Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F8308885
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
34 KB
Subscribers
None
View Options
diff --git a/src/FCN/JointFCN.cxx b/src/FCN/JointFCN.cxx
index dc5c62f..34f7083 100755
--- a/src/FCN/JointFCN.cxx
+++ b/src/FCN/JointFCN.cxx
@@ -1,1130 +1,1130 @@
#include "JointFCN.h"
#include "FitUtils.h"
#include <stdio.h>
//***************************************************
JointFCN::JointFCN(TFile *outfile) {
//***************************************************
fOutputDir = gDirectory;
if (outfile)
Config::Get().out = outfile;
std::vector<nuiskey> samplekeys = Config::QueryKeys("sample");
LoadSamples(samplekeys);
std::vector<nuiskey> covarkeys = Config::QueryKeys("covar");
LoadPulls(covarkeys);
fCurIter = 0;
fMCFilled = false;
fIterationTree = false;
fDialVals = NULL;
fNDials = 0;
fUsingEventManager = FitPar::Config().GetParB("EventManager");
fOutputDir->cd();
}
//***************************************************
JointFCN::JointFCN(std::vector<nuiskey> samplekeys, TFile *outfile) {
//***************************************************
fOutputDir = gDirectory;
if (outfile)
Config::Get().out = outfile;
LoadSamples(samplekeys);
fCurIter = 0;
fMCFilled = false;
fOutputDir->cd();
fIterationTree = false;
fDialVals = NULL;
fNDials = 0;
fUsingEventManager = FitPar::Config().GetParB("EventManager");
fOutputDir->cd();
}
//***************************************************
JointFCN::~JointFCN() {
//***************************************************
// Delete Samples
for (MeasListConstIter iter = fSamples.begin(); iter != fSamples.end();
iter++) {
MeasurementBase *exp = *iter;
delete exp;
}
for (PullListConstIter iter = fPulls.begin(); iter != fPulls.end(); iter++) {
ParamPull *pull = *iter;
delete pull;
}
// Sort Tree
if (fIterationTree)
DestroyIterationTree();
if (fDialVals)
delete fDialVals;
if (fSampleLikes)
delete fSampleLikes;
};
//***************************************************
void JointFCN::CreateIterationTree(std::string name, FitWeight *rw) {
//***************************************************
LOG(FIT) << " Creating new iteration container! " << std::endl;
DestroyIterationTree();
fIterationTreeName = name;
// Add sample likelihoods and ndof
for (MeasListConstIter iter = fSamples.begin(); iter != fSamples.end();
iter++) {
MeasurementBase *exp = *iter;
std::string name = exp->GetName();
std::string liketag = name + "_likelihood";
fNameValues.push_back(liketag);
fCurrentValues.push_back(0.0);
std::string ndoftag = name + "_ndof";
fNameValues.push_back(ndoftag);
fCurrentValues.push_back(0.0);
}
// Add Pull terms
for (PullListConstIter iter = fPulls.begin(); iter != fPulls.end(); iter++) {
ParamPull *pull = *iter;
std::string name = pull->GetName();
std::string liketag = name + "_likelihood";
fNameValues.push_back(liketag);
fCurrentValues.push_back(0.0);
std::string ndoftag = name + "_ndof";
fNameValues.push_back(ndoftag);
fCurrentValues.push_back(0.0);
}
// Add Likelihoods
fNameValues.push_back("total_likelihood");
fCurrentValues.push_back(0.0);
fNameValues.push_back("total_ndof");
fCurrentValues.push_back(0.0);
// Setup Containers
fSampleN = fSamples.size() + fPulls.size();
fSampleLikes = new double[fSampleN];
fSampleNDOF = new int[fSampleN];
// Add Dials
std::vector<std::string> dials = rw->GetDialNames();
for (size_t i = 0; i < dials.size(); i++) {
fNameValues.push_back(dials[i]);
fCurrentValues.push_back(0.0);
}
fNDials = dials.size();
fDialVals = new double[fNDials];
// Set IterationTree Flag
fIterationTree = true;
}
