Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7878732
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
28 KB
Subscribers
None
View Options
diff --git a/Hadronization/ClusterFissioner.cc b/Hadronization/ClusterFissioner.cc
--- a/Hadronization/ClusterFissioner.cc
+++ b/Hadronization/ClusterFissioner.cc
@@ -1,643 +1,655 @@
// -*- C++ -*-
//
// Thisk is the implementation of the non-inlined, non-templated member
// functions of the ClusterFissioner class.
//
#include "ClusterFissioner.h"
#include <ThePEG/Interface/ClassDocumentation.h>
#include <ThePEG/Interface/Reference.h>
#include <ThePEG/Interface/Parameter.h>
#include <ThePEG/Interface/Switch.h>
#include <ThePEG/Persistency/PersistentOStream.h>
#include <ThePEG/Persistency/PersistentIStream.h>
#include <ThePEG/PDT/EnumParticles.h>
#include <ThePEG/Repository/EventGenerator.h>
#include <ThePEG/EventRecord/Collision.h>
#include "Herwig++/Utilities/Kinematics.h"
#include "Herwig++/Utilities/HwDebug.h"
#include "Herwig++/Utilities/CheckId.h"
#include "Cluster.h"
#include <iomanip>
using namespace Herwig;
void ClusterFissioner::persistentOutput(PersistentOStream & os) const {
os << _hadronsSelector << _globalParameters
<< _clMax << _clPow << _pSplit1 << _pSplit2 << _btClM << _iopRem;
}
void ClusterFissioner::persistentInput(PersistentIStream & is, int) {
is >> _hadronsSelector >> _globalParameters
>> _clMax >> _clPow >> _pSplit1 >> _pSplit2 >> _btClM >> _iopRem;
}
ClassDescription<ClusterFissioner> ClusterFissioner::initClusterFissioner;
// Definition of the static class description member.
void ClusterFissioner::Init() {
static ClassDocumentation<ClusterFissioner> documentation
("Class responsibles for chopping up the clusters");
static Reference<ClusterFissioner,HadronSelector>
interfaceHadronSelector("HadronSelector",
"A reference to the HadronSelector object",
&Herwig::ClusterFissioner::_hadronsSelector,
false, false, true, false);
static Reference<ClusterFissioner,GlobalParameters>
interfaceGlobalParameters("GlobalParameters",
"A reference to the GlobalParameters object",
&Herwig::ClusterFissioner::_globalParameters,
false, false, true, false);
static Parameter<ClusterFissioner,Energy>
interfaceClMax ("ClMax","cluster max mass (unit [GeV])",
&ClusterFissioner::_clMax, GeV, 3.35*GeV, 0.0*GeV, 10.0*GeV,
false,false,false);
static Parameter<ClusterFissioner,double>
interfaceClPow ("ClPow","cluster mass exponent",
&ClusterFissioner::_clPow, 0, 2.0, 0.0, 10.0,false,false,false);
static Parameter<ClusterFissioner,double>
interfacePSplt1 ("PSplt1","cluster mass splitting param for u,d,s,c",
&ClusterFissioner::_pSplit1, 0, 1.0, 0.0, 10.0,false,false,false);
static Parameter<ClusterFissioner,double>
interfacePSplt2 ("PSplt2","cluster mass splitting param for b",
&ClusterFissioner::_pSplit2, 0, 1.0, 0.0, 10.0,false,false,false);
static Switch<ClusterFissioner,int> interfaceRemnantOption
("RemnantOption",
"Option for the treatment of remnant clusters",
&ClusterFissioner::_iopRem, 1, false, false);
static SwitchOption interfaceRemnantOptionSoft
(interfaceRemnantOption,
"Soft",
"Both clusters produced in the fission of the beam cluster"
" are treated as soft clusters.",
0);
static SwitchOption interfaceRemnantOptionHard
(interfaceRemnantOption,
"Hard",
"Only the cluster containing the remnant is treated as a soft cluster.",
1);
static Parameter<ClusterFissioner,Energy> interfaceBTCLM
("BTCLM",
"Parameter for the mass spectrum of remnant clusters",
&ClusterFissioner::_btClM, GeV, 1.*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
}
void ClusterFissioner::fission(const StepPtr &pstep) {
/*****************
* Loop over the (input) collection of cluster pointers, and store in
* the vector splitClusters all the clusters that need to be split
* (these are beam clusters, if soft underlying event is off, and
* heavy non-beam clusters).
