Page MenuHomeHEPForge

No OneTemporary

diff --git a/src/Wjets.cc b/src/Wjets.cc
index 5ba3ea8..16cb6fb 100644
--- a/src/Wjets.cc
+++ b/src/Wjets.cc
@@ -1,2010 +1,2066 @@
#include "HEJ/currents.hh"
#include "HEJ/utility.hh"
#include "HEJ/Tensor.hh"
#include "HEJ/Constants.hh"
#include <array>
#include <iostream>
namespace { // Helper Functions
// FKL W Helper Functions
void jW (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin, current cur)
{
// NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5)
// Need to swap e and nu for events with W- --> e- nubar!
if (helin==helout && hele==helnu) {
CLHEP::HepLorentzVector qa=pout+pe+pnu;
CLHEP::HepLorentzVector qb=pin-pe-pnu;
double ta(qa.m2()),tb(qb.m2());
current t65,vout,vin,temp2,temp3,temp5;
joo(pnu,helnu,pe,hele,t65);
vout[0]=pout.e();
vout[1]=pout.x();
vout[2]=pout.y();
vout[3]=pout.z();
vin[0]=pin.e();
vin[1]=pin.x();
vin[2]=pin.y();
vin[3]=pin.z();
COM brac615=cdot(t65,vout);
COM brac645=cdot(t65,vin);
// prod1565 and prod6465 are zero for Ws (not Zs)!!
// noalias(temp)=prod(trans(CurrentOutOut(pout,helout,pnu,helout)),metric);
joo(pout,helout,pnu,helout,temp2);
// noalias(temp2)=prod(temp,ctemp);
COM prod1665=cdot(temp2,t65);
// noalias(temp)=prod(trans(Current(pe,helin,pin,helin)),metric);
// noalias(temp2)=prod(temp,ctemp);
joi(pe,helin,pin,helin,temp3);
COM prod5465=cdot(temp3,t65);
// noalias(temp)=prod(trans(Current(pnu,helin,pin,helin)),metric);
// noalias(temp2)=prod(temp,ctemp);
joo(pout,helout,pe,helout,temp2);
joi(pnu,helnu,pin,helin,temp3);
joi(pout,helout,pin,helin,temp5);
current term1,term2,term3,sum;
cmult(2.*brac615/ta+2.*brac645/tb,temp5,term1);
cmult(prod1665/ta,temp3,term2);
cmult(-prod5465/tb,temp2,term3);
// cur=((2.*brac615*Current(pout,helout,pin,helin)+prod1565*Current(pe,helin,pin,helin)+prod1665*Current(pnu,helin,pin,helin))/ta + (2.*brac645*Current(pout,helout,pin,helin)-prod5465*CurrentOutOut(pout,helout,pe,helout)-prod6465*CurrentOutOut(pout,helout,pnu,helout))/tb);
// cur=((2.*brac615*temp5+prod1565*temp3+prod1665*temp4)/ta + (2.*brac645*temp5-prod5465*temp1-prod6465*temp2)/tb);
cadd(term1,term2,term3,sum);
// std::cout<<"sum: ("<<sum[0]<<","<<sum[1]<<","<<sum[2]<<","<<sum[3]<<")\n";
cur[0]=sum[0];
cur[1]=sum[1];
cur[2]=sum[2];
cur[3]=sum[3];
}
}
void jWbar (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin, current cur)
{
// NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5)
// Need to swap e and nu for events with W- --> e- nubar!
if (helin==helout && hele==helnu) {
CLHEP::HepLorentzVector qa=pout+pe+pnu;
CLHEP::HepLorentzVector qb=pin-pe-pnu;
double ta(qa.m2()),tb(qb.m2());
current t65,vout,vin,temp2,temp3,temp5;
joo(pnu,helnu,pe,hele,t65);
vout[0]=pout.e();
vout[1]=pout.x();
vout[2]=pout.y();
vout[3]=pout.z();
vin[0]=pin.e();
vin[1]=pin.x();
vin[2]=pin.y();
vin[3]=pin.z();
COM brac615=cdot(t65,vout);
COM brac645=cdot(t65,vin);
// prod1565 and prod6465 are zero for Ws (not Zs)!!
joo(pe,helout,pout,helout,temp2); // temp2 is <5|alpha|1>
COM prod5165=cdot(temp2,t65);
jio(pin,helin,pnu,helin,temp3); // temp3 is <4|alpha|6>
COM prod4665=cdot(temp3,t65);
joo(pnu,helout,pout,helout,temp2); // temp2 is now <6|mu|1>
jio(pin,helin,pe,helin,temp3); // temp3 is now <4|mu|5>
jio(pin,helin,pout,helout,temp5); // temp5 is <4|mu|1>
current term1,term2,term3,sum;
cmult(-2.*brac615/ta-2.*brac645/tb,temp5,term1);
cmult(-prod5165/ta,temp3,term2);
cmult(prod4665/tb,temp2,term3);
// cur=((2.*brac615*Current(pout,helout,pin,helin)+prod1565*Current(pe,helin,pin,helin)+prod1665*Current(pnu,helin,pin,helin))/ta + (2.*brac645*Current(pout,helout,pin,helin)-prod5465*CurrentOutOut(pout,helout,pe,helout)-prod6465*CurrentOutOut(pout,helout,pnu,helout))/tb);
// cur=((2.*brac615*temp5+prod1565*temp3+prod1665*temp4)/ta + (2.*brac645*temp5-prod5465*temp1-prod6465*temp2)/tb);
cadd(term1,term2,term3,sum);
// std::cout<<"term1: ("<<temp5[0]<<" "<<temp5[1]<<" "<<temp5[2]<<" "<<temp5[3]<<")"<<std::endl;
// std::cout<<"sum: ("<<sum[0]<<","<<sum[1]<<","<<sum[2]<<","<<sum[3]<<")\n";
cur[0]=sum[0];
cur[1]=sum[1];
cur[2]=sum[2];
cur[3]=sum[3];
}
}
double WProp (const CLHEP::HepLorentzVector & plbar, const CLHEP::HepLorentzVector & pl){
COM propW = COM(0.,-1.)/((pl+plbar).m2() -HEJ::MW*HEJ::MW + COM(0.,1.)*HEJ::MW*HEJ::GammaW);
double PropFactor=(propW*conj(propW)).real();
return PropFactor;
}
CCurrent jW (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin)
{
COM cur[4];
cur[0]=0.;
cur[1]=0.;
cur[2]=0.;
cur[3]=0.;
CCurrent sum(0.,0.,0.,0.);
// NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5)
// Need to swap e and nu for events with W- --> e- nubar!
if (helin==helout && hele==helnu) {
CLHEP::HepLorentzVector qa=pout+pe+pnu;
CLHEP::HepLorentzVector qb=pin-pe-pnu;
double ta(qa.m2()),tb(qb.m2());
CCurrent temp2,temp3,temp5;
CCurrent t65 = joo(pnu,helnu,pe,hele);
CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z());
CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z());
COM brac615=t65.dot(vout);
COM brac645=t65.dot(vin);
// prod1565 and prod6465 are zero for Ws (not Zs)!!
temp2 = joo(pout,helout,pnu,helout);
COM prod1665=temp2.dot(t65);
temp3 = j(pe,helin,pin,helin);
COM prod5465=temp3.dot(t65);
temp2=joo(pout,helout,pe,helout);
temp3=j(pnu,helnu,pin,helin);
temp5=j(pout,helout,pin,helin);
CCurrent term1,term2,term3;
term1=(2.*brac615/ta+2.*brac645/tb)*temp5;
term2=(prod1665/ta)*temp3;
term3=(-prod5465/tb)*temp2;
sum=term1+term2+term3;
}
return sum;
}
CCurrent jWbar (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin)
{
COM cur[4];
cur[0]=0.;
cur[1]=0.;
cur[2]=0.;
cur[3]=0.;
CCurrent sum(0.,0.,0.,0.);
// NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5)
// Need to swap e and nu for events with W- --> e- nubar!
if (helin==helout && hele==helnu) {
CLHEP::HepLorentzVector qa=pout+pe+pnu;
CLHEP::HepLorentzVector qb=pin-pe-pnu;
double ta(qa.m2()),tb(qb.m2());
CCurrent temp2,temp3,temp5;
CCurrent t65 = joo(pnu,helnu,pe,hele);
CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z());
CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z());
COM brac615=t65.dot(vout);
COM brac645=t65.dot(vin);
// prod1565 and prod6465 are zero for Ws (not Zs)!!
temp2 = joo(pe,helout,pout,helout); // temp2 is <5|alpha|1>
COM prod5165=temp2.dot(t65);
temp3 = jio(pin,helin,pnu,helin); // temp3 is <4|alpha|6>
COM prod4665=temp3.dot(t65);
temp2=joo(pnu,helout,pout,helout); // temp2 is now <6|mu|1>
temp3=jio(pin,helin,pe,helin); // temp3 is now <4|mu|5>
temp5=jio(pin,helin,pout,helout); // temp5 is <4|mu|1>
CCurrent term1,term2,term3;
term1 =(-2.*brac615/ta-2.*brac645/tb)*temp5;
term2 =(-prod5165/ta)*temp3;
term3 =(prod4665/tb)*temp2;
sum = term1 + term2 + term3;
}
return sum;
}
// Extremal quark current with W emission. Using Tensor class rather than CCurrent
Tensor <1,4> jW(HLV pin, HLV pout, HLV plbar, HLV pl, bool aqline){
// Build the external quark line W Emmision
Tensor<1,4> ABCurr = TCurrent(pl, false, plbar, false);
Tensor<1,4> Tp4W = Construct1Tensor((pout+pl+plbar));//p4+pw
Tensor<1,4> TpbW = Construct1Tensor((pin-pl-plbar));//pb-pw
Tensor<3,4> J4bBlank;
if (aqline){
J4bBlank = T3Current(pin,false,pout,false);
}
else{
J4bBlank = T3Current(pout,false,pin,false);
}
double t4AB = (pout+pl+plbar).m2();
double tbAB = (pin-pl-plbar).m2();
Tensor<2,4> J4b1 = (J4bBlank.contract(Tp4W,2))/t4AB;
Tensor<2,4> J4b2 = (J4bBlank.contract(TpbW,2))/tbAB;
Tensor<2,4> T4bmMom(0.);
if (aqline){
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
T4bmMom.Set(mu,nu, (J4b1.at(nu,mu) + J4b2.at(mu,nu))*(COM(-1,0)));
}
}
}
else{
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
T4bmMom.Set(nu,mu, (J4b1.at(nu,mu) + J4b2.at(mu,nu)));
}
}
}
Tensor<1,4> T4bm = T4bmMom.contract(ABCurr,1);
return T4bm;
}
// Relevant W+Jets Unordered Contribution Helper Functions
// W+Jets Uno
double jM2Wuno(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector plbar, CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pa, bool h1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector pb, bool h2, bool pol)
{
static bool is_sigma_index_set(false);
if(!is_sigma_index_set){
//std::cout<<"Setting sigma_index...." << std::endl;
if(init_sigma_index())
is_sigma_index_set = true;
else
return 0.;
}
CLHEP::HepLorentzVector pW = pl+plbar;
CLHEP::HepLorentzVector q1g=pa-pW-p1-pg;
CLHEP::HepLorentzVector q1 = pa-p1-pW;
CLHEP::HepLorentzVector q2 = p2-pb;
const double taW = (pa-pW).m2();
const double taW1 = (pa-pW-p1).m2();
const double tb2 = (pb-p2).m2();
const double tb2g = (pb-p2-pg).m2();
const double s1W = (p1+pW).m2();
const double s1gW = (p1+pW+pg).m2();
const double s1g = (p1+pg).m2();
const double tag = (pa-pg).m2();
const double taWg = (pa-pW-pg).m2();
//use p1 as ref vec in pol tensor
Tensor<1,4> epsg = eps(pg,p2,pol);
Tensor<1,4> epsW = TCurrent(pl,false,plbar,false);
Tensor<1,4> j2b = TCurrent(p2,h2,pb,h2);
Tensor<1,4> Tq1q2 = Construct1Tensor((q1+q2)/taW1 + (pb/pb.dot(pg)
+ p2/p2.dot(pg)) * tb2/(2*tb2g));
Tensor<1,4> Tq1g = Construct1Tensor((-pg-q1))/taW1;
Tensor<1,4> Tq2g = Construct1Tensor((pg-q2));
Tensor<1,4> TqaW = Construct1Tensor((pa-pW));//pa-pw
Tensor<1,4> Tqag = Construct1Tensor((pa-pg));
Tensor<1,4> TqaWg = Construct1Tensor((pa-pg-pW));
Tensor<1,4> Tp1g = Construct1Tensor((p1+pg));
Tensor<1,4> Tp1W = Construct1Tensor((p1+pW));//p1+pw
Tensor<1,4> Tp1gW = Construct1Tensor((p1+pg+pW));//p1+pw+pg
Tensor<2,4> g=Metric();
Tensor<3,4> J31a = T3Current(p1, h1, pa, h1);
Tensor<2,4> J2_qaW =J31a.contract(TqaW/taW, 2);
Tensor<2,4> J2_p1W =J31a.contract(Tp1W/s1W, 2);
Tensor<3,4> L1a =J2_qaW.leftprod(Tq1q2);
Tensor<3,4> L1b =J2_p1W.leftprod(Tq1q2);
Tensor<3,4> L2a = J2_qaW.leftprod(Tq1g);
Tensor<3,4> L2b = J2_p1W.leftprod(Tq1g);
Tensor<3,4> L3 = (g.rightprod(J2_qaW.contract(Tq2g,1)+J2_p1W.contract(Tq2g,2)))/taW1;
Tensor<3,4> L(0.);
Tensor<5,4> J51a = T5Current(p1, h1, pa, h1);
Tensor<4,4> J_qaW = J51a.contract(TqaW,4);
Tensor<4,4> J_qag = J51a.contract(Tqag,4);
Tensor<4,4> J_p1gW = J51a.contract(Tp1gW,4);
Tensor<3,4> U1a = J_qaW.contract(Tp1g,2);
Tensor<3,4> U1b = J_p1gW.contract(Tp1g,2);
Tensor<3,4> U1c = J_p1gW.contract(Tp1W,2);
Tensor<3,4> U1(0.);
Tensor<3,4> U2a = J_qaW.contract(TqaWg,2);
Tensor<3,4> U2b = J_qag.contract(TqaWg,2);
Tensor<3,4> U2c = J_qag.contract(Tp1W,2);
Tensor<3,4> U2(0.);
for(int nu=0; nu<4;nu++){
for(int mu=0;mu<4;mu++){
for(int rho=0;rho<4;rho++){
L.Set(nu, mu, rho, L1a.at(nu,mu,rho) + L1b.at(nu,rho,mu)
+ L2a.at(mu,nu,rho) + L2b.at(mu,rho,nu) + L3.at(mu,nu,rho));
U1.Set(nu, mu, rho, U1a.at(nu, mu, rho) / (s1g*taW)
+ U1b.at(nu,rho,mu) / (s1g*s1gW) + U1c.at(rho,nu,mu) / (s1W*s1gW));
U2.Set(nu,mu,rho,U2a.at(mu,nu,rho) / (taWg*taW)
+ U2b.at(mu,rho,nu) / (taWg*tag) + U2c.at(rho,mu,nu) / (s1W*tag));
}
}
}
COM X = ((((U1-L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)).at(0);
COM Y = ((((U2+L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)).at(0);
double amp = HEJ::C_A*HEJ::C_F*HEJ::C_F/2.*(norm(X)+norm(Y)) - HEJ::C_F/2.*(X*conj(Y)).real();
double t1 = q1g.m2();
double t2 = q2.m2();
+ double WPropfact = WProp(plbar, pl);
+
+ //Divide by WProp
+ amp*=WPropfact;
+
//Divide by t-channels
amp/=(t1*t2);
//Average over initial states
amp/=(4.*HEJ::C_A*HEJ::C_A);
return amp;
}
// Relevant Wqqx Helper Functions.
//g->qxqlxl (Calculates gluon to qqx Current. See JV_\mu in WSubleading Notes)
Tensor <1,4> gtqqxW(CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar){
double s2AB=(pl+plbar+pq).m2();
double s3AB=(pl+plbar+pqbar).m2();
Tensor<1,4> Tpq = Construct1Tensor(pq);
Tensor<1,4> Tpqbar = Construct1Tensor(pqbar);
Tensor<1,4> TAB = Construct1Tensor(pl+plbar);
// Define llx current.
Tensor<1,4> ABCur = TCurrent(pl, false, plbar, false);
//blank 3 Gamma Current
Tensor<3,4> JV23 = T3Current(pq,false,pqbar,false);
// Components of g->qqW before W Contraction
Tensor<2,4> JV1 = JV23.contract((Tpq + TAB),2)/(s2AB);
Tensor<2,4> JV2 = JV23.contract((Tpqbar + TAB),2)/(s3AB);
// g->qqW Current. Note Minus between terms due to momentum flow.
// Also note: (-I)^2 from W vert. (I) from Quark prop.
Tensor<1,4> JVCur = (JV1.contract(ABCur,1) - JV2.contract(ABCur,2))*COM(0.,-1.);
return JVCur;
}
// Helper Functions Calculate the Crossed Contribution
Tensor <2,4> MCrossW(CLHEP::HepLorentzVector pa,CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar, std::vector<HLV> partons, int nabove){
// Useful propagator factors
double s2AB=(pl+plbar+pq).m2();
double s3AB=(pl+plbar+pqbar).m2();
CLHEP::HepLorentzVector q1, q3;
q1=pa;
for(int i=0; i<nabove+1;i++){
q1=q1-partons.at(i);
}
q3 = q1 - pq - pqbar - pl - plbar;
double tcro1=(q3+pq).m2();
double tcro2=(q1-pqbar).m2();
Tensor<1,4> Tp1 = Construct1Tensor(p1);
Tensor<1,4> Tp4 = Construct1Tensor(p4);
Tensor<1,4> Tpa = Construct1Tensor(pa);
Tensor<1,4> Tpb = Construct1Tensor(pb);
Tensor<1,4> Tpq = Construct1Tensor(pq);
Tensor<1,4> Tpqbar = Construct1Tensor(pqbar);
Tensor<1,4> TAB = Construct1Tensor(pl+plbar);
Tensor<1,4> Tq1 = Construct1Tensor(q1);
Tensor<1,4> Tq3 = Construct1Tensor(q3);
Tensor<2,4> g=Metric();
// Define llx current.
Tensor<1,4> ABCur = TCurrent(pl, false, plbar,false);
//Blank 5 gamma Current
Tensor<5,4> J523 = T5Current(pq,false,pqbar,false);
// 4 gamma currents (with 1 contraction already).
