Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F8309371
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
74 KB
Subscribers
None
View Options
diff --git a/Cards/param_card_HiggsBasis.dat b/Cards/param_card_HiggsBasis.dat
index ee09e34..d927ccd 100644
--- a/Cards/param_card_HiggsBasis.dat
+++ b/Cards/param_card_HiggsBasis.dat
@@ -1,224 +1,180 @@
######################################################################
## PARAM_CARD AUTOMATICALY GENERATED BY MG5 FOLLOWING UFO MODEL ####
######################################################################
## ##
## Width set on Auto will be computed following the information ##
## present in the decay.py files of the model. ##
## See arXiv:1402.1178 for more details. ##
## ##
######################################################################
###################################
## INFORMATION FOR LOOP
###################################
Block loop
1 9.118800e+01 # MU_R
###################################
## INFORMATION FOR MASS
###################################
Block mass
5 4.700000e+00 # MB
6 1.730000e+02 # MT
15 1.730000e+02 # MTAU
23 9.118800e+01 # MZ
25 1.250000e+02 # MH
-## Dependent parameters, given by model restrictions.
-## Those values should be edited following the
-## analytical expression. MG5 ignores those values
-## but they are important for interfacing the output of MG5
-## to external program such as Pythia.
- 1 0.000000 # d : 0.0
- 2 0.000000 # u : 0.0
- 3 0.000000 # s : 0.0
- 4 0.000000 # c : 0.0
- 11 0.000000 # e- : 0.0
- 12 0.000000 # ve : 0.0
- 13 0.000000 # mu- : 0.0
- 14 0.000000 # vm : 0.0
- 16 0.000000 # vt : 0.0
- 21 0.000000 # g : 0.0
- 22 0.000000 # a : 0.0
- 24 79.824360 # w+ : cmath.sqrt((ee__exp__2*vev__exp__2)/sw__exp__2)/2.
+ 1 0.000000 # Md
+ 2 0.000000 # Mu
+ 3 0.000000 # Ms
+ 4 0.000000 # Mc
+ 11 0.000000 # Me-
+ 12 0.000000 # Mve
+ 13 0.000000 # Mmu-
+ 14 0.000000 # Mvm
+ 16 0.000000 # Mvt
+ 21 0.000000 # Mg
+ 22 0.000000 # Ma
+ 24 79.824360 # MW
###################################
## INFORMATION FOR NEWCOUP
###################################
Block basis
0 Higgs
Block newcoup
0 1.000000e-01 # dCz
1 1.000000e-01 # Czbx
2 1.000000e-01 # Cgg
3 1.000000e-01 # Czz
4 1.000000e-01 # Caa
5 1.000000e-01 # Cza
6 1.000000e-01 # CTgg
7 1.000000e-01 # CTzz
8 1.000000e-01 # CTaa
9 1.000000e-01 # CTza
10 1.000000e-01 # dYu11
11 1.000000e-01 # dYu12
12 1.000000e-01 # dYu13
13 1.000000e-01 # dYu22
14 1.000000e-01 # dYu23
15 1.000000e-01 # dYu33
16 1.000000e-01 # dYd11
17 1.000000e-01 # dYd12
18 1.000000e-01 # dYd13
19 1.000000e-01 # dYd22
20 1.000000e-01 # dYd23
21 1.000000e-01 # dYd33
22 1.000000e-01 # Su11
23 1.000000e-01 # Su12
24 1.000000e-01 # Su13
25 1.000000e-01 # Su22
26 1.000000e-01 # Su23
27 1.000000e-01 # Su33
28 1.000000e-01 # Sd11
29 1.000000e-01 # Sd12
30 1.000000e-01 # Sd13
31 1.000000e-01 # Sd22
32 1.000000e-01 # Sd23
33 1.000000e-01 # Sd33
34 1.000000e-01 # dYe11
35 1.000000e-01 # dYe12
36 1.000000e-01 # dYe13
37 1.000000e-01 # dYe22
38 1.000000e-01 # dYe23
39 1.000000e-01 # dYe33
40 1.000000e-01 # Se11
41 1.000000e-01 # Se12
42 1.000000e-01 # Se13
43 1.000000e-01 # Se22
44 1.000000e-01 # Se23
45 1.000000e-01 # Se33
46 1.000000e-01 # dGLze11
47 1.000000e-01 # dGLze12
48 1.000000e-01 # dGLze13
49 1.000000e-01 # dGLze22
50 1.000000e-01 # dGLze23
51 1.000000e-01 # dGLze33
52 1.000000e-01 # dGRze11
53 1.000000e-01 # dGRze12
54 1.000000e-01 # dGRze13
55 1.000000e-01 # dGRze22
56 1.000000e-01 # dGRze23
57 1.000000e-01 # dGRze33
58 1.000000e-01 # dGLzu11
59 1.000000e-01 # dGLzu12
60 1.000000e-01 # dGLzu13
61 1.000000e-01 # dGLzu22
62 1.000000e-01 # dGLzu23
63 1.000000e-01 # dGLzu33
64 1.000000e-01 # dGLzd11
65 1.000000e-01 # dGLzd12
66 1.000000e-01 # dGLzd13
67 1.000000e-01 # dGLzd22
68 1.000000e-01 # dGLzd23
69 1.000000e-01 # dGLzd33
70 1.000000e-01 # dGRzu11
71 1.000000e-01 # dGRzu12
72 1.000000e-01 # dGRzu13
73 1.000000e-01 # dGRzu22
74 1.000000e-01 # dGRzu23
75 1.000000e-01 # dGRzu33
76 1.000000e-01 # dGRzd11
77 1.000000e-01 # dGRzd12
78 1.000000e-01 # dGRzd13
79 1.000000e-01 # dGRzd22
80 1.000000e-01 # dGRzd23
81 1.000000e-01 # dGRzd33
82 1.000000e-01 # dGLwl11
83 1.000000e-01 # dGLwl12
84 1.000000e-01 # dGLwl13
85 1.000000e-01 # dGLwl22
86 1.000000e-01 # dGLwl23
87 1.000000e-01 # dGLwl33
88 1.000000e-01 # dGRwq11
89 1.000000e-01 # dGRwq12
90 1.000000e-01 # dGRwq13
91 1.000000e-01 # dGRwq22
92 1.000000e-01 # dGRwq23
93 1.000000e-01 # dGRwq33
94 1.000000e-01 # dM
95 1.000000e-01 # Lz
96 1.000000e-01 # C3G
97 1.000000e-01 # LTz
98 1.000000e-01 # CT3G
###################################
## INFORMATION FOR SMINPUTS
###################################
Block sminputs
1 1.325070e+02 # aEWM1
2 1.166390e-05 # Gf
3 1.180000e-01 # aS
###################################
## INFORMATION FOR YUKAWA
###################################
Block yukawa
5 4.700000e+00 # ymb
6 1.730000e+02 # ymt
15 1.777000e+00 # ymtau
###################################
## INFORMATION FOR DECAY
###################################
DECAY 6 1.491500e+00 # WT
DECAY 23 2.441404e+00 # WZ
DECAY 24 2.047600e+00 # WW
DECAY 25 6.382339e-03 # WH
-## Dependent parameters, given by model restrictions.
-## Those values should be edited following the
-## analytical expression. MG5 ignores those values
-## but they are important for interfacing the output of MG5
-## to external program such as Pythia.
-DECAY 1 0.000000 # d : 0.0
-DECAY 2 0.000000 # u : 0.0
-DECAY 3 0.000000 # s : 0.0
-DECAY 4 0.000000 # c : 0.0
-DECAY 5 0.000000 # b : 0.0
-DECAY 11 0.000000 # e- : 0.0
-DECAY 12 0.000000 # ve : 0.0
-DECAY 13 0.000000 # mu- : 0.0
-DECAY 14 0.000000 # vm : 0.0
-DECAY 15 0.000000 # ta- : 0.0
-DECAY 16 0.000000 # vt : 0.0
-DECAY 21 0.000000 # g : 0.0
-DECAY 22 0.000000 # a : 0.0
-DECAY 82 0.000000 # ghg : 0.0
-DECAY 9000001 0.000000 # gha : 0.0
-DECAY 9000002 2.495200 # ghz : WZ
-DECAY 9000003 2.085000 # ghwp : WW
-DECAY 9000004 2.085000 # ghwm : WW
-#===========================================================
-# QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE)
-#===========================================================
-
-Block QNUMBERS 9000001 # gha
- 1 0 # 3 times electric charge
- 2 1 # number of spin states (2S+1)
- 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
- 4 1 # Particle/Antiparticle distinction (0=own anti)
-Block QNUMBERS 9000002 # ghz
- 1 0 # 3 times electric charge
- 2 1 # number of spin states (2S+1)
- 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
- 4 1 # Particle/Antiparticle distinction (0=own anti)
-Block QNUMBERS 9000003 # ghwp
- 1 3 # 3 times electric charge
- 2 1 # number of spin states (2S+1)
- 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
- 4 1 # Particle/Antiparticle distinction (0=own anti)
-Block QNUMBERS 9000004 # ghwm
- 1 -3 # 3 times electric charge
- 2 1 # number of spin states (2S+1)
- 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
- 4 1 # Particle/Antiparticle distinction (0=own anti)
-Block QNUMBERS 82 # ghg
- 1 0 # 3 times electric charge
- 2 1 # number of spin states (2S+1)
- 3 8 # colour rep (1: singlet, 3: triplet, 8: octet)
- 4 1 # Particle/Antiparticle distinction (0=own anti)
+DECAY 1 0.000000 # d
+DECAY 2 0.000000 # u
+DECAY 3 0.000000 # s
+DECAY 4 0.000000 # c
+DECAY 5 0.000000 # b
+DECAY 11 0.000000 # e-
+DECAY 12 0.000000 # ve
+DECAY 13 0.000000 # mu-
+DECAY 14 0.000000 # vm
+DECAY 15 0.000000 # ta-
+DECAY 16 0.000000 # vt
+DECAY 21 0.000000 # g
+DECAY 22 0.000000 # a
diff --git a/Cards/param_card_WarsawBasis.dat b/Cards/param_card_WarsawBasis.dat
index a521048..9f377b3 100644
--- a/Cards/param_card_WarsawBasis.dat
+++ b/Cards/param_card_WarsawBasis.dat
@@ -1,220 +1,180 @@
######################################################################
## PARAM_CARD AUTOMATICALY GENERATED BY MG5 FOLLOWING UFO MODEL ####
######################################################################
## ##
## Width set on Auto will be computed following the information ##
## present in the decay.py files of the model. ##
## See arXiv:1402.1178 for more details. ##
## ##
######################################################################
###################################
## INFORMATION FOR LOOP
###################################
Block loop
1 9.118800e+01 # MU_R
###################################
## INFORMATION FOR MASS
###################################
Block mass
5 4.700000e+00 # MB
6 1.730000e+02 # MT
15 1.770000e+00 # MTAU
24 7.982400e+01 # MW
23 9.118800e+01 # MZ
25 1.250000e+02 # MH
-## Dependent parameters, given by model restrictions.