//***************************************************
void JointFCN::DestroyIterationTree() {
//***************************************************
fIterationCount.clear();
fCurrentValues.clear();
fNameValues.clear();
fIterationValues.clear();
}
//***************************************************
void JointFCN::WriteIterationTree() {
//***************************************************
LOG(FIT) << "Writing iteration tree" << std::endl;
// Make a new TTree
TTree *itree =
new TTree(fIterationTreeName.c_str(), fIterationTreeName.c_str());
double *vals = new double[fNameValues.size()];
int count = 0;
itree->Branch("iteration", &count, "Iteration/I");
for (size_t i = 0; i < fNameValues.size(); i++) {
itree->Branch(fNameValues[i].c_str(), &vals[i],
(fNameValues[i] + "/D").c_str());
}
// Fill Iterations
for (size_t i = 0; i < fIterationValues.size(); i++) {
std::vector<double> itervals = fIterationValues[i];
// Fill iteration state
count = fIterationCount[i];
for (size_t j = 0; j < itervals.size(); j++) {
vals[j] = itervals[j];
}
// Save to TTree
itree->Fill();
}
// Write to file
itree->Write();
}
//***************************************************
void JointFCN::FillIterationTree(FitWeight *rw) {
//***************************************************
// Loop over samples count
int count = 0;
for (int i = 0; i < fSampleN; i++) {
fCurrentValues[count++] = fSampleLikes[i];
fCurrentValues[count++] = double(fSampleNDOF[i]);
}
// Fill Totals
fCurrentValues[count++] = fLikelihood;
fCurrentValues[count++] = double(fNDOF);
// Loop Over Parameter Counts
rw->GetAllDials(fDialVals, fNDials);
for (int i = 0; i < fNDials; i++) {
fCurrentValues[count++] = double(fDialVals[i]);
}
// Push Back Into Container
fIterationCount.push_back(fCurIter);
fIterationValues.push_back(fCurrentValues);
}
//***************************************************
double JointFCN::DoEval(const double *x) {
//***************************************************
// WEIGHT ENGINE
fDialChanged = FitBase::GetRW()->HasRWDialChanged(x);
FitBase::GetRW()->UpdateWeightEngine(x);
if (fDialChanged) {
FitBase::GetRW()->Reconfigure();
FitBase::EvtManager().ResetWeightFlags();
}
if (LOG_LEVEL(REC)) {
FitBase::GetRW()->Print();
}
// SORT SAMPLES
ReconfigureSamples();
// GET TEST STAT
fLikelihood = GetLikelihood();
fNDOF = GetNDOF();
// PRINT PROGRESS
LOG(FIT) << "Current Stat (iter. " << this->fCurIter << ") = " << fLikelihood
<< std::endl;
// UPDATE TREE
if (fIterationTree)
FillIterationTree(FitBase::GetRW());
return fLikelihood;
}
//***************************************************
int JointFCN::GetNDOF() {
//***************************************************
int totaldof = 0;
int count = 0;
// Total number of Free bins in each MC prediction
for (MeasListConstIter iter = fSamples.begin(); iter != fSamples.end();
iter++) {
MeasurementBase *exp = *iter;
int dof = exp->GetNDOF();
// Save Seperate DOF
if (fIterationTree) {
fSampleNDOF[count] = dof;
}
// Add to total
totaldof += dof;
count++;
}
// Loop over pulls
for (PullListConstIter iter = fPulls.begin(); iter != fPulls.end(); iter++) {
ParamPull *pull = *iter;
double dof = pull->GetLikelihood();
// Save seperate DOF
if (fIterationTree) {
fSampleNDOF[count] = dof;
}
// Add to total
totaldof += dof;
count++;
}
// Set Data Variable
if (fIterationTree) {
fSampleNDOF[count] = totaldof;
}
return totaldof;
}
//***************************************************
double JointFCN::GetLikelihood() {
//***************************************************
LOG(MIN) << std::left << std::setw(43) << "Getting likelihoods..."
