diff --git a/include/HEJ/Event.hh b/include/HEJ/Event.hh index 71b5503..6ce6cca 100644 --- a/include/HEJ/Event.hh +++ b/include/HEJ/Event.hh @@ -1,275 +1,275 @@ /** \file * \brief Declares the Event class and helpers * * \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie * \date 2019 * \copyright GPLv2 or later */ #pragma once #include #include #include #include #include #include "HEJ/event_types.hh" #include "HEJ/Parameters.hh" #include "HEJ/Particle.hh" #include "HEJ/RNG.hh" #include "fastjet/ClusterSequence.hh" namespace LHEF{ class HEPEUP; class HEPRUP; } namespace fastjet{ class JetDefinition; } namespace HEJ{ struct UnclusteredEvent; /** @brief An event with clustered jets * * This is the main HEJ 2 event class. * It contains kinematic information including jet clustering, * parameter (e.g. scale) settings and the event weight. */ class Event{ public: class EventData; //! No default Constructor Event() = delete; //! Event Constructor adding jet clustering to an unclustered event - //! @deprecated UnclusteredEvent will be replaced by EventData in HEJ 2.3.0 + //! @deprecated UnclusteredEvent will be replaced by EventData in HEJ 2.2.0 [[deprecated("UnclusteredEvent will be replaced by EventData")]] Event( UnclusteredEvent const & ev, fastjet::JetDefinition const & jet_def, double min_jet_pt ); //! The jets formed by the outgoing partons std::vector jets() const; //! Incoming particles std::array const & incoming() const{ return incoming_; } //! Outgoing particles std::vector const & outgoing() const{ return outgoing_; } //! Particle decays /** * The key in the returned map corresponds to the index in the * vector returned by outgoing() */ std::unordered_map> const & decays() const{ return decays_; } //! All chosen parameter, i.e. scale choices (const version) Parameters const & parameters() const{ return parameters_; } //! All chosen parameter, i.e. scale choices Parameters & parameters(){ return parameters_; } //! Central parameter choice (const version) EventParameters const & central() const{ return parameters_.central; } //! Central parameter choice EventParameters & central(){ return parameters_.central; } //! Parameter (scale) variations (const version) std::vector const & variations() const{ return parameters_.variations; } //! Parameter (scale) variations std::vector & variations(){ return parameters_.variations; } //! Parameter (scale) variation (const version) /** * @param i Index of the requested variation */ EventParameters const & variations(size_t i) const{ return parameters_.variations[i]; } //! Parameter (scale) variation /** * @param i Index of the requested variation */ EventParameters & variations(size_t i){ return parameters_.variations[i]; } //! Indices of the jets the outgoing partons belong to /** * @param jets Jets to be tested * @returns A vector containing, for each outgoing parton, * the index in the vector of jets the considered parton * belongs to. If the parton is not inside any of the * passed jets, the corresponding index is set to -1. */ std::vector particle_jet_indices( std::vector const & jets ) const{ return cs_.particle_jet_indices(jets); } //! Jet definition used for clustering fastjet::JetDefinition const & jet_def() const{ return cs_.jet_def(); } //! Minimum jet transverse momentum double min_jet_pt() const{ return min_jet_pt_; } //! Event type event_type::EventType type() const{ return type_; } //! Give colours to each particle /** * @returns true if new colours are generated, i.e. same as is_HEJ() * @details Colour ordering is done according to leading colour in the MRK * limit, see \cite Andersen:2011zd. This only affects \ref * is_HEJ() "HEJ" configurations, all other \ref event_type * "EventTypes" will be ignored. * @note This overwrites all previously set colours. */ bool generate_colours(HEJ::RNG &); private: //! \internal //! @brief Construct Event explicitly from input. /** This is only intended to be called from EventData. * * \warning The input is taken _as is_, sorting and classification has to be * done externally, i.e. by EventData */ Event( std::array && incoming, std::vector && outgoing, std::unordered_map> && decays, Parameters && parameters, fastjet::JetDefinition