-## Those values should be edited following the
-## analytical expression. MG5 ignores those values
-## but they are important for interfacing the output of MG5
-## to external program such as Pythia.
- 1 0.000000 # d : 0.0
- 2 0.000000 # u : 0.0
- 3 0.000000 # s : 0.0
- 4 0.000000 # c : 0.0
- 11 0.000000 # e- : 0.0
- 12 0.000000 # ve : 0.0
- 13 0.000000 # mu- : 0.0
- 14 0.000000 # vm : 0.0
- # 15 0.000000 # ta- : 0.0
- 16 0.000000 # vt : 0.0
- 21 0.000000 # g : 0.0
- 22 0.000000 # a : 0.0
+ 1 0.000000 # Md
+ 2 0.000000 # Mu
+ 3 0.000000 # Ms
+ 4 0.000000 # Mc
+ 11 0.000000 # Me
+ 12 0.000000 # Mve
+ 13 0.000000 # Mmu
+ 14 0.000000 # Mvm
+ 16 0.000000 # Mvt
+ 21 0.000000 # Mg
+ 22 0.000000 # Ma
###################################
## INFORMATION FOR NEWCOUP
###################################
Block basis
0 Warsaw # basis choice
Block newcoup
0 -9.572e-02 # cH
1 6.699e-01 # cT
2 -3.058e-01 # cGG
3 -5.971e-01 # cWW
4 5.869e-01 # cBB
- 5 -7.207e-01 # cWB
- 6 5.202e-01 # ctGG
- 7 -6.703e-01 # ctWW
- 8 6.553e-01 # ctBB
- 9 -4.455e-01 # ctWB
- 10 6.025e-01 # cpll
- 11 6.501e-01 # cHl11
- 12 -2.151e-01 # cHl12
- 13 -5.386e-01 # cHl13
- 14 -8.262e-01 # cHl22
- 15 3.028e-02 # cHl23
- 16 -9.184e-01 # cHl33
- 17 -3.037e-01 # cpHl11
- 18 -6.719e-01 # cpHl12
- 19 -7.325e-01 # cpHl13
- 20 -8.740e-01 # cpHl22
- 21 3.968e-01 # cpHl23
- 22 -9.836e-01 # cpHl33
- 23 8.308e-03 # cHe11
- 24 -3.188e-01 # cHe12
- 25 -6.429e-01 # cHe13
- 26 -8.712e-01 # cHe22
- 27 9.998e-02 # cHe23
- 28 7.218e-01 # cHe33
- 29 -9.756e-01 # cHq11
- 30 -6.570e-02 # cHq12
- 31 -2.837e-01 # cHq13
- 32 -1.654e-01 # cHq22
- 33 -6.159e-02 # cHq23
- 34 3.886e-01 # cHq33
- 35 -3.362e-01 # cpHq11
- 36 -6.913e-01 # cpHq12
- 37 9.980e-01 # cpHq13
- 38 -5.163e-01 # cpHq22
- 39 -4.847e-01 # cpHq23
- 40 5.008e-01 # cpHq33
- 41 -3.623e-01 # cHu11
- 42 -7.063e-01 # cHu12
- 43 -5.884e-01 # cHu13
- 44 -1.006e-01 # cHu22
- 45 4.380e-02 # cHu23
- 46 -7.950e-01 # cHu33
- 47 -6.724e-01 # cHd11
- 48 -1.832e-01 # cHd12
- 49 -1.128e-01 # cHd13
- 50 3.676e-01 # cHd22
- 51 -7.400e-01 # cHd23
- 52 -2.637e-01 # cHd33
- 53 7.011e-01 # cHud11
- 54 6.144e-01 # cHud12
- 55 3.666e-01 # cHud13
- 56 -6.414e-01 # cHud22
- 57 -5.936e-01 # cHud23
- 58 -8.503e-01 # cHud33
- 59 -4.687e-01 # cu11Re
- 60 -8.290e-01 # cu12Re
- 61 -4.811e-01 # cu13Re
- 62 -3.879e-01 # cu22Re
- 63 4.851e-02 # cu23Re
- 64 -8.025e-01 # cu33Re
- 65 -2.688e-01 # cu11Im
- 66 4.398e-01 # cu12Im
- 67 9.733e-01 # cu13Im
- 68 -7.502e-01 # cu22Im
- 69 -4.237e-01 # cu23Im
- 70 3.677e-01 # cu33Im
- 71 -5.551e-01 # cd11Re
- 72 9.468e-01 # cd12Re
- 73 -8.316e-02 # cd13Re
- 74 9.345e-01 # cd22Re
- 75 -1.792e-01 # cd23Re
- 76 5.294e-01 # cd33Re
- 77 -9.009e-01 # cd11Im
- 78 4.560e-01 # cd12Im
- 79 2.827e-01 # cd13Im
- 80 -6.959e-01 # cd22Im
- 81 3.259e-01 # cd23Im
- 82 3.110e-01 # cd33Im
- 83 -9.833e-01 # ce11Re
- 84 -2.461e-01 # ce12Re
- 85 9.679e-01 # ce13Re
- 86 -7.125e-01 # ce22Re
- 87 -9.696e-02 # ce23Re
- 88 -9.237e-01 # ce33Re
- 89 -4.516e-01 # ce11Im
- 90 7.928e-02 # ce12Im
- 91 -6.955e-01 # ce13Im
- 92 -2.883e-03 # ce22Im
- 93 -5.009e-01 # ce23Im
- 94 -4.348e-03 # ce33Im
+ 5 -7.207e-01 # cWB
+ 6 -7.207e-01 # c3W
+ 7 -7.207e-01 # c3G
+ 8 5.202e-01 # ctGG
+ 9 -6.703e-01 # ctWW
+ 10 6.553e-01 # ctBB
+ 11 -4.455e-01 # ctWB
+ 12 -4.455e-01 # ct3W
+ 13 -4.455e-01 # ct3G
+ 14 6.025e-01 # cpll
+ 15 6.501e-01 # cHl11
+ 16 -2.151e-01 # cHl12
+ 17 -5.386e-01 # cHl13
+ 18 -8.262e-01 # cHl22
+ 19 3.028e-02 # cHl23
+ 20 -9.184e-01 # cHl33
+ 21 -3.037e-01 # cpHl11
+ 22 -6.719e-01 # cpHl12
+ 23 -7.325e-01 # cpHl13
+ 24 -8.740e-01 # cpHl22
+ 25 3.968e-01 # cpHl23
+ 26 -9.836e-01 # cpHl33
+ 27 8.308e-03 # cHe11
+ 28 -3.188e-01 # cHe12
+ 29 -6.429e-01 # cHe13
+ 30 -8.712e-01 # cHe22
+ 31 9.998e-02 # cHe23
+ 32 7.218e-01 # cHe33
+ 33 -9.756e-01 # cHq11
+ 34 -6.570e-02 # cHq12
+ 35 -2.837e-01 # cHq13
+ 36 -1.654e-01 # cHq22
+ 37 -6.159e-02 # cHq23
+ 38 3.886e-01 # cHq33
+ 39 -3.362e-01 # cpHq11
+ 40 -6.913e-01 # cpHq12
+ 41 9.980e-01 # cpHq13
+ 42 -5.163e-01 # cpHq22
+ 43 -4.847e-01 # cpHq23
+ 44 5.008e-01 # cpHq33
+ 45 -3.623e-01 # cHu11
+ 46 -7.063e-01 # cHu12
+ 47 -5.884e-01 # cHu13
+ 48 -1.006e-01 # cHu22
+ 49 4.380e-02 # cHu23
+ 50 -7.950e-01 # cHu33
+ 51 -6.724e-01 # cHd11
+ 52 -1.832e-01 # cHd12
+ 53 -1.128e-01 # cHd13
+ 54 3.676e-01 # cHd22
+ 55 -7.400e-01 # cHd23
+ 56 -2.637e-01 # cHd33
+ 57 7.011e-01 # cHud11
+ 58 6.144e-01 # cHud12
+ 59 3.666e-01 # cHud13
+ 60 -6.414e-01 # cHud22
+ 61 -5.936e-01 # cHud23
+ 62 -8.503e-01 # cHud33
+ 63 -4.687e-01 # cu11Re
+ 64 -8.290e-01 # cu12Re
+ 65 -4.811e-01 # cu13Re
+ 66 -3.879e-01 # cu22Re
+ 67 4.851e-02 # cu23Re
+ 68 -8.025e-01 # cu33Re
+ 69 -2.688e-01 # cu11Im
+ 70 4.398e-01 # cu12Im
+ 71 9.733e-01 # cu13Im
+ 72 -7.502e-01 # cu22Im
+ 73 -4.237e-01 # cu23Im
+ 74 3.677e-01 # cu33Im
+ 75 -5.551e-01 # cd11Re
+ 76 9.468e-01 # cd12Re
+ 77 -8.316e-02 # cd13Re
+ 78 9.345e-01 # cd22Re
+ 79 -1.792e-01 # cd23Re
+ 80 5.294e-01 # cd33Re
+ 81 -9.009e-01 # cd11Im
+ 82 4.560e-01 # cd12Im
+ 83 2.827e-01 # cd13Im
+ 84 -6.959e-01 # cd22Im
+ 85 3.259e-01 # cd23Im
+ 86 3.110e-01 # cd33Im
+ 87 -9.833e-01 # ce11Re
+ 88 -2.461e-01 # ce12Re
+ 89 9.679e-01 # ce13Re
+ 90 -7.125e-01 # ce22Re
+ 91 -9.696e-02 # ce23Re
+ 92 -9.237e-01 # ce33Re
+ 93 -4.516e-01 # ce11Im
+ 94 7.928e-02 # ce12Im
+ 95 -6.955e-01 # ce13Im
+ 96 -2.883e-03 # ce22Im
+ 97 -5.009e-01 # ce23Im
+ 98 -4.348e-03 # ce33Im
###################################
## INFORMATION FOR SMINPUTS
###################################
Block sminputs
1 1.325070e+02 # aEWM1
2 1.166390e-05 # Gf
3 1.180000e-01 # aS
###################################
## INFORMATION FOR YUKAWA
###################################
Block yukawa
5 4.700000e+00 # ymb
6 1.730000e+02 # ymt
15 1.777000e+00 # ymtau
###################################
## INFORMATION FOR DECAY
###################################
-DECAY 6 1.491500e+00 # WT
+DECAY 6 1.491500e+00 # WT
DECAY 23 2.441404e+00 # WZ
DECAY 24 2.047600e+00 # WW
DECAY 25 6.382339e-03 # WH
-## Dependent parameters, given by model restrictions.