<< " : "
<< "-2logL" << std::endl;
// Loop and add up likelihoods in an uncorrelated way
double like = 0.0;
int count = 0;
for (MeasListConstIter iter = fSamples.begin(); iter != fSamples.end();
iter++) {
MeasurementBase *exp = *iter;
double newlike = exp->GetLikelihood();
int ndof = exp->GetNDOF();
// Save seperate likelihoods
if (fIterationTree) {
fSampleLikes[count] = newlike;
}
LOG(MIN) << "-> " << std::left << std::setw(40) << exp->GetName() << " : "
<< newlike << "/" << ndof << std::endl;
// Add Weight Scaling
// like *= FitBase::GetRW()->GetSampleLikelihoodWeight(exp->GetName());
// Add to total
like += newlike;
count++;
}
// Loop over pulls
for (PullListConstIter iter = fPulls.begin(); iter != fPulls.end(); iter++) {
ParamPull *pull = *iter;
double newlike = pull->GetLikelihood();
// Save seperate likelihoods
if (fIterationTree) {
fSampleLikes[count] = newlike;
}
// Add to total
like += newlike;
count++;
}
// Set Data Variable
fLikelihood = like;
if (fIterationTree) {
fSampleLikes[count] = fLikelihood;
}
return like;
};
void JointFCN::LoadSamples(std::vector<nuiskey> samplekeys) {
LOG(MIN) << "Loading Samples : " << samplekeys.size() << std::endl;
for (size_t i = 0; i < samplekeys.size(); i++) {
nuiskey key = samplekeys[i];
// Get Sample Options
std::string samplename = key.GetS("name");
std::string samplefile = key.GetS("input");
std::string sampletype = key.GetS("type");
std::string fakeData = "";
LOG(MIN) << "Loading Sample : " << samplename << std::endl;
fOutputDir->cd();
MeasurementBase *NewLoadedSample = SampleUtils::CreateSample(key);
if (!NewLoadedSample) {
ERR(FTL) << "Could not load sample provided: " << samplename << std::endl;
ERR(FTL) << "Check spelling with that in src/FCN/SampleList.cxx"
<< std::endl;
throw;
} else {
fSamples.push_back(NewLoadedSample);
}
}
}
//***************************************************
void JointFCN::LoadPulls(std::vector<nuiskey> pullkeys) {
//***************************************************
for (size_t i = 0; i < pullkeys.size(); i++) {
nuiskey key = pullkeys[i];
std::string pullname = key.GetS("name");
std::string pullfile = key.GetS("input");
std::string pulltype = key.GetS("type");
fOutputDir->cd();
fPulls.push_back(new ParamPull(pullname, pullfile, pulltype));
}
}
//***************************************************
void JointFCN::ReconfigureSamples(bool fullconfig) {
//***************************************************
int starttime = time(NULL);
LOG(REC) << "Starting Reconfigure iter. " << this->fCurIter << std::endl;
// std::cout << fUsingEventManager << " " << fullconfig << " " << fMCFilled <<
// std::endl;
// Event Manager Reconf
if (fUsingEventManager) {
if (!fullconfig and fMCFilled)
ReconfigureFastUsingManager();
else
ReconfigureUsingManager();
} else {
// Loop over all Measurement Classes
for (MeasListConstIter iter = fSamples.begin(); iter != fSamples.end();
iter++) {
MeasurementBase *exp = *iter;
// If RW Either do signal or full reconfigure.
if (fDialChanged or !fMCFilled or fullconfig) {
if (!fullconfig and fMCFilled)
exp->ReconfigureFast();
else
exp->Reconfigure();
// If RW Not needed just do normalisation
} else {
exp->Renormalise();
}
}
}
// Loop over pulls and update
for (PullListConstIter iter = fPulls.begin(); iter != fPulls.end(); iter++) {
ParamPull *pull = *iter;
pull->Reconfigure();
}
fMCFilled = true;
LOG(MIN) << "Finished Reconfigure iter. " << fCurIter << " in "
<< time(NULL) - starttime << "s" << std::endl;
fCurIter++;
}
//***************************************************
void JointFCN::ReconfigureSignal() {
//***************************************************
ReconfigureSamples(false);
}
//***************************************************
void JointFCN::ReconfigureAllEvents() {
//***************************************************
FitBase::GetRW()->Reconfigure();
FitBase::EvtManager().ResetWeightFlags();
ReconfigureSamples(true);
}
std::vector<InputHandlerBase *> JointFCN::GetInputList() {
std::vector<InputHandlerBase *> InputList;
fIsAllSplines = true;
