colour = std::make_pair(colour+2,colour);
             colour+=2;
           } else {
             part.colour = std::make_pair(anti_colour, anti_colour+2);
             anti_colour+=2;
           }
         } else if(colour > 0){
           // on q line => connect to available colour
             part.colour = std::make_pair(colour+2, colour);
             colour+=2;
         } else {
           assert(colour<0 && anti_colour>0);
           // on qx line => connect to available anti-colour
           part.colour = std::make_pair(anti_colour, anti_colour+2);
           anti_colour+=2;
         }
       } else if(is_quark(part)) {
         // quark
         assert(anti_colour>0);
         if(colour>0){
           // on g line => connect and remove anti-colour
           part.colour = std::make_pair(anti_colour, 0);
           anti_colour+=2;
           anti_colour*=-1;
         } else {
           // on qx line => new colour
           colour*=-1;
           part.colour = std::make_pair(colour, 0);
         }
       } else if(is_antiquark(part)) {
         // anti-quark
         assert(colour>0);
         if(anti_colour>0){
           // on g line => connect and remove colour
           part.colour = std::make_pair(0, colour);
           colour+=2;
           colour*=-1;
         } else {
           // on q line => new anti-colour
           anti_colour*=-1;
           part.colour = std::make_pair(0, anti_colour);
         }
       } else { // not a parton
         assert(!is_parton(part));
         part.colour = {};
       }
     }
     // Connect last
     connect_incoming(incoming_[1], anti_colour, colour);
     assert(is_leading_colour());
     return true;
   } // generate_colours
 
+  // this should work with multiple types
+  bool Event::valid_hej_state(double const /*max_ext_soft_pt_fraction*/,
+                             double const /*min_extparton_pt*/
+  ) const {
+    using namespace event_type;
+    if(!is_resummable(type()))
+      return false;
+    auto begin_FKL = ++cbegin_partons();
+    auto end_FKL = ++cend_partons();
+    if( type() & (qqxexb | unob) )
+      ++begin_FKL;
+    if( type() & (qqxexf | unof) )
+      ++end_FKL;
+    auto begin_qqx {end_FKL};
+    if( type() & qqxmid){
+      begin_qqx = std::find_if(begin_FKL, end_FKL,
+        [](Particle const & part) -> bool {
+          return part.type == ParticleID::gluon;
+        }
+      );
+    }
+    std::cout << __PRETTY_FUNCTION__ << " " << type()
+      << " qqx " << std::distance(cbegin_partons(), begin_qqx) << std::endl;
+    return true;
+  }
+
   Event::ConstPartonIterator Event::begin_partons() const {
     return cbegin_partons();
   };
   Event::ConstPartonIterator Event::cbegin_partons() const {
     return boost::make_filter_iterator(
         static_cast<bool (*)(Particle const &)>(is_parton),
         cbegin(outgoing()),
         cend(outgoing())
     );
   };
 
   Event::ConstPartonIterator Event::end_partons() const {
     return cend_partons();
   };
   Event::ConstPartonIterator Event::cend_partons() const {
     return boost::make_filter_iterator(
         static_cast<bool (*)(Particle const &)>(is_parton),
         cend(outgoing()),
         cend(outgoing())
     );
   };
 
   namespace {
     void print_momentum(std::ostream & os, fastjet::PseudoJet const & part){
     const std::streamsize orig_prec = os.precision();
       os <<std::scientific<<std::setprecision(6) << "["
         <<std::setw(13)<<std::right<< part.px() << ", "
         <<std::setw(13)<<std::right<< part.py() << ", "
         <<std::setw(13)<<std::right<< part.pz() << ", "
         <<std::setw(13)<<std::right<< part.E() << "]"<< std::fixed;
       os.precision(orig_prec);
     }
 
     void print_colour(std::ostream & os, optional<Colour> const & col){
       if(!col)
         os << "(no color)"; // American spelling for better alignment
       else
         os << "(" <<std::setw(3)<<std::right<< col->first
            << ", " <<std::setw(3)<<std::right<< col->second << ")";
     }
   }
 