-## Those values should be edited following the
-## analytical expression. MG5 ignores those values
-## but they are important for interfacing the output of MG5
-## to external program such as Pythia.
-DECAY 1 0.000000 # d : 0.0
-DECAY 2 0.000000 # u : 0.0
-DECAY 3 0.000000 # s : 0.0
-DECAY 4 0.000000 # c : 0.0
-DECAY 5 0.000000 # b : 0.0
-DECAY 11 0.000000 # e- : 0.0
-DECAY 12 0.000000 # ve : 0.0
-DECAY 13 0.000000 # mu- : 0.0
-DECAY 14 0.000000 # vm : 0.0
-DECAY 15 0.000000 # ta- : 0.0
-DECAY 16 0.000000 # vt : 0.0
-DECAY 21 0.000000 # g : 0.0
-DECAY 22 0.000000 # a : 0.0
-DECAY 82 0.000000 # ghg : 0.0
-DECAY 9000001 0.000000 # gha : 0.0
-DECAY 9000002 2.495200 # ghz : WZ
-DECAY 9000003 2.085000 # ghwp : WW
-DECAY 9000004 2.085000 # ghwm : WW
-#===========================================================
-# QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE)
-#===========================================================
+DECAY 1 0.000000 # Wd
+DECAY 2 0.000000 # Wu
+DECAY 3 0.000000 # Ws
+DECAY 4 0.000000 # Wc
+DECAY 5 0.000000 # Wb
+DECAY 11 0.000000 # We-
+DECAY 12 0.000000 # Wve
+DECAY 13 0.000000 # Wmu-
+DECAY 14 0.000000 # Wvm
+DECAY 15 0.000000 # Wta
+DECAY 16 0.000000 # Wvt
+DECAY 21 0.000000 # Wg
+DECAY 22 0.000000 # Wa
-Block QNUMBERS 9000001 # gha
- 1 0 # 3 times electric charge
- 2 1 # number of spin states (2S+1)
- 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
- 4 1 # Particle/Antiparticle distinction (0=own anti)
-Block QNUMBERS 9000002 # ghz
- 1 0 # 3 times electric charge
- 2 1 # number of spin states (2S+1)
- 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
- 4 1 # Particle/Antiparticle distinction (0=own anti)
-Block QNUMBERS 9000003 # ghwp
- 1 3 # 3 times electric charge
- 2 1 # number of spin states (2S+1)
- 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
- 4 1 # Particle/Antiparticle distinction (0=own anti)
-Block QNUMBERS 9000004 # ghwm
- 1 -3 # 3 times electric charge
- 2 1 # number of spin states (2S+1)
- 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
- 4 1 # Particle/Antiparticle distinction (0=own anti)
-Block QNUMBERS 82 # ghg
- 1 0 # 3 times electric charge
- 2 1 # number of spin states (2S+1)
- 3 8 # colour rep (1: singlet, 3: triplet, 8: octet)
- 4 1 # Particle/Antiparticle distinction (0=own anti)
diff --git a/Rosetta/Basis.py b/Rosetta/Basis.py
index bd2202a..6bb480c 100644
--- a/Rosetta/Basis.py
+++ b/Rosetta/Basis.py
@@ -1,582 +1,582 @@
import StringIO
import re, sys, os, math, datetime
from collections import namedtuple,OrderedDict
from query import query_yes_no as Y_or_N
from __init__ import PID, default_inputs, default_masses, input_names, particle_names, input_to_PID
from eHDECAY import eHDECAY
####################################################################################################
# Base Basis class
class Basis(object):
'''
Base class from which to derive other Higgs EFT basis classes.
Designed to be instantiated with an SLHA format parameter card using
read_param_card(). The contents of the parameter card are stored in
self.param_card, while relevant information from blocks "basis",
"newcoup", "mass" and "sminput" are stored in self.name, self.par_dict,
self.mass and self.input respectively.
self.name - string storing the value of the 0th element of Block basis.
self.par_dict - ``OrderedDict`` of (name,value) pairs with the name taken to be
the first non-whitespace characters after a "#" character
in a parameter definition within Block newcoup.
self.mass - ``OrderedDict`` of (PID,value) pairs within Block mass
self.input - ``OrderedDict`` as for self.par_dict but within Block sminput.
self.independent and self.dependent should be defined in accordance
with the contents of Block newcoup, as well as self.required_inputs and
self.required_masses with Blocks sminput and mass respectively
(the Z ahd Higgs masses are also stored in SM input). A number of checks
related to these definitions are performed by check_param_data() on the
data read in from the parameter card.
Basis also stores the coefficients in self.coeffs as a ``namedtuple``
which stores the coefficients as data members and from which an ``OrderedDict``
can also be recovered with self.coeffs._asdict()
type(self.par_dict)==type(self.coeffs._asdict()) # True
self.par_dict['myvar'] = 10.
self.coeffs._asdict()['myvar'] == 10. # True
self.coeffs.myvar == 10. # True
The user should define methods calculate_dependent() and translate() to
firstly calculate any dependent parameters and then translate the coefficients
into the mass basis and populate self.newpar, a template of which can be
obtained by creating an instance of HEFTRosetta.MassBasis.MassBasis() without
the optional param_card argument.
from MassBasis import MassBasis
new_instance = MassBasis() # Empty MassBasis instance with all coeffs set to 0
new_dict = new_instance.coeffs._asdict()
set_newcard() uses the contents of self.newpar to write a modified parameter card
in the mass basis and write_param_card() saves it to file.
Users should call translate() and set_newcard() in the __init__ of their derived class
should they choose to overload the constructor.
Derived classes can be used by the command line script "translate"
'''
independent, dependent=[], []
required_inputs, required_masses = set(),set()
translate_to = {'mass'}
def __init__(self, param_card=None, block_in='newcoup', block_out='newcoup', output_basis='mass', keep_old=True, ehdecay=False):
# Check that target basis has a translation implemented
if output_basis in self.translate_to:
self.target_basis = output_basis
else:
raise ValueError('''
{}.translate_to does not contain "{}".
Rosetta doesn't know of an implemented translation in {}
'''.format(self.__class__.__name__,output_basis, self.__class__))
self.param_card = param_card
self.block_in, self.block_out, self.keep_old = block_in, block_out, keep_old # other options
self.card, self.newcard = StringIO.StringIO(), StringIO.StringIO()
self.SLHA_sminputs = OrderedDict()
self.input, self.mass, self.par_dict = OrderedDict(), OrderedDict(), OrderedDict()
self.newinput, self.newmass, self.newpar = dict(), dict(), dict()
self.newname = 'Basis'
self.all_coeffs = self.independent + self.dependent
if param_card is not None: # read param card (sets self.par_dict, self.input, self.mass, self.name, self.card)
assert os.path.exists(self.param_card), '{} does not exist!'.format(self.param_card)
self.read_param_card() # read
self.check_param_data() # consistency check on inputs
self.calculate_dependent() # calculate dependent parameters (User defined)
self.check_calculated_data() # consistency check on dependent parameters
coeffclass = namedtuple(self.name, self.all_coeffs) # declare coefficient namedtuple
self.coeffs = coeffclass(**self.par_dict) # store coefficients
self.translate() # translate to new basis (User defined)
self.check_new() # consistency check between self.newinput and self.newmass
self.set_new_masses() # set new masses in self.newinput
try: # run eHDECAY if eHDECAY_input() is implemented
if ehdecay: self.BRs = eHDECAY(self) # Call to eHDECAY will raise NotImplementedError if eHDECAY_inputs() is not defined
except NotImplementedError:
pass
self.set_newcard() # set new param_card
else: # if param_card option not given, instatiate with class name and all coeffs set
# to 0 (used for creating an empty basis instance for use in translate() method)
self.name=self.__class__.__name__
coeffclass = namedtuple(self.name, self.all_coeffs)
self.coeffs = coeffclass(**{k:0. for k in self.all_coeffs})
def read_param_card(self):
'''
Reads SLHA style param card and stores values of parameters.
Looks for Blocks "basis", "mass", "newcoup" and "sminput" and
updates self.name, self.mass (by PDG number), self.par_dict (name, value)
and self.input (name, value)/self.SLHA_sminputs (SLHA ID, value) respectively.
The whole param_card is also stored in self.card for later use.
'''
def read_pattern(plines, patt, pdict, ikey=2, ival=1, convert_key=str, convert_val=float):
'''Takes a list of lines and looks for regexp pattern "patt" assuming the pattern captures 2 groups.
"key" and "val" refer to the index of the resulting group (1 or 2).
"convert_val" and "convert_key" specify a functions with which to treat the resulting string match e.g. convert to float.
If pdict is None, function returns convert_val( match.group(val) ) (used to assign one variable).