Tensor<4,4> J_q3q = J523.contract((Tq3+Tpq),2);
Tensor<4,4> J_2AB = J523.contract((Tpq+TAB),2);
// Components of Crossed Vertex Contribution
Tensor<3,4> Xcro1 = J_q3q.contract((Tpqbar + TAB),3);
Tensor<3,4> Xcro2 = J_q3q.contract((Tq1-Tpqbar),3);
Tensor<3,4> Xcro3 = J_2AB.contract((Tq1-Tpqbar),3);
// Term Denominators Taken Care of at this stage
Tensor<2,4> Xcro1Cont = Xcro1.contract(ABCur,3)/(tcro1*s3AB);
Tensor<2,4> Xcro2Cont = Xcro2.contract(ABCur,2)/(tcro1*tcro2);
Tensor<2,4> Xcro3Cont = Xcro3.contract(ABCur,1)/(s2AB*tcro2);
//Initialise the Crossed Vertex Object
Tensor<2,4> Xcro(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xcro.Set(mu,nu, -(-Xcro1Cont.at(nu,mu)+Xcro2Cont.at(nu,mu)+Xcro3Cont.at(nu,mu)));
}
}
return Xcro;
}
// Helper Functions Calculate the Uncrossed Contribution
Tensor <2,4> MUncrossW(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar, std::vector<HLV> partons, int nabove){
double s2AB=(pl+plbar+pq).m2();
double s3AB=(pl+plbar+pqbar).m2();
CLHEP::HepLorentzVector q1, q3;
q1=pa;
for(int i=0; i<nabove+1;i++){
q1=q1-partons.at(i);
}
q3 = q1 - pl - plbar - pq - pqbar;
double tunc1 = (q1-pq).m2();
double tunc2 = (q3+pqbar).m2();
Tensor<1,4> Tp1 = Construct1Tensor(p1);
Tensor<1,4> Tp4 = Construct1Tensor(p4);
Tensor<1,4> Tpa = Construct1Tensor(pa);
Tensor<1,4> Tpb = Construct1Tensor(pb);
Tensor<1,4> Tpq = Construct1Tensor(pq);
Tensor<1,4> Tpqbar = Construct1Tensor(pqbar);
Tensor<1,4> TAB = Construct1Tensor(pl+plbar);
Tensor<1,4> Tq1 = Construct1Tensor(q1);
Tensor<1,4> Tq3 = Construct1Tensor(q3);
Tensor<2,4> g=Metric();
// Define llx current.
Tensor<1,4> ABCur = TCurrent(pl, false, plbar, false);
//Blank 5 gamma Current
Tensor<5,4> J523 = T5Current(pq,false,pqbar,false);
// 4 gamma currents (with 1 contraction already).
Tensor<4,4> J_2AB = J523.contract((Tpq+TAB),2);
Tensor<4,4> J_q1q = J523.contract((Tq1-Tpq),2);
// 2 Contractions taken care of.
Tensor<3,4> Xunc1 = J_2AB.contract((Tq3+Tpqbar),3);
Tensor<3,4> Xunc2 = J_q1q.contract((Tq3+Tpqbar),3);
Tensor<3,4> Xunc3 = J_q1q.contract((Tpqbar+TAB),3);
// Term Denominators Taken Care of at this stage
Tensor<2,4> Xunc1Cont = Xunc1.contract(ABCur,1)/(s2AB*tunc2);
Tensor<2,4> Xunc2Cont = Xunc2.contract(ABCur,2)/(tunc1*tunc2);
Tensor<2,4> Xunc3Cont = Xunc3.contract(ABCur,3)/(tunc1*s3AB);
//Initialise the Uncrossed Vertex Object
Tensor<2,4> Xunc(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xunc.Set(mu,nu,-(- Xunc1Cont.at(mu,nu)+Xunc2Cont.at(mu,nu) +Xunc3Cont.at(mu,nu)));
}
}
return Xunc;
}
// Helper Functions Calculate the g->qqxW (Eikonal) Contributions
Tensor <2,4> MSymW(CLHEP::HepLorentzVector pa,CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar, std::vector<HLV> partons, int nabove){
double sa2=(pa+pq).m2();
double s12=(p1+pq).m2();
double sa3=(pa+pqbar).m2();
double s13=(p1+pqbar).m2();
double saA=(pa+pl).m2();
double s1A=(p1+pl).m2();
double saB=(pa+plbar).m2();
double s1B=(p1+plbar).m2();
double sb2=(pb+pq).m2();
double s42=(p4+pq).m2();
double sb3=(pb+pqbar).m2();
double s43=(p4+pqbar).m2();
double sbA=(pb+pl).m2();
double s4A=(p4+pl).m2();
double sbB=(pb+plbar).m2();
double s4B=(p4+plbar).m2();
double s23AB=(pl+plbar+pq+pqbar).m2();
CLHEP::HepLorentzVector q1,q3;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
q3=q1-pq-pqbar-plbar-pl;
double t1 = (q1).m2();
double t3 = (q3).m2();
//Define Tensors to be used
Tensor<1,4> Tp1 = Construct1Tensor(p1);
Tensor<1,4> Tp4 = Construct1Tensor(p4);
Tensor<1,4> Tpa = Construct1Tensor(pa);
Tensor<1,4> Tpb = Construct1Tensor(pb);
Tensor<1,4> Tpq = Construct1Tensor(pq);
Tensor<1,4> Tpqbar = Construct1Tensor(pqbar);
Tensor<1,4> TAB = Construct1Tensor(pl+plbar);
Tensor<1,4> Tq1 = Construct1Tensor(q1);
Tensor<1,4> Tq3 = Construct1Tensor(q3);
Tensor<2,4> g=Metric();
// g->qqW Current (Factors of sqrt2 dealt with in this function.)
Tensor<1,4> JV = gtqqxW(pq,pqbar,pl,plbar);
// 1a gluon emisson Contribution
Tensor<3,4> X1a = g.rightprod(Tp1*(t1/(s12+s13+s1A+s1B)) + Tpa*(t1/(sa2+sa3+saA+saB)));
Tensor<2,4> X1aCont = X1a.contract(JV,3);
//4b gluon emission Contribution
Tensor<3,4> X4b = g.rightprod(Tp4*(t3/(s42+s43+s4A+s4B)) + Tpb*(t3/(sb2+sb3+sbA+sbB)));
Tensor<2,4> X4bCont = X4b.contract(JV,3);
//Set up each term of 3G diagram.
Tensor<3,4> X3g1 = g.leftprod(Tq1+Tpq+Tpqbar+TAB);
Tensor<3,4> X3g2 = g.leftprod(Tq3-Tpq-Tpqbar-TAB);
Tensor<3,4> X3g3 = g.leftprod((Tq1+Tq3));
// Note the contraction of indices changes term by term
Tensor<2,4> X3g1Cont = X3g1.contract(JV,3);
Tensor<2,4> X3g2Cont = X3g2.contract(JV,2);
Tensor<2,4> X3g3Cont = X3g3.contract(JV,1);
// XSym is an amalgamation of x1a, X4b and X3g. Makes sense from a colour factor point of view.
Tensor<2,4>Xsym(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xsym.Set(mu,nu, (X3g1Cont.at(nu,mu) + X3g2Cont.at(mu,nu) - X3g3Cont.at(nu,mu))
+ (X1aCont.at(mu,nu) - X4bCont.at(mu,nu)) );
}
}
return Xsym/s23AB;
}
Tensor <2,4> MCross(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar, std::vector<HLV> partons, bool hq, int nabove){
CLHEP::HepLorentzVector q1;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
double t2=(q1-pqbar).m2();
Tensor<1,4> Tq1 = Construct1Tensor(q1-pqbar);
//Blank 3 gamma Current
Tensor<3,4> J323 = T3Current(pq,hq,pqbar,hq);
// 2 gamma current (with 1 contraction already).
Tensor<2,4> XCroCont = J323.contract((Tq1),2)/(t2);
//Initialise the Crossed Vertex
Tensor<2,4> Xcro(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xcro.Set(mu,nu, (XCroCont.at(nu,mu)));
}
}
return Xcro;
}
// Helper Functions Calculate the Uncrossed Contribution
Tensor <2,4> MUncross(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar, std::vector<HLV> partons, bool hq, int nabove){
CLHEP::HepLorentzVector q1;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
double t2 = (q1-pq).m2();
Tensor<1,4> Tq1 = Construct1Tensor(q1-pq);
//Blank 3 gamma Current
Tensor<3,4> J323 = T3Current(pq,hq,pqbar,hq);
// 2 gamma currents (with 1 contraction already).
Tensor<2,4> XUncCont = J323.contract((Tq1),2)/t2;
//Initialise the Uncrossed Vertex
Tensor<2,4> Xunc(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xunc.Set(mu,nu,-(XUncCont.at(mu,nu)));
}
}
return Xunc;
}
// Helper Functions Calculate the Eikonal Contributions
Tensor <2,4> MSym(CLHEP::HepLorentzVector pa,CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar, std::vector<HLV> partons, bool hq, int nabove){
CLHEP::HepLorentzVector q1, q3;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
q3 = q1-pq-pqbar;
double t1 = (q1).m2();
double t3 = (q3).m2();
double s23 = (pq+pqbar).m2();
double sa2 = (pa+pq).m2();
double sa3 = (pa+pqbar).m2();
double s12 = (p1+pq).m2();
double s13 = (p1+pqbar).m2();
double sb2 = (pb+pq).m2();
double sb3 = (pb+pqbar).m2();
double s42 = (p4+pq).m2();
double s43 = (p4+pqbar).m2();
//Define Tensors to be used
Tensor<1,4> Tp1 = Construct1Tensor(p1);
Tensor<1,4> Tp4 = Construct1Tensor(p4);
Tensor<1,4> Tpa = Construct1Tensor(pa);
Tensor<1,4> Tpb = Construct1Tensor(pb);
Tensor<1,4> Tpq = Construct1Tensor(pq);
Tensor<1,4> Tpqbar = Construct1Tensor(pqbar);
Tensor<1,4> Tq1 = Construct1Tensor(q1);
Tensor<1,4> Tq3 = Construct1Tensor(q3);
Tensor<2,4> g=Metric();
Tensor<1,4> qqxCur = TCurrent(pq, hq, pqbar, hq);
// // 1a gluon emisson Contribution
Tensor<3,4> X1a = g.rightprod(Tp1*(t1/(s12+s13))+Tpa*(t1/(sa2+sa3)));
Tensor<2,4> X1aCont = X1a.contract(qqxCur,3);
// //4b gluon emission Contribution
Tensor<3,4> X4b = g.rightprod(Tp4*(t3/(s42+s43)) + Tpb*(t3/(sb2+sb3)));
Tensor<2,4> X4bCont = X4b.contract(qqxCur,3);
// New Formulation Corresponding to New Analytics
Tensor<3,4> X3g1 = g.leftprod(Tq1+Tpq+Tpqbar);
Tensor<3,4> X3g2 = g.leftprod(Tq3-Tpq-Tpqbar);
Tensor<3,4> X3g3 = g.leftprod((Tq1+Tq3));
// Note the contraction of indices changes term by term
Tensor<2,4> X3g1Cont = X3g1.contract(qqxCur,3);
Tensor<2,4> X3g2Cont = X3g2.contract(qqxCur,2);
Tensor<2,4> X3g3Cont = X3g3.contract(qqxCur,1);
Tensor<2,4>Xsym(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xsym.Set(mu, nu, COM(0,1) * ( (X3g1Cont.at(nu,mu) + X3g2Cont.at(mu,nu)
- X3g3Cont.at(nu,mu)) + (X1aCont.at(mu,nu) - X4bCont.at(mu,nu)) ) );
}
}
return Xsym/s23;
}
} // Anonymous Namespace helper functions
// W+Jets FKL Contributions
double jMWqQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
current mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
joi(p2out,true,p2in,true,mj2p);
joi(p2out,false,p2in,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
+ double WPropfact = WProp(pe, pnu);
+
// Leave division by colour and Helicity avg until Tree files
// Leave multi. of couplings to later
// Multiply by Cf^2
- return HEJ::C_F*HEJ::C_F*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
+ return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
}
double jMWqQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
current mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
jio(p2in,true,p2out,true,mj2p);
jio(p2in,false,p2out,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
+ double WPropfact = WProp(pe, pnu);
+
// Leave division by colour and Helicity avg until Tree files
// Leave multi. of couplings to later
// Multiply by Cf^2
- return HEJ::C_F*HEJ::C_F*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
+ return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
}
double jMWqbarQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
current mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
joi(p2out,true,p2in,true,mj2p);
joi(p2out,false,p2in,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
+ double WPropfact = WProp(pe, pnu);
+
// Leave division by colour and Helicity avg until Tree files
// Leave multi. of couplings to later
// Multiply by Cf^2
- return HEJ::C_F*HEJ::C_F*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
+ return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
}
double jMWqbarQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
current mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
jio(p2in,true,p2out,true,mj2p);
jio(p2in,false,p2out,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
+ double WPropfact = WProp(pe, pnu);
+
// Leave division by colour and Helicity avg until Tree files
// Leave multi. of couplings to later
// Multiply by Cf^2
- return HEJ::C_F*HEJ::C_F*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
+ return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
}
double jMWqg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qg->qenug scattering
// p1: quark
// p2: gluon
{
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj2p,mj2m;
jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
joi(p2out,true,p2in,true,mj2p);
joi(p2out,false,p2in,false,mj2m);
// mj1m.mj2p
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
const double K = K_g(p2out, p2in);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double sst = K/HEJ::C_A*(a2Mmp+a2Mmm);
+ double WPropfact = WProp(pe, pnu);
+
// Leave division by colour and Helicity avg until Tree files
// Leave multi. of couplings to later
// Multiply by Cf*Ca=4
- return HEJ::C_F*HEJ::C_A*sst/(q1.m2()*q2.m2());
+ return HEJ::C_F*HEJ::C_A*WPropfact*sst/(q1.m2()*q2.m2());
}
double jMWqbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qg->qenug scattering
// p1: quark
// p2: gluon
{
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj2p,mj2m;
jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
joi(p2out,true,p2in,true,mj2p);
joi(p2out,false,p2in,false,mj2m);
// mj1m.mj2p
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
const double K = K_g(p2out, p2in);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double sst = K/HEJ::C_A*(a2Mmp+a2Mmm);
+ double WPropfact = WProp(pe, pnu);
+
// // Leave division by colour and Helicity avg until Tree files
// Leave multi. of couplings to later
// Multiply by Cf*Ca=4
- return HEJ::C_F*HEJ::C_A*sst/(q1.m2()*q2.m2());
+ return HEJ::C_F*HEJ::C_A*WPropfact*sst/(q1.m2()*q2.m2());
}
// W+Jets Unordered Contributions
//qQ->qQWg_unob
double junobMWqQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg);
CLHEP::HepLorentzVector q3=-(p2in-p2out);
mj1m=jW(p1out,false,pe,false,pnu,false,p1in,false);
mj2p=j(p2out,true,p2in,true);
mj2m=j(p2out,false,p2in,false);
// Dot products of these which occur again and again
COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(p2out,true,pg,true);
j2gm=joo(p2out,false,pg,false);
jgbp=j(pg,true,p2in,true);
jgbm=j(pg,false,p2in,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2();
U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2();
double amm,amp;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mp+U2mp);
double ampsq=-(amm+amp);
+ //Divide by WProp
+ double WPropfact = WProp(pe, pnu);
+ ampsq*=WPropfact;
+
// Now add the t-channels
double th=q2.m2()*q1.m2();
ampsq/=th;
ampsq/=16.;
+
return ampsq;
}
//qQbar->qQbarWg_unob
double junobMWqQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg);
CLHEP::HepLorentzVector q3=-(p2in-p2out);
mj1m=jW(p1out,false,pe,false,pnu,false,p1in,false);
mj2p=jio(p2in,true,p2out,true);
mj2m=jio(p2in,false,p2out,false);
// Dot products of these which occur again and again
COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(pg,true,p2out,true);
j2gm=joo(pg,false,p2out,false);
jgbp=jio(p2in,true,pg,true);
jgbm=jio(p2in,false,pg,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2();
U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2();
double amm,amp;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mp+U2mp);
double ampsq=-(amm+amp);
+ //Divide by WProp
+ double WPropfact = WProp(pe, pnu);
+ ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*q1.m2();
ampsq/=th;
ampsq/=16.;
+
return ampsq;
}
//qbarQ->qbarQWg_unob
double junobMWqbarQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg);
CLHEP::HepLorentzVector q3=-(p2in-p2out);
mj1m=jWbar(p1out,false,pe,false,pnu,false,p1in,false);
mj2p=j(p2out,true,p2in,true);
mj2m=j(p2out,false,p2in,false);
// Dot products of these which occur again and again
COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(p2out,true,pg,true);
j2gm=joo(p2out,false,pg,false);
jgbp=j(pg,true,p2in,true);
jgbm=j(pg,false,p2in,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2();
U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2();
double amm,amp;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mp+U2mp);
double ampsq=-(amm+amp);
+ //Divide by WProp
+ double WPropfact = WProp(pe, pnu);
+ ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*q1.m2();
ampsq/=th;
ampsq/=16.;
return ampsq;
}
//qbarQbar->qbarQbarWg_unob
double junobMWqbarQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg);
CLHEP::HepLorentzVector q3=-(p2in-p2out);
mj1m=jWbar(p1out,false,pe,false,pnu,false,p1in,false);
mj2p=jio(p2in,true,p2out,true);
mj2m=jio(p2in,false,p2out,false);
// Dot products of these which occur again and again
COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(pg,true,p2out,true);
j2gm=joo(pg,false,p2out,false);
jgbp=jio(p2in,true,pg,true);
jgbm=jio(p2in,false,pg,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2();
U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2();
double amm,amp;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mp+U2mp);
double ampsq=-(amm+amp);
+ //Divide by WProp
+ double WPropfact = WProp(pe, pnu);
+ ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*q1.m2();
ampsq/=th;
ampsq/=16.;
return ampsq;
}
////////////////////////////////////////////////////////////////////
//qQ->qQWg_unof
double junofMWgqQ (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj2m,mj1p,mj1m;
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector qg=p1in-p1out-pg;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu);
mj2m=jW(p2out,false,pe,false,pnu,false,p2in,false);
mj1p=j(p1out,true,p1in,true);
mj1m=j(p1out,false,p1in,false);
// Dot products of these which occur again and again
COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(p1out,true,pg,true);
j2gm=joo(p1out,false,pg,false);
jgap=j(pg,true,p1in,true);
jgam=j(pg,false,p1in,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2();
Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2();
U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2();
U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2();
double amm,apm;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
apm=HEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1pm+U2pm);
double ampsq=-(apm+amm);
+ //Divide by WProp
+ double WPropfact = WProp(pe, pnu);
+ ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
return ampsq;
}
//qQbar->qQbarWg_unof
double junofMWgqQbar (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj2m,mj1p,mj1m;
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector qg=p1in-p1out-pg;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu);
mj2m=jWbar(p2out,false,pe,false,pnu,false,p2in,false);
mj1p=j(p1out,true,p1in,true);
mj1m=j(p1out,false,p1in,false);
// Dot products of these which occur again and again
COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(p1out,true,pg,true);
j2gm=joo(p1out,false,pg,false);
jgap=j(pg,true,p1in,true);
jgam=j(pg,false,p1in,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2();
Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2();
U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2();
U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2();
double amm,apm;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
apm=HEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1pm+U2pm);
double ampsq=-(apm+amm);
+ //Divide by WProp
+ double WPropfact = WProp(pe, pnu);
+ ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
return ampsq;
}
//qbarQ->qbarQWg_unof
double junofMWgqbarQ (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj2m,mj1p,mj1m;
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector qg=p1in-p1out-pg;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu);
mj2m=jW(p2out,false,pe,false,pnu,false,p2in,false);
mj1p=jio(p1in,true,p1out,true);
mj1m=jio(p1in,false,p1out,false);
// Dot products of these which occur again and again
COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(pg,true,p1out,true);
j2gm=joo(pg,false,p1out,false);
jgap=jio(p1in,true,pg,true);
jgam=jio(p1in,false,pg,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2();
Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2();
U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2();
U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2();
double amm,apm;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
apm=HEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1pm+U2pm);
double ampsq=-(apm+amm);
+ //Divide by WProp
+ double WPropfact = WProp(pe, pnu);
+ ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
return ampsq;
}
//qbarQbar->qbarQbarWg_unof
double junofMWgqbarQbar (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj2m,mj1p,mj1m;
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector qg=p1in-p1out-pg;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu);
mj2m=jWbar(p2out,false,pe,false,pnu,false,p2in,false);
mj1p=jio(p1in,true,p1out,true);
mj1m=jio(p1in,false,p1out,false);
// Dot products of these which occur again and again
COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(pg,true,p1out,true);
j2gm=joo(pg,false,p1out,false);
jgap=jio(p1in,true,pg,true);
jgam=jio(p1in,false,pg,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2();
Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2();
U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2();
U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2();
double amm,apm;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
apm=HEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1pm+U2pm);
double ampsq=-(apm+amm);
+ //Divide by WProp
+ double WPropfact = WProp(pe, pnu);
+ ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
return ampsq;
}
///TODO make this comment more visible
/// Naming scheme jM2-Wuno-g-({q/qbar}{Q/Qbar/g})
///TODO Spit naming for more complicated functions?