MeasListConstIter iterSam = fSamples.begin();
for (; iterSam != fSamples.end(); iterSam++) {
MeasurementBase *exp = (*iterSam);
std::vector<MeasurementBase *> subsamples = exp->GetSubSamples();
for (size_t i = 0; i < subsamples.size(); i++) {
InputHandlerBase *inp = subsamples[i]->GetInput();
if (std::find(InputList.begin(), InputList.end(), inp) ==
InputList.end()) {
if (subsamples[i]->GetInput()->GetType() != kSPLINEPARAMETER)
fIsAllSplines = false;
InputList.push_back(subsamples[i]->GetInput());
}
}
}
return InputList;
}
std::vector<MeasurementBase *> JointFCN::GetSubSampleList() {
std::vector<MeasurementBase *> SampleList;
MeasListConstIter iterSam = fSamples.begin();
for (; iterSam != fSamples.end(); iterSam++) {
MeasurementBase *exp = (*iterSam);
std::vector<MeasurementBase *> subsamples = exp->GetSubSamples();
for (size_t i = 0; i < subsamples.size(); i++) {
SampleList.push_back(subsamples[i]);
}
}
return SampleList;
}
//***************************************************
void JointFCN::ReconfigureUsingManager() {
//***************************************************
// 'Slow' Event Manager Reconfigure
LOG(REC) << "Event Manager Reconfigure" << std::endl;
int timestart = time(NULL);
// Reset all samples
MeasListConstIter iterSam = fSamples.begin();
for (; iterSam != fSamples.end(); iterSam++) {
MeasurementBase *exp = (*iterSam);
exp->ResetAll();
}
// If we are siving signal, reset all containers.
bool savesignal = (FitPar::Config().GetParB("SignalReconfigures"));
if (savesignal) {
// Reset all of our event signal vectors
fSignalEventBoxes.clear();
fSignalEventFlags.clear();
fSampleSignalFlags.clear();
fSignalEventSplines.clear();
}
// Make sure we have a list of inputs
if (fInputList.empty()) {
fInputList = GetInputList();
fSubSampleList = GetSubSampleList();
}
// If all inputs are splines make sure the readers are told
// they need to be reconfigured.
std::vector<InputHandlerBase *>::iterator inp_iter = fInputList.begin();
if (fIsAllSplines) {
for (; inp_iter != fInputList.end(); inp_iter++) {
InputHandlerBase *curinput = (*inp_iter);
// Tell reader in each BaseEvent it needs a Reconfigure next weight calc.
BaseFitEvt *curevent = curinput->FirstBaseEvent();
if (curevent->fSplineRead) {
curevent->fSplineRead->SetNeedsReconfigure(true);
}
}
}
// MAIN INPUT LOOP ====================
int fillcount = 0;
int inputcount = 0;
inp_iter = fInputList.begin();
// Loop over each input in manager
for (; inp_iter != fInputList.end(); inp_iter++) {
InputHandlerBase *curinput = (*inp_iter);
// Get event information
FitEvent *curevent = curinput->FirstNuisanceEvent();
curinput->CreateCache();
int i = 0;
int nevents = curinput->GetNEvents();
int countwidth = nevents / 10;
// Start event loop iterating until we get a NULL pointer.
while (curevent) {
// Get Event Weight
// The reweighting weight
curevent->RWWeight = FitBase::GetRW()->CalcWeight(curevent);
// The Custom weight and reweight
curevent->Weight =
curevent->RWWeight * curevent->InputWeight * curevent->CustomWeight;
// double rwweight = curevent->Weight;
// std::cout << "RWWeight = " << curevent->RWWeight << " " <<
// curevent->InputWeight << std::endl;
// Logging
// std::cout << CHECKLOG(1) << std::endl;
if (LOGGING(REC)) {
if (countwidth && (i % countwidth == 0)) {
QLOG(REC, curinput->GetName()
<< " : Processed " << i << " events. [M, W] = ["
<< curevent->Mode << ", " << curevent->Weight << "]");
}
}
// Setup flag for if signal found in at least one sample
bool foundsignal = false;
// Create a new signal bitset for this event
std::vector<bool> signalbitset(fSubSampleList.size());
// Create a new signal box vector for this event
std::vector<MeasurementVariableBox *> signalboxes;
// Start measurement iterator
size_t measitercount = 0;
std::vector<MeasurementBase *>::iterator meas_iter =
fSubSampleList.begin();
// Loop over all subsamples (sub in JointMeas)
for (; meas_iter != fSubSampleList.end(); meas_iter++) {
MeasurementBase *curmeas = (*meas_iter);
// Compare input pointers, to current input, skip if not.