Otherwise, pdict is appended with a key value pair ( convert_key(match.group(key)), convert_val(match.group(val)) ).
'''
for pline in plines[:-1]:
try:
match = re.match(patt,pline)
if pdict is not None:
key, val = convert_key(match.group(ikey)), convert_val(match.group(ival))
if key in pdict: # check if variable has already been assigned
label = 'PDG mass' if type(key)==int else 'variable'
print 'Warning: {} "{}" assigned more than once, kept value {}'.format( label,key,val )
pdict[key]= val
else:
return convert_val(match.group(ival))
except AttributeError:
pass
return None
with open(self.param_card,'r') as card:
relevant_blocks =['mass','basis',self.block_in,'sminputs']
lines = iter(card)
for line in lines:
line, block = self.line_is_block(line)
while block in relevant_blocks:
if block=='mass': # Get masses
print >> self.card, line.strip('\n')
param_lines = self.read_until(lines,'Block','DECAY') # lines in block mass
read_pattern(param_lines, r'\s*(\d+)\s+(\S+)\s+.*', self.mass, ikey=1, ival=2, convert_key=int) # by PDG number
for pline in param_lines[:-1]: print >> self.card, pline.strip('\n')
line, block = self.line_is_block(param_lines[-1]) # set last line read to current line
relevant_blocks.remove('mass')
elif block=='basis': # Get basis name
print >> self.card, line.strip('\n')
param_lines = self.read_until(lines,'Block','DECAY') # lines in block basis
self.name = read_pattern(param_lines,r'\s*0\s+(\S+).*', None, convert_val=str).strip()
for pline in param_lines[:-1]: print >> self.card, pline.strip('\n')
line, block = self.line_is_block(param_lines[-1]) # set last line read to current line
relevant_blocks.remove('basis')
elif block==self.block_in: # Get basis coefficients
print >> self.card, line.strip('\n')
param_lines = self.read_until(lines,'Block', 'DECAY') # lines in block newcoup
read_pattern(param_lines, r'\s*\d+\s+(\S+)\s+#+\s+(\S+)', self.par_dict)
for pline in param_lines[:-1]: print >> self.card, pline.strip('\n')
line, block = self.line_is_block(param_lines[-1]) # set last line read to current line
relevant_blocks.remove(self.block_in)
elif block=='sminputs': # Get SM inputs
print >> self.card, line.strip('\n')
param_lines = self.read_until(lines,'Block', 'DECAY') # lines in block sminputs
read_pattern(param_lines, r'\s*(\d+)\s+(\S+)\s+#+\s+\S+', self.SLHA_sminputs, ikey=1, ival=2, convert_key = int)
read_pattern(param_lines, r'\s*\d+\s+(\S+)\s+#+\s+(\S+)', self.input)
for pline in param_lines[:-1]: print >> self.card, pline.strip('\n')
line, block = self.line_is_block(param_lines[-1]) # set last line read to current line
relevant_blocks.remove('sminputs')
if not block or (block not in relevant_blocks): print >> self.card, line.strip('\n')
if relevant_blocks: # checks if all relevant block were found
if relevant_blocks==['basis']: # only optional basis block unread
print 'Warning: block basis not found.'
carry_on = Y_or_N('Continue assuming default value "{}"?'.format(self.__class__.__name__))
if carry_on:
self.name=self.__class__.__name__
else:
print 'Exit'
sys.exit()
else:
raise IOError("Required block(s) ({}) not found in {}".format(', '.join(relevant_blocks), self.param_card))
# Add MH,MW,MZ,mt,mb,mtau,aEWM1 to SLHA_sminputs
for inID,PID in input_to_PID.iteritems():
if inID in self.required_inputs:
try:
input_mass = self.mass[PID]
self.input[input_names[inID]] = input_mass
self.SLHA_sminputs[inID] =input_mass
except KeyError:
pass
def check_param_data(self):
'''
Compares lists of coefficients declared in self.independent and self.dependent to those read in from self.param_card.
1) Deals with unrecognised names by removing them from self.par_dict
2) Prints a warning if coefficients declared as dependent are assigned values in param_card.
If so, the user is asked whether or not they wish to continue.
3) Checks if all coefficients declared as independent are assigned values.
If not, the user is given the option to continue with them set to 0.
4) Ensures all fermion masses declared in self.required_masses are defined.
If not, the user is given the option to continue with them set to 0.
5) Ensures all sm imputs declared in self.required_inputs are defined.
If not, the user is given the option to continue with them set to default
values defined in Rosetta.default_inputs.
'''
unknown_coeffs = set(self.par_dict.keys()).difference( self.all_coeffs )
if unknown_coeffs: # Check for unrecognised coeff names
print 'Warning: you have declared coefficients undefined in {}.'.format(self.__class__)
print 'The following will be ignored: {}'.format(','.join(unknown_coeffs))
for c in unknown_coeffs: del self.par_dict[c]
defined_dependent = set(self.dependent).intersection( set(self.par_dict.keys()) )
if defined_dependent: # Check if coefficients defined as dependent have been assigned values
print 'Warning: you have assigned values to some coefficients defined as dependent in {}.'.format(self.__class__)
print 'Coefficients: {}'.format(','.join(defined_dependent))
print 'These may be overwritten by an implementation of {}.translate()'.format(self.__class__.__name__)
carry_on = Y_or_N('Continue?')
if carry_on:
pass
else:
print 'Exit'
sys.exit()
missing_coeffs = set(self.independent).difference( set(self.par_dict.keys()) )
if missing_coeffs: # Deal with unassigned independent coefficients
print 'Warning: Set of independent coefficients read from {} does not match those specified in {}.'.format(self.param_card,self.__class__)
print 'Undefined: {}'.format(', '.join(missing_coeffs))
carry_on = Y_or_N('Continue assuming unspecified coefficients are Zero?')
if carry_on:
for m in missing_coeffs: self.par_dict[m]=0.
else:
print 'Exit'
sys.exit()
missing_masses = set(self.required_masses).difference(self.mass.keys())
repr_default_masses = ['{}={: .5e}'.format(k,default_masses.get(k,0.)) for k in missing_masses]
if missing_masses: # Deal with unassigned fermion masses
print 'Warning: Not all required fermion masses are defined in {}.'.format(self.param_card)
print 'Required PIDs: {}'.format(', '.join([str(x) for x in self.required_masses]))
print 'Missing PIDs: {}'.format(', '.join([str(x) for x in missing_masses]))
carry_on = Y_or_N('Continue assuming default values for unspecified masses? ({})'.format(', '.join(repr_default_masses)))
if carry_on: # assigns a data member for unspecified inputs for writing to self.newcard
self.missing_masses=dict()
for m in missing_masses:
self.mass[m]=default_masses[m]
self.missing_masses[m]=default_masses[m]
else:
print 'Exit'
sys.exit()
missing_inputs = set(self.required_inputs).difference(self.SLHA_sminputs.keys())
repr_default_inputs = ['{}={: .5e}'.format(input_names[k],default_inputs.get(k,0.)) for k in missing_inputs]
if missing_inputs: # Deal with unassigned SM inputs
print 'Warning: Not all required SM inputs are defined in {}.'.format(self.param_card)
print 'Required inputs: {}'.format(', '.join(['{} ({})'.format(input_names[x],x) for x in self.required_inputs]))
print 'Missing inputs: {}'.format(', '.join([str(x) for x in missing_inputs]))
carry_on = Y_or_N('Continue with default values for unspecified inputs? ({})'.format(', '.join(repr_default_inputs)))
if carry_on:# assigns a data member for unspecified inputs for writing to self.newcard
self.missing_inputs=dict()
for m in missing_inputs:
self.SLHA_sminputs[m]=default_inputs[m]
self.input[input_names[m]]=default_inputs[m]
self.missing_inputs[m]=default_inputs[m]
else:
print 'Exit'
sys.exit()
print 'Param card data are OK.'
def check_calculated_data(self):
'''
Compares self.dependent and self.par_dict keys to see if all dependent coefficients have been calculated.
If not, asks whether the user wants to continue assuming they are zero.
'''
missing_dependents = set(self.dependent).difference(self.par_dict.keys())
if missing_dependents and self.dependent:
print 'Warning: Set of dependent coefficients calculated by {0}.calculate_dependent() does not match those specified in {0}.'.format(self.__class__)
print 'Undefined: {}'.format(', '.join(missing_dependents))
carry_on = Y_or_N('Continue assuming coefficients are Zero?')
if carry_on:
for m in missing_dependents: self.par_dict[m]=0.
else:
print 'Exit'
sys.exit()
print 'Calculated coefficients match those defined in {}.dependent.'.format(self.__class__.__name__)
def check_new(self):
'''
Check consistency of modifications to mass parameters defined as possible SHLA inputs:
MZ (PID = 23, SLHA key = 4)
MW (PID = 24, SLHA key = 7)
MH (PID = 25, SLHA key = 8)
Compares self.newinput to self.newmass and makes sure user hasn't specified different new values
'''
for ID_input, ID_mass in input_to_PID.iteritems():
try:
ipar, mpar = self.newinput[ID_input],self.newmass[ID_mass]
if not ipar==mpar:
print 'Warning: modified mass {} in self.newinput ({}) does not match value in self.newmass ({})'.format(input_name[ID_input],ipar,mpar)
carry_on = Y_or_N('Continue using values in self.newmass?')
if carry_on:
pass
else:
print 'Exit'
sys.exit()
except KeyError as e:
pass
def set_new_masses(self):
'''
If the user modifies a mass input parameter, appends the change to self.mass
'''
for inID, PID in input_to_PID.iteritems():
if inID in self.newinput and PID not in self.newmass: self.newmass[PID] = self.newinput[inID]
def set_newcard(self):
'''
Generates a new param card in self.newcard from self.card, adding the new set of coefficients in self.newpar after "Block newcoup".
If self.keep_old is True, the original names and values of newcoup variables are included, commented out.