   std::ostream& operator<<(std::ostream & os, Event const & ev){
     const std::streamsize orig_prec = os.precision();
     os <<std::setprecision(4)<<std::fixed;
     os << "########## " << event_type::name(ev.type()) << " ##########" << std::endl;
     os << "Incoming particles:\n";
     for(auto const & in: ev.incoming()){
       os <<std::setw(3)<< in.type << ": ";
       print_colour(os, in.colour);
       os << " ";
       print_momentum(os, in.p);
       os << std::endl;
     }
     os << "\nOutgoing particles: " << ev.outgoing().size() << "\n";
     for(auto const & out: ev.outgoing()){
       os <<std::setw(3)<< out.type << ": ";
       print_colour(os, out.colour);
       os << " ";
       print_momentum(os, out.p);
       os << " => rapidity="
         <<std::setw(7)<<std::right<< out.rapidity() << std::endl;
     }
     os << "\nForming Jets: " << ev.jets().size() << "\n";
     for(auto const & jet: ev.jets()){
       print_momentum(os, jet);
       os << " => rapidity="
         <<std::setw(7)<<std::right<< jet.rapidity() << std::endl;
     }
     if(ev.decays().size() > 0 ){
       os << "\nDecays: " << ev.decays().size() << "\n";
       for(auto const & decay: ev.decays()){
         os <<std::setw(3)<< ev.outgoing()[decay.first].type
           << " (" << decay.first << ") to:\n";
         for(auto const & out: decay.second){
           os <<"  "<<std::setw(3)<< out.type << ": ";
           print_momentum(os, out.p);
           os << " => rapidity="
             <<std::setw(7)<<std::right<< out.rapidity() << std::endl;
         }
       }
 
     }
     os << std::defaultfloat;
     os.precision(orig_prec);
     return os;
   }
 
   double shat(Event const & ev){
     return (ev.incoming()[0].p + ev.incoming()[1].p).m2();
   }
 
   LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){
     LHEF::HEPEUP result;
     result.heprup = heprup;
     result.weights = {{event.central().weight, nullptr}};
     for(auto const & var: event.variations()){
       result.weights.emplace_back(var.weight, nullptr);
     }
     size_t num_particles = event.incoming().size() + event.outgoing().size();
     for(auto const & decay: event.decays()) num_particles += decay.second.size();
     result.NUP = num_particles;
     // the following entries are pretty much meaningless
     result.IDPRUP = event.type();  // event type
     result.AQEDUP = 1./128.;  // alpha_EW
     //result.AQCDUP = 0.118 // alpha_QCD
     // end meaningless part
     result.XWGTUP = event.central().weight;
     result.SCALUP = event.central().muf;
     result.scales.muf = event.central().muf;
     result.scales.mur = event.central().mur;
     result.scales.SCALUP = event.central().muf;
     result.pdfinfo.p1 = event.incoming().front().type;
     result.pdfinfo.p2 = event.incoming().back().type;
     result.pdfinfo.scale = event.central().muf;
 
     result.IDUP.reserve(num_particles);   // PID
     result.ISTUP.reserve(num_particles);  // status (in, out, decay)
     result.PUP.reserve(num_particles);    // momentum
     result.MOTHUP.reserve(num_particles); // index mother particle
     result.ICOLUP.reserve(num_particles); // colour
     // incoming
     std::array<Particle, 2> incoming{ event.incoming() };
     // First incoming should be positive pz according to LHE standard
     // (or at least most (everyone?) do it this way, and Pythia assumes it)
     if(incoming[0].pz() < incoming[1].pz())
       std::swap(incoming[0], incoming[1]);
     for(Particle const & in: incoming){
       result.IDUP.emplace_back(in.type);
       result.ISTUP.emplace_back(status_in);
       result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()});
       result.MOTHUP.emplace_back(0, 0);
       assert(in.colour);
       result.ICOLUP.emplace_back(*in.colour);
     }
     // outgoing
     for(size_t i = 0; i < event.outgoing().size(); ++i){
       Particle const & out = event.outgoing()[i];
       result.IDUP.emplace_back(out.type);
       const int status = event.decays().count(i)?status_decayed:status_out;
       result.ISTUP.emplace_back(status);
       result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
       result.MOTHUP.emplace_back(1, 2);
       if(out.colour)
         result.ICOLUP.emplace_back(*out.colour);
       else{
         result.ICOLUP.emplace_back(std::make_pair(0,0));
       }
     }
     // decays
     for(auto const & decay: event.decays()){
       for(auto const out: decay.second){
         result.IDUP.emplace_back(out.type);
         result.ISTUP.emplace_back(status_out);
         result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
         const size_t mother_idx = 1 + event.incoming().size() + decay.first;
         result.MOTHUP.emplace_back(mother_idx, mother_idx);
         result.ICOLUP.emplace_back(0,0);
       }
     }
 
     assert(result.ICOLUP.size() == num_particles);
     static constexpr double unknown_spin = 9.;     //per Les Houches accord
     result.VTIMUP = std::vector<double>(num_particles, unknown_spin);
     result.SPINUP = result.VTIMUP;
     return result;
   }
 
 }
diff --git a/src/EventReweighter.cc b/src/EventReweighter.cc
index 9f6a778..bca986e 100644
--- a/src/EventReweighter.cc
+++ b/src/EventReweighter.cc
@@ -1,279 +1,282 @@
 /**
  *  \authors   The HEJ collaboration (see AUTHORS for details)
  *  \date      2019
  *  \copyright GPLv2 or later
  */
 #include "HEJ/EventReweighter.hh"
 