const & jet_def, double const min_jet_pt ): incoming_{std::move(incoming)}, outgoing_{std::move(outgoing)}, decays_{std::move(decays)}, parameters_{std::move(parameters)}, cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def }, min_jet_pt_{min_jet_pt} {}; std::array incoming_; std::vector outgoing_; std::unordered_map> decays_; Parameters parameters_; fastjet::ClusterSequence cs_; double min_jet_pt_; event_type::EventType type_; }; // end class Event //! Class to store general Event setup, i.e. Phase space and weights class Event::EventData{ public: //! Default Constructor EventData() = default; //! Constructor from LesHouches event information EventData(LHEF::HEPEUP const & hepeup); //! Constructor with all values given EventData( std::array const & incoming_, std::vector const & outgoing_, std::unordered_map> const & decays_, Parameters const & parameters_ ): incoming(incoming_), outgoing(outgoing_), decays(decays_), parameters(parameters_) {}; //! Move Constructor with all values given EventData( std::array && incoming_, std::vector && outgoing_, std::unordered_map> && decays_, Parameters && parameters_ ): incoming(std::move(incoming_)), outgoing(std::move(outgoing_)), decays(std::move(decays_)), parameters(std::move(parameters_)) {}; //! Generate an Event from the stored EventData. /** * @details Do jet clustering and classification. * Use this to generate an Event. * * @note Calling this function destroys EventData * * @param jet_def Jet definition * @param min_jet_pt minimal \f$p_T\f$ for each jet * * @returns Full clustered and classified event. */ Event cluster( fastjet::JetDefinition const & jet_def, double const min_jet_pt); //! Alias for cluster() Event operator()( fastjet::JetDefinition const & jet_def, double const min_jet_pt){ return cluster(jet_def, min_jet_pt); }; //! Sort particles in rapidity void sort(); std::array incoming; std::vector outgoing; std::unordered_map> decays; Parameters parameters; }; // end class EventData //! Square of the partonic centre-of-mass energy \f$\hat{s}\f$ double shat(Event const & ev); //! Convert an event to a LHEF::HEPEUP LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP *); // put deprecated warning at the end, so don't get the warning inside Event.hh, // additionally doxygen can not identify [[deprecated]] correctly struct [[deprecated("UnclusteredEvent will be replaced by EventData")]] UnclusteredEvent; //! An event before jet clustering - //! @deprecated UnclusteredEvent will be replaced by EventData in HEJ 2.3.0 + //! @deprecated UnclusteredEvent will be replaced by EventData in HEJ 2.2.0 struct UnclusteredEvent{ //! Default Constructor UnclusteredEvent() = default; //! Constructor from LesHouches event information UnclusteredEvent(LHEF::HEPEUP const & hepeup); std::array incoming; /**< Incoming Particles */ std::vector outgoing; /**< Outgoing Particles */ //! Particle decays in the format {outgoing index, decay products} std::unordered_map> decays; //! Central parameter (e.g. scale) choice EventParameters central; std::vector variations; /**< For parameter variation */ }; } diff --git a/include/HEJ/Weights.hh b/include/HEJ/Weights.hh index 1c1016f..2b0af46 100644 --- a/include/HEJ/Weights.hh +++ b/include/HEJ/Weights.hh @@ -1,13 +1,13 @@ /** \file * \brief Legacy Header for Weights * \note This Header was moved to "HEJ/Parameters.hh" - * \TODO remove in HEJ 2.3.0 + * \TODO remove in HEJ 2.2.0 * * \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie * \date 2019 * \copyright GPLv2 or later */ #warning "HEJ/Weights.hh is deprecated use HEJ/Parameters.hh instead" #pragma once #include "HEJ/Parameters.hh" diff --git a/src/Event.cc b/src/Event.cc index 66ec30f..7bde6ad 100644 --- a/src/Event.cc +++ b/src/Event.cc @@ -1,795 +1,795 @@ /** * \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie * \date 2019 * \copyright GPLv2 or later */ #include "HEJ/Event.hh" #include #include #include #include #include "LHEF/LHEF.h" #include "fastjet/JetDefinition.hh" #include "HEJ/Constants.hh" #include "HEJ/exceptions.hh" #include "HEJ/PDG_codes.hh" namespace HEJ{ namespace{ constexpr int status_in = -1; constexpr int status_decayed = 2; constexpr int status_out = 1; /// @name helper