'''
def new_higgs_width(lines):
totalwidth = float(self.BRs['WTOT'])
if lines is None:
print >> self.newcard, '###################################'
print >> self.newcard, '## Higgs decay info from eHDECAY'
print >> self.newcard, '###################################'
print >> self.newcard, 'DECAY 25 {} # New Higgs total width'.format(totalwidth)
print >> self.newcard, '# BR NDA ID1 ID2'.format(totalwidth)
particle_IDs = {v:k for k,v in particle_names.iteritems()}
for channel,BR in self.BRs.iteritems():
if channel!='WTOT':
p1, p2 = channel[:len(channel)/2], channel[len(channel)/2:]
id1, id2 = particle_IDs[p1], particle_IDs[p2]
print >> self.newcard, ' {: .5e} 2 {: <2} {: <2} # BR(H -> {} {})'.format(BR, id1, id2, p1, p2)
if lines is None:
print >> self.newcard, '###################################'
return
param_lines = self.read_until(lines, 'Block', 'DECAY')[:-1] # read old BR values
for i,pline in enumerate(param_lines):
if i==0:
print >> self.newcard, '# Old BR info'
print >> self.newcard, '# '+line.strip('\n')
if self.keep_old:
comment_out = (pline and not pline.startswith('#'))
print >> self.newcard, '# ' + pline.strip('\n') if comment_out else pline.strip('\n')
else:
if not pline.strip() or pline.startswith('#'): print >> self.newcard, pline.strip('\n')
return self.line_is_block(param_lines[-1]) # return last line read and whether it is a BLOCK line
print >> self.newcard, '######################################################################'
print >> self.newcard, '############# COEFFICIENTS TRANSLATED BY ROSETTA MODULE #############'
print >> self.newcard, '########### PARAM_CARD GENERATED {} ###########'.format(datetime.datetime.now().ctime().upper())
print >> self.newcard, '######################################################################'
blocks_to_modify =('basis', self.block_in, 'mass', 'sminputs')
lines = iter(self.card.getvalue().splitlines()) # Lines of old param card
done_width=False
for line in lines:
line, block = self.line_is_block(line)
if block==self.block_in: # Add line to self.newcard, modify block name
print >> self.newcard, line.strip('\n').replace(self.block_in,self.block_out)
elif self.line_is_decay(line)=='25': # special case for modified higgs width and BRs
try:
line, block = new_higgs_width(lines)
done_width = True
except AttributeError:
print >> self.newcard, line.strip('\n')
else: # Add line to self.newcard
print >> self.newcard, line.strip('\n')
while block in blocks_to_modify: # Slightly different actions for each block
if block=='basis': # When Block basis is reached
print >> self.newcard, ' 0 {} # translated basis'.format(self.newname)
param_lines = self.read_until(lines, 'Block', 'DECAY')
for pline in param_lines[:-1]:
if self.keep_old:
comment_out = (pline and not pline.startswith('#'))
print >> self.newcard, '#' + pline.strip('\n') if comment_out else pline.strip('\n')
else:
if not pline.strip() or pline.startswith('#'): print >> self.newcard, pline.strip('\n')
line, block = self.line_is_block(param_lines[-1]) # set last line read to current line
elif block==self.block_in: # When Block self.block_in is reached,
for i,(par,val) in enumerate(self.newpar.items()): # write out new couplings
print >> self.newcard, ' {} {: .5e} # {}'.format(i,val,par)
param_lines = self.read_until(lines,'Block', 'DECAY')
if self.keep_old: # write old parameters
print >> self.newcard, ''
print >> self.newcard, '###################################'
print >> self.newcard, '## COEFFICIENTS IN {} BASIS'.format(self.name.upper())
print >> self.newcard, '###################################'
for pline in param_lines[:-1]:
comment_out = (pline and not pline.startswith('#'))
print >> self.newcard, '#' + pline.strip('\n') if comment_out else pline.strip('\n')
else:
for pline in param_lines[:-1]:
if not pline.strip() or pline.startswith('#'): print >> self.newcard, pline.strip('\n')
line, block = self.line_is_block(param_lines[-1]) # set last line read to current line
elif block=='sminputs':# When block sminputs is reached
try: # add missing inputs
for i,(ID, inpt) in enumerate(self.missing_inputs.items()):
if i==0: print >> self.newcard, '# missing inputs'
if ID in self.newinput:
print >> self.newcard, ' {} {: .5e } # {} '.format(ID, self.newinput[ID], input_names[ID])
print >> self.newcard, '# {} {: .5e } # {} old value'.format(ID, inpt, input_names[ID])
else:
print >> self.newcard, ' {} {: .5e } # {} '.format(ID, inpt, input_names[ID])
except AttributeError as e:
pass
# add additional new inputs
input_names_reversed={v:k for k,v in input_names.iteritems()}
for i,(ID, inpt) in enumerate(self.newinput.items()):
if i==0: print >> self.newcard, '# additional inputs'
if not ID in self.SLHA_sminputs:
if type(ID)==int:
print >> self.newcard, ' {} {: .5e } # {} '.format(ID, inpt, input_names.get(ID,''))
elif type(ID)==str:
print >> self.newcard, ' {} {: .5e } # {} '.format(input_names_reversed.get(ID,99), inpt,ID )
print >> self.newcard, '# original inputs'
param_lines = self.read_until(lines,'Block', 'DECAY')
for pline in param_lines[:-1]:
match = re.match(r'\s*(\d+)\s+(\S+)\s+.*',pline.strip()) # read old inputs
try: # do if match
ID, inpt = int(match.group(1)), match.group(2)
try: # if a new value exists
print >> self.newcard, pline.replace(inpt, '{: .5e }'.format(self.newinput[ID])).strip('\n')
if self.keep_old: print >> self.newcard, '# '+pline.strip('\n')+' # old value'
except KeyError as e:
print >> self.newcard, pline.strip('\n')
except AttributeError as e:
print >> self.newcard, pline.strip('\n')
line, block = self.line_is_block(param_lines[-1]) # set last line read to current line
elif block=='mass': # When block mass is reached
try: # add missing masses
for i,(ID, mass) in enumerate(self.missing_masses.items()):
if i==0: print >> self.newcard, '# missing masses'
if ID in self.newmass:
print >> self.newcard, ' {} {: .5e } # M{} '.format(ID, self.newmass[ID], particle_names[ID])
print >> self.newcard, '# {} {: .5e } # M{} old value'.format(ID, mass, particle_names[ID])
else:
print >> self.newcard, ' {} {: .5e } # M{} '.format(ID, mass, particle_names[ID])
except AttributeError as e: # self.missing_masses may not exist
pass
try: # add missing inputs that are masses
for inID, PID in input_to_PID.iteritems():
try:
print >> self.newcard, ' {} {: .5e } # {} '.format(PID,self.missing_inputs[inID],input_names[inID])
except KeyError:
pass
except AttributeError as e: # self.missing_inputs may not exist
pass
print >> self.newcard, '# original masses'
param_lines = self.read_until(lines,'Block', 'DECAY')
for pline in param_lines[:-1]:
match = re.match(r'\s*(\d+)\s+(\S+)\s+.*',pline.strip()) # read old mass
try: # do if match
ID, mass = int(match.group(1)), match.group(2)
try: # if a new value exists
- print >> self.newcard, pline.replace(mass, '{: .5e }'.format(self.newmass[ID])).strip('\n')
+ print >> self.newcard, pline.strip('\n').replace(mass, '{: .5e}'.format(self.newmass[ID]))
if self.keep_old: print >> self.newcard, '# '+pline.strip('\n')+' # old value'
except KeyError:
print >> self.newcard, pline.strip('\n')
except AttributeError:
print >> self.newcard, pline.strip('\n')
line, block = self.line_is_block(param_lines[-1]) # set last line read to current line
if block==self.block_in:
print >> self.newcard, line.strip('\n').replace(self.block_in,self.block_out) # Add line to self.newcard, modify block name
else:
print >> self.newcard, line.strip('\n') # Add line to self.newcard
if not done_width:
try:
new_higgs_width(None)
except AttributeError:
pass
return None
def write_param_card(self,filename,overwrite=False):
'''Write contents of self.newcard to filename'''
contents = self.newcard.getvalue()
if not contents:
print '{}.newcard is empty, nothing done.'.format(self)
return None
if os.path.exists(filename) and not overwrite:
print '{} already exists.'.format(filename)
carry_on = Y_or_N('Overwrite?')
else:
carry_on=True
if carry_on:
with open(filename,'w') as param_card:
param_card.write(contents)
return True
else:
return False
@staticmethod
def read_until(lines, here, *args):
'''Loops through an iterator of strings by calling next() until
it reaches a line starting with a particular string.
Case insensitive.
Args:
lines - iterator of strings
here - string (plus any further argumnts). Reading will end if the line matches any of these.