********************/
vector<tClusterPtr> splitClusters;
ClusterVector clusters;
for (ParticleSet::iterator it = pstep->particles().begin();
it!= pstep->particles().end(); it++) {
if((*it)->id() == ExtraParticleID::Cluster)
clusters.push_back(dynamic_ptr_cast<ClusterPtr>(*it));
}
for(ClusterVector::iterator it = clusters.begin() ;
it != clusters.end() ; ++it) {
/**************
* Skip 3-component clusters that have been redefined (as 2-component
* clusters) or not available clusters. The latter check is indeed
* redundant now, but it is used for possible future extensions in which,
* for some reasons, some of the clusters found by ClusterFinder are tagged
* straight away as not available.
**************/
if((*it)->isRedefined() || !(*it)->isAvailable()) continue;
- // if the cluster is a beam cluster add it to the vector of clusters
- // to be split
- if((*it)->isBeamCluster()) splitClusters.push_back(*it);
+ // if the cluster is a beam cluster and Underlying event is off
+ // add it to the vector of clusters to be split
+ if((*it)->isBeamCluster()) {
+ if (_globalParameters->isSoftUnderlyingEventON()) {
+ (*it)->isAvailable(false);
+ } else {
+ splitClusters.push_back(*it);
+ }
+ continue;
+ }
+
// If the cluster is heavy add it to the vector of clusters to be split.
- else if(pow((*it)->mass() , _clPow) >
- pow(_clMax, _clPow) + pow((*it)->sumConstituentMasses(), _clPow))
+ if(pow((*it)->mass() , _clPow) >
+ pow(_clMax, _clPow) + pow((*it)->sumConstituentMasses(), _clPow))
splitClusters.push_back(*it);
}
// split the clusters
vector<tClusterPtr>::const_iterator iter;
- for(iter = splitClusters.begin(); iter != splitClusters.end() ; ++iter)
- {cut(*iter, pstep, clusters);}
+ for(iter = splitClusters.begin();
+ iter != splitClusters.end() ;
+ ++iter) {
+ cut(*iter, pstep, clusters);
+ }
}
void ClusterFissioner::cut(tClusterPtr cluster, const StepPtr &pstep,
ClusterVector &clusters) {
/**************************************************
* This method does the splitting of the cluster pointed by cluPtr
* and "recursively" by all of its cluster children, if heavy. All of these
* new children clusters are added (indeed the pointers to them) to the
* collection of cluster pointers collecCluPtr. The method works as follows.
* Initially the vector vecCluPtr contains just the input pointer to the
* cluster to be split. Then it will be filled "recursively" by all
* of the cluster's children that are heavy enough to require, in their turn,
* to be split. In each loop, the last element of the vector vecCluPtr is
* considered (only once because it is then removed from the vector).
* This approach is conceptually recursive, but avoid the overhead of
* a concrete recursive function. Furthermore it requires minimal changes
* in the case that the fission of an heavy cluster could produce more
* than two cluster children as assumed now.
*
* Draw the masses: for normal, non-beam clusters a power-like mass dist
* is used, whereas for beam clusters a fast-decreasing exponential mass
* dist is used instead (to avoid many iterative splitting which could
* produce an unphysical large transverse energy from a supposed soft beam
* remnant process).