functions to determine event type //@{ /** * \brief check if final state valid for HEJ * * check if there is at most one photon, W, H, Z in the final state * and all the rest are quarks or gluons */ bool final_state_ok(std::vector const & outgoing){ bool has_AWZH_boson = false; for(auto const & out: outgoing){ if(is_AWZH_boson(out.type)){ if(has_AWZH_boson) return false; has_AWZH_boson = true; } else if(! is_parton(out.type)) return false; } return true; } template Iterator remove_AWZH(Iterator begin, Iterator end){ return std::remove_if( begin, end, [](Particle const & p){return is_AWZH_boson(p);} ); } template bool valid_outgoing(Iterator begin, Iterator end){ return std::distance(begin, end) >= 2 && std::is_sorted(begin, end, rapidity_less{}) && std::count_if( begin, end, [](Particle const & s){return is_AWZH_boson(s);} ) < 2; } /** * \brief function which determines if type change is consistent with W emission. * @param in incoming Particle * @param out outgoing Particle * * Ensures that change type of quark line is possible by a flavour changing * W emission. */ bool is_W_Current(ParticleID in, ParticleID out){ if((in==1 && out==2)||(in==2 && out==1)){ return true; } else if((in==-1 && out==-2)||(in==-2 && out==-1)){ return true; } else if((in==3 && out==4)||(in==4 && out==3)){ return true; } else if((in==-3 && out==-4)||(in==-4 && out==-3)){ return true; } else{ return false; } } /** * \brief checks if particle type remains same from incoming to outgoing * @param in incoming Particle * @param out outgoing Particle */ bool is_Pure_Current(ParticleID in, ParticleID out){ if(abs(in)<=6 || in==21) return (in==out); else return false; } // @note that this changes the outgoing range! template bool is_FKL( ConstIterator begin_incoming, ConstIterator end_incoming, Iterator begin_outgoing, Iterator end_outgoing ){ assert(std::distance(begin_incoming, end_incoming) == 2); assert(std::distance(begin_outgoing, end_outgoing) >= 2); // One photon, W, H, Z in the final state is allowed. // Remove it for remaining tests, end_outgoing = remove_AWZH(begin_outgoing, end_outgoing); if(std::all_of( begin_outgoing + 1, end_outgoing - 1, [](Particle const & p){ return p.type == pid::gluon; }) ){ // Test if this is a standard FKL configuration. if (is_Pure_Current(begin_incoming->type, begin_outgoing->type) && is_Pure_Current((end_incoming-1)->type, (end_outgoing-1)->type)){ return true; } } return false; } template bool is_W_FKL( ConstIterator begin_incoming, ConstIterator end_incoming, Iterator begin_outgoing, Iterator end_outgoing ){ assert(std::distance(begin_incoming, end_incoming) == 2); assert(std::distance(begin_outgoing, end_outgoing) >= 2); // One photon, W, H, Z in the final state is allowed. // Remove it for remaining tests, end_outgoing = remove_AWZH(begin_outgoing, end_outgoing); if(std::all_of( begin_outgoing + 1, end_outgoing - 1, [](Particle const & p){ return p.type == pid::gluon; }) ){ // Test if this is a standard FKL configuration. if(is_W_Current(begin_incoming->type, begin_outgoing->type) && is_Pure_Current((end_incoming-1)->type, (end_outgoing-1)->type)){ return true; } else if(is_Pure_Current(begin_incoming->type, begin_outgoing->type) && is_W_Current((end_incoming-1)->type, (end_outgoing-1)->type)){ return true; } } return false; } bool is_FKL( std::array const & incoming, std::vector outgoing ){ assert(std::is_sorted(begin(incoming), end(incoming), pz_less{})); assert(valid_outgoing(begin(outgoing), end(outgoing))); const auto WEmit = std::find_if( begin(outgoing), end(outgoing), [](Particle const & s){ return abs(s.type) == pid::Wp; } ); if (WEmit != end(outgoing) && abs(WEmit->type) == pid::Wp){ return is_W_FKL( begin(incoming), end(incoming), begin(outgoing), end(outgoing) ); } else{ return is_FKL( begin(incoming), end(incoming), begin(outgoing), end(outgoing) ); } } bool has_2_jets(Event const & event){ return event.jets().size() >= 2; } /** * \brief Checks whether event is unordered backwards * @param ev Event * @returns Is Event Unordered Backwards * * - Checks there is more than 3 constuents in the final state * - Checks there is more than 3 jets * - Checks the most backwards parton is a gluon * - Checks the most