/// e.g. jM2WqqtoqQQq -> jM2_Wqq_to_qQQq
double jM2WunogqQ(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true);
ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false);
ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true);
ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
return ME2;
}
//same as function above but actually obtaining the antiquark line by crossing symmetry, where p1out and p1in are expected to be negative.
//should give same result as jM2WunogqbarQ below (verified)
double jM2WunogqQ_crossqQ(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true);
ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false);
ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true);
ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
return ME2;
}
double jM2WunogqQbar(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true);
ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false);
ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true);
ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
return ME2;
}
double jM2Wunogqg(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true);
ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false);
ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true);
ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
double ratio; // p2-/pb- in the notes
if (p2in.pz()>0.) // if the gluon is the positive
ratio=p2out.plus()/p2in.plus();
else // the gluon is the negative
ratio=p2out.minus()/p2in.minus();
double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F;
ME2*=cam;
return ME2;
}
double jM2WunogqbarQ(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true);
ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false);
ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true);
ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
return ME2;
}
double jM2WunogqbarQbar(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true);
ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false);
ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true);
ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
return ME2;
}
double jM2Wunogqbarg(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true);
ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false);
ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true);
ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
double ratio; // p2-/pb- in the notes
if (p2in.pz()>0.) // if the gluon is the positive
ratio=p2out.plus()/p2in.plus();
else // the gluon is the negative
ratio=p2out.minus()/p2in.minus();
double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F;
ME2*=cam;
return ME2;
}
// W+Jets qqxExtremal
// W+Jets qqxExtremal Currents - wqq emission
double jM2WgQtoqbarqQ(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqbarout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,true);
ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,false);
ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,true);
ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
//Correct colour averaging
ME2*=(3.0/8.0);
return ME2;
}
double jM2WgQtoqqbarQ(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqbarout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in){
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,true);
ME2mpm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,false);
ME2mmp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,true);
ME2mmm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
//Correct colour averaging
ME2*=(3.0/8.0);
return ME2;
}
double jM2Wggtoqbarqg(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqbarout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,true);
ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,false);
ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,true);
ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
double ratio; // p2-/pb- in the notes
if (p2in.pz()>0.) // if the gluon is the positive
ratio=p2out.plus()/p2in.plus();
else // the gluon is the negative
ratio=p2out.minus()/p2in.minus();
double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F;
ME2*=cam;
//Correct colour averaging
ME2*=(3.0/8.0);
return ME2;
}
double jM2Wggtoqqbarg(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqbarout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in){
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,true);
ME2mpm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,false);
ME2mmp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,true);
ME2mmm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
double ratio; // p2-/pb- in the notes
if (p2in.pz()>0.) // if the gluon is the positive
ratio=p2out.plus()/p2in.plus();
else // the gluon is the negative
ratio=p2out.minus()/p2in.minus();
double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F;
ME2*=cam;
//Correct colour averaging
ME2*=(3.0/8.0);
return ME2;
}
namespace {
//Function to calculate Term 1 in Equation 3.23 in James Cockburn's Thesis.
Tensor<1,4> qggm1(CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, bool hel2, bool helg, CLHEP::HepLorentzVector refmom){
double t1 = (p3-pb)*(p3-pb);
Tensor<1,4> Tp3 = Construct1Tensor((p3));//p3
Tensor<1,4> Tpb = Construct1Tensor((pb));//pb
// Gauge choice in polarisation tensor. (see JC's Thesis)
Tensor<1,4> epsg = eps(pb, refmom, helg);
Tensor<3,4> qqCurBlank = T3Current(p2,hel2,p3,hel2);
Tensor<2,4> qqCur = qqCurBlank.contract(Tp3-Tpb,2);
Tensor<1,4> gqqCur = qqCur.contract(epsg,2)/t1;
return gqqCur;
}
//Function to calculate Term 2 in Equation 3.23 in James Cockburn's Thesis.
Tensor<1,4> qggm2(CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, bool hel2, bool helg, CLHEP::HepLorentzVector refmom){
double t1 = (p2-pb)*(p2-pb);
Tensor<1,4> Tp3 = Construct1Tensor((p3));//p3
Tensor<1,4> Tpb = Construct1Tensor((pb));//pb
// Gauge choice in polarisation tensor. (see JC's Thesis)
Tensor<1,4> epsg = eps(pb,refmom, helg);
Tensor<3,4> qqCurBlank = T3Current(p2,hel2,p3,hel2);
Tensor<2,4> qqCur = qqCurBlank.contract(Tp3-Tpb,2);
Tensor<1,4> gqqCur = qqCur.contract(epsg,1)/t1;
return gqqCur;
}
//Function to calculate Term 3 in Equation 3.23 in James Cockburn's Thesis.
Tensor<1,4> qggm3(CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, bool hel2, bool helg, CLHEP::HepLorentzVector refmom){
double s23 = (p2+p3)*(p2+p3);
Tensor<1,4> Tp2 = Construct1Tensor((p2));//p2
Tensor<1,4> Tp3 = Construct1Tensor((p3));//p3
Tensor<1,4> Tpb = Construct1Tensor((pb));//pb
// Gauge choice in polarisation tensor. (see JC's Thesis)
Tensor<1,4> epsg = eps(pb, refmom, helg);
Tensor<2,4> g=Metric();
Tensor<3,4> qqCurBlank1 = g.leftprod(Tp2+Tp3)/s23;
Tensor<3,4> qqCurBlank2 = g.leftprod(Tpb)/s23;
Tensor<1,4> Cur23 = TCurrent(p2,hel2, p3,hel2);
Tensor<2,4> qqCur1 = qqCurBlank1.contract(Cur23,3);
Tensor<2,4> qqCur2 = qqCurBlank2.contract(Cur23,3);
Tensor<2,4> qqCur3 = qqCurBlank2.contract(Cur23,1);
Tensor<1,4> gqqCur = (qqCur1.contract(epsg,1)
- qqCur1.contract(epsg,2)
+ qqCur1.contract(epsg,2))*2;
return gqqCur;
}
}
// no wqq emission
double jM2WgqtoQQqW(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, bool aqlinepa){
// 2 independent helicity choices (complex conjugation related).
Tensor<1,4> TMmmm1 = qggm1(pb,p2,p3,false,false, pa);
Tensor<1,4> TMmmm2 = qggm2(pb,p2,p3,false,false, pa);
Tensor<1,4> TMmmm3 = qggm3(pb,p2,p3,false,false, pa);
Tensor<1,4> TMpmm1 = qggm1(pb,p2,p3,false,true, pa);
Tensor<1,4> TMpmm2 = qggm2(pb,p2,p3,false,true, pa);
Tensor<1,4> TMpmm3 = qggm3(pb,p2,p3,false,true, pa);
// Build the external quark line W Emmision
Tensor<1,4> cur1a = jW(pa,p1,plbar,pl, aqlinepa);
//Contract with the qqxCurrent.
COM Mmmm1 = TMmmm1.contract(cur1a,1).at(0);
COM Mmmm2 = TMmmm2.contract(cur1a,1).at(0);
COM Mmmm3 = TMmmm3.contract(cur1a,1).at(0);
COM Mpmm1 = TMpmm1.contract(cur1a,1).at(0);
COM Mpmm2 = TMpmm2.contract(cur1a,1).at(0);
COM Mpmm3 = TMpmm3.contract(cur1a,1).at(0);
//Colour factors:
COM cm1m1,cm2m2,cm3m3,cm1m2,cm1m3,cm2m3;
cm1m1=8./3.;
cm2m2=8./3.;
cm3m3=6.;
cm1m2 =-1./3.;
cm1m3 = -3.*COM(0.,1.);
cm2m3 = 3.*COM(0.,1.);
//Sqaure and sum for each helicity config:
double Mmmm = real(cm1m1*pow(abs(Mmmm1),2)+cm2m2*pow(abs(Mmmm2),2)+cm3m3*pow(abs(Mmmm3),2)+2.*real(cm1m2*Mmmm1*conj(Mmmm2))+2.*real(cm1m3*Mmmm1*conj(Mmmm3))+2.*real(cm2m3*Mmmm2*conj(Mmmm3)));
double Mpmm = real(cm1m1*pow(abs(Mpmm1),2)+cm2m2*pow(abs(Mpmm2),2)+cm3m3*pow(abs(Mpmm3),2)+2.*real(cm1m2*Mpmm1*conj(Mpmm2))+2.*real(cm1m3*Mpmm1*conj(Mpmm3))+2.*real(cm2m3*Mpmm2*conj(Mpmm3)));
- return (2*(Mmmm+Mpmm)/24./4.)/(pa-p1).m2()/(p2+p3-pb).m2();
+ // Divide by WProp
+ double WPropfact = WProp(plbar, pl);
+
+ return (2*WPropfact*(Mmmm+Mpmm)/24./4.)/(pa-p1).m2()/(p2+p3-pb).m2();
}
// W+Jets qqxCentral
double jM2WqqtoqQQq(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector plbar, std::vector<HLV> partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove)
{
static bool is_sigma_index_set(false);
if(!is_sigma_index_set){
if(init_sigma_index())
is_sigma_index_set = true;
else
return 0.;}
HLV pq, pqbar, p1, p4;
if (qqxmarker){
pqbar = partons[nabove+1];
pq = partons[nabove+2];}
else{
pq = partons[nabove+1];
pqbar = partons[nabove+2];}
p1 = partons.front();
p4 = partons.back();
Tensor<1,4> T1am, T4bm, T1ap, T4bp;
if(!(aqlinepa)){
T1ap = TCurrent(p1, true, pa, true);
T1am = TCurrent(p1, false, pa, false);}
else if(aqlinepa){
T1ap = TCurrent(pa, true, p1, true);
T1am = TCurrent(pa, false, p1, false);}
if(!(aqlinepb)){
T4bp = TCurrent(p4, true, pb, true);
T4bm = TCurrent(p4, false, pb, false);}
else if(aqlinepb){
T4bp = TCurrent(pb, true, p4, true);
T4bm = TCurrent(pb, false, p4, false);}
// Calculate the 3 separate contributions to the effective vertex
Tensor<2,4> Xunc = MUncrossW(pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
Tensor<2,4> Xcro = MCrossW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
Tensor<2,4> Xsym = MSymW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
// 4 Different Helicity Choices (Differs from Pure Jet Case, where there is also the choice in qqbar helicity.
// (- - hel choice)
COM M_mmUnc = (((Xunc).contract(T1am,1)).contract(T4bm,1)).at(0);
COM M_mmCro = (((Xcro).contract(T1am,1)).contract(T4bm,1)).at(0);
COM M_mmSym = (((Xsym).contract(T1am,1)).contract(T4bm,1)).at(0);
// (- + hel choice)
COM M_mpUnc = (((Xunc).contract(T1am,1)).contract(T4bp,1)).at(0);
COM M_mpCro = (((Xcro).contract(T1am,1)).contract(T4bp,1)).at(0);
COM M_mpSym = (((Xsym).contract(T1am,1)).contract(T4bp,1)).at(0);
// (+ - hel choice)
COM M_pmUnc = (((Xunc).contract(T1ap,1)).contract(T4bm,1)).at(0);
COM M_pmCro = (((Xcro).contract(T1ap,1)).contract(T4bm,1)).at(0);
COM M_pmSym = (((Xsym).contract(T1ap,1)).contract(T4bm,1)).at(0);
// (+ + hel choice)
COM M_ppUnc = (((Xunc).contract(T1ap,1)).contract(T4bp,1)).at(0);
COM M_ppCro = (((Xcro).contract(T1ap,1)).contract(T4bp,1)).at(0);
COM M_ppSym = (((Xsym).contract(T1ap,1)).contract(T4bp,1)).at(0);
//Colour factors:
COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc;
cmsms=3.;
cmumu=4./3.;
cmcmc=4./3.;
cmsmu =3./2.*COM(0.,1.);
cmsmc = -3./2.*COM(0.,1.);
cmumc = -1./6.;
// Work Out Interference in each case of helicity:
double amp_mm = real(cmsms*pow(abs(M_mmSym),2)
+cmumu*pow(abs(M_mmUnc),2)
+cmcmc*pow(abs(M_mmCro),2)
+2.*real(cmsmu*M_mmSym*conj(M_mmUnc))
+2.*real(cmsmc*M_mmSym*conj(M_mmCro))
+2.*real(cmumc*M_mmUnc*conj(M_mmCro)));
double amp_mp = real(cmsms*pow(abs(M_mpSym),2)
+cmumu*pow(abs(M_mpUnc),2)
+cmcmc*pow(abs(M_mpCro),2)
+2.*real(cmsmu*M_mpSym*conj(M_mpUnc))
+2.*real(cmsmc*M_mpSym*conj(M_mpCro))
+2.*real(cmumc*M_mpUnc*conj(M_mpCro)));
double amp_pm = real(cmsms*pow(abs(M_pmSym),2)
+cmumu*pow(abs(M_pmUnc),2)
+cmcmc*pow(abs(M_pmCro),2)
+2.*real(cmsmu*M_pmSym*conj(M_pmUnc))
+2.*real(cmsmc*M_pmSym*conj(M_pmCro))
+2.*real(cmumc*M_pmUnc*conj(M_pmCro)));
double amp_pp = real(cmsms*pow(abs(M_ppSym),2)
+cmumu*pow(abs(M_ppUnc),2)
+cmcmc*pow(abs(M_ppCro),2)
+2.*real(cmsmu*M_ppSym*conj(M_ppUnc))
+2.*real(cmsmc*M_ppSym*conj(M_ppCro))
+2.*real(cmumc*M_ppUnc*conj(M_ppCro)));
double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.));
CLHEP::HepLorentzVector q1,q3;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
q3 = q1 - pq - pqbar - pl - plbar;
double t1 = (q1).m2();
double t3 = (q3).m2();
//Divide by t-channels
amp/=(t1*t1*t3*t3);
+ //Divide by WProp
+ double WPropfact = WProp(plbar, pl);
+ amp*=WPropfact;
+
+
return amp;
}
// no wqq emission
double jM2WqqtoqQQqW(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar, std::vector<CLHEP::HepLorentzVector> partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove, int nbelow, bool forwards){
static bool is_sigma_index_set(false);
if(!is_sigma_index_set){
if(init_sigma_index())
is_sigma_index_set = true;
else
return 0.;
}
if (!forwards){ //If Emission from Leg a instead, flip process.
HLV dummymom = pa;
bool dummybool= aqlinepa;
int dummyint = nabove;
pa = pb;
pb = dummymom;
std::reverse(partons.begin(),partons.end());
qqxmarker = !(qqxmarker);
aqlinepa = aqlinepb;
aqlinepb = dummybool;
nabove = nbelow;
nbelow = dummyint;
}
HLV pq, pqbar, p1,p4;
if (qqxmarker){
pqbar = partons[nabove+1];
pq = partons[nabove+2];}
else{
pq = partons[nabove+1];
pqbar = partons[nabove+2];}
p1 = partons.front();
p4 = partons.back();
Tensor<1,4> T1am(0.), T1ap(0.);
if(!(aqlinepa)){
T1ap = TCurrent(p1, true, pa, true);
T1am = TCurrent(p1, false, pa, false);}
else if(aqlinepa){
T1ap = TCurrent(pa, true, p1, true);
T1am = TCurrent(pa, false, p1, false);}
Tensor <1,4> T4bm = jW(pb, p4, plbar, pl, aqlinepb);
// Calculate the 3 separate contributions to the effective vertex
Tensor<2,4> Xunc_m = MUncross(pa, pq, pqbar,partons, false, nabove);
Tensor<2,4> Xcro_m = MCross( pa, pq, pqbar,partons, false, nabove);
Tensor<2,4> Xsym_m = MSym( pa, p1, pb, p4, pq, pqbar, partons, false, nabove);
Tensor<2,4> Xunc_p = MUncross(pa, pq, pqbar,partons, true, nabove);
Tensor<2,4> Xcro_p = MCross( pa, pq, pqbar,partons, true, nabove);
Tensor<2,4> Xsym_p = MSym( pa, p1, pb, p4, pq, pqbar, partons, true, nabove);
// (- - hel choice)
COM M_mmUnc = (((Xunc_m).contract(T1am,1)).contract(T4bm,1)).at(0);
COM M_mmCro = (((Xcro_m).contract(T1am,1)).contract(T4bm,1)).at(0);
COM M_mmSym = (((Xsym_m).contract(T1am,1)).contract(T4bm,1)).at(0);
// (- + hel choice)
COM M_mpUnc = (((Xunc_p).contract(T1am,1)).contract(T4bm,1)).at(0);
COM M_mpCro = (((Xcro_p).contract(T1am,1)).contract(T4bm,1)).at(0);
COM M_mpSym = (((Xsym_p).contract(T1am,1)).contract(T4bm,1)).at(0);
// (+ - hel choice)
COM M_pmUnc = (((Xunc_m).contract(T1ap,1)).contract(T4bm,1)).at(0);
COM M_pmCro = (((Xcro_m).contract(T1ap,1)).contract(T4bm,1)).at(0);
COM M_pmSym = (((Xsym_m).contract(T1ap,1)).contract(T4bm,1)).at(0);
// (+ + hel choice)
COM M_ppUnc = (((Xunc_p).contract(T1ap,1)).contract(T4bm,1)).at(0);
COM M_ppCro = (((Xcro_p).contract(T1ap,1)).contract(T4bm,1)).at(0);
COM M_ppSym = (((Xsym_p).contract(T1ap,1)).contract(T4bm,1)).at(0);
//Colour factors:
COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc;
cmsms=3.;
cmumu=4./3.;
cmcmc=4./3.;
cmsmu =3./2.*COM(0.,1.);
cmsmc = -3./2.*COM(0.,1.);
cmumc = -1./6.;
// Work Out Interference in each case of helicity:
double amp_mm = real(cmsms*pow(abs(M_mmSym),2)
+cmumu*pow(abs(M_mmUnc),2)
+cmcmc*pow(abs(M_mmCro),2)
+2.*real(cmsmu*M_mmSym*conj(M_mmUnc))
+2.*real(cmsmc*M_mmSym*conj(M_mmCro))
+2.*real(cmumc*M_mmUnc*conj(M_mmCro)));
double amp_mp = real(cmsms*pow(abs(M_mpSym),2)
+cmumu*pow(abs(M_mpUnc),2)
+cmcmc*pow(abs(M_mpCro),2)
+2.*real(cmsmu*M_mpSym*conj(M_mpUnc))
+2.*real(cmsmc*M_mpSym*conj(M_mpCro))
+2.*real(cmumc*M_mpUnc*conj(M_mpCro)));
double amp_pm = real(cmsms*pow(abs(M_pmSym),2)
+cmumu*pow(abs(M_pmUnc),2)
+cmcmc*pow(abs(M_pmCro),2)
+2.*real(cmsmu*M_pmSym*conj(M_pmUnc))
+2.*real(cmsmc*M_pmSym*conj(M_pmCro))
+2.*real(cmumc*M_pmUnc*conj(M_pmCro)));
double amp_pp = real(cmsms*pow(abs(M_ppSym),2)
+cmumu*pow(abs(M_ppUnc),2)
+cmcmc*pow(abs(M_ppCro),2)
+2.*real(cmsmu*M_ppSym*conj(M_ppUnc))
+2.*real(cmsmc*M_ppSym*conj(M_ppCro))
+2.*real(cmumc*M_ppUnc*conj(M_ppCro)));
double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.));
CLHEP::HepLorentzVector q1,q3;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
q3 = q1 - pq - pqbar;
double t1 = (q1).m2();
double t3 = (q3).m2();
//Divide by t-channels
amp/=(t1*t1*t3*t3);
+ //Divide by WProp
+ double WPropfact = WProp(plbar, pl);
+ amp*=WPropfact;
+
return amp;
}
diff --git a/src/currents.cc b/src/currents.cc
index f1407ab..d348f0e 100644
--- a/src/currents.cc
+++ b/src/currents.cc
@@ -1,3210 +1,3210 @@
//////////////////////////////////////////////////
//////////////////////////////////////////////////
// This source code is Copyright (2012) of //
// Jeppe R. Andersen and Jennifer M. Smillie //
// and is distributed under the //
// Gnu Public License version 2 //
// http://www.gnu.org/licenses/gpl-2.0.html //
// You are allowed to distribute and alter the //
// source under the conditions of the GPLv2 //
// as long as this copyright notice //
// is unaltered and distributed with the source //
// Any use should comply with the //
// MCNET GUIDELINES //
// for Event Generator Authors and Users //
// as distributed with this source code //
//////////////////////////////////////////////////
//////////////////////////////////////////////////
#include "HEJ/currents.hh"
#include <limits>
#include "HEJ/Constants.hh"
#include "HEJ/utility.hh"
#include "HEJ/PDG_codes.hh"
const COM looprwfactor = (COM(0.,1.)*M_PI*M_PI)/pow((2.*M_PI),4);
constexpr double infinity = std::numeric_limits<double>::infinity();
#ifdef HEJ_BUILD_WITH_QCDLOOP
#include "qcdloop/qcdloop.h"
#endif
#include <iostream>
#include <utility>
namespace {
// Loop integrals
#ifdef HEJ_BUILD_WITH_QCDLOOP
COM B0DD(CLHEP::HepLorentzVector q, double mq)
{
static std::vector<std::complex<double>> result(3);
static auto ql_B0 = [](){
ql::Bubble<std::complex<double>,double,double> ql_B0;
ql_B0.setCacheSize(100);
return ql_B0;
}();
static std::vector<double> masses(2);
static std::vector<double> momenta(1);
for(auto & m: masses) m = mq*mq;
momenta.front() = q.m2();
ql_B0.integral(result, 1, masses, momenta);
return result[0];
}
COM C0DD(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mq)
{
static std::vector<std::complex<double>> result(3);
static auto ql_C0 = [](){
ql::Triangle<std::complex<double>,double,double> ql_C0;
ql_C0.setCacheSize(100);
return ql_C0;
}();
static std::vector<double> masses(3);
static std::vector<double> momenta(3);
for(auto & m: masses) m = mq*mq;
momenta[0] = q1.m2();
momenta[1] = q2.m2();
momenta[2] = (q1+q2).m2();
ql_C0.integral(result, 1, masses, momenta);
return result[0];
}
COM D0DD(CLHEP::HepLorentzVector q1,CLHEP::HepLorentzVector q2, CLHEP::HepLorentzVector q3, double mq)
{
static std::vector<std::complex<double>> result(3);
static auto ql_D0 = [](){
ql::Box<std::complex<double>,double,double> ql_D0;
ql_D0.setCacheSize(100);
return ql_D0;
}();
static std::vector<double> masses(4);
static std::vector<double> momenta(6);
for(auto & m: masses) m = mq*mq;
momenta[0] = q1.m2();
momenta[1] = q2.m2();
momenta[2] = q3.m2();
momenta[3] = (q1+q2+q3).m2();
momenta[4] = (q1+q2).m2();
momenta[5] = (q2+q3).m2();
ql_D0.integral(result, 1, masses, momenta);
return result[0];
}
COM A1(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt)
// As given in Eq. (B.2) of VDD
{
double q12,q22,Q2;
CLHEP::HepLorentzVector Q;
double Delta3,mt2;
COM ans(COM(0.,0.));
q12=q1.m2();
q22=q2.m2();
Q=-q1-q2; // Define all momenta ingoing as in appendix of VDD
Q2=Q.m2();
Delta3=q12*q12+q22*q22+Q2*Q2-2*q12*q22-2*q12*Q2-2*q22*Q2;
if (mt < 0.)