// Pointer tells us if it matches without doing ID checks.
if (curinput != curmeas->GetInput()) {
if (savesignal) {
// Set bit to 0 as definitely not signal
signalbitset[measitercount] = 0;
}
// Count up what measurement we are on.
measitercount++;
// Skip sample as input not signal.
continue;
}
// Fill events for matching inputs.
MeasurementVariableBox *box = curmeas->FillVariableBox(curevent);
bool signal = curmeas->isSignal(curevent);
curmeas->SetSignal(signal);
curmeas->FillHistograms(curevent->Weight);
// If its Signal tally up fills
if (signal) {
fillcount++;
}
// If we are saving signal/splines fill the bitset
if (savesignal) {
signalbitset[measitercount] = signal;
}
// If signal save a clone of the event box for use later.
if (savesignal and signal) {
foundsignal = true;
signalboxes.push_back(box->CloneSignalBox());
}
// Keep track of Measurement we are on.
measitercount++;
}
// Once we've filled the measurements, if saving signal
// push back if any sample flagged this event as signal
if (savesignal) {
fSignalEventFlags.push_back(foundsignal);
}
// Save the vector of signal boxes for this event
if (savesignal and foundsignal) {
fSignalEventBoxes.push_back(signalboxes);
fSampleSignalFlags.push_back(signalbitset);
}
// If all inputs are splines we can save the spline coefficients
// for fast in memory reconfigures later.
if (fIsAllSplines and savesignal and foundsignal) {
// Make temp vector to push back with
std::vector<float> coeff;
for (size_t l = 0; l < (UInt_t)curevent->fSplineRead->GetNPar(); l++) {
coeff.push_back(curevent->fSplineCoeff[l]);
}
// Push back to signal event splines. Kept in sync with
// fSignalEventBoxes size.
// int splinecount = fSignalEventSplines.size();
fSignalEventSplines.push_back(coeff);
// if (splinecount % 1000 == 0) {
// std::cout << "Pushed Back Coeff " << splinecount << " : ";
// for (size_t l = 0; l < fSignalEventSplines[splinecount].size(); l++)
// {
// std::cout << " " << fSignalEventSplines[splinecount][l];
// }
// std::cout << std::endl;
// }
}
// Clean up vectors once done with this event
signalboxes.clear();
signalbitset.clear();
// Iterate to the next event.
curevent = curinput->NextNuisanceEvent();
i++;
}
// curinput->RemoveCache();
// Keep track of what input we are on.
inputcount++;
}
// End of Event Loop ===============================
// Now event loop is finished loop over all Measurements
// Converting Binned events to XSec Distributions
iterSam = fSamples.begin();
for (; iterSam != fSamples.end(); iterSam++) {
MeasurementBase *exp = (*iterSam);
exp->ConvertEventRates();
}
// Print out statements on approximate memory usage for profiling.
LOG(REC) << "Filled " << fillcount << " signal events." << std::endl;
if (savesignal) {
int mem = ( // sizeof(fSignalEventBoxes) +
// fSignalEventBoxes.size() * sizeof(fSignalEventBoxes.at(0)) +
sizeof(MeasurementVariableBox1D) * fillcount) *
1E-6;
LOG(REC) << " -> Saved " << fillcount
<< " signal boxes for faster access. (~" << mem << " MB)"
<< std::endl;
if (fIsAllSplines and !fSignalEventSplines.empty()) {
int splmem = sizeof(float) * fSignalEventSplines.size() *
fSignalEventSplines[0].size() * 1E-6;
LOG(REC) << " -> Saved " << fillcount << " " << fSignalEventSplines.size()
<< " spline sets into memory. (~" << splmem << " MB)"
<< std::endl;
}
}
LOG(REC) << "Time taken ReconfigureUsingManager() : "
<< time(NULL) - timestart << std::endl;
// Check SignalReconfigures works for all samples
if (savesignal) {
double likefull = GetLikelihood();
ReconfigureFastUsingManager();
double likefast = GetLikelihood();
if (fabs(likefull - likefast) > 0.0001) {
ERROR(FTL, "Fast and Full Likelihoods DIFFER! : " << likefull << " : "
<< likefast);
ERROR(FTL, "This means some samples you are using are not setup to use "
"SignalReconfigures=1");
ERROR(FTL, "Please turn OFF signal reconfigures.");
throw;
} else {
LOG(FIT)
<< "Likelihoods for FULL and FAST match. Will use FAST next time."