forwards jet is not a gluon * - Checks the rest of the event is FKL * - Checks the second most backwards is not a different boson * - Checks the unordered gluon actually forms a jet */ bool is_unordered_backward(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); if(out.size() < 3) return false; if(ev.jets().size() < 3) return false; if(in.front().type == pid::gluon) return false; if(out.front().type != pid::gluon) return false; // When skipping the unordered emission // the remainder should be a regular FKL event, // except that the (new) first outgoing particle must not be a A,W,Z,H. const auto FKL_begin = next(begin(out)); if(is_AWZH_boson(*FKL_begin)) return false; if(!is_FKL(in, {FKL_begin, end(out)})) return false; // check that the unordered gluon forms an extra jet const auto jets = sorted_by_rapidity(ev.jets()); const auto indices = ev.particle_jet_indices({jets.front()}); return indices[0] >= 0 && indices[1] == -1; } /** * \brief Checks for a forward unordered gluon emission * @param ev Event * @returns Is the event a forward unordered emission * * \see is_unordered_backward */ bool is_unordered_forward(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); if(out.size() < 3) return false; if(ev.jets().size() < 3) return false; if(in.back().type == pid::gluon) return false; if(out.back().type != pid::gluon) return false; // When skipping the unordered emission // the remainder should be a regular FKL event, // except that the (new) last outgoing particle must not be a A,W,Z,H. const auto FKL_end = prev(end(out)); if(is_AWZH_boson(*prev(FKL_end))) return false; if(!is_FKL(in, {begin(out), FKL_end})) return false; // check that the unordered gluon forms an extra jet const auto jets = sorted_by_rapidity(ev.jets()); const auto indices = ev.particle_jet_indices({jets.back()}); return indices.back() >= 0 && indices[indices.size()-2] == -1; } /** * \brief Checks for a forward extremal qqx * @param ev Event * @returns Is the event a forward extremal qqx event * * Checks there is 3 or more than 3 constituents in the final state * Checks there is 3 or more than 3 jets * Checks most forwards incoming is gluon * Checks most extremal particle is not a Higgs (either direction) * Checks the second most forwards particle is not Higgs boson * Checks the most forwards parton is a either quark or anti-quark. * Checks the second most forwards parton is anti-quark or quark. * Checks the qqbar pair form 2 separate jets. */ bool is_Ex_qqxf(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); int fkl_end=2; if(out.size() < 3) return false; if(ev.jets().size() < 3) return false; if(in.back().type != pid::gluon) return false; if(out.back().type == pid::Higgs || out.front().type == pid::Higgs || out.rbegin()[1].type == pid::Higgs) return false; // if extremal AWZ if(is_AWZ_boson(out.back())){ // if extremal AWZ fkl_end++; if (is_quark(out.rbegin()[1])){ //if second quark if (!(is_antiquark(out.rbegin()[2]))) return false;// third must be anti-quark } else if (is_antiquark(out.rbegin()[1])){ //if second anti-quark if (!(is_quark(out.rbegin()[2]))) return false;// third must be quark } else return false; } else if (is_quark(out.rbegin()[0])){ //if extremal quark if(is_AWZ_boson(out.rbegin()[1])){ // if second AWZ fkl_end++; if (!(is_antiquark(out.rbegin()[2]))) return false;// third must be anti-quark } else if (!(is_antiquark(out.rbegin()[1]))) return false;// second must be anti-quark } else if (is_antiquark(out.rbegin()[0])){ //if extremal anti-quark if(is_AWZ_boson(out.rbegin()[1])){ // if second AWZ fkl_end++; if (!(is_quark(out.rbegin()[2]))) return false;// third must be quark } else if (!