****************************************/
vector<tClusterPtr> clusterStack;
clusterStack.push_back(cluster);
// Here we recursively loop over clusters in the stack and cut them
while (!clusterStack.empty()) {
// take the last element of the vector
tClusterPtr iCluster = clusterStack.back();
clusterStack.pop_back();
// split it
cutType ct = cut(iCluster);
// There are cases when we don't want to split, even if it fails mass test
if(!ct.first.first || !ct.second.first)
{
// if an unsplit beam cluster leave if for the underlying event
- if(iCluster->isBeamCluster()&&_globalParameters->isSoftUnderlyingEventON())
- iCluster->isAvailable(false);
- // continue
+// if(iCluster->isBeamCluster()
+// &&_globalParameters->isSoftUnderlyingEventON()) {
+// iCluster->isAvailable(false);
+// }
continue;
}
// check if clusters
ClusterPtr one = dynamic_ptr_cast<ClusterPtr>(ct.first.first);
ClusterPtr two = dynamic_ptr_cast<ClusterPtr>(ct.second.first);
// is a beam cluster must be split into two hadrons
- if(iCluster->isBeamCluster()&&(!one||!two)
- &&_globalParameters->isSoftUnderlyingEventON())
- {
- iCluster->isAvailable(false);
- continue;
- }
+// if(iCluster->isBeamCluster()&&(!one||!two)
+// &&_globalParameters->isSoftUnderlyingEventON())
+// {
+// iCluster->isAvailable(false);
+// continue;
+// }
// There should always be a intermediate quark(s) from the splitting, but
// in case there isn't
if(ct.first.second) {
pstep->addIntermediate(ct.first.second);
ct.first.second->addChild(ct.first.first);
}
if(ct.second.second) {
pstep->addIntermediate(ct.second.second);
ct.second.second->addChild(ct.second.first);
}
pstep->addDecayProduct(iCluster, ct.first.first);
pstep->addDecayProduct(iCluster, ct.second.first);
// Sometimes the clusters decay C -> H + C' rather then C -> C' + C''
if(one) {
clusters.push_back(one);
- if(one->isBeamCluster()&&
- _globalParameters->isSoftUnderlyingEventON()) one->isAvailable(false);
+// if(one->isBeamCluster()&&
+// _globalParameters->isSoftUnderlyingEventON()) one->isAvailable(false);
if(pow(one->mass(), _clPow) >
pow(_clMax, _clPow) + pow(one->sumConstituentMasses(), _clPow)
&&one->isAvailable()) {
clusterStack.push_back(one);
}
}
if(two) {
clusters.push_back(two);
- if(two->isBeamCluster()&&
- _globalParameters->isSoftUnderlyingEventON()) two->isAvailable(false);
+// if(two->isBeamCluster()&&
+// _globalParameters->isSoftUnderlyingEventON()) two->isAvailable(false);
if(pow(two->mass(), _clPow) >
pow(_clMax, _clPow) + pow(two->sumConstituentMasses(), _clPow)
&& two->isAvailable()) {
clusterStack.push_back(two);
}
}
}
}
ClusterFissioner::cutType ClusterFissioner::cut(tClusterPtr &cluster) {
// Get the actual particles making up the cluster
long idQ1 = 0, idQ2 = 0;
tPPtr ptrQ1 = cluster->particle(0), ptrQ2 = cluster->particle(1);
if(ptrQ1) idQ1 = ptrQ1->id();
if(ptrQ2) idQ2 = ptrQ2->id();
// And check if those particles are from a beam remnant
bool rem1 = cluster->isBeamRemnant(0);
bool rem2 = cluster->isBeamRemnant(1);
// workout which distribution to use
bool soft1=rem1||(_iopRem==0&&rem2);
bool soft2=rem2||(_iopRem==0&&rem1);
// Initialization for the exponential ("soft") mass distribution.
static const InvEnergy b = 2.0 / _btClM;
static const int max_loop = 1000;
int counter = 0;
bool succeeded=false;
Energy Mc1 = Energy(), Mc2 = Energy(),m1=Energy(),m2=Energy(),m=Energy();
bool toHadron1,toHadron2;
long idNew;
do
{
succeeded=false;
++counter;
// Draw new flavour
idNew = drawNewFlavour(); // draw the new flavour (idNew > 0)
if(!CheckId::canBeMeson(idQ1,-idNew) && !CheckId::canBeBaryon(idQ1,-idNew))
idNew = -idNew;
// Check that new clusters can produce particles and there is enough
// phase space to choose the drawn flavour
Energy Mc = cluster->mass();
m1 = ptrQ1->data().constituentMass();
m2 = ptrQ2->data().constituentMass();
m = getParticleData(abs(idNew))->constituentMass();
// Do not split in the case there is no phase space available
// (it happens sometimes for clusters with b-flavour)
if(Mc < m1+m + m2+m) continue;
// power for splitting
double exp1=_pSplit1, exp2=_pSplit1;
if(CheckId::hasBeauty(idQ1)) exp1 = _pSplit2;
if(CheckId::hasBeauty(idQ2)) exp2 = _pSplit2;
// If, during the drawing of candidate masses, too many attempts fail
// (because the phase space available is tiny)
//_hadronsSelector->lightestHadron(idQ2, idNew)then give up (the cluster
// is not split).