std::cerr<<"Problem in A1! mt = "<<mt<<std::endl;
mt2=mt*mt;
ans=looprwfactor*COM(0,-1)*C0DD(q1,q2,mt)*( 4.*mt2/Delta3*(Q2-q12-q22)
-1.-4.*q12*q22/Delta3-12.*q12*q22*Q2/Delta3/Delta3*(q12+q22-Q2) )
- looprwfactor*COM(0,-1)*( B0DD(q2,mt)-B0DD(Q,mt) )
* ( 2.*q22/Delta3+12.*q12*q22/Delta3/Delta3*(q22-q12+Q2) )
- looprwfactor*COM(0,-1)*( B0DD(q1,mt)-B0DD(Q,mt) )
* ( 2.*q12/Delta3+12.*q12*q22/Delta3/Delta3*(q12-q22+Q2) )
- 2./Delta3/16/M_PI/M_PI*(q12+q22-Q2);
return ans;
}
COM A2(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt)
// As given in Eq. (B.2) of VDD, but with high energy limit
// of invariants taken.
{
double q12,q22,Q2;
CLHEP::HepLorentzVector Q;
double Delta3,mt2;
COM ans(COM(0.,0.));
if (mt < 0.)
std::cerr<<"Problem in A2! mt = "<<mt<<std::endl;
mt2=mt*mt;
q12=q1.m2();
q22=q2.m2();
Q=-q1-q2; // Define all momenta ingoing as in appendix of VDD
Q2=Q.m2();
Delta3=q12*q12+q22*q22+Q2*Q2-2*q12*q22-2*q12*Q2-2*q22*Q2;
ans=looprwfactor*COM(0,-1)*C0DD(q1,q2,mt)*( 2.*mt2+1./2.*(q12+q22-Q2)
+2.*q12*q22*Q2/Delta3 )
+looprwfactor*COM(0,-1)*(B0DD(q2,mt)-B0DD(Q,mt))
*q22*(q22-q12-Q2)/Delta3
+looprwfactor*COM(0,-1)*(B0DD(q1,mt)-B0DD(Q,mt))
*q12*(q12-q22-Q2)/Delta3+1./16/M_PI/M_PI;
return ans;
}
#else // no QCDloop
COM A1(CLHEP::HepLorentzVector, CLHEP::HepLorentzVector, double) {
throw std::logic_error{"A1 called without QCDloop support"};
}
COM A2(CLHEP::HepLorentzVector, CLHEP::HepLorentzVector, double) {
throw std::logic_error{"A2 called without QCDloop support"};
}
#endif
void to_current(const CLHEP::HepLorentzVector & q, current & ret){
ret[0]=q.e();
ret[1]=q.x();
ret[2]=q.y();
ret[3]=q.z();
}
constexpr double C_A = 3.;
constexpr double C_F = 4./3.;
// using ParticleID = HEJ::pid::ParticleID;
} // namespace anonymous
// Colour acceleration multiplier for gluons see eq. (7) in arXiv:0910.5113
- // TODO: this is not a current and should be moved somewhere else
+ // @TODO: this is not a current and should be moved somewhere else
double K_g(double p1minus, double paminus) {
return 1./2.*(p1minus/paminus + paminus/p1minus)*(HEJ::C_A - 1./HEJ::C_A) + 1./HEJ::C_A;
}
double K_g(
CLHEP::HepLorentzVector const & pout,
CLHEP::HepLorentzVector const & pin
) {
if(pin.z() > 0) return K_g(pout.plus(), pin.plus());
return K_g(pout.minus(), pin.minus());
}
CCurrent CCurrent::operator+(const CCurrent& other)
{
COM result_c0=c0 + other.c0;
COM result_c1=c1 + other.c1;
COM result_c2=c2 + other.c2;
COM result_c3=c3 + other.c3;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator-(const CCurrent& other)
{
COM result_c0=c0 - other.c0;
COM result_c1=c1 - other.c1;
COM result_c2=c2 - other.c2;
COM result_c3=c3 - other.c3;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator*(const double x)
{
COM result_c0=x*CCurrent::c0;
COM result_c1=x*CCurrent::c1;
COM result_c2=x*CCurrent::c2;
COM result_c3=x*CCurrent::c3;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator/(const double x)
{
COM result_c0=CCurrent::c0/x;
COM result_c1=CCurrent::c1/x;
COM result_c2=CCurrent::c2/x;
COM result_c3=CCurrent::c3/x;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator*(const COM x)
{
COM result_c0=x*CCurrent::c0;
COM result_c1=x*CCurrent::c1;
COM result_c2=x*CCurrent::c2;
COM result_c3=x*CCurrent::c3;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator/(const COM x)
{
COM result_c0=(CCurrent::c0)/x;
COM result_c1=(CCurrent::c1)/x;
COM result_c2=(CCurrent::c2)/x;
COM result_c3=(CCurrent::c3)/x;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
std::ostream& operator <<(std::ostream& os, const CCurrent& cur)
{
os << "("<<cur.c0<< " ; "<<cur.c1<<" , "<<cur.c2<<" , "<<cur.c3<<")";
return os;
}
CCurrent operator * ( double x, CCurrent& m)
{
return m*x;
}
CCurrent operator * ( COM x, CCurrent& m)
{
return m*x;
}
CCurrent operator / ( double x, CCurrent& m)
{
return m/x;
}
CCurrent operator / ( COM x, CCurrent& m)
{
return m/x;
}
COM CCurrent::dot(CLHEP::HepLorentzVector p1)
{
// Current goes (E,px,py,pz)
// std::cout<<"current = ("<<c0<<","<<c1<<","<<c2<<","<<c3<<")\n";
// Vector goes (px,py,pz,E)
// std::cout<<"vector = ("<<p1[0]<<","<<p1[1]<<","<<p1[2]<<","<<p1[3]<<")\n";
return p1[3]*c0-p1[0]*c1-p1[1]*c2-p1[2]*c3;
}
COM CCurrent::dot(CCurrent p1)
{
return p1.c0*c0-p1.c1*c1-p1.c2*c2-p1.c3*c3;
}
//Current Functions
// Current for <outgoing state | mu | incoming state>
/// @TODO always use this instead of "j"
/// @TODO isn't this jio with flipt helicities?
void joi(HLV pout, bool helout, HLV pin, bool helin, current &cur) {
cur[0]=0.;
cur[1]=0.;
cur[2]=0.;
cur[3]=0.;
const double sqpop = sqrt(pout.plus());
const double sqpom = sqrt(pout.minus());
const COM poperp = pout.x() + COM(0, 1) * pout.y();
if (helout != helin) {
throw std::invalid_argument{"Non-matching helicities"};
} else if (helout == false) { // negative helicity
if (pin.plus() > pin.minus()) { // if forward
const double sqpip = sqrt(pin.plus());
cur[0] = sqpop * sqpip;
cur[1] = sqpom * sqpip * poperp / abs(poperp);
cur[2] = -COM(0,1) * cur[1];
cur[3] = cur[0];
} else { // if backward
const double sqpim = sqrt(pin.minus());
cur[0] = -sqpom * sqpim * poperp / abs(poperp);
cur[1] = -sqpim * sqpop;
cur[2] = COM(0,1) * cur[1];
cur[3] = -cur[0];
}
} else { // positive helicity
if (pin.plus() > pin.minus()) { // if forward
const double sqpip = sqrt(pin.plus());
cur[0] = sqpop * sqpip;
cur[1] = sqpom * sqpip * conj(poperp) / abs(poperp);
cur[2] = COM(0,1) * cur[1];
cur[3] = cur[0];
} else { // if backward
const double sqpim = sqrt(pin.minus());
cur[0] = -sqpom * sqpim * conj(poperp) / abs(poperp);
cur[1] = -sqpim * sqpop;
cur[2] = -COM(0,1) * cur[1];
cur[3] = -cur[0];
}
}
}
CCurrent joi (HLV pout, bool helout, HLV pin, bool helin)
{
current cur;
joi(pout, helout, pin, helin, cur);
return CCurrent(cur[0],cur[1],cur[2],cur[3]);
}
/// @TODO remove this
void j (HLV pout, bool helout, HLV pin, bool helin,current &cur) {
joi(pout, helout, pin, helin, cur);
}
/// @TODO remove this
CCurrent j (HLV pout, bool helout, HLV pin, bool helin)
{
return joi(pout, helout, pin, helin);
}
// Current for <incoming state | mu | outgoing state>
void jio(HLV pin, bool helin, HLV pout, bool helout, current &cur) {
cur[0] = 0.0;
cur[1] = 0.0;
cur[2] = 0.0;
cur[3] = 0.0;
const double sqpop = sqrt(pout.plus());
const double sqpom = sqrt(pout.minus());
const COM poperp = pout.x() + COM(0, 1) * pout.y();
if (helout != helin) {
throw std::invalid_argument{"Non-matching helicities"};
} else if (helout == false) { // negative helicity
if (pin.plus() > pin.minus()) { // if forward
const double sqpip = sqrt(pin.plus());
cur[0] = sqpop * sqpip;
cur[1] = sqpom * sqpip * conj(poperp) / abs(poperp);
cur[2] = COM(0,1) * cur[1];
cur[3] = cur[0];
} else { // if backward
const double sqpim = sqrt(pin.minus());
cur[0] = -sqpom * sqpim * conj(poperp) / abs(poperp);
cur[1] = -sqpim * sqpop;
cur[2] = -COM(0,1) * cur[1];
cur[3] = -cur[0];
}
} else { // positive helicity
if (pin.plus() > pin.minus()) { // if forward
const double sqpip = sqrt(pin.plus());
cur[0] = sqpop * sqpip;
cur[1] = sqpom * sqpip * poperp / abs(poperp);
cur[2] = -COM(0,1) * cur[1];
cur[3] = cur[0];
} else { // if backward
const double sqpim = sqrt(pin.minus());
cur[0] = -sqpom * sqpim * poperp / abs(poperp);
cur[1] = -sqpim * sqpop;
cur[2] = COM(0,1) * cur[1];
cur[3] = -cur[0];
}
}
}
CCurrent jio (HLV pin, bool helin, HLV pout, bool helout)
{
current cur;
jio(pin, helin, pout, helout, cur);
return CCurrent(cur[0],cur[1],cur[2],cur[3]);
}
// Current for <outgoing state | mu | outgoing state>
void joo(HLV pi, bool heli, HLV pj, bool helj, current &cur) {
// Zero our current
cur[0] = 0.0;
cur[1] = 0.0;
cur[2] = 0.0;
cur[3] = 0.0;
if (heli!=helj) {
throw std::invalid_argument{"Non-matching helicities"};
} else if ( heli == true ) { // If positive helicity swap momenta
std::swap(pi,pj);
}
const double sqpjp = sqrt(pj.plus());
const double sqpjm = sqrt(pj.minus());
const double sqpip = sqrt(pi.plus());
const double sqpim = sqrt(pi.minus());
const COM piperp = pi.x() + COM(0,1) * pi.y();
const COM pjperp = pj.x() + COM(0,1) * pj.y();
const COM phasei = piperp / abs(piperp);
const COM phasej = pjperp / abs(pjperp);
cur[0] = sqpim * sqpjm * phasei * conj(phasej) + sqpip * sqpjp;
cur[1] = sqpim * sqpjp * phasei + sqpip * sqpjm * conj(phasej);
cur[2] = -COM(0, 1) * (sqpim * sqpjp * phasei - sqpip * sqpjm * conj(phasej));
cur[3] = -sqpim * sqpjm * phasei * conj(phasej) + sqpip * sqpjp;
}
CCurrent joo (HLV pi, bool heli, HLV pj, bool helj)
{
current cur;
joo(pi, heli, pj, helj, cur);
return CCurrent(cur[0],cur[1],cur[2],cur[3]);
}
namespace {
/// @TODO unused function
// double jM2 (CLHEP::HepLorentzVector p1out, bool hel1out, CLHEP::HepLorentzVector p1in, bool hel1in, CLHEP::HepLorentzVector p2out, bool hel2out, CLHEP::HepLorentzVector p2in, bool hel2in)
// {
// CLHEP::HepLorentzVector q1=p1in-p1out;
// CLHEP::HepLorentzVector q2=-(p2in-p2out);
// current C1,C2;
// j (p1out,hel1out,p1in,hel1in, C1);
// j (p2out,hel2out,p2in,hel2in, C2);
// std::cout << "# From Currents, C1 : ("<<C1[0]<<","<<C1[1]<<","<<C1[2]<<","<<C1[3]<<"\n";
// std::cout << "# From Currents, C2 : ("<<C2[0]<<","<<C2[1]<<","<<C2[2]<<","<<C2[3]<<"\n";
// COM M=cdot(C1,C2);
// return (M*conj(M)).real()/(q1.m2()*q2.m2());
// }
} // namespace anonymous
double jM2qQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
// std::cerr<<"Current: "<<p1out<<" "<<p1in<<" "<<p2out<<" "<<p2in<<std::endl;
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
current mj1m,mj1p,mj2m,mj2p;
joi(p1out,true,p1in,true,mj1p);
joi(p1out,false,p1in,false,mj1m);
joi(p2out,true,p2in,true,mj2p);
joi(p2out,false,p2in,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
COM Mmm=cdot(mj1m,mj2m);
COM Mpp=cdot(mj1p,mj2p);
COM Mpm=cdot(mj1p,mj2m);
double sst=abs2(Mmm)+abs2(Mmp)+abs2(Mpp)+abs2(Mpm);
// Multiply by Cf^2
return HEJ::C_F*HEJ::C_F*(sst)/(q1.m2()*q2.m2());
}
double jM2qQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj1p,mj2m,mj2p;
joi(p1out,true,p1in,true,mj1p);
joi(p1out,false,p1in,false,mj1m);
jio(p2in,true,p2out,true,mj2p);
jio(p2in,false,p2out,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
COM Mmm=cdot(mj1m,mj2m);
COM Mpp=cdot(mj1p,mj2p);
COM Mpm=cdot(mj1p,mj2m);
double sumsq=abs2(Mmm)+abs2(Mmp)+abs2(Mpp)+abs2(Mpm);
// Multiply by Cf^2
return C_F*C_F*(sumsq)/(q1.m2()*q2.m2());
}
double jM2qbarQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj1p,mj2m,mj2p;
jio(p1in,true,p1out,true,mj1p);
jio(p1in,false,p1out,false,mj1m);
jio(p2in,true,p2out,true,mj2p);
jio(p2in,false,p2out,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
COM Mmm=cdot(mj1m,mj2m);
COM Mpp=cdot(mj1p,mj2p);
COM Mpm=cdot(mj1p,mj2m);
double sumsq=abs2(Mmm)+abs2(Mmp)+abs2(Mpp)+abs2(Mpm);
// Multiply by Cf^2
return C_F*C_F*(sumsq)/(q1.m2()*q2.m2());
}
double jM2qg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qg scattering
// p1: quark
// p2: gluon
{
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj1p,mj2m,mj2p;
joi(p1out,true,p1in,true,mj1p);
joi(p1out,false,p1in,false,mj1m);
joi(p2out,true,p2in,true,mj2p);
joi(p2out,false,p2in,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
COM Mmm=cdot(mj1m,mj2m);
COM Mpp=cdot(mj1p,mj2p);
COM Mpm=cdot(mj1p,mj2m);
const double K = K_g(p2out, p2in);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double a2Mpp=abs2(Mpp);
double a2Mpm=abs2(Mpm);
double sst = K/C_A*(a2Mpp+a2Mpm+a2Mmp+a2Mmm);
// Cf*Ca=4
return C_F*C_A*sst/(q1.m2()*q2.m2());
}
double jM2qbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qg scattering
// p1: quark
// p2: gluon
{
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj1p,mj2m,mj2p;
jio(p1in,true,p1out,true,mj1p);
jio(p1in,false,p1out,false,mj1m);
joi(p2out,true,p2in,true,mj2p);
joi(p2out,false,p2in,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
COM Mmm=cdot(mj1m,mj2m);
COM Mpp=cdot(mj1p,mj2p);
COM Mpm=cdot(mj1p,mj2m);
const double K = K_g(p2out, p2in);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double a2Mpp=abs2(Mpp);
double a2Mpm=abs2(Mpm);
double sst = K/C_A*(a2Mpp+a2Mpm+a2Mmp+a2Mmm);
// Cf*Ca=4
return C_F*C_A*sst/(q1.m2()*q2.m2());
}
double jM2gg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for gg scattering
// p1: gluon
// p2: gluon
{
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj1p,mj2m,mj2p;
joi(p1out,true,p1in,true,mj1p);
joi(p1out,false,p1in,false,mj1m);
joi(p2out,true,p2in,true,mj2p);
joi(p2out,false,p2in,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
COM Mmm=cdot(mj1m,mj2m);
COM Mpp=cdot(mj1p,mj2p);
COM Mpm=cdot(mj1p,mj2m);
const double K_g1 = K_g(p1out, p1in);
const double K_g2 = K_g(p2out, p2in);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double a2Mpp=abs2(Mpp);
double a2Mpm=abs2(Mpm);
double sst = K_g1/C_A*K_g2/C_A*(a2Mpp+a2Mpm+a2Mmp+a2Mmm);
// Ca*Ca=9
return C_A*C_A*sst/(q1.m2()*q2.m2());
}
namespace {
/**
* @brief Higgs vertex contracted with current @param C1 and @param C2
*/
COM cHdot(const current & C1, const current & C2, const current & q1,
const current & q2, double mt, bool incBot, double mb)
{
if (mt == infinity) {
return (cdot(C1,C2)*cdot(q1,q2)-cdot(C1,q2)*cdot(C2,q1))/(6*M_PI*HEJ::vev);
}
else {
CLHEP::HepLorentzVector vq1,vq2;
vq1.set(q1[1].real(),q1[2].real(),q1[3].real(),q1[0].real());
vq2.set(q2[1].real(),q2[2].real(),q2[3].real(),q2[0].real());
// first minus sign obtained because of q1-difference to VDD
// std::cout<<"A1 : " << A1(-vq1,vq2)<<std::endl;
// std::cout<<"A2 : " << A2(-vq1,vq2)<<std::endl;
if(!(incBot))
// Factor is because 4 mt^2 g^2/HEJ::vev A1 -> 16 pi mt^2/HEJ::vev alphas,
// and we divide by a factor 4 at the amp sqaured level later
// which I absorb here (i.e. I divide by 2)
/// @TODO move factor 1/2 from S to |ME|^2 => consistent with general notation
return 8.*M_PI*mt*mt/HEJ::vev*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mt)-cdot(C1,C2)*A2(-vq1,vq2,mt));
else
return 8.*M_PI*mt*mt/HEJ::vev*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mt)-cdot(C1,C2)*A2(-vq1,vq2,mt))
+ 8.*M_PI*mb*mb/HEJ::vev*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mb)-cdot(C1,C2)*A2(-vq1,vq2,mb));
}
}
} // namespace anonymous
double MH2qQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in,
CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in,
CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
double mt, bool incBot, double mb)
{
// CLHEP::HepLorentzVector q1=p1in-p1out;
// CLHEP::HepLorentzVector q2=-(p2in-p2out);
current j1p,j1m,j2p,j2m, q1v, q2v;
joi (p1out,true,p1in,true,j1p);
joi (p1out,false,p1in,false,j1m);
joi (p2out,true,p2in,true,j2p);
joi (p2out,false,p2in,false,j2m);
to_current(q1, q1v);
to_current(q2, q2v);
COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm);
// return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
double MH2qQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
{
// CLHEP::HepLorentzVector q1=p1in-p1out;
// CLHEP::HepLorentzVector q2=-(p2in-p2out);
current j1p,j1m,j2p,j2m,q1v,q2v;
joi (p1out,true,p1in,true,j1p);
joi (p1out,false,p1in,false,j1m);
jio (p2in,true,p2out,true,j2p);
jio (p2in,false,p2out,false,j2m);
to_current(q1, q1v);
to_current(q2, q2v);
COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm);
// return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