 #include <algorithm>
 #include <assert.h>
 #include <limits>
 #include <math.h>
 #include <stddef.h>
 #include <string>
 #include <unordered_map>
 
 #include "fastjet/ClusterSequence.hh"
 
 #include "LHEF/LHEF.h"
 
 #include "HEJ/Event.hh"
 #include "HEJ/exceptions.hh"
 #include "HEJ/Particle.hh"
 #include "HEJ/PDG_codes.hh"
 #include "HEJ/PhaseSpacePoint.hh"
 
 namespace HEJ{
   using EventType = event_type::EventType;
 
   namespace {
 
     static_assert(
         std::numeric_limits<double>::has_quiet_NaN,
         "no quiet NaN for double"
     );
     constexpr double NaN = std::numeric_limits<double>::quiet_NaN();
 
     Event::EventData to_EventData(PhaseSpacePoint const & psp){
       Event::EventData result;
       result.incoming=psp.incoming();
       assert(result.incoming.size() == 2);
       result.outgoing=psp.outgoing();
       // technically Event::EventData doesn't have to be sorted,
       // but PhaseSpacePoint should be anyway
       assert(
           std::is_sorted(
               begin(result.outgoing), end(result.outgoing),
               rapidity_less{}
           )
       );
       assert(result.outgoing.size() >= 2);
       result.decays = psp.decays();
       result.parameters.central = {NaN, NaN, psp.weight()};
       return result;
     }
 
   } // namespace anonymous
 
   EventReweighter::EventReweighter(
       LHEF::HEPRUP const & heprup,
       ScaleGenerator scale_gen,
       EventReweighterConfig conf,
       HEJ::RNG & ran
   ):
     EventReweighter{
       HEJ::Beam{
         heprup.EBMUP.first,
         {{
           static_cast<HEJ::ParticleID>(heprup.IDBMUP.first),
           static_cast<HEJ::ParticleID>(heprup.IDBMUP.second)
         }}
       },
       heprup.PDFSUP.first,
       std::move(scale_gen),
       std::move(conf),
       ran
     }
   {
     if(heprup.EBMUP.second != E_beam_){
       throw std::invalid_argument(
           "asymmetric beam: " + std::to_string(E_beam_)
           + " ---> <--- " + std::to_string(heprup.EBMUP.second)
       );
     };
     if(heprup.PDFSUP.second != pdf_.id()){
       throw std::invalid_argument(
           "conflicting PDF ids: " + std::to_string(pdf_.id())
           + " vs. " + std::to_string(heprup.PDFSUP.second)
       );
     }
   }
 
   EventReweighter::EventReweighter(
       Beam beam,
       int pdf_id,
       ScaleGenerator scale_gen,
       EventReweighterConfig conf,
       HEJ::RNG & ran
   ):
     param_{std::move(conf)},
     E_beam_{beam.E},
     pdf_{pdf_id, beam.type.front(), beam.type.back()},
     MEt2_{
       [this](double mu){ return pdf_.Halphas(mu); },
       param_.ME_config
     },
     scale_gen_(std::move(scale_gen)),
     ran_{ran}
   {}
 
   PDF const & EventReweighter::pdf() const{
     return pdf_;
   }
 
   std::vector<Event> EventReweighter::reweight(
       Event const & input_ev, int num_events
   ){
     auto res_events{ gen_res_events(input_ev, num_events) };
     if(res_events.empty()) return {};
     for(auto & event: res_events) event = scale_gen_(std::move(event));
     return rescale(input_ev, std::move(res_events));
   }
 
   EventTreatment EventReweighter::treatment(EventType type) const {
     return param_.treat.at(type);
   }
 
   std::vector<Event> EventReweighter::gen_res_events(
       Event const & ev,
       size_t phase_space_points
   ){
     assert(ev.variations().empty());
     status_.clear();
 
     switch(treatment(ev.type())){
     case EventTreatment::discard: {
       status_.emplace_back(StatusCode::discard);
       return {};
     }
     case EventTreatment::keep:
       if(! jets_pass_resummation_cuts(ev)) {
         status_.emplace_back(StatusCode::failed_resummation_cuts);
         return {};
       }
       else {
         status_.emplace_back(StatusCode::good);
         return {ev};
       }
     default:;
     }
     const double Born_shat = shat(ev);
 