(is_quark(out.rbegin()[1]))) return false;// second must be quark } else return false; // When skipping the qqbar // New last outgoing particle must not be a Higgs if (out.rbegin()[fkl_end].type == pid::Higgs) return false; const auto jets = fastjet::sorted_by_rapidity(ev.jets()); const auto indices = ev.particle_jet_indices({jets}); // Ensure qqbar pair are in separate jets if(indices[indices.size()-2] != indices[indices.size()-1]-1) return false; // Opposite current should be logical to process if (is_AWZ_boson(out.front().type)){ return (is_Pure_Current(in.front().type, out[1].type) || is_W_Current(in.front().type,out[1].type)); } else return (is_Pure_Current(in.front().type, out[0].type) || is_W_Current(in.front().type,out[0].type)); } /** * \brief Checks for a backward extremal qqx * @param ev Event * @returns Is the event a backward extremal qqx event * * Checks there is 3 or more than 3 constituents in the final state * Checks there is 3 or more than 3 jets * Checks most backwards incoming is gluon * Checks most extremal particle is not a Higgs (either direction) y * Checks the second most backwards particle is not Higgs boson y * Checks the most backwards parton is a either quark or anti-quark. y * Checks the second most backwards parton is anti-quark or quark. y * Checks the qqbar pair form 2 separate jets. */ bool is_Ex_qqxb(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); int fkl_start=2; if(out.size() < 3) return false; if(ev.jets().size() < 3) return false; if(in.front().type != pid::gluon) return false; if(out.back().type == pid::Higgs || out.front().type == pid::Higgs || out[1].type == pid::Higgs) return false; if(is_AWZ_boson(out.front())){ // if extremal AWZ fkl_start++; if (is_quark(out[1])){ //if second quark if (!(is_antiquark(out[2]))) return false;// third must be anti-quark } else if (is_antiquark(out[1])){ //if second anti-quark if (!(is_quark(out[2]))) return false;// third must be quark } else return false; } else if (is_quark(out[0])){ // if extremal quark if(is_AWZ_boson(out[1])){ // if second AWZ fkl_start++; if (!(is_antiquark(out[2]))) return false;// third must be anti-quark } else if (!(is_antiquark(out[1]))) return false;// second must be anti-quark } else if (is_antiquark(out[0])){ //if extremal anti-quark if(is_AWZ_boson(out[1])){ // if second AWZ fkl_start++; if (!(is_quark(out[2]))) return false;// third must be quark } else if (!(is_quark(out[1]))) return false;// second must be quark } else return false; // When skipping the qqbar // New last outgoing particle must not be a Higgs. if (out[fkl_start].type == pid::Higgs) return false; const auto jets = fastjet::sorted_by_rapidity(ev.jets()); const auto indices = ev.particle_jet_indices({jets}); // Ensure qqbar pair form separate jets. if(indices[0] != indices[1]-1) return false; // Other current should be logical to process if (is_AWZ_boson(out.back())){ return (is_Pure_Current(in.back().type, out.rbegin()[1].type) || is_W_Current(in.back().type,out.rbegin()[1].type)); } else return (is_Pure_Current(in.back().type, out.rbegin()[0].type) || is_W_Current(in.back().type, out.rbegin()[0].type)); } /** * \brief Checks for a central qqx * @param ev Event * @returns Is the event a central extremal qqx event * * Checks there is 4 or more than 4 constuents in the final state * Checks there is 4 or more than 4 jets * Checks most extremal particle is not a Higgs (either direction) y * Checks for a central quark in the outgoing states * Checks for adjacent anti-quark parton. (allowing for AWZ boson emission between) * Checks external currents are logically sound. */ bool is_Mid_qqx(Event const & ev){ auto const & in = ev.incoming(); auto const & out = ev.outgoing(); assert(std::is_sorted(begin(in), end(in), pz_less{})); assert(valid_outgoing(begin(out), end(out))); if(out.size() < 4) return false; if(ev.jets().size() < 4) return false; if(out.back().type == pid::Higgs || out.front().type == pid::Higgs) return false; size_t start_FKL=0; size_t end_FKL=0; if (is_AWZ_boson(out.back())){ end_FKL++; } if (is_AWZ_boson(out.front())){ start_FKL++; } if ((is_Pure_Current(in.back().type,out.rbegin()[end_FKL].type) && is_Pure_Current(in.front().type,out[start_FKL].type))){ //nothing to do } else if (is_W_Current(in.back().type,out.rbegin()[end_FKL].type) && is_Pure_Current(in.front().type,out[start_FKL].type)){ //nothing to do } else if (!