double MH2qbarQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
{
// CLHEP::HepLorentzVector q1=p1in-p1out;
// CLHEP::HepLorentzVector q2=-(p2in-p2out);
current j1p,j1m,j2p,j2m,q1v,q2v;
jio (p1in,true,p1out,true,j1p);
jio (p1in,false,p1out,false,j1m);
joi (p2out,true,p2in,true,j2p);
joi (p2out,false,p2in,false,j2m);
to_current(q1, q1v);
to_current(q2, q2v);
COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm);
// return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
double MH2qbarQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
{
// CLHEP::HepLorentzVector q1=p1in-p1out;
// CLHEP::HepLorentzVector q2=-(p2in-p2out);
current j1p,j1m,j2p,j2m,q1v,q2v;
jio (p1in,true,p1out,true,j1p);
jio (p1in,false,p1out,false,j1m);
jio (p2in,true,p2out,true,j2p);
jio (p2in,false,p2out,false,j2m);
to_current(q1, q1v);
to_current(q2, q2v);
COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm);
// return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
double MH2qg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
// q~p1 g~p2 (i.e. ALWAYS p1 for quark, p2 for gluon)
// should be called with q1 meant to be contracted with p2 in first part of vertex
// (i.e. if g is backward, q1 is forward)
{
current j1p,j1m,j2p,j2m,q1v,q2v;
joi (p1out,true,p1in,true,j1p);
joi (p1out,false,p1in,false,j1m);
joi (p2out,true,p2in,true,j2p);
joi (p2out,false,p2in,false,j2m);
to_current(q1, q1v);
to_current(q2, q2v);
// First, calculate the non-flipping amplitudes:
COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
//cout << "Bits in MH2qg: " << Mpp << " " << Mpm << " " << Mmp << " " << Mmm << endl;
const double K = K_g(p2out, p2in);
double sst=K/C_A*(abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm));
// Cf*Ca=4
// return 4.*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
double MH2qbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
// qbar~p1 g~p2 (i.e. ALWAYS p1 for anti-quark, p2 for gluon)
// should be called with q1 meant to be contracted with p2 in first part of vertex
// (i.e. if g is backward, q1 is forward)
{
current j1p,j1m,j2p,j2m,q1v,q2v;
jio (p1in,true,p1out,true,j1p);
jio (p1in,false,p1out,false,j1m);
joi (p2out,true,p2in,true,j2p);
joi (p2out,false,p2in,false,j2m);
to_current(q1, q1v);
to_current(q2, q2v);
// First, calculate the non-flipping amplitudes:
COM amp,amm,apm,app;
app=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
apm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
amp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
amm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
double MH2sum = abs2(app)+abs2(amm)+abs2(apm)+abs2(amp);
const double K = K_g(p2out, p2in);
MH2sum*=K/C_A;
// Cf*Ca=4
// return 4.*MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
return MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
double MH2gg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
// g~p1 g~p2
// should be called with q1 meant to be contracted with p2 in first part of vertex
// (i.e. if g is backward, q1 is forward)
{
current j1p,j1m,j2p,j2m,q1v,q2v;
joi (p1out,true,p1in,true,j1p);
joi (p1out,false,p1in,false,j1m);
joi (p2out,true,p2in,true,j2p);
joi (p2out,false,p2in,false,j2m);
to_current(q1, q1v);
to_current(q2, q2v);
// First, calculate the non-flipping amplitudes:
COM amp,amm,apm,app;
app=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
apm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
amp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
amm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
double MH2sum = abs2(app)+abs2(amm)+abs2(apm)+abs2(amp);
const double K_g1 = K_g(p1out, p1in);
const double K_g2 = K_g(p2out, p2in);
MH2sum*=K_g1/C_A*K_g2/C_A;
// Ca*Ca=9
// return 9.*MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
return MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
// // Z's stuff
// void jZ(HLV pin, HLV pout, HLV pem, HLV pep, bool HelPartons, bool HelLeptons, current cur) {
// // Init current to zero
// cur[0] = 0.0;
// cur[1] = 0.0;
// cur[2] = 0.0;
// cur[3] = 0.0;
// // Temporary variables
// COM temp;
// current Term_1, Term_2, Term_3, Term_4, J_temp, TempCur1, TempCur2;
// // Momentum of virtual gluons aroun weak boson emission site
// HLV qa = pout + pep + pem;
// HLV qb = pin - pep - pem;
// double ta = qa.m2();
// double tb = qb.m2();
// // Out-Out currents:
// current Em_Ep, Out_Em, Out_Ep;
// // Other currents:
// current Out_In, Em_In, Ep_In;
// joi(pout, HelPartons, pin, HelPartons, Out_In);
// joi(pem, HelLeptons, pin, HelPartons, Em_In);
// joi(pep, HelLeptons, pin, HelPartons, Ep_In);
// joo(pem, HelLeptons, pep, HelLeptons, Em_Ep);
// joo(pout, HelPartons, pem, HelLeptons, Out_Em);
// joo(pout, HelPartons, pep, HelLeptons, Out_Ep);
// if (HelLeptons == HelPartons) {
// temp = 2.0 * cdot(pout, Em_Ep);
// cmult(temp / ta, Out_In, Term_1);
// temp = cdot(Out_Em, Em_Ep);
// cmult(temp / ta , Em_In, Term_2);
// temp = 2.0 * cdot(pin, Em_Ep);
// cmult(temp / tb, Out_In, Term_3);
// temp = -cdot(Ep_In, Em_Ep);
// cmult(temp / tb, Out_Ep, Term_4);
// cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
// cur[0] = J_temp[0];
// cur[1] = J_temp[1];
// cur[2] = J_temp[2];
// cur[3] = J_temp[3];
// }
// else {
// if (HelPartons == true) {
// temp = 2.0 * cdot(pout, Em_Ep);
// cmult(temp / ta, Out_In, Term_1);
// joo(pout, true, pep, true, TempCur1);
// joi(pep, true, pin, true, TempCur2);
// temp = cdot(TempCur1, Em_Ep);
// cmult(temp / ta , TempCur2, Term_2);
// temp = 2.0 * cdot(pin, Em_Ep);
// cmult(temp / tb, Out_In, Term_3);
// joo(pout, true, pem, true, TempCur1);
// joi(pem, true, pin, true, TempCur2);
// temp = -cdot(TempCur2, Em_Ep);
// cmult(temp / tb, TempCur1, Term_4);
// cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
// cur[0] = J_temp[0];
// cur[1] = J_temp[1];
// cur[2] = J_temp[2];
// cur[3] = J_temp[3];
// }
// else {
// temp = 2.0 * cdot(pout, Em_Ep);
// cmult(temp / ta, Out_In, Term_1);
// joo(pout, false, pep, false, TempCur1);
// joi(pep, false, pin, false, TempCur2);
// temp = cdot(TempCur1, Em_Ep);
// cmult(temp / ta, TempCur2, Term_2);
// temp = 2.0 * cdot(pin, Em_Ep);
// cmult(temp / tb, Out_In, Term_3);
// joo(pout, false, pem, false, TempCur1);
// joi(pem, false, pin, false, TempCur2);
// temp = -cdot(TempCur2, Em_Ep);
// cmult(temp / tb, TempCur1, Term_4);
// cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
// cur[0] = J_temp[0];
// cur[1] = J_temp[1];
// cur[2] = J_temp[2];
// cur[3] = J_temp[3];
// }
// }
// }
// void jZbar(HLV pin, HLV pout, HLV pem, HLV pep, bool HelPartons, bool HelLeptons, current cur) {
// // Init current to zero
// cur[0] = 0.0;
// cur[1] = 0.0;
// cur[2] = 0.0;
// cur[3] = 0.0;
// // Temporary variables
// COM temp;
// current Term_1, Term_2, Term_3, Term_4, J_temp, TempCur1, TempCur2;
// // Transfered 4-momenta
// HLV qa = pout + pep + pem;
// HLV qb = pin - pep - pem;
// // The square of the transfered 4-momenta
// double ta = qa.m2();
// double tb = qb.m2();
// // Out-Out currents:
// current Em_Ep, Em_Out, Ep_Out;
// // In-Out currents:
// current In_Out, In_Em, In_Ep;
// // Safe to use the currents since helicity structure is ok
// if (HelPartons == HelLeptons) {
// jio(pin, HelPartons, pout, HelPartons, In_Out);
// joo(pem, HelLeptons, pep, HelLeptons, Em_Ep);
// jio(pin, HelPartons, pem, HelLeptons, In_Em);
// jio(pin, HelPartons, pep, HelLeptons, In_Ep);
// joo(pem, HelLeptons, pout, HelPartons, Em_Out);
// joo(pep, HelLeptons, pout, HelPartons, Ep_Out);
// }
// else {
// jio(pin, HelPartons, pout, HelPartons, In_Out);
// joo(pem, HelLeptons, pep, HelLeptons, Em_Ep);
// In_Em[0] = 0.0;
// In_Em[1] = 0.0;
// In_Em[2] = 0.0;
// In_Em[3] = 0.0;
// In_Ep[0] = 0.0;
// In_Ep[1] = 0.0;
// In_Ep[2] = 0.0;
// In_Ep[3] = 0.0;
// Em_Out[0] = 0.0;
// Em_Out[1] = 0.0;
// Em_Out[2] = 0.0;
// Em_Out[3] = 0.0;
// Ep_Out[0] = 0.0;
// Ep_Out[1] = 0.0;
// Ep_Out[2] = 0.0;
// Ep_Out[3] = 0.0;
// }
// if (HelLeptons == HelPartons) {
// temp = 2.0 * cdot(pout, Em_Ep);
// cmult(temp / ta, In_Out, Term_1);
// temp = cdot(Ep_Out, Em_Ep);
// cmult(temp / ta, In_Ep, Term_2);
// temp = 2.0 * cdot(pin, Em_Ep);
// cmult(temp / tb, In_Out, Term_3);
// temp = - cdot(In_Em, Em_Ep);
// cmult(temp / tb, Em_Out, Term_4);
// cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
// cur[0] = J_temp[0];
// cur[1] = J_temp[1];
// cur[2] = J_temp[2];
// cur[3] = J_temp[3];
// }
// else {
// if (HelPartons == true) {
// temp = 2.0 * cdot(pout, Em_Ep);
// cmult(temp / ta, In_Out, Term_1);
// joo(pem, true, pout, true, TempCur1);
// jio(pin, true, pem, true, TempCur2);
// temp = cdot(TempCur1, Em_Ep);
// cmult(temp / ta , TempCur2, Term_2);
// temp = 2.0 * cdot(pin, Em_Ep);
// cmult(temp / tb, In_Out, Term_3);
// joo(pep, true, pout, true, TempCur1);
// jio(pin, true, pep, true, TempCur2);
// temp = - cdot(TempCur2, Em_Ep);
// cmult(temp / tb, TempCur1, Term_4);
// cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
// cur[0] = J_temp[0];
// cur[1] = J_temp[1];
// cur[2] = J_temp[2];
// cur[3] = J_temp[3];
// }
// else {
// temp = 2.0 * cdot(pout, Em_Ep);
// cmult(temp / ta, In_Out, Term_1);
// joo(pem, false, pout, false, TempCur1);
// jio(pin, false, pem, false, TempCur2);
// temp = cdot(TempCur1, Em_Ep);
// cmult(temp / ta , TempCur2, Term_2);
// temp = 2.0 * cdot(pin, Em_Ep);
// cmult(temp / tb, In_Out, Term_3);
// joo(pep, false, pout, false, TempCur1);
// jio(pin, false, pep, false, TempCur2);
// temp = - cdot(TempCur2, Em_Ep);
// cmult(temp / tb, TempCur1, Term_4);
// cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
// cur[0] = J_temp[0];
// cur[1] = J_temp[1];
// cur[2] = J_temp[2];
// cur[3] = J_temp[3];
// }
// }
// }
// // Progagators
// COM PZ(double s) {
// double MZ, GammaZ;
// MZ = 9.118800e+01; // Mass of the mediating gauge boson
// GammaZ = 2.441404e+00; // Z peak width
// // Return Z Prop value
// return 1.0 / (s - MZ * MZ + COM(0.0, 1.0) * GammaZ * MZ);
// }
// COM PG(double s) {
// return 1.0 / s;
// }
// // Non-gluonic with pa emitting
// std::vector <double> jMZqQ (HLV pa, HLV pb, HLV p1, HLV p2, HLV pep, HLV pem, std::vector <double> VProducts, std::vector < std::vector <double> > Virtuals, int aptype, int bptype, bool UseVirtuals, bool BottomLineEmit) {
// std::vector <double> ScaledWeights;
// double Sum;
// // Propagator factors
// COM PZs = PZ((pep + pem).m2());
// COM PGs = PG((pep + pem).m2());
// // Emitting current initialisation
// current j1pptop, j1pmtop; // Emission from top line
// current j1ppbot, j1pmbot; // Emission from bottom line
// // Non-emitting current initialisation
// current j2ptop, j2mtop; // Emission from top line
// current j2pbot, j2mbot; // Emission from bottom line
// // Currents for top emission
// // Upper current calculations
// // if a is a quark
// if (aptype > 0) {
// jZ(pa, p1, pem, pep, true, true, j1pptop);
// jZ(pa, p1, pem, pep, true, false, j1pmtop);
// }
// // if a is an antiquark
// else {
// jZbar(pa, p1, pem, pep, true, true, j1pptop);
// jZbar(pa, p1, pem, pep, true, false, j1pmtop);
// }
// // Lower current calculations
// // if b is a quark
// if (bptype > 0) {
// joi(p2, true, pb, true, j2ptop);
// joi(p2, false, pb, false, j2mtop);
// }
// // if b is an antiquark
// else {
// jio(pb, true, p2, true, j2ptop);
// jio(pb, false, p2, false, j2mtop);
// }
// // Currents for bottom emission
// // Lower current calculations
// if (bptype > 0) {
// jZ(pb, p2, pem, pep, true, true, j1ppbot);
// jZ(pb, p2, pem, pep, true, false, j1pmbot);
// }
// else {
// jZbar(pb, p2, pem, pep, true, true, j1ppbot);
// jZbar(pb, p2, pem, pep, true, false, j1pmbot);
// }
// // Upper current calculations
// if (aptype > 0) {
// joi(p1, true, pa, true, j2pbot);
// joi(p1, false, pa, false, j2mbot);
// }
// else {
// jio(pa, true, p1, true, j2pbot);
// jio(pa, false, p1, false, j2mbot);
// }
// COM Coeff[2][8];
// if (!Interference) {
// double ZCharge_a_P = Zq(aptype, true);
// double ZCharge_a_M = Zq(aptype, false);
// double ZCharge_b_P = Zq(bptype, true);
// double ZCharge_b_M = Zq(bptype, false);
// if (BottomLineEmit) {
// // Emission from top-line quark (pa/p1 line)
// Coeff[0][0] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2ptop);
// Coeff[0][1] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2mtop);
// Coeff[0][2] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2ptop);
// Coeff[0][3] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2mtop);
// Coeff[0][4] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2ptop));
// Coeff[0][5] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2mtop));
// Coeff[0][6] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2ptop));
// Coeff[0][7] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2mtop));
// }
// else {
// // Emission from bottom-line quark (pb/p2 line)
// Coeff[1][0] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1ppbot, j2pbot);
// Coeff[1][7] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1ppbot, j2mbot);
// Coeff[1][2] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1pmbot, j2pbot);
// Coeff[1][5] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1pmbot, j2mbot);
// Coeff[1][4] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2pbot));
// Coeff[1][3] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2mbot));
// Coeff[1][6] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2pbot));
// Coeff[1][1] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2mbot));
// }
// }
// // Else calculate all the possiblities
// else {
// double ZCharge_a_P = Zq(aptype, true);
// double ZCharge_a_M = Zq(aptype, false);
// double ZCharge_b_P = Zq(bptype, true);
// double ZCharge_b_M = Zq(bptype, false);
// // Emission from top-line quark (pa/p1 line)
// Coeff[0][0] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2ptop);
// Coeff[0][1] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2mtop);
// Coeff[0][2] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2ptop);
// Coeff[0][3] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2mtop);
// Coeff[0][4] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2ptop));
// Coeff[0][5] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2mtop));
// Coeff[0][6] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2ptop));
// Coeff[0][7] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2mtop));
// // Emission from bottom-line quark (pb/p2 line)
// Coeff[1][0] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1ppbot, j2pbot);
// Coeff[1][7] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1ppbot, j2mbot);
// Coeff[1][2] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1pmbot, j2pbot);
// Coeff[1][5] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1pmbot, j2mbot);
// Coeff[1][4] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2pbot));
// Coeff[1][3] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2mbot));
// Coeff[1][6] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2pbot));
// Coeff[1][1] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2mbot));
// }
// // Find the numbers of scales
// int ScaleCount;
// #if calcscaleunc
// ScaleCount = 20;
// #else
// ScaleCount = 1;
// #endif
// // For each scale...