     std::vector<Event> resummation_events;
     status_.reserve(phase_space_points);
     for(size_t psp_number = 0; psp_number < phase_space_points; ++psp_number){
       PhaseSpacePoint psp{ev, param_.psp_config, ran_};
       status_.emplace_back(psp.status());
       assert(psp.status() != StatusCode::unspecified);
       if(psp.status() != StatusCode::good) continue;
       assert(psp.weight() != 0.);
       if(psp.incoming()[0].E() > E_beam_ || psp.incoming()[1].E() > E_beam_) {
         status_.back() = StatusCode::too_much_energy;
         continue;
       }
 
       resummation_events.emplace_back(
         to_EventData( std::move(psp) ).cluster(
           param_.jet_param.def, param_.jet_param.min_pt
         )
       );
       auto & new_event = resummation_events.back();
+      assert( new_event.valid_hej_state(
+        param_.psp_config.max_ext_soft_pt_fraction,
+        param_.psp_config.min_extparton_pt ) );
       if( new_event.type() != ev.type() )
         throw std::logic_error{"Resummation Event does not match Born event"};
       new_event.generate_colours(ran_);
       assert(new_event.variations().empty());
       new_event.central().mur = ev.central().mur;
       new_event.central().muf = ev.central().muf;
       const double resum_shat = shat(new_event);
       new_event.central().weight *= ev.central().weight*Born_shat*Born_shat/
         (phase_space_points*resum_shat*resum_shat);
     }
     return resummation_events;
   }
 
   std::vector<Event> EventReweighter::rescale(
       Event const & Born_ev,
       std::vector<Event> events
   ) const{
     const double Born_pdf = pdf_factors(Born_ev).central;
     const double Born_ME = tree_matrix_element(Born_ev);
 
     for(auto & cur_event: events){
       const auto pdf = pdf_factors(cur_event);
       assert(pdf.variations.size() == cur_event.variations().size());
       const auto ME = matrix_elements(cur_event);
       assert(ME.variations.size() == cur_event.variations().size());
       cur_event.parameters() *= pdf*ME/(Born_pdf*Born_ME);
     }
     return events;
   };
 
   bool EventReweighter::jets_pass_resummation_cuts(
       Event const & ev
   ) const{
     const auto out_as_PseudoJet = to_PseudoJet(filter_partons(ev.outgoing()));
     fastjet::ClusterSequence cs{out_as_PseudoJet, param_.jet_param.def};
     return cs.inclusive_jets(param_.jet_param.min_pt).size() == ev.jets().size();
   }
 
   Weights EventReweighter::pdf_factors(Event const & ev) const{
     auto const & a = ev.incoming().front();
     auto const & b = ev.incoming().back();
     const double xa = a.p.e()/E_beam_;
     const double xb = b.p.e()/E_beam_;
 
     Weights result;
     std::unordered_map<double, double> known_pdf;
     result.central =
       pdf_.pdfpt(0,xa,ev.central().muf,a.type)*
       pdf_.pdfpt(1,xb,ev.central().muf,b.type);
     known_pdf.emplace(ev.central().muf, result.central);
 
     result.variations.reserve(ev.variations().size());
     for(auto const & ev_param: ev.variations()){
       const double muf = ev_param.muf;
       auto cur_pdf = known_pdf.find(muf);
       if(cur_pdf == known_pdf.end()){
         cur_pdf = known_pdf.emplace(
             muf,
             pdf_.pdfpt(0,xa,muf,a.type)*pdf_.pdfpt(1,xb,muf,b.type)
         ).first;
       }
       result.variations.emplace_back(cur_pdf->second);
     }
     assert(result.variations.size() == ev.variations().size());
     return result;
   }
 
   Weights
   EventReweighter::matrix_elements(Event const & ev) const{
     assert(param_.treat.count(ev.type()) > 0);
     if(param_.treat.find(ev.type())->second == EventTreatment::keep){
       return fixed_order_scale_ME(ev);
     }
 
     return MEt2_(ev);
   }
 
   double EventReweighter::tree_matrix_element(Event const & ev) const{
     assert(ev.variations().empty());
     assert(param_.treat.count(ev.type()) > 0);
     if(param_.treat.find(ev.type())->second == EventTreatment::keep){
       return fixed_order_scale_ME(ev).central;
     }
     return MEt2_.tree(ev).central;
   }
 
   Weights
   EventReweighter::fixed_order_scale_ME(Event const & ev) const{
     int alpha_s_power = 0;
     for(auto const & part: ev.outgoing()){
       if(is_parton(part))
         ++alpha_s_power;
       else if(part.type == pid::Higgs) {
         alpha_s_power += 2;
       }
       // nothing to do for other uncoloured particles
     }
 
     Weights result;
     result.central = pow(pdf_.Halphas(ev.central().mur), alpha_s_power);
     for(auto const & var: ev.variations()){
       result.variations.emplace_back(
           pow(pdf_.Halphas(var.mur), alpha_s_power)
       );
     }
     return result;
   }
 
 } // namespace HEJ