(is_Pure_Current(in.back().type,out.rbegin()[end_FKL].type) && is_W_Current(in.front().type,out[start_FKL].type))){ return false; } const auto jets = fastjet::sorted_by_rapidity(ev.jets()); const auto indices = ev.particle_jet_indices({jets}); auto const out_partons = filter_partons(out); for (size_t i = 1; i(hepeup.IDUP[i]); const fastjet::PseudoJet momentum{ hepeup.PUP[i][0], hepeup.PUP[i][1], hepeup.PUP[i][2], hepeup.PUP[i][3] }; if(is_parton(id)) return Particle{ id, std::move(momentum), hepeup.ICOLUP[i] }; return Particle{ id, std::move(momentum), {} }; } bool is_decay_product(std::pair const & mothers){ if(mothers.first == 0) return false; return mothers.second == 0 || mothers.first == mothers.second; } } // namespace anonymous Event::EventData::EventData(LHEF::HEPEUP const & hepeup){ parameters.central = EventParameters{ hepeup.scales.mur, hepeup.scales.muf, hepeup.weight() }; size_t in_idx = 0; for (int i = 0; i < hepeup.NUP; ++i) { // skip decay products // we will add them later on, but we have to ensure that // the decayed particle is added before if(is_decay_product(hepeup.MOTHUP[i])) continue; auto particle = extract_particle(hepeup, i); // needed to identify mother particles for decay products particle.p.set_user_index(i+1); if(hepeup.ISTUP[i] == status_in){ if(in_idx > incoming.size()) { throw std::invalid_argument{ "Event has too many incoming particles" }; } incoming[in_idx++] = std::move(particle); } else outgoing.emplace_back(std::move(particle)); } // add decay products for (int i = 0; i < hepeup.NUP; ++i) { if(!is_decay_product(hepeup.MOTHUP[i])) continue; const int mother_id = hepeup.MOTHUP[i].first; const auto mother = std::find_if( begin(outgoing), end(outgoing), [mother_id](Particle const & particle){ return particle.p.user_index() == mother_id; } ); if(mother == end(outgoing)){ throw std::invalid_argument{"invalid decay product parent"}; } const int mother_idx = std::distance(begin(outgoing), mother); assert(mother_idx >= 0); decays[mother_idx].emplace_back(extract_particle(hepeup, i)); } } Event::Event( UnclusteredEvent const & ev, fastjet::JetDefinition const & jet_def, double const min_jet_pt ): Event( Event::EventData{ ev.incoming, ev.outgoing, ev.decays, Parameters{ev.central, ev.variations} }.cluster(jet_def, min_jet_pt) ) {} - //! @TODO remove in HEJ 2.3.0 + //! @TODO remove in HEJ 2.2.0 UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){ Event::EventData const evData{hepeup}; incoming = evData.incoming; outgoing = evData.outgoing; decays = evData.decays; central = evData.parameters.central; variations = evData.parameters.variations; } void Event::EventData::sort(){ // sort particles std::sort( begin(incoming), end(incoming), [](Particle o1, Particle o2){return o1.p.pz() idx(old_outgoing.size()); std::iota(idx.begin(), idx.end(), 0); std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){ return old_outgoing[i].rapidity() < old_outgoing[j].rapidity(); }); outgoing.clear(); outgoing.reserve(old_outgoing.size()); for(size_t i: idx) { outgoing.emplace_back(std::move(old_outgoing[i])); } // find decays again if(!decays.empty()){ auto old_decays = std::move(decays); decays.clear(); for(size_t i=0; isecond)); } assert(old_decays.size() == decays.size()); } } Event Event::EventData::cluster( fastjet::JetDefinition const & jet_def, double const min_jet_pt ){ sort(); Event ev{ std::move(incoming), std::move(outgoing), std::move(decays), std::move(parameters), jet_def, min_jet_pt }; assert(std::is_sorted(begin(ev.outgoing_), end(ev.outgoing_), rapidity_less{})); ev.type_ = classify(ev); return ev; } namespace { void connect_incoming(Particle & in, int & colour, int & anti_colour){ in.colour = std::make_pair(anti_colour, colour); // gluon if(in.type == pid::gluon) return; if(in.type > 0){ // quark assert(is_quark(in)); in.colour->second = 0; colour*=-1; return; } // anti-quark assert(is_antiquark(in)); in.colour->first = 0; anti_colour*=-1; return; } } bool Event::generate_colours(RNG & ran){ // generate only for HEJ events if(!event_type::is_HEJ(type())) return false; assert(std::is_sorted( begin(outgoing()), end(outgoing()), rapidity_less{})); assert(incoming()[0].pz() < incoming()[1].pz()); // positive (anti-)colour -> can connect // negative (anti-)colour -> not available/used up by (anti-)quark int colour = COLOUR_OFFSET; int anti_colour = colour+1; // initialise first connect_incoming(incoming_[0], colour, anti_colour); for(auto & part: outgoing_){ assert(colour>0 || anti_colour>0); if(part.type == ParticleID::gluon){ // gluon if(colour>0 && anti_colour>0){ // on g