<< std::endl;
}
}
// End of reconfigure
return;
};
//***************************************************
void JointFCN::ReconfigureFastUsingManager() {
//***************************************************
LOG(FIT) << " -> Doing FAST using manager" << std::endl;
// Get Start time for profilling
int timestart = time(NULL);
// Reset all samples
MeasListConstIter iterSam = fSamples.begin();
for (; iterSam != fSamples.end(); iterSam++) {
MeasurementBase *exp = (*iterSam);
exp->ResetAll();
}
// Check for saved variables if not do a full reconfigure.
if (fSignalEventFlags.empty()) {
ERR(WRN) << "Signal Flags Empty! Using normal manager." << std::endl;
ReconfigureUsingManager();
return;
}
bool fFillNuisanceEvent =
FitPar::Config().GetParB("FullEventOnSignalReconfigure");
// Setup fast vector iterators.
std::vector<bool>::iterator inpsig_iter = fSignalEventFlags.begin();
- std::vector<std::vector<MeasurementVariableBox *>>::iterator box_iter =
+ std::vector<std::vector<MeasurementVariableBox *> >::iterator box_iter =
fSignalEventBoxes.begin();
- std::vector<std::vector<float>>::iterator spline_iter =
+ std::vector<std::vector<float> >::iterator spline_iter =
fSignalEventSplines.begin();
- std::vector<std::vector<bool>>::iterator samsig_iter =
+ std::vector<std::vector<bool> >::iterator samsig_iter =
fSampleSignalFlags.begin();
int splinecount = 0;
// Setup stuff for logging
int fillcount = 0;
int nevents = fSignalEventFlags.size();
int countwidth = nevents / 10;
// If All Splines tell splines they need a reconfigure.
std::vector<InputHandlerBase *>::iterator inp_iter = fInputList.begin();
if (fIsAllSplines) {
LOG(REC) << "All Spline Inputs so using fast spline loop." << std::endl;
for (; inp_iter != fInputList.end(); inp_iter++) {
InputHandlerBase *curinput = (*inp_iter);
// Tell each fSplineRead in BaseFitEvent to reconf next weight calc
BaseFitEvt *curevent = curinput->FirstBaseEvent();
if (curevent->fSplineRead)
curevent->fSplineRead->SetNeedsReconfigure(true);
}
}
// Loop over all possible spline inputs
double *coreeventweights = new double[fSignalEventBoxes.size()];
splinecount = 0;
inp_iter = fInputList.begin();
inpsig_iter = fSignalEventFlags.begin();
spline_iter = fSignalEventSplines.begin();
// Loop over all signal flags
// For each valid signal flag add one to splinecount
// Get Splines from that count and add to weight
// Add splinecount
int sigcount = 0;
splinecount = 0;
// #pragma omp parallel for shared(splinecount,sigcount)
for (uint iinput = 0; iinput < fInputList.size(); iinput++) {
InputHandlerBase *curinput = fInputList[iinput];
BaseFitEvt *curevent = curinput->FirstBaseEvent();
for (int i = 0; i < curinput->GetNEvents(); i++) {
double rwweight = 0.0;
if (fSignalEventFlags[sigcount]) {
// Get Event Info
if (!fIsAllSplines) {
if (fFillNuisanceEvent) {
curevent = curinput->GetNuisanceEvent(i);
} else {
curevent = curinput->GetBaseEvent(i);
}
} else {
curevent->fSplineCoeff = &fSignalEventSplines[splinecount][0];
}
curevent->RWWeight = FitBase::GetRW()->CalcWeight(curevent);
curevent->Weight =
curevent->RWWeight * curevent->InputWeight * curevent->CustomWeight;
rwweight = curevent->Weight;
coreeventweights[splinecount] = rwweight;
if (countwidth && ((splinecount % countwidth) == 0)) {
LOG(REC) << "Processed " << splinecount
<< " event weights. W = " << rwweight << std::endl;
}
// #pragma omp atomic
splinecount++;
}
// #pragma omp atomic
sigcount++;
}
}
LOG(SAM) << "Processed event weights." << std::endl;
// #pragma omp barrier
// Reset Iterators
inpsig_iter = fSignalEventFlags.begin();
spline_iter = fSignalEventSplines.begin();
box_iter = fSignalEventBoxes.begin();
samsig_iter = fSampleSignalFlags.begin();
int nsplineweights = splinecount;
splinecount = 0;
// Start of Fast Event Loop ============================
// Start input iterators
// Loop over number of inputs
for (int ispline = 0; ispline < nsplineweights; ispline++) {
double rwweight = coreeventweights[ispline];
// Get iterators for this event
std::vector<bool>::iterator subsamsig_iter = (*samsig_iter).begin();
std::vector<MeasurementVariableBox *>::iterator subbox_iter =
(*box_iter).begin();
// Loop over all sub measurements.