// for (int j = 0; j < ScaleCount; j++) {
// Sum = 0.0;
// // If we want to compare back to the W's code only emit from one quark and only couple to left handed particles
// // virtuals arent here since they are calculated and included in weight() call.
// if (!Interference) {
// if (BottomLineEmit) for (int i = 0; i < 8; i++) Sum += abs2(Coeff[1][i]) * VProducts.at(1);
// else for (int i = 0; i < 8; i++) Sum += abs2(Coeff[0][i]) * VProducts.at(0);
// }
// // Else work out the full interference
// else {
// // For the full calculation...
// if (UseVirtuals) {
// for (int i = 0; i < 8; i++) {
// Sum += abs2(Coeff[0][i]) * VProducts.at(0) * Virtuals.at(j).at(0)
// + abs2(Coeff[1][i]) * VProducts.at(1) * Virtuals.at(j).at(1)
// + 2.0 * real(Coeff[0][i] * conj(Coeff[1][i])) * VProducts.at(2) * Virtuals.at(j).at(2);
// }
// }
// // For the tree level calculation...
// else {
// for (int i = 0; i < 8; i++) {
// Sum += abs2(Coeff[0][i]) * VProducts.at(0)
// + abs2(Coeff[1][i]) * VProducts.at(1)
// + 2.0 * real(Coeff[0][i] * conj(Coeff[1][i])) * VProducts.at(2);
// }
// }
// }
// // Add this to the vector to be returned with the other factors of C_A and the helicity sum/average factors.
// ScaledWeights.push_back(Sum / 18.0);
// }
// // Return all the scale values
// return ScaledWeights;
// }
// // Semi-gluonic with pa emitting
// std::vector <double> jMZqg (HLV pa, HLV pb, HLV p1, HLV p2, HLV pep, HLV pem, std::vector <double> VProducts, std::vector < std::vector <double> > Virtuals, int aptype, int bptype, bool UseVirtuals, bool BottomLineEmit) {
// COM Coeff[8];
// double Sum;
// std::vector <double> ScaledWeights;
// COM PZs = PZ((pep + pem).m2());
// COM PGs = PG((pep + pem).m2());
// // Emitting current initialisation - Emission from top line
// current j1pptop, j1pmtop;
// // Non-emitting current initialisation - Emission from top line
// current j2ptop, j2mtop;
// // Currents for top emission
// // Upper current calculations
// if (aptype > 0) {
// jZ (pa, p1, pem, pep, true, true, j1pptop);
// jZ (pa, p1, pem, pep, true, false, j1pmtop);
// }
// else {
// jZbar(pa, p1, pem, pep, true, true, j1pptop);
// jZbar(pa, p1, pem, pep, true, false, j1pmtop);
// }
// // Lower current calculations
// joi(p2, true, pb, true, j2ptop);
// joi(p2, false, pb, false, j2mtop);
// // Calculate all the possiblities
// double ZCharge_a_P = Zq(aptype, true);
// double ZCharge_a_M = Zq(aptype, false);
// // Emission from top-line quark (pa/p1 line)
// Coeff[0] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2ptop);
// Coeff[1] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2mtop);
// Coeff[2] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2ptop);
// Coeff[3] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2mtop);
// Coeff[4] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2ptop));
// Coeff[5] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2mtop));
// Coeff[6] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2ptop));
// Coeff[7] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2mtop));
// // Calculate gluon colour accelerated factor
// double CAMFactor, z;
// // If b is a forward moving gluon define z (C.F. multiple jets papers)
// if (pb.pz() > 0) z = p2.plus() / pb.plus();
// else z = p2.minus() / pb.minus();
// CAMFactor = (1.0 - 1.0 / 9.0) / 2.0 * (z + 1.0 / z) + 1.0 / 9.0;
// // Find the numbers of scales
// int ScaleCount;
// #if calcscaleunc
// ScaleCount = 20;
// #else
// ScaleCount = 1;
// #endif
// // For each scale...
// for (int j = 0; j < ScaleCount; j++) {
// Sum = 0.0;
// // If we dont want the interference
// if (!Interference) for (int i = 0; i < 8; i++) Sum += abs2(Coeff[i]) * VProducts.at(0);
// // Else work out the full interference
// else {
// if (UseVirtuals) {
// for (int i = 0; i < 8; i++) Sum += abs2(Coeff[i]) * VProducts.at(0) * Virtuals.at(j).at(0);
// }
// else {
// for (int i = 0; i < 8; i++) Sum += abs2(Coeff[i]) * VProducts.at(0);
// }
// }
// // Add this to the vector to be returned with the other factors of C_A, the colour accelerated factor and the helicity sum/average factors.: (4/3)*3/32
// ScaledWeights.push_back(CAMFactor * Sum / 8.0);
// }
// return ScaledWeights;
// }
// // Electroweak Charge Functions
// double Zq (int PID, bool Helcitiy) {
// double temp;
// // Positive Spin
// if (Helcitiy == true) {
// if (PID == 1 || PID == 3 || PID == 5) temp = (+ 1.0 * stw2 / 3.0) / ctw;
// if (PID == 2 || PID == 4) temp = (- 2.0 * stw2 / 3.0) / ctw;
// if (PID == -1 || PID == -3 || PID == -5) temp = (- 1.0 * stw2 / 3.0) / ctw;
// if (PID == -2 || PID == -4) temp = (+ 2.0 * stw2 / 3.0) / ctw;
// // If electron or positron
// if (PID == 7 || PID == -7) temp = Zep;
// }
// // Negative Spin
// else {
// if (PID == 1 || PID == 3 || PID == 5) temp = (-0.5 + 1.0 * stw2 / 3.0) / ctw;
// if (PID == 2 || PID == 4) temp = ( 0.5 - 2.0 * stw2 / 3.0) / ctw;
// if (PID == -1 || PID == -3 || PID == -5) temp = ( 0.5 - 1.0 * stw2 / 3.0) / ctw;
// if (PID == -2 || PID == -4) temp = (-0.5 + 2.0 * stw2 / 3.0) / ctw;
// // If electron or positron
// if (PID == 7 || PID == -7) temp = Zem;
// }
// return temp;
// }
// double Gq (int PID) {
// if (!VirtualPhoton) return 0.0;
// if (PID == -1) return 1.0 * ee / 3.0;
// if (PID == -2) return -2.0 * ee / 3.0;
// if (PID == -3) return 1.0 * ee / 3.0;
// if (PID == -4) return -2.0 * ee / 3.0;
// if (PID == -5) return 1.0 * ee / 3.0;
// if (PID == 1) return -1.0 * ee / 3.0;
// if (PID == 2) return 2.0 * ee / 3.0;
// if (PID == 3) return -1.0 * ee / 3.0;
// if (PID == 4) return 2.0 * ee / 3.0;
// if (PID == 5) return -1.0 * ee / 3.0;
// std::cout << "ERROR! No Electroweak Charge Found at line " << __LINE__ << "..." << std::endl;
// return 0.0;
// }
namespace {
//@{
/// @brief Higgs vertex contracted with one current
CCurrent jH (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pin,
bool helin, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
double mt, bool incBot, double mb)
{
CCurrent j2 = joi(pout,helout,pin,helin);
CCurrent jq2(q2.e(),q2.px(),q2.py(),q2.pz());
if(mt == infinity)
return ((q1.dot(q2))*j2 - j2.dot(q1)*jq2)/(3*M_PI*HEJ::vev);
else
{
if(incBot)
return (-16.*M_PI*mb*mb/HEJ::vev*j2.dot(q1)*jq2*A1(-q1,q2,mb)-16.*M_PI*mb*mb/HEJ::vev*j2*A2(-q1,q2,mb))
+ (-16.*M_PI*mt*mt/HEJ::vev*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/HEJ::vev*j2*A2(-q1,q2,mt));
else
return (-16.*M_PI*mt*mt/HEJ::vev*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/HEJ::vev*j2*A2(-q1,q2,mt));
}
}
CCurrent jioH (CLHEP::HepLorentzVector pin, bool helin, CLHEP::HepLorentzVector pout,
bool helout, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
double mt, bool incBot, double mb)
{
CCurrent j2 = jio(pin,helin,pout,helout);
CCurrent jq2(q2.e(),q2.px(),q2.py(),q2.pz());
if(mt == infinity)
return ((q1.dot(q2))*j2 - j2.dot(q1)*jq2)/(3*M_PI*HEJ::vev);
else
{
if(incBot)
return (-16.*M_PI*mb*mb/HEJ::vev*j2.dot(q1)*jq2*A1(-q1,q2,mb)-16.*M_PI*mb*mb/HEJ::vev*j2*A2(-q1,q2,mb))
+ (-16.*M_PI*mt*mt/HEJ::vev*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/HEJ::vev*j2*A2(-q1,q2,mt));
else
return (-16.*M_PI*mt*mt/HEJ::vev*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/HEJ::vev*j2*A2(-q1,q2,mt));
}
}
CCurrent jHtop (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pin,
bool helin, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
double mt, bool incBot, double mb)
{
CCurrent j1 = joi(pout,helout,pin,helin);
CCurrent jq1(q1.e(),q1.px(),q1.py(),q1.pz());
if(mt == infinity)
return ((q1.dot(q2))*j1 - j1.dot(q2)*jq1)/(3*M_PI*HEJ::vev);
else
{
if(incBot)
return (-16.*M_PI*mb*mb/HEJ::vev*j1.dot(q2)*jq1*A1(-q1,q2,mb)-16.*M_PI*mb*mb/HEJ::vev*j1*A2(-q1,q2,mb))
+ (-16.*M_PI*mt*mt/HEJ::vev*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/HEJ::vev*j1*A2(-q1,q2,mt));
else
return (-16.*M_PI*mt*mt/HEJ::vev*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/HEJ::vev*j1*A2(-q1,q2,mt));
}
}
CCurrent jioHtop (CLHEP::HepLorentzVector pin, bool helin, CLHEP::HepLorentzVector pout,
bool helout, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
double mt, bool incBot, double mb)
{
CCurrent j1 = jio(pin,helin,pout,helout);
CCurrent jq1(q1.e(),q1.px(),q1.py(),q1.pz());
if(mt == infinity)
return ((q1.dot(q2))*j1 - j1.dot(q2)*jq1)/(3*M_PI*HEJ::vev);
else
{
if(incBot)
return (-16.*M_PI*mb*mb/HEJ::vev*j1.dot(q2)*jq1*A1(-q1,q2,mb)-16.*M_PI*mb*mb/HEJ::vev*j1*A2(-q1,q2,mb))
+ (-16.*M_PI*mt*mt/HEJ::vev*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/HEJ::vev*j1*A2(-q1,q2,mt));
else
return (-16.*M_PI*mt*mt/HEJ::vev*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/HEJ::vev*j1*A2(-q1,q2,mt));
}
}
//@}
} // namespace anonymous
double jM2unogqHQ (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// This construction is taking rapidity order: pg > p1out >> p2out
// std::cerr<<"This Uno Current: "<<p1out<<" "<<p1in<<" "<<p2out<<" "<<p2in<<" "<<pg<<std::endl;
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out); // Bottom End
CLHEP::HepLorentzVector qg=p1in-p1out-pg; // Extra bit post-gluon
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
mj1p=joi(p1out,true,p1in,true);
mj1m=joi(p1out,false,p1in,false);
mjH2p=jH(p2out,true,p2in,true,qH1,qH2, mt, incBot, mb);
mjH2m=jH(p2out,false,p2in,false,qH1,qH2, mt, incBot, mb);
// Dot products of these which occur again and again
COM MHmp=mj1m.dot(mjH2p); // And now for the Higgs ones
COM MHmm=mj1m.dot(mjH2m);
COM MHpp=mj1p.dot(mjH2p);
COM MHpm=mj1p.dot(mjH2m);
// std::cout<< p1out.rapidity() << " " << p2out.rapidity()<< " " << qH1 << " " << qH2 << "\n" <<MHmm << " " << MHmp << " " << MHpm << " " << MHpp << std::endl;
// Currents with pg
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(p1out,true,pg,true);
j2gm=joo(p1out,false,pg,false);
jgap=joi(pg,true,p1in,true);
jgam=joi(pg,false,p1in,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH1.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=HEJ::C_F*HEJ::C_F/HEJ::C_A/HEJ::C_A; // Factor of (Cf/Ca) for each quark to match MH2qQ.
//Higgs coupling is included in Hjets.C
return ampsq;
}
double jM2unogqbarHQ (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// This construction is taking rapidity order: pg > p1out >> p2out
// std::cerr<<"This Uno Current: "<<p1out<<" "<<p1in<<" "<<p2out<<" "<<p2in<<" "<<pg<<std::endl;
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out); // Bottom End
CLHEP::HepLorentzVector qg=p1in-p1out-pg; // Extra bit post-gluon
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
mj1p=jio(p1in,true,p1out,true);
mj1m=jio(p1in,false,p1out,false);
mjH2p=jH(p2out,true,p2in,true,qH1,qH2, mt, incBot, mb);
mjH2m=jH(p2out,false,p2in,false,qH1,qH2, mt, incBot, mb);
// Dot products of these which occur again and again
COM MHmp=mj1m.dot(mjH2p); // And now for the Higgs ones
COM MHmm=mj1m.dot(mjH2m);
COM MHpp=mj1p.dot(mjH2p);
COM MHpm=mj1p.dot(mjH2m);
// Currents with pg
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(pg,true,p1out,true);
j2gm=joo(pg,false,p1out,false);
jgap=jio(p1in,true,pg,true);
jgam=jio(p1in,false,pg,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH1.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ.
//Higgs coupling is included in Hjets.C
return ampsq;
}
double jM2unogqHQbar (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// This construction is taking rapidity order: pg > p1out >> p2out
// std::cerr<<"This Uno Current: "<<p1out<<" "<<p1in<<" "<<p2out<<" "<<p2in<<" "<<pg<<std::endl;
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out); // Bottom End
CLHEP::HepLorentzVector qg=p1in-p1out-pg; // Extra bit post-gluon
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
mj1p=joi(p1out,true,p1in,true);
mj1m=joi(p1out,false,p1in,false);
mjH2p=jioH(p2in,true,p2out,true,qH1,qH2, mt, incBot, mb);
mjH2m=jioH(p2in,false,p2out,false,qH1,qH2, mt, incBot, mb);
// Dot products of these which occur again and again
COM MHmp=mj1m.dot(mjH2p); // And now for the Higgs ones
COM MHmm=mj1m.dot(mjH2m);
COM MHpp=mj1p.dot(mjH2p);
COM MHpm=mj1p.dot(mjH2m);
// Currents with pg
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(p1out,true,pg,true);
j2gm=joo(p1out,false,pg,false);
jgap=joi(pg,true,p1in,true);
jgam=joi(pg,false,p1in,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH1.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ.
//Higgs coupling is included in Hjets.C
return ampsq;
}
double jM2unogqbarHQbar (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// This construction is taking rapidity order: pg > p1out >> p2out
// std::cerr<<"This Uno Current: "<<p1out<<" "<<p1in<<" "<<p2out<<" "<<p2in<<" "<<pg<<std::endl;
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out); // Bottom End
CLHEP::HepLorentzVector qg=p1in-p1out-pg; // Extra bit post-gluon
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
mj1p=jio(p1in,true,p1out,true);
mj1m=jio(p1in,false,p1out,false);
mjH2p=jioH(p2in,true,p2out,true,qH1,qH2, mt, incBot, mb);
mjH2m=jioH(p2in,false,p2out,false,qH1,qH2, mt, incBot, mb);
// Dot products of these which occur again and again
COM MHmp=mj1m.dot(mjH2p); // And now for the Higgs ones
COM MHmm=mj1m.dot(mjH2m);
COM MHpp=mj1p.dot(mjH2p);
COM MHpm=mj1p.dot(mjH2m);
// Currents with pg
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(pg,true,p1out,true);
j2gm=joo(pg,false,p1out,false);
jgap=jio(p1in,true,pg,true);
jgam=jio(p1in,false,pg,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH1.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
//Higgs coupling is included in Hjets.C
ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ.
return ampsq;
}
double jM2unogqHg (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// This construction is taking rapidity order: pg > p1out >> p2out
// std::cerr<<"This Uno Current: "<<p1out<<" "<<p1in<<" "<<p2out<<" "<<p2in<<" "<<pg<<std::endl;
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out); // Bottom End
CLHEP::HepLorentzVector qg=p1in-p1out-pg; // Extra bit post-gluon
CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
mj1p=joi(p1out,true,p1in,true);
mj1m=joi(p1out,false,p1in,false);
mjH2p=jH(p2out,true,p2in,true,qH1,qH2, mt, incBot, mb);
mjH2m=jH(p2out,false,p2in,false,qH1,qH2, mt, incBot, mb);
// Dot products of these which occur again and again
COM MHmp=mj1m.dot(mjH2p); // And now for the Higgs ones
COM MHmm=mj1m.dot(mjH2m);
COM MHpp=mj1p.dot(mjH2p);
COM MHpm=mj1p.dot(mjH2m);
// Currents with pg
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(p1out,true,pg,true);
j2gm=joo(p1out,false,pg,false);
jgap=joi(pg,true,p1in,true);
jgam=joi(pg,false,p1in,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH1.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4./9.*4./9.; // Factor of (Cf/Ca) for each quark to match MH2qQ.
// here we need 2 to match with the normalization
// gq is 9./4. times the qQ
//Higgs coupling is included in Hjets.C
const double K = K_g(p2out, p2in);
return ampsq*K/C_A*9./4.; //ca/cf = 9/4
}
double jM2unogqbarHg (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// This construction is taking rapidity order: pg > p1out >> p2out
// std::cerr<<"This Uno Current: "<<p1out<<" "<<p1in<<" "<<p2out<<" "<<p2in<<" "<<pg<<std::endl;
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out); // Bottom End
CLHEP::HepLorentzVector qg=p1in-p1out-pg; // Extra bit post-gluon
CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
mj1p=jio(p1in,true,p1out,true);
mj1m=jio(p1in,false,p1out,false);
mjH2p=jH(p2out,true,p2in,true,qH1,qH2, mt, incBot, mb);
mjH2m=jH(p2out,false,p2in,false,qH1,qH2, mt, incBot, mb);
// Dot products of these which occur again and again
COM MHmp=mj1m.dot(mjH2p); // And now for the Higgs ones
COM MHmm=mj1m.dot(mjH2m);
COM MHpp=mj1p.dot(mjH2p);
COM MHpm=mj1p.dot(mjH2m);
// Currents with pg
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(pg,true,p1out,true);
j2gm=joo(pg,false,p1out,false);
jgap=jio(p1in,true,pg,true);
jgam=jio(p1in,false,pg,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH1.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4./9.*4./9.; // Factor of (Cf/Ca) for each quark to match MH2qQ.