line => connect to colour OR anti-colour (random) if(ran.flat() < 0.5){ part.colour = std::make_pair(colour+2,colour); colour+=2; } else { part.colour = std::make_pair(anti_colour, anti_colour+2); anti_colour+=2; } } else if(colour > 0){ // on q line => connect to available colour part.colour = std::make_pair(colour+2, colour); colour+=2; } else { assert(colour<0 && anti_colour>0); // on qx line => connect to available anti-colour part.colour = std::make_pair(anti_colour, anti_colour+2); anti_colour+=2; } } else if(is_quark(part)) { // quark assert(anti_colour>0); if(colour>0){ // on g line => connect and remove anti-colour part.colour = std::make_pair(anti_colour, 0); anti_colour+=2; anti_colour*=-1; } else { // on qx line => new colour colour*=-1; part.colour = std::make_pair(colour, 0); } } else if(is_antiquark(part)) { // anti-quark assert(colour>0); if(anti_colour>0){ // on g line => connect and remove colour part.colour = std::make_pair(0, colour); colour+=2; colour*=-1; } else { // on q line => new anti-colour anti_colour*=-1; part.colour = std::make_pair(0, anti_colour); } } // else not a parton } // Connect last connect_incoming(incoming_[1], anti_colour, colour); return true; } // generate_colours std::vector Event::jets() const{ return cs_.inclusive_jets(min_jet_pt_); } /** * \brief Returns the invarient mass of the event * @param ev Event * @returns s hat * * Makes use of the FastJet PseudoJet function m2(). * Applies this function to the sum of the incoming partons. */ double shat(Event const & ev){ return (ev.incoming()[0].p + ev.incoming()[1].p).m2(); } LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){ LHEF::HEPEUP result; result.heprup = heprup; result.weights = {{event.central().weight, nullptr}}; for(auto const & var: event.variations()){ result.weights.emplace_back(var.weight, nullptr); } size_t num_particles = event.incoming().size() + event.outgoing().size(); for(auto const & decay: event.decays()) num_particles += decay.second.size(); result.NUP = num_particles; // the following entries are pretty much meaningless result.IDPRUP = event.type()+1; // event ID result.AQEDUP = 1./128.; // alpha_EW //result.AQCDUP = 0.118 // alpha_QCD // end meaningless part result.XWGTUP = event.central().weight; result.SCALUP = event.central().muf; result.scales.muf = event.central().muf; result.scales.mur = event.central().mur; result.scales.SCALUP = event.central().muf; result.pdfinfo.p1 = event.incoming().front().type; result.pdfinfo.p2 = event.incoming().back().type; result.pdfinfo.scale = event.central().muf; result.IDUP.reserve(num_particles); // PID result.ISTUP.reserve(num_particles); // status (in, out, decay) result.PUP.reserve(num_particles); // momentum result.MOTHUP.reserve(num_particles); // index mother particle result.ICOLUP.reserve(num_particles); // colour // incoming for(Particle const & in: event.incoming()){ result.IDUP.emplace_back(in.type); result.ISTUP.emplace_back(status_in); result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()}); result.MOTHUP.emplace_back(0, 0); assert(in.colour); result.ICOLUP.emplace_back(*in.colour); } // outgoing for(size_t i = 0; i < event.outgoing().size(); ++i){ Particle const & out = event.outgoing()[i]; result.IDUP.emplace_back(out.type); const int status = event.decays().count(i)?status_decayed:status_out; result.ISTUP.emplace_back(status); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); result.MOTHUP.emplace_back(1, 2); if(out.colour) result.ICOLUP.emplace_back(*out.colour); else{ assert(is_AWZH_boson(out)); result.ICOLUP.emplace_back(std::make_pair(0,0)); } } // decays for(auto const & decay: event.decays()){ for(auto const out: decay.second){ result.IDUP.emplace_back(out.type); result.ISTUP.emplace_back(status_out); result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()}); const size_t mother_idx = 1 + event.incoming().size() + decay.first; result.MOTHUP.emplace_back(mother_idx, mother_idx); result.ICOLUP.emplace_back(0,0); } } assert(result.ICOLUP.size() == num_particles); static constexpr double unknown_spin = 9.; //per Les Houches accord result.VTIMUP = std::vector(num_particles, unknown_spin); result.SPINUP = result.VTIMUP; return result; } }