Return:
lines_read - list of lines read
line - last line that was read (containing string "here")
'''
end_strings = [here.lower()]+[a.lower() for a in args]
lines_read = []
line = ''
while not any([line.strip().lower().startswith(x) for x in end_strings]):
line = lines.next()
lines_read.append(line.strip('\n'))
return lines_read
@staticmethod
def line_is_block(line):
'''
Looks for "BLOCK XXXX" pattern in line.
returns (line, XXXX) if line matches.
returns (line, False) if line doesn't match
'''
try:
return line, re.match(r'block\s+(\S+).*',line.strip().lower()).group(1)
except AttributeError:
return line, False
@staticmethod
def line_is_decay(line):
'''
Looks for "DECAY XXXX YYYY" pattern in line.
returns XXXX if line matches.
returns None if line doesn't match
'''
match = re.match(r'decay\s+(\S+)\s+.*',line.strip().lower())
try:
return match.group(1)
except AttributeError:
return None
def calculate_dependent(self):
print 'Nothing done for {}.calculate_dependent()'.format(self.__class__.__name__)
def translate(self): # default behaviour for translate()
self.keep_old=False
self.newpar = self.coeffs._asdict()
def eHDECAY_inputs(self):
raise NotImplementedError
####################################################################################################
\ No newline at end of file
diff --git a/Rosetta/HiggsBasis.py b/Rosetta/HiggsBasis.py
index 5fdd9fc..a5ffabc 100644
--- a/Rosetta/HiggsBasis.py
+++ b/Rosetta/HiggsBasis.py
@@ -1,82 +1,82 @@
from Basis import Basis
import math, re
from itertools import combinations_with_replacement as comb
from itertools import product
from __init__ import PID
####################################################################################################
# Higgs basis class
class HiggsBasis(Basis):
independent = ['dCz','Cgg','Czz','Caa','Cza','Czbx','CTgg','CTzz','CTaa','CTza',
'dYu11','dYu12','dYu13','dYu22','dYu23','dYu33',
'dYd11','dYd12','dYd13','dYd22','dYd23','dYd33',
'Su11','Su12','Su13','Su22','Su23','Su33',
'Sd11','Sd12','Sd13','Sd22','Sd23','Sd33',
'dYe11','dYe12','dYe13','dYe22','dYe23','dYe33',
'Se11','Se12','Se13','Se22','Se23','Se33',
'dGLze11','dGLze12','dGLze13','dGLze22','dGLze23','dGLze33',
'dGRze11','dGRze12','dGRze13','dGRze22','dGRze23','dGRze33',
'dGLzu11','dGLzu12','dGLzu13','dGLzu22','dGLzu23','dGLzu33',
'dGLzd11','dGLzd12','dGLzd13','dGLzd22','dGLzd23','dGLzd33',
'dGRzu11','dGRzu12','dGRzu13','dGRzu22','dGRzu23','dGRzu33',
'dGRzd11','dGRzd12','dGRzd13','dGRzd22','dGRzd23','dGRzd33',
'dGLwl11','dGLwl12','dGLwl13','dGLwl22','dGLwl23','dGLwl33',
'dGRwq11','dGRwq12','dGRwq13','dGRwq22','dGRwq23','dGRwq33',
'dM','Lz','C3G','LTz','CT3G']
dependent = ['dCw','Cww','CTww','Cwbx','Cabx',
'dGLzv11','dGLzv12','dGLzv13','dGLzv22','dGLzv23','dGLzv33',
'dGLwq11','dGLwq12','dGLwq13','dGLwq22','dGLwq23','dGLwq33',
'CLwq11','CLwq12','CLwq13','CLwq22','CLwq23','CLwq33',
'CRwq11','CRwq12','CRwq13','CRwq22','CRwq23','CRwq33',
'CLwl11','CLwl12','CLwl13','CLwl22','CLwl23','CLwl33',
'CLze11','CLze12','CLze13','CLze22','CLze23','CLze33',
'CLzv11','CLzv12','CLzv13','CLzv22','CLzv23','CLzv33',
'CRze11','CRze12','CRze13','CRze22','CRze23','CRze33',
'CLzu11','CLzu12','CLzu13','CLzu22','CLzu23','CLzu33',
'CLzd11','CLzd12','CLzd13','CLzd22','CLzd23','CLzd33',
'CRzu11','CRzu12','CRzu13','CRzu22','CRzu23','CRzu33',
'CRzd11','CRzd12','CRzd13','CRzd22','CRzd23','CRzd33',
'dG1z','dKa','dKz','La','KTa','KTz','LTa']
required_masses = {1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16}
required_inputs = {1, 2, 4} # aEWM1, Gf, MZ
def calculate_inputs(self): # calculate a few required EW params from aEWM1, Gf, MZ
self.input['ee2'] = 4.*math.pi/self.input['aEWM1'] # EM coupling squared
self.input['s2w'] = (1.- math.sqrt(1. - self.input['ee2']/(math.sqrt(2.)*self.input['Gf']*self.input['MZ']**2)))/2. #sin^2(theta_W)
self.input['gw2'] = self.input['ee2']/self.input['s2w'] # SU(2) coupling squared
self.input['gp2'] = self.input['gw2']*self.input['s2w']/(1.-self.input['s2w']) # Hypercharge coupling squared
def calculate_dependent(self): # calculate dependent parameters
p = self.par_dict
self.calculate_inputs() # set a few useful EW parameters
s2w, ee2, gw2, gp2 = tuple([self.input[x] for x in ('s2w', 'ee2', 'gw2', 'gp2')]) # get EW params
# Higgs and EW gauge bosons [Sec 3.4] [eqn (3.11)]
- p['dCw'] = p['dCz'] + 4.*p['dM']
- p['Cww'] = p['Czz'] + 2.*s2w*p['Cza'] + s2w**2*p['Caa']
- p['CTww'] = p['CTzz'] + 2.*s2w*p['CTza'] + s2w**2*p['CTaa']
- p['Cwbx'] = ( gw2*p['Czbx'] + gp2*p['Czz'] - ee2*s2w*p['Caa'] - (gw2-gp2)*s2w*p['CTza'])/(gw2-gp2)
- p['Cabx'] = (2.*gw2*p['Czbx'] + (gw2+gp2)*p['Czz'] - ee2*p['Caa'] - (gw2-gp2)*p['CTza'])/(gw2-gp2)
+ p['dCw'] = p['dCz'] + p['dM']*4.
+ p['Cww'] = p['Czz'] + p['Cza']*2.*s2w + p['Caa'] *s2w**2
+ p['CTww'] = p['CTzz'] + p['CTza']*2.*s2w + p['CTaa']*s2w**2
+ p['Cwbx'] = (p['Czbx']*gw2 + p['Czz']*gp2 - p['Caa']*ee2*s2w - p['Cza']*(gw2-gp2)*s2w)/(gw2-gp2)
+ p['Cabx'] = (p['Czbx']*2.*gw2 + p['Czz']*(gw2+gp2) - p['Caa']*ee2 - p['Cza']*(gw2-gp2) )/(gw2-gp2)
# Gauge-current and Higgs-gauge-current contact interactions [Sec 3.6]
for i,j in comb((1,2,3),2):# dependent dgV coeffs [eqn (3.5)]
p['dGLzv{}{}'.format(i,j)] = p['dGLze{}{}'.format(i,j)] + p['dGLwl{}{}'.format(i,j)]
p['dGLwq{}{}'.format(i,j)] = p['dGLzu{}{}'.format(i,j)] - p['dGLzd{}{}'.format(i,j)]
for f,chi in product(('u','d','e','v'),('L','R')): # hVff 4-point coeffs [eqn (3.18)]
if f=='v' and chi=='R': continue
cvff = 'C{}z{}{}{}'.format(chi,f,i,j)
p[cvff] = p['dG{}z{}{}{}'.format(chi,f,i,j)]
for f,chi in (('q','L'),('q','R'),('l','L')):
cvff = 'C{}w{}{}{}'.format(chi,f,i,j)
p[cvff] = p['dG{}w{}{}{}'.format(chi,f,i,j)]
# Triple gauge couplings [Sec 3.7] [eqn (3.21)]
- p['dG1z'] = ( p['Caa']*ee2*gp2 + p['Cza']*(gw2-gp2)*gp2 - p['Czz']*(gw2+gp2)*gp2 - p['Czbx']*(gw2+gp2)*gw2 )/2./(gw2-gp2)
- p['dKa'] = - gw2*( p['Caa']*ee2 + p['Cza']*(gw2-gp2) - p['Czz']*(gw2+gp2))/2./(gw2+gp2)
+ p['dG1z'] = ( p['Caa']*ee2*gp2 + p['Cza']*(gw2-gp2)*gp2 - p['Czz']*(gw2+gp2)*gp2 - p['Czbx']*(gw2+gp2)*gw2 )/2./(gw2-gp2)
+ p['dKa'] = - gw2*( p['Caa']*ee2 + p['Cza']*(gw2-gp2) - p['Czz']*(gw2+gp2) )/2./(gw2+gp2)
p['KTa'] = - gw2*( p['CTaa']*ee2 + p['CTza']*(gw2-gp2) - p['CTzz']*(gw2+gp2))/2./(gw2+gp2)
- p['dKz'] = p['dG1z'] - gp2/gw2*p['dKa']
- p['KTz'] = - gp2/gw2*p['KTa']
- p['La'] = p['Lz']
- p['LTa'] = p['LTz']
+ p['dKz'] = p['dG1z'] - gp2/gw2*p['dKa']
+ p['KTz'] = - p['KTa']*gp2/gw2
+ p['La'] = p['Lz']
+ p['LTa'] = p['LTz']
####################################################################################################
diff --git a/Rosetta/WarsawBasis.py b/Rosetta/WarsawBasis.py
index 1d3d664..f306510 100644
--- a/Rosetta/WarsawBasis.py
+++ b/Rosetta/WarsawBasis.py
@@ -1,118 +1,140 @@
from Basis import Basis
from MassBasis import MassBasis
import math
from itertools import combinations_with_replacement as comb
from itertools import product
from Rosetta import PID
####################################################################################################
# Warsaw basis class
class WarsawBasis(Basis):
- independent = ['cH','cT','cGG','cWW','cBB','cWB','ctGG','ctWW','ctBB','ctWB','cpll',
+ independent = ['cH','cT','cGG','cWW','cBB','cWB','c3W',
+ 'ctGG','ctWW','ctBB','ctWB','ct3W','cpll',
'cHl11','cHl12','cHl13','cHl22','cHl23','cHl33',
'cpHl11','cpHl12','cpHl13','cpHl22','cpHl23','cpHl33',
'cHe11','cHe12','cHe13','cHe22','cHe23','cHe33',
'cHq11','cHq12','cHq13','cHq22','cHq23','cHq33',
'cpHq11','cpHq12','cpHq13','cpHq22','cpHq23','cpHq33',
'cHu11','cHu12','cHu13','cHu22','cHu23','cHu33',
'cHd11','cHd12','cHd13','cHd22','cHd23','cHd33',
'cHud11','cHud12','cHud13','cHud22','cHud23','cHud33',
'cu11Re','cu12Re','cu13Re','cu22Re','cu23Re','cu33Re',
'cu11Im','cu12Im','cu13Im','cu22Im','cu23Im','cu33Im',
'cd11Re','cd12Re','cd13Re','cd22Re','cd23Re','cd33Re',
'cd11Im','cd12Im','cd13Im','cd22Im','cd23Im','cd33Im',
'ce11Re','ce12Re','ce13Re','ce22Re','ce23Re','ce33Re',
'ce11Im','ce12Im','ce13Im','ce22Im','ce23Im','ce33Im']
required_masses = set([y for x in PID.values() for y in x.values()])
required_inputs = {1, 2, 4, 8} # aEWM1, Gf, MZ, MH
translate_to={'mass'}
def calculate_inputs(self): # calculate a few required EW params from aEWM1, Gf, MZ
self.input['ee2'] = 4.*math.pi/self.input['aEWM1'] # EM coupling squared
self.input['s2w'] = (1.- math.sqrt(1. - self.input['ee2']/(math.sqrt(2.)*self.input['Gf']*self.input['MZ']**2)))/2. #sin^2(theta_W)
self.input['gw2'] = self.input['ee2']/self.input['s2w'] # SU(2) coupling squared
self.input['gp2'] = self.input['gw2']*self.input['s2w']/(1.-self.input['s2w']) # Hypercharge coupling squared
self.input['vev'] = 2.*self.input['MZ']*math.sqrt(1-self.input['s2w'])/math.sqrt(self.input['gw2'])
def translate(self):
if self.target_basis=='mass':
self.translate_to_mass()
else:
raise NotImplementedError
def translate_to_mass(self):
self.newname='Mass'
self.calculate_inputs()
s2w, ee2, gw2, gp2 = tuple([self.input[x] for x in ('s2w', 'ee2', 'gw2', 'gp2')]) # get EW params
A = self.coeffs._asdict()
B = MassBasis().coeffs._asdict()
- def f(T3,Q,i,j): # [eqn (4.8)]
+ def f(T3,Q,i,j): # [eqn (4.11)]
if i==j:
return -Q*A['cWB']*gw2*gp2/(gw2-gp2) + (A['cT']-dv)*(T3 + Q*gp2/(gw2-gp2))
else:
return 0.