// here we need 2 to match with the normalization
// gq is 9./4. times the qQ
//Higgs coupling is included in Hjets.C
const double K = K_g(p2out, p2in);
return ampsq*K/C_F;
}
double jM2unobqHQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// std::cout << "####################\n";
// std::cout << "# p1in : "<<p1in<< " "<<p1in.plus()<<" "<<p1in.minus()<<std::endl;
// std::cout << "# p2in : "<<p2in<< " "<<p2in.plus()<<" "<<p2in.minus()<<std::endl;
// std::cout << "# p1out : "<<p1out<< " "<<p1out.rapidity()<<std::endl;
// std::cout << "# (qH1-qH2) : "<<(qH1-qH2)<< " "<<(qH1-qH2).rapidity()<<std::endl;
// std::cout << "# pg : "<<pg<< " "<<pg.rapidity()<<std::endl;
// std::cout << "# p2out : "<<p2out<< " "<<p2out.rapidity()<<std::endl;
// std::cout << "####################\n";
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon
CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mjH1m,mjH1p,mj2m,mj2p;
mjH1p=jHtop(p1out,true,p1in,true,qH1,qH2, mt, incBot, mb);
mjH1m=jHtop(p1out,false,p1in,false,qH1,qH2, mt, incBot, mb);
mj2p=joi(p2out,true,p2in,true);
mj2m=joi(p2out,false,p2in,false);
// Dot products of these which occur again and again
COM MHmp=mjH1m.dot(mj2p); // And now for the Higgs ones
COM MHmm=mjH1m.dot(mj2m);
COM MHpp=mjH1p.dot(mj2p);
COM MHpm=mjH1p.dot(mj2m);
// Currents with pg
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(p2out,true,pg,true);
j2gm=joo(p2out,false,pg,false);
jgbp=joi(pg,true,p2in,true);
jgbm=joi(pg,false,p2in,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
CCurrent pplus((p1in+p1out)/2.);
CCurrent pminus((p2in+p2out)/2.);
// COM test=pminus.dot(p1in);
Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m
+ (p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m
+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p
+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p
+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
// 1/3. = 1/C_A ?
double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
const double th=qH2.m2()*q2.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=HEJ::C_F*HEJ::C_F/(HEJ::C_A*HEJ::C_A); // Factor of (Cf/Ca) for each quark to match MH2qQ.
return ampsq;
}
double jM2unobqbarHQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon
CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mjH1m,mjH1p,mj2m,mj2p;
mjH1p=jioHtop(p1in,true,p1out,true,qH1,qH2, mt, incBot, mb);
mjH1m=jioHtop(p1in,false,p1out,false,qH1,qH2, mt, incBot, mb);
mj2p=joi(p2out,true,p2in,true);
mj2m=joi(p2out,false,p2in,false);
// Dot products of these which occur again and again
COM MHmp=mjH1m.dot(mj2p); // And now for the Higgs ones
COM MHmm=mjH1m.dot(mj2m);
COM MHpp=mjH1p.dot(mj2p);
COM MHpm=mjH1p.dot(mj2m);
// Currents with pg
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(p2out,true,pg,true);
j2gm=joo(p2out,false,pg,false);
jgbp=joi(pg,true,p2in,true);
jgbm=joi(pg,false,p2in,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
CCurrent pplus((p1in+p1out)/2.);
CCurrent pminus((p2in+p2out)/2.);
// COM test=pminus.dot(p1in);
Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH2.m2()*q2.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ.
//Higgs coupling is included in Hjets.C
return ampsq;
}
double jM2unobqHQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon
CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mjH1m,mjH1p,mj2m,mj2p;
mjH1p=jHtop(p1out,true,p1in,true,qH1,qH2,mt, incBot, mb);
mjH1m=jHtop(p1out,false,p1in,false,qH1,qH2,mt, incBot, mb);
mj2p=jio(p2in,true,p2out,true);
mj2m=jio(p2in,false,p2out,false);
// Dot products of these which occur again and again
COM MHmp=mjH1m.dot(mj2p); // And now for the Higgs ones
COM MHmm=mjH1m.dot(mj2m);
COM MHpp=mjH1p.dot(mj2p);
COM MHpm=mjH1p.dot(mj2m);
// Currents with pg
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(pg,true,p2out,true);
j2gm=joo(pg,false,p2out,false);
jgbp=jio(p2in,true,pg,true);
jgbm=jio(p2in,false,pg,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
CCurrent pplus((p1in+p1out)/2.);
CCurrent pminus((p2in+p2out)/2.);
// COM test=pminus.dot(p1in);
Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH2.m2()*q2.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ.
//Higgs coupling is included in Hjets.C
return ampsq;
}
double jM2unobqbarHQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon
CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mjH1m,mjH1p,mj2m,mj2p;
mjH1p=jioHtop(p1in,true,p1out,true,qH1,qH2,mt, incBot, mb);
mjH1m=jioHtop(p1in,false,p1out,false,qH1,qH2,mt, incBot, mb);
mj2p=jio(p2in,true,p2out,true);
mj2m=jio(p2in,false,p2out,false);
// Dot products of these which occur again and again
COM MHmp=mjH1m.dot(mj2p); // And now for the Higgs ones
COM MHmm=mjH1m.dot(mj2m);
COM MHpp=mjH1p.dot(mj2p);
COM MHpm=mjH1p.dot(mj2m);
// Currents with pg
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(pg,true,p2out,true);
j2gm=joo(pg,false,p2out,false);
jgbp=jio(p2in,true,pg,true);
jgbm=jio(p2in,false,pg,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
CCurrent pplus((p1in+p1out)/2.);
CCurrent pminus((p2in+p2out)/2.);
// COM test=pminus.dot(p1in);
Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH2.m2()*q2.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ.
//Higgs coupling is included in Hjets.C
return ampsq;
}
double jM2unobgHQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// std::cout << "####################\n";
// std::cout << "# p1in : "<<p1in<< " "<<p1in.plus()<<" "<<p1in.minus()<<std::endl;
// std::cout << "# p2in : "<<p2in<< " "<<p2in.plus()<<" "<<p2in.minus()<<std::endl;
// std::cout << "# p1out : "<<p1out<< " "<<p1out.rapidity()<<std::endl;
// std::cout << "# (qH1-qH2) : "<<(qH1-qH2)<< " "<<(qH1-qH2).rapidity()<<std::endl;
// std::cout << "# pg : "<<pg<< " "<<pg.rapidity()<<std::endl;
// std::cout << "# p2out : "<<p2out<< " "<<p2out.rapidity()<<std::endl;
// std::cout << "####################\n";
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon
CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mjH1m,mjH1p,mj2m,mj2p;
mjH1p=jHtop(p1out,true,p1in,true,qH1,qH2,mt, incBot, mb);
mjH1m=jHtop(p1out,false,p1in,false,qH1,qH2,mt, incBot, mb);
mj2p=joi(p2out,true,p2in,true);
mj2m=joi(p2out,false,p2in,false);
// Dot products of these which occur again and again
COM MHmp=mjH1m.dot(mj2p); // And now for the Higgs ones
COM MHmm=mjH1m.dot(mj2m);
COM MHpp=mjH1p.dot(mj2p);
COM MHpm=mjH1p.dot(mj2m);
// Currents with pg
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(p2out,true,pg,true);
j2gm=joo(p2out,false,pg,false);
jgbp=joi(pg,true,p2in,true);
jgbm=joi(pg,false,p2in,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
CCurrent pplus((p1in+p1out)/2.);
CCurrent pminus((p2in+p2out)/2.);
// COM test=pminus.dot(p1in);
Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH2.m2()*q2.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4./9.*4./9.; // Factor of (Cf/Ca) for each quark to match MH2qQ.
// need twice to match the normalization
//Higgs coupling is included in Hjets.C
const double K = K_g(p1out, p1in);
return ampsq*K/C_F;
}
double jM2unobgHQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon
CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mjH1m,mjH1p,mj2m,mj2p;
mjH1p=jHtop(p1out,true,p1in,true,qH1,qH2,mt, incBot, mb);
mjH1m=jHtop(p1out,false,p1in,false,qH1,qH2,mt, incBot, mb);
mj2p=jio(p2in,true,p2out,true);
mj2m=jio(p2in,false,p2out,false);
// Dot products of these which occur again and again
COM MHmp=mjH1m.dot(mj2p); // And now for the Higgs ones
COM MHmm=mjH1m.dot(mj2m);
COM MHpp=mjH1p.dot(mj2p);
COM MHpm=mjH1p.dot(mj2m);
// Currents with pg
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(pg,true,p2out,true);
j2gm=joo(pg,false,p2out,false);
jgbp=jio(p2in,true,pg,true);
jgbm=jio(p2in,false,pg,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
CCurrent pplus((p1in+p1out)/2.);
CCurrent pminus((p2in+p2out)/2.);
// COM test=pminus.dot(p1in);
Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH2.m2()*q2.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4./9.*4./9.; // Factor of (Cf/Ca) for each quark to match MH2qQ.
//Higgs coupling is included in Hjets.C
const double K = K_g(p1out, p1in);
return ampsq*K/C_F; //ca/cf = 9/4
}
// Begin finite mass stuff
#ifdef HEJ_BUILD_WITH_QCDLOOP
namespace {
// All the stuff needed for the box functions in qg->qgH now...
//COM E1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM E1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2=-(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor*(-s12*D0DD(k2, k1, q2, mq)*(1 - 8.*mq*mq/s12 + S2/(2.*s12) +
S2*(s12 - 8.*mq*mq)*(s34 + S1)/(2.*s12*Delta) +
2.*(s34 + S1)*(s34 + S1)/Delta +
S2*pow((s34 + S1),3)/Delta/Delta) - ((s12 + S2)*C0DD(k2,
k1 + q2, mq) -
s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S1*C0DD(k1, q2,
mq))*(S2*(s12 - 4.*mq*mq)/(2.*s12*Delta) +
2.*(s34 + S1)/Delta +
S2*pow((s34 + S1),2)/Delta/Delta) + (C0DD(k1, q2, mq) -
C0DD(k1 + k2, q2, mq))*(1. - 4.*mq*mq/s12) -
C0DD(k1 + k2, q2, mq)*2.*s34/
S1 - (B0DD(k1 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*2.*s34*(s34 +
S1)/(S1*Delta) + (B0DD(q2, mq) -
B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2,
mq))*(2.*s34*(s34 +
S1)*(S1 - S2)/(Delta*Sigma) +
2.*s34*(s34 + S1)/(S1*Delta)) + (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2,
mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*2.*(s34 +
S1)*(2.*s12*s34 -
S2*(S1 + S2))/(Delta*Sigma));
}
//COM F1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM F1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor*(-S2*D0DD(k1, k2, q2,
mq)*(0.5 - (s12 - 8.*mq*mq)*(s34 + S2)/(2.*Delta) -
s12*pow((s34 + S2),3)/Delta/Delta) + ((s12 + S1)*C0DD(k1,
k2 + q2, mq) -
s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S2*C0DD(k2, q2,
mq))*(S2*(s12 - 4.*mq*mq)/(2.*s12*Delta) +
S2*pow((s34 + S2),2)/Delta/Delta) - (C0DD(k1 + k2, q2, mq) - C0DD(k1, k2 + q2, mq))*(1. - 4.*mq*mq/s12) -
C0DD(k1, k2 + q2, mq) + (B0DD(k2 + q2, mq) -
B0DD(k1 + k2 + q2,
mq))*2.*pow((s34 + S2),2)/((s12 + S1)*Delta) - (B0DD(
q2, mq) - B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2, mq))*2.*s34*(s34 +
S2)*(S2 - S1)/(Delta*Sigma) + (B0DD(
k1 + k2, mq) -
B0DD(k1 + k2 + q2,
mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*2.*(s34 +
S2)*(2.*s12*s34 -
S2*(S1 + S2))/(Delta*Sigma));
}
//COM G1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM G1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
return looprwfactor*(S2*D0DD(k1, q2, k2,
mq)*(Delta/s12/s12 - 4.*mq*mq/s12) -
S2*((s12 + S1)*C0DD(k1, k2 + q2, mq) -
S1*C0DD(k1, q2, mq))*(1./
s12/s12 - (s12 - 4.*mq*mq)/(2.*s12*Delta)) -
S2*((s12 + S2)*C0DD(k1 + q2, k2, mq) -
S2*C0DD(k2, q2, mq))*(1./
s12/s12 + (s12 - 4.*mq*mq)/(2.*s12*Delta)) -
C0DD(k1, q2, mq) - (C0DD(k1, k2 + q2, mq) -
C0DD(k1, q2, mq))*4.*mq*mq/
s12 + (B0DD(k1 + q2, mq) - B0DD(k1 + k2 + q2, mq))*2./
s12 + (B0DD(k1 + q2, mq) -
B0DD(q2, mq))*2.*s34/(s12*S1) + (B0DD(k2 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*2.*(s34 + S2)/(s12*(s12 + S1)));
}
//COM E4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM E4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor* (-s12*D0DD(k2, k1, q2,
mq)*(0.5 - (S1 - 8.*mq*mq)*(s34 + S1)/(2.*Delta) -
s12*pow((s34 + S1),3)/Delta/Delta) + ((s12 + S2)*C0DD(k2,
k1 + q2, mq) -
s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S1*C0DD(k1, q2, mq))*((S1 - 4.*mq*mq)/(2.*Delta) +
s12*pow((s34 + S1),2)/Delta/Delta) -
C0DD(k1 + k2, q2, mq) + (B0DD(k1 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*(2.*s34/Delta +
2.*s12*(s34 + S1)/((s12 + S2)*Delta)) - (B0DD(
q2, mq) - B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2,
mq))*((2.*s34*(2.*s12*s34 - S2*(S1 + S2) +
s12*(S1 -
S2)))/(Delta*Sigma)) + (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*((2.*s12*(2.*s12*s34 - S1*(S1 + S2) +
s34*(S2 - S1)))/(Delta*Sigma)));
}
//COM F4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM F4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor* (-s12*D0DD(k1, k2, q2,
mq)*(0.5 + (S1 - 8.*mq*mq)*(s34 + S2)/(2.*Delta) +
s12*pow((s34 + S2),3)/Delta/Delta) - ((s12 + S1)*C0DD(k1,
k2 + q2, mq) -
s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S2*C0DD(k2, q2, mq))*((S1 - 4.*mq*mq)/(2.*Delta) +
s12*pow((s34 + S2),2)/Delta/Delta) -
C0DD(k1 + k2, q2, mq) - (B0DD(k2 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*2.*(s34 +
S2)/Delta + (B0DD(q2, mq) -
B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2, mq))*2.*s34*(2.*s12*s34 -
S1*(S1 + S2) +
s12*(S2 - S1))/(Delta*Sigma) - (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*(2.*s12*(2.*s12*s34 - S2*(S1 + S2) +
s34*(S1 - S2))/(Delta*Sigma)));
}
//COM G4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM G4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
return looprwfactor* (-D0DD(k1, q2, k2,
mq)*(Delta/s12 + (s12 + S1)/2. -
4.*mq*mq) + ((s12 + S1)*C0DD(k1, k2 + q2, mq) -
S1*C0DD(k1, q2, mq))*(1./
s12 - (S1 - 4.*mq*mq)/(2.*Delta)) + ((s12 + S2)*C0DD(
k1 + q2, k2, mq) -
S2*C0DD(k2, q2, mq))*(1./
s12 + (S1 - 4.*mq*mq)/(2.*Delta)) + (B0DD(
k1 + k2 + q2, mq) -
B0DD(k1 + q2, mq))*2./(s12 + S2));
}
//COM E10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM E10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor*(-s12*D0DD(k2, k1, q2, mq)*((s34 + S1)/Delta +
12.*mq*mq*S1*(s34 + S1)/Delta/Delta -
4.*s12*S1*pow((s34 + S1),3)/Delta/Delta/Delta) - ((s12 + S2)*C0DD(k2, k1 + q2, mq) -
s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S1*C0DD(k1, q2, mq))*(1./Delta +
4.*mq*mq*S1/Delta/Delta -
4.*s12*S1*pow((s34 + S1),2)/Delta/Delta/Delta) +
C0DD(k1 + k2, q2, mq)*(4.*s12*s34*(S1 - S2)/(Delta*Sigma) -
4.*(s12 -
2.*mq*mq)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma)) + (B0DD(k1 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*(4.*(s34 + S1)/((s12 + S2)*Delta) +
8.*S1*(s34 + S1)/Delta/Delta) + (B0DD(q2, mq) -
B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2, mq))*(12.*s34*(2.*s12 + S1 +
S2)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma*Sigma) -
4.*s34*(4.*s12 + 3.*S1 +
S2)/(Delta*Sigma) +
8.*s12*s34*(s34*(s12 + S2) -
S1*(s34 +
S1))/(Delta*Delta*Sigma)) + (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2,
mq))*(12.*s12*(2.*s34 + S1 +
S2)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma*Sigma) +
8.*s12*S1*(s34*(s12 + S2) -
S1*(s34 +
S1))/(Delta*Delta*Sigma))) + (COM(0.,1.)/(4.*M_PI*M_PI))*((2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma));
}
//COM F10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM F10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor* (s12*D0DD(k1, k2, q2,
mq)*((s34 + S2)/Delta - 4.*mq*mq/Delta +
12.*mq*mq*s34*(s12 + S1)/Delta/Delta -
4.*s12*pow((s34 + S2),2)/Delta/Delta -
4.*s12*S1*pow((s34 + S2),3)/Delta/Delta/Delta) + ((s12 + S1)*C0DD(k1, k2 + q2, mq) -
s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S2*C0DD(k2, q2, mq))*(1./Delta +
4.*mq*mq*S1/Delta/Delta -
4.*s12*(s34 + S2)/Delta/Delta -
4.*s12*S1*pow((s34 + S2),2)/Delta/Delta/Delta) -
C0DD(k1 + k2, q2, mq)*(4.*s12*s34/(S2*Delta) +
4.*s12*s34*(S2 - S1)/(Delta*Sigma) +
4.*(s12 -
2.*mq*mq)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma)) - (B0DD(
k2 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*(4.*s34/(S2*Delta) +
8.*s34*(s12 + S1)/Delta/Delta) - (B0DD(q2, mq) -
B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2,
mq))*(-12*s34*(2*s12 + S1 +
S2)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma*Sigma) -
4.*s12*s34*s34/(S2*Delta*Delta) +
4.*s34*S1/(Delta*Sigma) -
4.*s34*(s12*s34*(2.*s12 + S2) -
S1*S1*(2.*s12 +
S1))/(Delta*Delta*Sigma)) - (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*(-12.*s12*(2.*s34 + S1 +
S2)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma*Sigma) +
8.*s12*(2.*s34 + S1)/(Delta*Sigma) -
8.*s12*s34*(2.*s12*s34 - S1*(S1 + S2) +
s12*(S2 -
S1))/(Delta*Delta*Sigma))) + (COM(0.,1.)/(4.*M_PI*M_PI))*((2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma));
}
//COM G10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM G10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
return looprwfactor* (-D0DD(k1, q2, k2, mq)*(1. +
4.*S1*mq*mq/Delta) + ((s12 + S1)*C0DD(k1,
k2 + q2, mq) -
S1*C0DD(k1, q2, mq))*(1./Delta +
4.*S1*mq*mq/Delta/Delta) - ((s12 + S2)*C0DD(k1 + q2,
k2, mq) - S2*C0DD(k2, q2, mq))*(1./Delta +
4.*S1*mq*mq/Delta/Delta) + (B0DD(k1 + k2 + q2, mq) -
B0DD(k1 + q2, mq))*4.*(s34 +
S1)/(Delta*(s12 + S2)) + (B0DD(q2, mq) -
B0DD(k2 + q2, mq))*4.*s34/(Delta*S2));
}
//COM H1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM H1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//return E1(k1,k2,k3,k4,mq)+F1(k1,k2,k3,k4,mq)+G1(k1,k2,k3,k4,mq);
return E1(k1,k2,kh,mq)+F1(k1,k2,kh,mq)+G1(k1,k2,kh,mq);
}
//COM H4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM H4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//return E4(k1,k2,k3,k4,mq)+F4(k1,k2,k3,k4,mq)+G4(k1,k2,k3,k4,mq);
return E4(k1,k2,kh,mq)+F4(k1,k2,kh,mq)+G4(k1,k2,kh,mq);
}
//COM H10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM H10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//return E10(k1,k2,k3,k4,mq)+F10(k1,k2,k3,k4,mq)+G10(k1,k2,k3,k4,mq);
return E10(k1,k2,kh,mq)+F10(k1,k2,kh,mq)+G10(k1,k2,kh,mq);
}
//COM H2(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM H2(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//return -1.*H1(k2,k1,k3,k4,mq);
return -1.*H1(k2,k1,kh,mq);
}
//COM H5(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM H5(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//return -1.*H4(k2,k1,k3,k4,mq);
return -1.*H4(k2,k1,kh,mq);
}
//COM H12(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM H12(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//return -1.*H10(k2,k1,k3,k4,mq);
return -1.*H10(k2,k1,kh,mq);
}
// FL and FT functions
COM FL(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mq)
{
CLHEP::HepLorentzVector Q = q1 + q2;
double detQ2 = q1.m2()*q2.m2() - q1.dot(q2)*q1.dot(q2);
return -1./(2.*detQ2)*((2.-
3.*q1.m2()*q2.dot(Q)/detQ2)*(B0DD(q1, mq) -
B0DD(Q, mq)) + (2. -
3.*q2.m2()*q1.dot(Q)/detQ2)*(B0DD(q2, mq) -
B0DD(Q, mq)) - (4.*mq*mq + q1.m2() + q2.m2() +
Q.m2() - 3.*q1.m2()*q2.m2()*Q.m2()/detQ2)*C0DD(
q1, q2, mq) - 2.);
}
COM FT(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mq)
{
CLHEP::HepLorentzVector Q = q1 + q2;
double detQ2 = q1.m2()*q2.m2() - q1.dot(q2)*q1.dot(q2);
return -1./(2.*detQ2)*(Q.m2()*(B0DD(q1, mq) + B0DD(q2, mq) - 2.*B0DD(Q, mq) -
2.*q1.dot(q2)*C0DD(q1, q2, mq)) + (q1.m2() -
q2.m2()) *(B0DD(q1, mq) - B0DD(q2, mq))) -
q1.dot(q2)*FL(q1, q2, mq);
}
CLHEP::HepLorentzVector ParityFlip(CLHEP::HepLorentzVector p)
{
CLHEP::HepLorentzVector flippedVector;
flippedVector.setE(p.e());
flippedVector.setX(-p.x());
flippedVector.setY(-p.y());
flippedVector.setZ(-p.z());
return flippedVector;
}
/// @brief HC amp for qg->qgH with finite top (i.e. j^{++}_H)
void g_gH_HC(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector p1,
CLHEP::HepLorentzVector pH, double mq, current &retAns)
{
current cura1,pacur,p1cur,pHcur,conjeps1,conjepsH1,epsa,epsHa,epsHapart1,
epsHapart2,conjepsH1part1,conjepsH1part2;
COM ang1a,sqa1;
const double F = 4.*mq*mq/HEJ::vev;
// Easier to have the whole thing as current object so I can use cdot functionality.