std::vector<MeasurementBase *>::iterator meas_iter = fSubSampleList.begin();
for (; meas_iter != fSubSampleList.end(); meas_iter++, subsamsig_iter++) {
MeasurementBase *curmeas = (*meas_iter);
// If event flagged as signal for this sample fill from the box.
if (*subsamsig_iter) {
curmeas->SetSignal(true);
curmeas->FillHistogramsFromBox((*subbox_iter), rwweight);
// Move onto next box if there is one.
subbox_iter++;
fillcount++;
}
}
if (ispline % countwidth == 0) {
LOG(REC) << "Filled " << ispline << " sample weights." << std::endl;
}
// Iterate over the main signal event containers.
samsig_iter++;
box_iter++;
spline_iter++;
splinecount++;
}
// End of Fast Event Loop ===================
LOG(SAM) << "Filled sample distributions." << std::endl;
// Now loop over all Measurements
// Convert Binned events
iterSam = fSamples.begin();
for (; iterSam != fSamples.end(); iterSam++) {
MeasurementBase *exp = (*iterSam);
exp->ConvertEventRates();
}
// Cleanup coreeventweights
if (fIsAllSplines) {
delete coreeventweights;
}
// Print some reconfigure profiling.
LOG(REC) << "Filled " << fillcount << " signal events." << std::endl;
LOG(REC) << "Time taken ReconfigureFastUsingManager() : "
<< time(NULL) - timestart << std::endl;
}
//***************************************************
void JointFCN::Write() {
//***************************************************
// Save a likelihood/ndof plot
LOG(MIN) << "Writing likelihood plot.." << std::endl;
std::vector<double> likes;
std::vector<double> ndofs;
std::vector<std::string> names;
for (MeasListConstIter iter = fSamples.begin(); iter != fSamples.end();
iter++) {
MeasurementBase *exp = *iter;
double like = exp->GetLikelihood();
double ndof = exp->GetNDOF();
std::string name = exp->GetName();
likes.push_back(like);
ndofs.push_back(ndof);
names.push_back(name);
}
if (likes.size()) {
TH1D likehist = TH1D("likelihood_hist", "likelihood_hist", likes.size(),
0.0, double(likes.size()));
TH1D ndofhist =
TH1D("ndof_hist", "ndof_hist", ndofs.size(), 0.0, double(ndofs.size()));
TH1D divhist = TH1D("likedivndof_hist", "likedivndof_hist", likes.size(),
0.0, double(likes.size()));
for (int i = 0; i < likehist.GetNbinsX(); i++) {
likehist.SetBinContent(i + 1, likes[i]);
ndofhist.SetBinContent(i + 1, ndofs[i]);
if (ndofs[i] != 0.0) {
divhist.SetBinContent(i + 1, likes[i] / ndofs[i]);
}
likehist.GetXaxis()->SetBinLabel(i + 1, names[i].c_str());
ndofhist.GetXaxis()->SetBinLabel(i + 1, names[i].c_str());
divhist.GetXaxis()->SetBinLabel(i + 1, names[i].c_str());
}
likehist.Write();
ndofhist.Write();
divhist.Write();
}
// Loop over individual experiments and call Write
LOG(MIN) << "Writing each of the data classes..." << std::endl;
for (MeasListConstIter iter = fSamples.begin(); iter != fSamples.end();
iter++) {
MeasurementBase *exp = *iter;
exp->Write();
}
// Save Pull Terms
for (PullListConstIter iter = fPulls.begin(); iter != fPulls.end(); iter++) {
ParamPull *pull = *iter;
pull->Write();
}
if (FitPar::Config().GetParB("EventManager")) {
// Get list of inputs
std::map<int, InputHandlerBase *> fInputs =
FitBase::EvtManager().GetInputs();
std::map<int, InputHandlerBase *>::const_iterator iterInp;
for (iterInp = fInputs.begin(); iterInp != fInputs.end(); iterInp++) {
InputHandlerBase *input = (iterInp->second);
input->GetFluxHistogram()->Write();
input->GetXSecHistogram()->Write();
input->GetEventHistogram()->Write();
}
}
};
//***************************************************
void JointFCN::SetFakeData(std::string fakeinput) {