+
def dy_sf(X,Y): # solution for dy,sin(phi) of [eqn (4.12)]
R = math.sqrt(X**2+Y**2)
sf = -Y/R # solution is +-Y/R
dy = ( X*abs(X)+Y*abs(Y) )/R
return dy,sf
- # Higgs vev shift [eqn (4.5)]
- dv = (A['cpHl11']+A['cpHl22'])/2.-A['cpll']
- # W mass shift [eqn (4.6)]
+
+ # Higgs vev shift [eqn (4.8)]
+ dv = (A['cpHl11']+A['cpHl22'])/2.-A['cpll']
+
+ # W mass shift [eqn (4.9)]
B['dM'] = 1./(gw2-gp2)*(gw2*A['cT']-gp2*gw2*A['cWB']-gp2*dv)
+
# W/Z chiral coupling deviations
for i,j in comb((1,2,3),2):
- B['dGLwl{}{}'.format(i,j)] = A['cpHl{}{}'.format(i,j)] + f(1./2.,0.,i,j) - f(-1./2.,-1.,i,j) # [eqn (4.7)]
+ B['dGLwl{}{}'.format(i,j)] = A['cpHl{}{}'.format(i,j)] + f(1./2.,0.,i,j) - f(-1./2.,-1.,i,j) # [eqn (4.10)]
B['dGLzv{}{}'.format(i,j)] = 1./2.*A['cpHl{}{}'.format(i,j)] - 1./2.*A['cHl{}{}'.format(i,j)] + f(1./2.,0.,i,j)
B['dGLze{}{}'.format(i,j)] = -1./2.*A['cpHl{}{}'.format(i,j)] - 1./2.*A['cHl{}{}'.format(i,j)] + f(-1./2.,-1.,i,j)
B['dGRze{}{}'.format(i,j)] = - 1./2.*A['cHe{}{}'.format(i,j)] + f(0.,-1.,i,j)
- B['dGLwq{}{}'.format(i,j)] = A['cpHq{}{}'.format(i,j)] + f(1./2.,2./3.,i,j) - f(-1./2.,-1./3.,i,j) # [eqn (4.9)]
+ B['dGLwq{}{}'.format(i,j)] = A['cpHq{}{}'.format(i,j)] + f(1./2.,2./3.,i,j) - f(-1./2.,-1./3.,i,j) # [eqn (4.12)]
B['dGRwq{}{}'.format(i,j)] = -1./2.*A['cHud{}{}'.format(i,j)]
B['dGLzu{}{}'.format(i,j)] = 1./2.*A['cpHq{}{}'.format(i,j)] - 1./2.*A['cHq{}{}'.format(i,j)] + f(1./2.,2./3.,i,j)
B['dGLzd{}{}'.format(i,j)] = -1./2.*A['cpHq{}{}'.format(i,j)] - 1./2.*A['cHq{}{}'.format(i,j)] + f(-1./2.,-1./3.,i,j)
B['dGRzu{}{}'.format(i,j)] = - 1./2.*A['cHu{}{}'.format(i,j)] + f(0.,2./3.,i,j)
B['dGRzd{}{}'.format(i,j)] = - 1./2.*A['cHd{}{}'.format(i,j)] + f(0.,-1./3.,i,j)
- # Higgs couplings to W/Z [eqn (4.10)]
- B['dCw'] = -A['cH'] - 2.*A['cWB']*gw2*gp2/(gw2-gp2) + 2.*A['cT']*gw2/(gw2-gp2) - dv*(gw2+gp2)/(gw2-gp2)
- B['dCz'] = -A['cH'] - 2.*A['cT'] - dv
- # Two derivative field strength interactions [eqn (4.11)]
- B['Cgg'] = A['cGG']
- B['Caa'] = A['cWW'] + A['cBB'] - 4.*A['cWB']
- B['Czz'] = (gw2**2*A['cWW'] + gp2**2*A['cBB'] + 4.*gw2*gp2*A['cWB'])/(gw2+gp2)**2
- B['Cza'] = (gw2*A['cWW'] - gp2*A['cBB'] - 2.*(gw2-gp2)*A['cWB'])/(gw2+gp2)
- B['Cww'] = A['cWW']
+
+ for i,j in comb((1,2,3),2): # hVff 4-point coeffs [eqn (4.13)]
+ for f,chi in product(('u','d','e','v'),('L','R')):
+ if f=='v' and chi=='R': continue
+ cvff = 'C{}z{}{}{}'.format(chi,f,i,j)
+ B[cvff] = B['dG{}z{}{}{}'.format(chi,f,i,j)]
+ for f,chi in (('q','L'),('q','R'),('l','L')):
+ cvff = 'C{}w{}{}{}'.format(chi,f,i,j)
+ B[cvff] = B['dG{}w{}{}{}'.format(chi,f,i,j)]
+
+ # Higgs couplings to W/Z [eqn (4.14)]
+ B['dCw'] = (-A['cH']*(gw2-gp2) - A['cWB']*4.*gw2*gp2 + A['cT']*4.*gw2 - dv*(3.*gw2+gp2))/(gw2-gp2)
+ B['dCz'] = -A['cH'] - 3.*dv
+
+ # Two derivative field strength interactions [eqn (4.15)]
+ B['Cgg'] = A['cGG']
+ B['Caa'] = A['cWW'] + A['cBB'] - 4.*A['cWB']
+ B['Czz'] = (gw2**2*A['cWW'] + gp2**2*A['cBB'] + 4.*gw2*gp2*A['cWB'])/(gw2+gp2)**2
+ B['Czbx'] = -(2./gw2)*(A['cT'] - dv)
+ B['Cza'] = (gw2*A['cWW'] - gp2*A['cBB'] - 2.*(gw2-gp2)*A['cWB'])/(gw2+gp2)
+ B['Cabx'] = 2./(gw2-gp2)*((gw2+gp2)*A['cWB'] - 2.*A['cT'] + 2.*dv)
+ B['Cww'] = A['cWW']
+ B['Cwbx'] = 2./(gw2-gp2)*(gp2*A['cWB'] - A['cT'] + dv)
+
B['CTgg'] = A['ctGG']
B['CTaa'] = A['ctWW'] + A['ctBB'] - 4.*A['ctWB']
B['CTzz'] = (gw2**2*A['ctWW'] + gp2**2*A['ctBB'] + 4.*gw2*gp2*A['ctWB'])/(gw2+gp2)**2
B['CTza'] = (gw2*A['ctWW'] - gp2*A['ctBB'] - 2.*(gw2-gp2)*A['ctWB'])/(gw2+gp2)
B['CTww'] = A['ctWW']
- # Yukawa type interaction coefficients [eqn. (4.12)]
+
+ # Yukawa type interaction coefficients [eqn. (4.16)]
for i,j in comb((1,2,3),2):
for f in ('u','d','e'):
mi, mj = self.mass[ PID[f][i] ],self.mass[ PID[f][j] ]
if mi and mj:
dy_cosphi = self.input['vev']*(A['c{}{}{}Re'.format(f,i,j)])
dy_sinphi = self.input['vev']*(A['c{}{}{}Im'.format(f,i,j)])
if i==j: dy_cosphi -= mi*(dv+A['cH'])
Rdysf = math.sqrt( dy_sinphi**2 + dy_cosphi**2)
B['S{}{}{}'.format(f,i,j)], B['dY{}{}{}'.format(f,i,j)] = dy_sf( dy_cosphi, dy_sinphi )
- # Four-point hVff interactions
- for i,j in comb((1,2,3),2):
- B['CLwl{}{}'.format(i,j)] = A['cpHl{}{}'.format(i,j)] # [eqn (4.13)]
- B['CLwq{}{}'.format(i,j)] = A['cpHq{}{}'.format(i,j)]
- B['CRwq{}{}'.format(i,j)] = -A['cHud{}{}'.format(i,j)]/2.
- B['CLzv{}{}'.format(i,j)] = (A['cpHl{}{}'.format(i,j)]-A['cHl{}{}'.format(i,j)])/2. # [eqn (4.14)]
- B['CLze{}{}'.format(i,j)] = (-A['cpHl{}{}'.format(i,j)]-A['cHl{}{}'.format(i,j)])/2.
- B['CRze{}{}'.format(i,j)] = -A['cHe{}{}'.format(i,j)]/2.