Mc1 = Energy();
Mc2 = Energy();
drawChildMass(Mc,m1,m2,m,Mc1,exp1,b,soft1);
drawChildMass(Mc,m2,m1,m,Mc2,exp2,b,soft2);
if(Mc1<m1+m || Mc2<m+m2 || Mc1+Mc2>Mc) continue;
/**************************
* New (not present in Fortran Herwig):
* check whether the fragment masses Mc1 and Mc2 are above the
* threshold for the production of the lightest pair of hadrons with the
* right flavours. If not, then set by hand the mass to the lightest
* single hadron with the right flavours, in order to solve correctly
* the kinematics, and (later in this method) create directly such hadron
* and add it to the children hadrons of the cluster that undergoes the
* fission (i.e. the one pointed by iCluPtr). Notice that in this special
* case, the heavy cluster that undergoes the fission has one single
* cluster child and one single hadron child. We prefer this approach,
* rather than to create a light cluster, with the mass set equal to
* the lightest hadron, and let then the class LightClusterDecayer to do
* the job to decay it to that single hadron, for two reasons:
* First, because the sum of the masses of the two constituents can be,
* in this case, greater than the mass of that hadron, hence it would
* be impossible to solve the kinematics for such two components, and
* therefore we would have a cluster whose components are undefined.
* Second, the algorithm is faster, because it avoids the reshuffling
* procedure that would be necessary if we used LightClusterDecayer
* to decay the light cluster to the lightest hadron.
****************************/
toHadron1 = false;
if(Mc1 < _hadronsSelector->massLightestHadronPair(idQ1,-idNew)) {
Mc1 = _hadronsSelector->massLightestHadron(idQ1,-idNew);
toHadron1 = true;
}
toHadron2 = false;
if(Mc2 < _hadronsSelector->massLightestHadronPair(idQ2,idNew)) {
Mc2 = _hadronsSelector->massLightestHadron(idQ2,idNew);
toHadron2 = true;
}
// Check if the decay kinematics is still possible: if not then
// force the one-hadron decay for the other cluster as well.
if(Mc1 + Mc2 > Mc) {
if(!toHadron1) {
Mc1 = _hadronsSelector->massLightestHadron(idQ1, -idNew);
toHadron1 = true;
} else if(!toHadron2) {
Mc2 = _hadronsSelector->massLightestHadron(idQ2, idNew);
toHadron2 = true;
}
}
succeeded = (Mc>=Mc1+Mc2);
}
while (!succeeded && counter < max_loop);
if(counter >= max_loop)
return cutType(PPair(PPtr(),PPtr()),PPair(PPtr(),PPtr()));
// Determined the (5-components) momenta (all in the LAB frame)
Lorentz5Momentum pClu = cluster->momentum(); // known
Lorentz5Momentum p0Q1 = ptrQ1->momentum(); // known (mom Q1 before fission)
Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2; //unknown
pClu1.setMass(Mc1);
pClu2.setMass(Mc2);
pQ1.setMass(m1);
pQ2.setMass(m2);
pQone.setMass(m);
pQtwo.setMass(m);
calculateKinematics(pClu,p0Q1,toHadron1,toHadron2,
pClu1,pClu2,pQ1,pQone,pQtwo,pQ2); // out
/******************
* The previous methods have determined the kinematics and positions
* of C -> C1 + C2.
* In the case that one of the two product is light, that means either
* decayOneHadronClu1 or decayOneHadronClu2 is true, then the momenta
* of the components of that light product have not been determined,
* and a (light) cluster will not be created: the heavy father cluster
* decays, in this case, into a single (not-light) cluster and a
* single hadron. In the other, "normal", cases the father cluster
* decays into two clusters, each of which has well defined components.