//***************************************************
LOG(MIN) << "Setting fake data from " << fakeinput << std::endl;
for (MeasListConstIter iter = fSamples.begin(); iter != fSamples.end();
iter++) {
MeasurementBase *exp = *iter;
exp->SetFakeDataValues(fakeinput);
}
return;
}
//***************************************************
void JointFCN::ThrowDataToy() {
//***************************************************
for (MeasListConstIter iter = fSamples.begin(); iter != fSamples.end();
iter++) {
MeasurementBase *exp = *iter;
exp->ThrowDataToy();
}
return;
}
//***************************************************
std::vector<std::string> JointFCN::GetAllNames() {
//***************************************************
// Vect of all likelihoods and total
std::vector<std::string> namevect;
// Loop over samples first
for (MeasListConstIter iter = fSamples.begin(); iter != fSamples.end();
iter++) {
MeasurementBase *exp = *iter;
// Get Likelihoods and push to vector
namevect.push_back(exp->GetName());
}
// Loop over pulls second
for (PullListConstIter iter = fPulls.begin(); iter != fPulls.end(); iter++) {
ParamPull *pull = *iter;
// Push back to vector
namevect.push_back(pull->GetName());
}
// Finally add the total
namevect.push_back("total");
return namevect;
}
//***************************************************
std::vector<double> JointFCN::GetAllLikelihoods() {
//***************************************************
// Vect of all likelihoods and total
std::vector<double> likevect;
double total_likelihood = 0.0;
LOG(MIN) << "Likelihoods : " << std::endl;
// Loop over samples first
for (MeasListConstIter iter = fSamples.begin(); iter != fSamples.end();
iter++) {
MeasurementBase *exp = *iter;
// Get Likelihoods and push to vector
double singlelike = exp->GetLikelihood();
likevect.push_back(singlelike);
total_likelihood += singlelike;
// Print Out
LOG(MIN) << "-> " << std::left << std::setw(40) << exp->GetName() << " : "
<< singlelike << std::endl;
}
// Loop over pulls second
for (PullListConstIter iter = fPulls.begin(); iter != fPulls.end(); iter++) {
ParamPull *pull = *iter;
// Push back to vector
double singlelike = pull->GetLikelihood();
likevect.push_back(singlelike);
total_likelihood += singlelike;
// Print Out
LOG(MIN) << "-> " << std::left << std::setw(40) << pull->GetName() << " : "
<< singlelike << std::endl;
}
// Finally add the total likelihood
likevect.push_back(total_likelihood);
return likevect;
}
//***************************************************
std::vector<int> JointFCN::GetAllNDOF() {
//***************************************************
// Vect of all ndof and total
std::vector<int> ndofvect;
int total_ndof = 0;
// Loop over samples first
for (MeasListConstIter iter = fSamples.begin(); iter != fSamples.end();
iter++) {
MeasurementBase *exp = *iter;
// Get Likelihoods and push to vector
int singlendof = exp->GetNDOF();
ndofvect.push_back(singlendof);
total_ndof += singlendof;
}
// Loop over pulls second
for (PullListConstIter iter = fPulls.begin(); iter != fPulls.end(); iter++) {
ParamPull *pull = *iter;
// Push back to vector
int singlendof = pull->GetNDOF();
ndofvect.push_back(singlendof);
total_ndof += singlendof;
}
// Finally add the total ndof
ndofvect.push_back(total_ndof);
return ndofvect;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, Dec 21, 1:29 PM (19 h, 48 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4018128
Default Alt Text
(34 KB)
Attached To
rNUISANCEGIT nuisancegit
Event Timeline
Log In to Comment