- B['CLzu{}{}'.format(i,j)] = (A['cpHq{}{}'.format(i,j)]-A['cHq{}{}'.format(i,j)])/2. # [eqn (4.15)]
- B['CLzd{}{}'.format(i,j)] = (-A['cpHq{}{}'.format(i,j)]-A['cHq{}{}'.format(i,j)])/2.
- B['CRzu{}{}'.format(i,j)] = -A['cHu{}{}'.format(i,j)]/2.
- B['CRzd{}{}'.format(i,j)] = -A['cHd{}{}'.format(i,j)]/2.
+
+ # Triple gauge couplings [eqn. (4.20)]
+ B['dG1z'] = (gw2+gp2)/(gw2-gp2)*( -A['cWB']*gp2 + A['cT'] - dv )
+ B['dKa'] = A['cWB']*gw2
+ B['dKz'] = ( -A['cWB']*2.*gw2*gp2 + (gw2+gp2)*(A['cT'] - dv ) )/(gw2-gp2)
+ B['La'] = -A['c3W']*3./2.*gw2**2
+ B['Lz'] = B['La']
+ B['KTa'] = A['ctWB']*gw2
+ B['KTz'] = -A['ctWB']*gp2
+ B['LTa'] = -A['ct3W']*3./2.*gw2**2
+ B['LTz'] = B['LTa']
+
+
self.newpar = B
self.newmass[24] = self.mass[24]+self.newpar['dM'] # W mass shift
####################################################################################################
\ No newline at end of file
diff --git a/Rosetta/__init__.py b/Rosetta/__init__.py
index 7efddc4..6057d56 100644
--- a/Rosetta/__init__.py
+++ b/Rosetta/__init__.py
@@ -1,21 +1,21 @@
####################################################################################################
# PDG ID dictionary
PID = {'u':{1:1 ,2:4, 3:6},'d':{1:2, 2:3, 3:5},'e':{1:11, 2:13, 3:15},'v':{1:12, 2:14, 3:16}}
# PID:name dictionary for particles
particle_names = {1:'u', 2:'d', 3:'s', 4:'c', 5:'b', 6:'t', 11:'e', 12:'ve', 13:'mu',
14:'vmu', 15:'ta', 16:'vta', 21:'a', 22:'g', 23:'Z', 24:'W', 25:'H'}
# ID:name dictionary for SLHA inputs
input_names = {1:'aEWM1', 2:'Gf', 3:'aS', 4:'MZ', 5:'MB', 6:'MT', 7:'MTAU', 8:'MH'}
# ID:PID dictionary for SLHA inputs that are particle masses
input_to_PID = {4:23, 5:5, 6:6, 7:15, 8:25}
# PID:value dictionary for default particle masses when undefined
default_masses = {1:0., 2:0., 3:0., 4:1.42, 5:4.7, 6:173.,
11:0., 12:0., 13:0.105658367, 14:0., 15:1.77, 16:0.,
- 23:7.982400e+01, 24:9.118800e+01, 25:125.}
+ 23:9.118800e+01, 24:7.982400e+01, 25:125.}
# ID:value dictionary for default SHLA inputs when undefined
-default_inputs = {1: 1.325070e+02, 2: 1.166390e-05, 3: 1.180000e-01, 4: default_masses[24],
+default_inputs = {1: 1.325070e+02, 2: 1.166390e-05, 3: 1.180000e-01, 4: default_masses[23],
5: default_masses[5], 6: default_masses[6], 7: default_masses[15],
- 8:default_masses[23], 9:default_masses[25] }
+ 8:default_masses[24], 9:default_masses[25] }
####################################################################################################
eHDECAY_dir = '/Users/Ken/Work/Packages/Higgs/eHDECAY'
####################################################################################################
\ No newline at end of file
diff --git a/Rosetta/eHDECAY.py b/Rosetta/eHDECAY.py
index b9e303f..955f9f4 100644
--- a/Rosetta/eHDECAY.py
+++ b/Rosetta/eHDECAY.py
@@ -1,174 +1,172 @@
from __init__ import eHDECAY_dir
import os
from tempfile import mkdtemp
import subprocess as sub
from collections import namedtuple
####################################################################################################
SM_inputs = ['MH','aSMZ','MC','MB','MT','MTAU',
'MMU','aEWM1','Gf','MZ','MW','IELW']
SILH_inputs = ['CHbar','CTbar','Ctaubar','Cmubar',
'Ctbar','Cbbar','Ccbar','Csbar','CWbar',
'CBbar','CHWbar','CHBbar','Cgambar','Cgbar']
executable = '{}/run'.format(eHDECAY_dir) # eHDECAY executable
SILH = namedtuple('SILH', SM_inputs+SILH_inputs) # Required inputs for eHDECAY
####################################################################################################
__doc__='''
Interface with eHDECAY program (arXiv:1403.3381) to calculate new Higgs width and branching ratio
to SM particles. Currently takes inputs via a dictionary of parameter:value pairs to be returned by
the eHDECAY_inputs() function of a basis class.
These should contain the following SM inputs:
{}
They should also contain the values of the following coefficients of the SILH basis:
{}
This module will create a temporary directory to write out the input and output files, call the
eHDECAY exectuable and store the output so that it may be written to the new parameter card.
'''.format(', '.join(SM_inputs),', '.join(SILH_inputs))
####################################################################################################
-
-
def eHDECAY(basis):
print 'Running eHDECAY'
input_dict = basis.eHDECAY_inputs()
print input_dict
inp = SILH(**input_dict)
# create temporary directory
tmpdir = mkdtemp(prefix='eHDECAY_',dir = os.getcwd())
# write out eHDECAY input file
with open('{}/ehdecay.in'.format(tmpdir),'w') as infile:
infile.write( create_input(inp) )
process = sub.Popen(executable, stdout = sub.PIPE, stderr = sub.PIPE, cwd = tmpdir)
out, err = process.communicate()
if err:
raise RuntimeError('eHDECAY error: {}'.format(err))
print 'eHDECAY output:\n{}'.format(out)
# read BRs and total width
result = read_output(tmpdir)
# clean up temp directory
# sub.call(['rm','-r',tmpdir])
return result
def read_output(workdir):
with open('{}/br.eff1'.format(workdir),'r') as br1, open('{}/br.eff2'.format(workdir),'r') as br2:
br1_dat, br2_dat = br1.readlines()[3], br2.readlines()[3]
MH, BB, TATA, MUMU, SS, CC, TT = tuple(map(float,br1_dat.split()))
__, GG, AA, ZA, WW, ZZ, WTOT = tuple(map(float,br2_dat.split()))
BR = { 'bb':BB, 'tata':TATA, 'mumu':MUMU,
'ss':SS, 'cc':CC, 'tt':TT , 'gg':GG,
'aa':AA, 'Za':ZA, 'WW':WW, 'ZZ':ZZ,
'WTOT':WTOT}
return BR
def create_input(inp):
values = inp._asdict().values()
return \
'''SLHAIN = 0
SLHAOUT = 0
COUPVAR = 1
HIGGS = 0
SM4 = 0
FERMPHOB = 0
MODEL = 1
TGBET = 1.D0
MABEG = {}
MAEND = 1000.D0
NMA = 1
ALS(MZ) = {}
MSBAR(2) = 0.100D0
MC = {}
MB = {}
MT = {}
MTAU = {}
MMUON = {}
1/ALPHA = {}
GF = {}
GAMW = 2.08856D0
GAMZ = 2.49581D0
MZ = {}
MW = {}
VUS = 0.2253D0
VCB = 0.0410D0
VUB/VCB = 0.0846D0
********************* 4TH GENERATION *************************************
SCENARIO FOR ELW. CORRECTIONS TO H -> GG (EVERYTHING IN GEV):
GG_ELW = 1: MTP = 500 MBP = 450 MNUP = 375 MEP = 450
GG_ELW = 2: MBP = MNUP = MEP = 600 MTP = MBP+50*(1+LOG(M_H/115)/5)
GG_ELW = 1
MTP = 500.D0
MBP = 450.D0
MNUP = 375.D0
MEP = 450.D0
**************************************************************************
SUSYSCALE= 1000.D0
MU = 1000.D0
M2 = 1000.D0
MGLUINO = 1000.D0
MSL1 = 1000.D0
MER1 = 1000.D0
MQL1 = 1000.D0
MUR1 = 1000.D0
MDR1 = 1000.D0
MSL = 1000.D0
MER = 1000.D0
MSQ = 1000.D0
MUR = 1000.D0
MDR = 1000.D0
AL = 1000.D0
AU = 1000.D0
AD = 1000.D0
NNLO (M) = 0
ON-SHELL = 0
ON-SH-WZ = 0
IPOLE = 0
OFF-SUSY = 0
INDIDEC = 0
NF-GG = 5
IGOLD = 0
MPLANCK = 2.4D18
MGOLD = 1.D-13
************** LAGRANGIAN 0 - chiral 1 - SILH 2 - MCHM4/5 **************
LAGPARAM = 1
**** Turn off (0) or on (1) the elw corrections for LAGPARAM = 1 or 2 ****
IELW = {}
******************* VARIATION OF HIGGS COUPLINGS *************************
CW = 0D0
CZ = 0D0
Ctau = 0D0
Cmu = 0D0
Ct = 0D0
Cb = 0D0
Cc = 0D0
Cs = 0D0
Cgaga = 0D0
Cgg = 0D0
CZga = 0D0
CWW = 0D0
CZZ = 0D0
CWdW = 0D0
CZdZ = 0D0
**************************** SILH Lagrangian *****************************
CHbar = {}
CTbar = {}
Ctaubar = {}
Cmubar = {}
Ctbar = {}
Cbbar = {}
Ccbar = {}
Csbar = {}
CWbar = {}
CBbar = {}
CHWbar = {}
CHBbar = {}
Cgambar = {}
Cgbar = {}
******** MCHM4 (fermrepr=1), MCHM5 (fermrepr=2) parametrisation ********
fermrepr = 2
xi = 0.D0
'''.format(*values)
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, Dec 21, 3:09 PM (1 d, 7 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023235
Default Alt Text
(74 KB)
Attached To
rROSETTAGIT rosettagit
Event Timeline
Log In to Comment