// Means I need to write pa,p1 as current objects
to_current(pa, pacur);
to_current(p1,p1cur);
to_current(pH,pHcur);
bool gluonforward = true;
if(pa.z() < 0)
gluonforward = false;
//HEJ gauge
jio(pa,false,p1,false,cura1);
if(gluonforward){
// sqrt(2pa_-/p1_-)*p1_perp/abs(p1_perp)
ang1a = sqrt(pa.plus()*p1.minus())*(p1.x()+COM(0.,1.)*p1.y())/p1.perp();
// sqrt(2pa_-/p1_-)*p1_perp*/abs(p1_perp)
sqa1 = sqrt(pa.plus()*p1.minus())*(p1.x()-COM(0.,1.)*p1.y())/p1.perp();
} else {
ang1a = sqrt(pa.minus()*p1.plus());
sqa1 = sqrt(pa.minus()*p1.plus());
}
const double prop = (pa-p1-pH).m2();
cmult(-1./sqrt(2)/ang1a,cura1,conjeps1);
cmult(1./sqrt(2)/sqa1,cura1,epsa);
const COM Fta = FT(-pa,pa-pH,mq)/(pa-pH).m2();
const COM Ft1 = FT(-p1-pH,p1,mq)/(p1+pH).m2();
const COM h4 = H4(p1,-pa,pH,mq);
const COM h5 = H5(p1,-pa,pH,mq);
const COM h10 = H10(p1,-pa,pH,mq);
const COM h12 = H12(p1,-pa,pH,mq);
cmult(Fta*pa.dot(pH), epsa, epsHapart1);
cmult(-1.*Fta*cdot(pHcur,epsa), pacur, epsHapart2);
cmult(Ft1*cdot(pHcur,conjeps1), p1cur, conjepsH1part1);
cmult(-Ft1*p1.dot(pH), conjeps1, conjepsH1part2);
cadd(epsHapart1, epsHapart2, epsHa);
cadd(conjepsH1part1, conjepsH1part2, conjepsH1);
const COM aH1 = cdot(pHcur, cura1);
current T1,T2,T3,T4,T5,T6,T7,T8,T9,T10;
if(gluonforward){
cmult(sqrt(2.)*sqrt(p1.plus()/pa.plus())*prop/sqa1, conjepsH1, T1);
cmult(-sqrt(2.)*sqrt(pa.plus()/p1.plus())*prop/ang1a, epsHa, T2);
}
else{
cmult(-sqrt(2.)*sqrt(p1.minus()/pa.minus())
*((p1.x()-COM(0.,1.)*p1.y())/p1.perp())*prop/sqa1, conjepsH1, T1);
cmult(sqrt(2.)*sqrt(pa.minus()/p1.minus())
*((p1.x()-COM(0.,1.)*p1.y())/p1.perp())*prop/ang1a, epsHa, T2);
}
cmult(sqrt(2.)/ang1a*aH1, epsHa, T3);
cmult(sqrt(2.)/sqa1*aH1, conjepsH1, T4);
cmult(-sqrt(2.)*Fta*pa.dot(p1)*aH1/sqa1, conjeps1, T5);
cmult(-sqrt(2.)*Ft1*pa.dot(p1)*aH1/ang1a, epsa, T6);
cmult(-aH1/sqrt(2.)/sqa1*h4*8.*COM(0.,1.)*M_PI*M_PI, conjeps1, T7);
cmult(aH1/sqrt(2.)/ang1a*h5*8.*COM(0.,1.)*M_PI*M_PI, epsa, T8);
cmult(aH1*aH1/2./ang1a/sqa1*h10*8.*COM(0.,1.)*M_PI*M_PI, pacur, T9);
cmult(-aH1*aH1/2./ang1a/sqa1*h12*8.*COM(0.,1.)*M_PI*M_PI, p1cur, T10);
current ans;
for(int i=0;i<4;i++)
{
ans[i] = T1[i]+T2[i]+T3[i]+T4[i]+T5[i]+T6[i]+T7[i]+T8[i]+T9[i]+T10[i];
}
retAns[0] = F/prop*ans[0];
retAns[1] = F/prop*ans[1];
retAns[2] = F/prop*ans[2];
retAns[3] = F/prop*ans[3];
}
/// @brief HNC amp for qg->qgH with finite top (i.e. j^{+-}_H)
void g_gH_HNC(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH, double mq, current &retAns)
{
const double F = 4.*mq*mq/HEJ::vev;
COM ang1a,sqa1;
current conjepsH1,epsHa,p1cur,pacur,pHcur,conjeps1,epsa,paplusp1cur,
p1minuspacur,cur1a,cura1,epsHapart1,epsHapart2,conjepsH1part1,
conjepsH1part2;
// Find here if pa, meaning the gluon, is forward or backward
bool gluonforward = true;
if(pa.z() < 0)
gluonforward = false;
jio(pa,true,p1,true,cura1);
joi(p1,true,pa,true,cur1a);
to_current(pa,pacur);
to_current(p1,p1cur);
to_current(pH,pHcur);
to_current(pa+p1,paplusp1cur);
to_current(p1-pa,p1minuspacur);
const COM aH1 = cdot(pHcur,cura1);
const COM oneHa = std::conj(aH1); // = cdot(pHcur,cur1a)
if(gluonforward){
// sqrt(2pa_-/p1_-)*p1_perp/abs(p1_perp)
ang1a = sqrt(pa.plus()*p1.minus())*(p1.x()+COM(0.,1.)*p1.y())/p1.perp();
// sqrt(2pa_-/p1_-)*p1_perp*/abs(p1_perp)
sqa1 = sqrt(pa.plus()*p1.minus())*(p1.x()-COM(0.,1.)*p1.y())/p1.perp();
}
else {
ang1a = sqrt(pa.minus()*p1.plus());
sqa1 = sqrt(pa.minus()*p1.plus());
}
const double prop = (pa-p1-pH).m2();
cmult(1./sqrt(2)/sqa1, cur1a, epsa);
cmult(-1./sqrt(2)/sqa1, cura1, conjeps1);
const COM phase = cdot(conjeps1, epsa);
const COM Fta = FT(-pa,pa-pH,mq)/(pa-pH).m2();
const COM Ft1 = FT(-p1-pH,p1,mq)/(p1+pH).m2();
const COM Falpha = FT(p1-pa,pa-p1-pH,mq);
const COM Fbeta = FL(p1-pa,pa-p1-pH,mq);
const COM h1 = H1(p1,-pa, pH, mq);
const COM h2 = H2(p1,-pa, pH, mq);
const COM h4 = H4(p1,-pa, pH, mq);
const COM h5 = H5(p1,-pa, pH, mq);
const COM h10 = H10(p1,-pa, pH, mq);
const COM h12 = H12(p1,-pa, pH, mq);
cmult(Fta*pa.dot(pH), epsa, epsHapart1);
cmult(-1.*Fta*cdot(pHcur,epsa), pacur, epsHapart2);
cmult(Ft1*cdot(pHcur,conjeps1), p1cur, conjepsH1part1);
cmult(-Ft1*p1.dot(pH), conjeps1, conjepsH1part2);
cadd(epsHapart1, epsHapart2, epsHa);
cadd(conjepsH1part1, conjepsH1part2, conjepsH1);
current T1,T2,T3,T4,T5a,T5b,T6,T7,T8a,T8b,T9,T10,T11a,
T11b,T12a,T12b,T13;
if(gluonforward){
cmult(sqrt(2.)*sqrt(p1.plus()/pa.plus())*prop/sqa1, conjepsH1, T1);
cmult(-sqrt(2.)*sqrt(pa.plus()/p1.plus())*prop/sqa1, epsHa, T2);
}
else{
cmult(-sqrt(2.)*sqrt(p1.minus()/pa.minus())*((p1.x()-COM(0.,1.)*p1.y())/p1.perp())
*prop/sqa1, conjepsH1, T1);
cmult(sqrt(2.)*sqrt(pa.minus()/p1.minus())*((p1.x()+COM(0.,1.)*p1.y())/p1.perp())
*prop/sqa1, epsHa, T2);
}
const COM boxdiagFact = 8.*COM(0.,1.)*M_PI*M_PI;
cmult(aH1*sqrt(2.)/sqa1, epsHa, T3);
cmult(oneHa*sqrt(2.)/sqa1, conjepsH1, T4);
cmult(-2.*phase*Fta*pa.dot(pH), p1cur, T5a);
cmult(2.*phase*Ft1*p1.dot(pH), pacur, T5b);
cmult(-sqrt(2.)*Fta*p1.dot(pa)*oneHa/sqa1, conjeps1, T6);
cmult(-sqrt(2.)*Ft1*pa.dot(p1)*aH1/sqa1, epsa, T7);
cmult(-boxdiagFact*phase*h2, pacur, T8a);
cmult(boxdiagFact*phase*h1, p1cur, T8b);
cmult(boxdiagFact*aH1/sqrt(2.)/sqa1*h5, epsa, T9);
cmult(-boxdiagFact*oneHa/sqrt(2.)/sqa1*h4, conjeps1, T10);
cmult(boxdiagFact*aH1*oneHa/2./sqa1/sqa1*h10, pacur, T11a);
cmult(-boxdiagFact*aH1*oneHa/2./sqa1/sqa1*h12, p1cur, T11b);
cmult(-phase/(pa-p1).m2()*Falpha*(p1-pa).dot(pa-p1-pH), paplusp1cur, T12a);
cmult(phase/(pa-p1).m2()*Falpha*(pa+p1).dot(pa-p1-pH), p1minuspacur, T12b);
cmult(-phase*Fbeta*(pa-p1-pH).m2(), paplusp1cur, T13);
current ans;
for(int i=0;i<4;i++)
{
ans[i] = T1[i]+T2[i]+T3[i]+T4[i]+T5a[i]+T5b[i]+T6[i]+T7[i]+T8a[i]+T8b[i]+T9[i]+T10[i]+T11a[i]+T11b[i]+T12a[i]+T12b[i]+T13[i];
}
retAns[0] = F/prop*ans[0];
retAns[1] = F/prop*ans[1];
retAns[2] = F/prop*ans[2];
retAns[3] = F/prop*ans[3];
}
} // namespace anonymous
// JDC - new amplitude with Higgs emitted close to gluon with full mt effects. Keep usual HEJ-style function call
double MH2gq_outsideH(CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pH, double mq, bool includeBottom, double mq2)
{
current cur2bplus,cur2bminus, cur2bplusFlip, cur2bminusFlip;
current retAns,retAnsb;
joi(p2out,true,p2in,true,cur2bplus);
joi(p2out,false,p2in,false,cur2bminus);
joi(ParityFlip(p2out),true,ParityFlip(p2in),true,cur2bplusFlip);
joi(ParityFlip(p2out),false,ParityFlip(p2in),false,cur2bminusFlip);
COM app1,app2,apm1,apm2;
COM app3, app4, apm3, apm4;
if(!includeBottom)
{
g_gH_HC(p1in,p1out,pH,mq,retAns);
app1=cdot(retAns,cur2bplus);
app2=cdot(retAns,cur2bminus);
g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns);
app3=cdot(retAns,cur2bplusFlip);
app4=cdot(retAns,cur2bminusFlip);
// And non-conserving bits
g_gH_HNC(p1in,p1out,pH,mq,retAns);
apm1=cdot(retAns,cur2bplus);
apm2=cdot(retAns,cur2bminus);
g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns);
apm3=cdot(retAns,cur2bplusFlip);
apm4=cdot(retAns,cur2bminusFlip);
} else {
g_gH_HC(p1in,p1out,pH,mq,retAns);
g_gH_HC(p1in,p1out,pH,mq2,retAnsb);
app1=cdot(retAns,cur2bplus) + cdot(retAnsb,cur2bplus);
app2=cdot(retAns,cur2bminus) + cdot(retAnsb,cur2bminus);
g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns);
g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq2,retAnsb);
app3=cdot(retAns,cur2bplusFlip) + cdot(retAnsb,cur2bplusFlip);
app4=cdot(retAns,cur2bminusFlip) + cdot(retAnsb,cur2bminusFlip);
// And non-conserving bits
g_gH_HNC(p1in,p1out,pH,mq,retAns);
g_gH_HNC(p1in,p1out,pH,mq2,retAnsb);
apm1=cdot(retAns,cur2bplus) + cdot(retAnsb,cur2bplus);
apm2=cdot(retAns,cur2bminus) + cdot(retAnsb,cur2bminus);
g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns);
g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq2,retAnsb);
apm3=cdot(retAns,cur2bplusFlip) + cdot(retAnsb,cur2bplusFlip);
apm4=cdot(retAns,cur2bminusFlip) + cdot(retAnsb,cur2bminusFlip);
}
return abs2(app1) + abs2(app2) + abs2(app3) + abs2(app4) + abs2(apm1)
+ abs2(apm2) + abs2(apm3) + abs2(apm4);
}
#endif // HEJ_BUILD_WITH_QCDLOOP
double C2gHgm(CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH)
{
static double A=1./(3.*M_PI*HEJ::vev);
// Implements Eq. (4.22) in hep-ph/0301013 with modifications to incoming plus momenta
double s12,p1p,p2p;
COM p1perp,p3perp,phperp;
// Determine first whether this is the case p1p\sim php>>p3p og the opposite
s12=p1.invariantMass2(-p2);
if (p2.pz()>0.) { // case considered in hep-ph/0301013
p1p=p1.plus();
p2p=p2.plus();
} else { // opposite case
p1p=p1.minus();
p2p=p2.minus();
}
p1perp=p1.px()+COM(0,1)*p1.py();
phperp=pH.px()+COM(0,1)*pH.py();
p3perp=-(p1perp+phperp);
COM temp=COM(0,1)*A/(2.*s12)*(p2p/p1p*conj(p1perp)*p3perp+p1p/p2p*p1perp*conj(p3perp));
temp=temp*conj(temp);
return temp.real();
}
double C2gHgp(CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH)
{
static double A=1./(3.*M_PI*HEJ::vev);
// Implements Eq. (4.23) in hep-ph/0301013
double s12,php,p1p,phm;
COM p1perp,p3perp,phperp;
// Determine first whether this is the case p1p\sim php>>p3p or the opposite
s12=p1.invariantMass2(-p2);
if (p2.pz()>0.) { // case considered in hep-ph/0301013
php=pH.plus();
phm=pH.minus();
p1p=p1.plus();
} else { // opposite case
php=pH.minus();
phm=pH.plus();
p1p=p1.minus();
}
p1perp=p1.px()+COM(0,1)*p1.py();
phperp=pH.px()+COM(0,1)*pH.py();
p3perp=-(p1perp+phperp);
COM temp=-COM(0,1)*A/(2.*s12)*( conj(p1perp*p3perp)*pow(php/p1p,2)/(1.+php/p1p)
+s12*(pow(conj(phperp),2)/(pow(abs(phperp),2)+p1p*phm)
-pow(conj(p3perp)
+(1.+php/p1p)*conj(p1perp),2)/((1.+php/p1p)*(pH.m2()+2.*p1.dot(pH)))) );
temp=temp*conj(temp);
return temp.real();
}
double C2qHqm(CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH)
{
static double A=1./(3.*M_PI*HEJ::vev);
// Implements Eq. (4.22) in hep-ph/0301013
double s12,p2p,p1p;
COM p1perp,p3perp,phperp;
// Determine first whether this is the case p1p\sim php>>p3p or the opposite
s12=p1.invariantMass2(-p2);
if (p2.pz()>0.) { // case considered in hep-ph/0301013
p2p=p2.plus();
p1p=p1.plus();
} else { // opposite case
p2p=p2.minus();
p1p=p1.minus();
}
p1perp=p1.px()+COM(0,1)*p1.py();
phperp=pH.px()+COM(0,1)*pH.py();
p3perp=-(p1perp+phperp);
COM temp=A/(2.*s12)*( sqrt(p2p/p1p)*p3perp*conj(p1perp)
+sqrt(p1p/p2p)*p1perp*conj(p3perp) );
temp=temp*conj(temp);
return temp.real();
}

File Metadata

Mime Type
text/x-diff
Expires
Mon, Jan 20, 8:41 PM (22 h, 39 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4242317
Default Alt Text
(196 KB)

Event Timeline