* Notice that, in the case of components which point to particles, the
* momenta of the components is properly set to the new values, whereas
* we do not change the momenta of the pointed particles, because we
* want to keep all of the information (that is the new momentum of a
* component after the splitting, which is contained in the _momentum
* member of the Component class, and the (old) momentum of that component
* before the splitting, which is contained in the momentum of the
* pointed particle). Please not make confusion of this only apparent
* inconsistency!
********************/
LorentzPoint posC,pos1,pos2;
posC = cluster->labVertex();
calculatePositions(pClu,posC,pClu1,pClu2,pos1,pos2);
cutType rval;
if(toHadron1) rval.first = produceHadron(idQ1,-idNew,pClu1,pos1);
else rval.first = produceCluster(ptrQ1,-idNew, pClu1, pos1,
pQ1, pQone, rem1);
if(toHadron2) rval.second = produceHadron(idQ2,idNew,pClu2,pos2);
else rval.second = produceCluster(ptrQ2, idNew, pClu2, pos2,
pQ2, pQtwo, rem2);
return rval;
}
ClusterFissioner::PPair ClusterFissioner::produceHadron(long id1, long id2,
Lorentz5Momentum &a,
LorentzPoint &b) const {
PPair rval;
rval.first = getParticle(_hadronsSelector->lightestHadron(id1, id2));
rval.second = getParticle(id2);
rval.first->set5Momentum(a);
rval.first->setLabVertex(b);
return rval;
}
ClusterFissioner::PPair ClusterFissioner::produceCluster(tPPtr &p1, long id,
Lorentz5Momentum &a,
LorentzPoint &b,
Lorentz5Momentum &c,
Lorentz5Momentum &d,
bool isRem) const {
PPair rval;
rval.second = getParticle(id);
ClusterPtr cluster = new_ptr(Cluster(p1,rval.second));
rval.first = cluster;
rval.first->set5Momentum(a);
rval.first->setLabVertex(b);
if(cluster->particle(0)->id() == p1->id()) {
cluster->particle(0)->set5Momentum(c);
cluster->particle(1)->set5Momentum(d);
cluster->setBeamRemnant(0,isRem);
} else {
cluster->particle(0)->set5Momentum(d);
cluster->particle(1)->set5Momentum(c);
cluster->setBeamRemnant(1,isRem);
}
return rval;
}
long ClusterFissioner::drawNewFlavour() const {
// Flavour is assumed to be only u, d, s, with weights
// (which are not normalized probabilities) given
// by the same weights as used in HadronsSelector for
// the decay of clusters into two hadrons.
double prob_d = _hadronsSelector->pwtDquark();
double prob_u = _hadronsSelector->pwtUquark();
double prob_s = _hadronsSelector->pwtSquark();
double sum = prob_d + prob_u + prob_s;
prob_d = prob_d / sum;
prob_u = prob_u / sum;
prob_s = prob_s / sum;
int choice = rnd3(prob_u, prob_d, prob_s);
long idNew = 0;
switch (choice) {
case 0: idNew = ThePEG::ParticleID::u; break;
case 1: idNew = ThePEG::ParticleID::d; break;
case 2: idNew = ThePEG::ParticleID::s; break;
}
return idNew;
}
void ClusterFissioner::drawChildMass(const Energy M, const Energy m1,
const Energy m2, const Energy m,
Energy & Mclu, const double expt,
const InvEnergy b, const bool soft) const {
/***************************
* This method, given in input the cluster mass Mclu of an heavy cluster C,
* made of consituents of masses m1 and m2, draws the masses Mclu1 and Mclu2
* of, respectively, the children cluster C1, made of constituent masses m1
* and m, and cluster C2, of mass Mclu2 and made of constituent masses m2
* and m. The mass is extracted from one of the two following mass
* distributions:
* --- power-like ("normal" distribution)
* d(Prob) / d(M^exponent) = const
* where the exponent can be different from the two children C1 (exp1)
* and C2 (exponent2).
* --- exponential ("soft" distribution)
* d(Prob) / d(M^2) = exp(-b*M)
* where b = 2.0 / average.
* Such distributions are limited below by the masses of
* the constituents quarks, and above from the mass of decaying cluster C.
* The choice of which of the two mass distributions to use for each of the
* two cluster children is dictated by iRemnant (see below).
* If the number of attempts to extract a pair of mass values that are
* kinematically acceptable is above some fixed number (max_loop, see below)
* the method gives up and returns false; otherwise, when it succeeds, it
* returns true.
*
* These distributions have been modified from HERWIG:
* Before these were:
* Mclu1 = m1 + (Mclu - m1 - m2)*pow( rnd(), 1.0/exponent1 );
* The new one coded here is a more efficient version, same density
* but taking into account 'in phase space from' beforehand
***************************/
Energy max = M-m1-m2-2.0*m;
double rmin = exp(-b*max);
if(rmin > 50.0) rmin = 0.0;
// hard cluster
if(!soft)
{Mclu = pow(rnd(pow(M-m1-m2-m, expt), pow(m, expt)), 1./expt) + m1;}
// Otherwise it uses a soft mass distribution
else
{
double r1 = rnd(rmin, 1.0-rmin) * rnd(rmin, 1.0-rmin);
if(r1 > rmin) Mclu = m1 + m - log(r1)/b;
else Mclu = Energy();
}
}
void ClusterFissioner::calculateKinematics(const Lorentz5Momentum & pClu,
const Lorentz5Momentum & p0Q1,
const bool toHadron1,
const bool toHadron2,
Lorentz5Momentum & pClu1,
Lorentz5Momentum & pClu2,
Lorentz5Momentum & pQ1,
Lorentz5Momentum & pQbar,
Lorentz5Momentum & pQ,
Lorentz5Momentum & pQ2bar) const {
/******************
* This method solves the kinematics of the two body cluster decay:
* C (Q1 Q2bar) ---> C1 (Q1 Qbar) + C2 (Q Q2bar)
* In input we receive the momentum of C, pClu, and the momentum
* of the quark Q1 (constituent of C), p0Q1, both in the LAB frame.
* Furthermore, two boolean variables inform whether the two fission
* products (C1, C2) decay immediately into a single hadron (in which
* case the cluster itself is identify with that hadron) and we do
* not have to solve the kinematics of the components (Q1,Qbar) for
* C1 and (Q,Q2bar) for C2.
* The output is given by the following momenta (all 5-components,
* and all in the LAB frame):
* pClu1 , pClu2 respectively of C1 , C2
* pQ1 , pQbar respectively of Q1 , Qbar in C1
* pQ , pQ2bar respectively of Q , Q2 in C2
* The assumption, suggested from the string model, is that, in C frame,
* C1 and its constituents Q1 and Qbar are collinear, and collinear to
* the direction of Q1 in C (that is before cluster decay); similarly,
* (always in the C frame) C2 and its constituents Q and Q2bar are
* collinear (and therefore anti-collinear with C1,Q1,Qbar).
* The solution is then obtained by using Lorentz boosts, as follows.
* The kinematics of C1 and C2 is solved in their parent C frame,
* and then boosted back in the LAB. The kinematics of Q1 and Qbar
* is solved in their parent C1 frame and then boosted back in the LAB;
* similarly, the kinematics of Q and Q2bar is solved in their parent
* C2 frame and then boosted back in the LAB. In each of the three
* "two-body decay"-like cases, we use the fact that the direction
* of the motion of the decay products is known in the rest frame of
* their parent. This is obvious for the first case in which the
* parent rest frame is C; but it is also true in the other two cases
* where the rest frames are C1 and C2. This is because C1 and C2
* are boosted w.r.t. C in the same direction where their components,
* respectively (Q1,Qbar) and (Q,Q2bar) move in C1 and C2 rest frame
* respectively.
* Of course, although the notation used assumed that C = (Q1 Q2bar)
* where Q1 is a quark and Q2bar an antiquark, indeed everything remain
* unchanged also in all following cases:
* Q1 quark, Q2bar antiquark; --> Q quark;
* Q1 antiquark , Q2bar quark; --> Q antiquark;
* Q1 quark, Q2bar diquark; --> Q quark
* Q1 antiquark, Q2bar anti-diquark; --> Q antiquark
* Q1 diquark, Q2bar quark --> Q antiquark
* Q1 anti-diquark, Q2bar antiquark; --> Q quark
**************************/
// Calculate the unit three-vector, in the C frame, along which
// all of the constituents and children clusters move.
Lorentz5Momentum u(p0Q1);
u.boost( -pClu.boostVector() ); // boost from LAB to C
// the unit three-vector is then u.vect().unit()
// Calculate the momenta of C1 and C2 in the (parent) C frame first,
// where the direction of C1 is u.vect().unit(), and then boost back in the
// LAB frame.
if (pClu.m() < pClu1.mass() + pClu2.mass() ) {
throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (A)"
<< Exception::eventerror;
}
Kinematics::twoBodyDecay(pClu, pClu1.mass(), pClu2.mass(),
u.vect().unit(), pClu1, pClu2);
// In the case that cluster1 does not decay immediately into a single hadron,
// calculate the momenta of Q1 (as constituent of C1) and Qbar in the
// (parent) C1 frame first, where the direction of Q1 is u.vect().unit(),
// and then boost back in the LAB frame.
if(!toHadron1) {
if (pClu1.m() < pQ1.mass() + pQbar.mass() ) {
throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (B)"
<< Exception::eventerror;
}
Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(),
u.vect().unit(), pQ1, pQbar);
}
// In the case that cluster2 does not decay immediately into a single hadron,
// Calculate the momenta of Q and Q2bar (as constituent of C2) in the
// (parent) C2 frame first, where the direction of Q is u.vect().unit(),
// and then boost back in the LAB frame.
if(!toHadron2) {
if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) {
throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (C)"
<< Exception::eventerror;
}
Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(),
u.vect().unit(), pQ, pQ2bar);
}
}
void ClusterFissioner::calculatePositions(const Lorentz5Momentum & pClu,
const LorentzPoint & positionClu,
const Lorentz5Momentum & pClu1,
const Lorentz5Momentum & pClu2,
LorentzPoint & positionClu1,
LorentzPoint & positionClu2) const
{
// Determine positions of cluster children.
// See Marc Smith's thesis, page 127, formulas (4.122) and (4.123).
Energy Mclu = pClu.m();
Energy Mclu1 = pClu1.m();
Energy Mclu2 = pClu2.m();
// Calculate the unit three-vector, in the C frame, along which
// children clusters move.
Lorentz5Momentum u(pClu1);
u.boost( -pClu.boostVector() ); // boost from LAB to C frame
// the unit three-vector is then u.vect().unit()
Energy pstarChild = Kinematics::pstarTwoBodyDecay(Mclu,Mclu1,Mclu2);
// First, determine the relative positions of the children clusters
// in the parent cluster reference frame.
double GeV2mm = _globalParameters->conversionFactorGeVtoMillimeter();
Length x1 = GeV2mm * (Mclu*0.25 + 0.5
*(pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/GeV;
Length t1 = ((Mclu/GeV) * GeV2mm - x1);
LorentzDistance distanceClu1( x1 * u.vect().unit(), t1 );
Length x2 = GeV2mm * (-Mclu*0.25 + 0.5
*(-pstarChild + (sqr(Mclu2) - sqr(Mclu))/(2.0*Mclu)))/GeV;
Length t2 = ((Mclu/GeV) * GeV2mm + x2);
LorentzDistance distanceClu2(x2 * u.vect().unit(), t2);
// Debugging
if ( HERWIG_DEBUG_LEVEL >= HwDebug::extreme_Hadronization ) {
generator()->log() << "ClusterFissioner::calculatePositions : *** extreme debugging ***" << endl
<< "\t distanceClu1 = " << distanceClu1
<< "\t invariant length = " << distanceClu1.mag() << " [mm] " << endl
<< "\t distanceClu2 = " << distanceClu2
<< "\t invariant length = " << distanceClu2.mag() << " [mm] " << endl;
}
// Then, transform such relative positions from the parent cluster
// reference frame to the Lab frame.
distanceClu1.boost( pClu.boostVector() );
distanceClu2.boost( pClu.boostVector() );
// Finally, determine the absolute positions in the Lab frame.
positionClu1 = positionClu + distanceClu1;
positionClu2 = positionClu + distanceClu2;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 6:47 PM (1 d, 16 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805667
Default Alt Text
(28 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment