Page MenuHomeHEPForge

No OneTemporary

diff --git a/MatrixElement/EW/ElectroWeakMatching.cc b/MatrixElement/EW/ElectroWeakMatching.cc
--- a/MatrixElement/EW/ElectroWeakMatching.cc
+++ b/MatrixElement/EW/ElectroWeakMatching.cc
@@ -1,915 +1,1015 @@
// -*- C++ -*-
//
// ElectroWeakMatching.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
//
#include "ElectroWeakMatching.h"
#include "ElectroWeakReweighter.h"
#include "GroupInvariants.h"
#include <boost/numeric/ublas/operation.hpp>
#include <boost/numeric/ublas/vector.hpp>
using namespace Herwig;
using namespace ElectroWeakMatching;
using namespace GroupInvariants;
using namespace EWProcess;
boost::numeric::ublas::matrix<Complex>
ElectroWeakMatching::electroWeakMatching(Energy mu,
Energy2 s, Energy2 t, Energy2 u,
Herwig::EWProcess::Process process,
bool oneLoop,unsigned int iswap) {
static const Complex I(0,1.0);
using Constants::pi;
Complex T = getT(s,t);
Complex U = getU(s,u);
// Z-Couplings
double g_Lu = ElectroWeakReweighter::coupling()->g_Lu(mu);
double g_Ld = ElectroWeakReweighter::coupling()->g_Ld(mu);
double g_Le = ElectroWeakReweighter::coupling()->g_Le(mu);
double g_Lnu = ElectroWeakReweighter::coupling()->g_Lnu(mu);
double g_Ru = ElectroWeakReweighter::coupling()->g_Ru(mu);
double g_Rd = ElectroWeakReweighter::coupling()->g_Rd(mu);
double g_Re = ElectroWeakReweighter::coupling()->g_Re(mu);
double g_W = ElectroWeakReweighter::coupling()->g_W(mu);
double g_phiPlus = ElectroWeakReweighter::coupling()->g_phiPlus(mu);
// Weinberg Angle:
double cos2 = ElectroWeakReweighter::coupling()->Cos2thW(mu);
double sin2 = 1.0-cos2;
double cos = sqrt(cos2);
double sin = sqrt(sin2);
boost::numeric::ublas::matrix<Complex> R0,G2,Dw,Dz;
switch (process) {
case QQQQ:
case QQQQiden:
case QtQtQQ:
{
- assert(iswap==0);
unsigned int numGauge = 4, numBrokenGauge = 12;
R0=boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2=boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw=boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz=boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,1) = R0(1,1) = R0(2,1) = R0(3,1) = 1.0;
R0(0,0) = R0(3,0) = 0.25;
R0(1,0) = R0(2,0) = -0.25;
R0(4,0) = R0(5,0) = 0.5;
R0(6,3) = R0(7,3) = R0(8,3) = R0(9,3) = 1.0;
R0(6,2) = R0(9,2) = 0.25;
R0(7,2) = R0(8,2) = -0.25;
R0(10,2) = R0(11,2) = 0.5;
if (oneLoop) {
double g11 = g_Lu;
double g12 = g_Ld;
double g21 = g_Lu;
double g22 = g_Ld;
+ Complex w0(0.),w1(0.),w2(0.);
+ Complex z1(0.),z2(0.),z3(0.),z4(0.),z5(0.);
+ boost::numeric::ublas::matrix<Complex> gam2;
+ if(iswap==0) {
+ w0 = 0.5*I*pi;
+ w1 = -0.5*(T-U);
+ w2 = -0.5*(T+U);
+ z1 = 2.0*g11*g21*(T-U) - I*pi*(g11*g11+g21*g21);
+ z2 = 2.0*g21*g12*(T-U) - I*pi*(g21*g21+g12*g12);
+ z3 = 2.0*g22*g11*(T-U) - I*pi*(g22*g22+g11*g11);
+ z4 = 2.0*g12*g22*(T-U) - I*pi*(g12*g12+g22*g22);
+ z5 = (g11*g21+g12*g22)*T - (g21*g12+g11*g22)*U
+ - 0.5*I*pi*(g11*g11+g12*g12+g21*g21+g22*g22);
+ gam2 = Gamma2(U,T);
+ }
+ else if(iswap==1) {
+ w0 = -0.5*(T-I*pi);
+ w1 = 0.5*U;
+ w2 = -0.5*(U-2.*T);
+ z1 = 2.0*g11*g21*(-U) + ( T- I*pi)*(g11*g11+g21*g21);
+ z2 = 2.0*g21*g12*(-U) + ( T- I*pi)*(g21*g21+g12*g12);
+ z3 = 2.0*g22*g11*(-U) + ( T- I*pi)*(g22*g22+g11*g11);
+ z4 = 2.0*g12*g22*(-U) + ( T- I*pi)*(g12*g12+g22*g22);
+ z5 = -(g11*g21+g12*g22)*T - (g21*g12+g11*g22)*(U-T)
+ + 0.5*(T-I*pi)*(g11*g11+g12*g12+g21*g21+g22*g22);
+ gam2 = Gamma2ST(U,T);
+ }
+ else if(iswap==2) {
+ w0 = -0.5*(U-I*pi);
+ w1 = -0.5*T;
+ w2 = -0.5*(T-2.*U);
+ z1 = 2.0*g11*g21*T +(U-I*pi)*(g11*g11+g21*g21);
+ z2 = 2.0*g21*g12*T +(U-I*pi)*(g21*g21+g12*g12);
+ z3 = 2.0*g22*g11*T +(U-I*pi)*(g22*g22+g11*g11);
+ z4 = 2.0*g12*g22*T +(U-I*pi)*(g12*g12+g22*g22);
+ z5 = (g11*g21+g12*g22)*(T-U) + (g21*g12+g11*g22)*U
+ + 0.5*(U-I*pi)*(g11*g11+g12*g12+g21*g21+g22*g22);
+ gam2 = Gamma2SU(U,T);
+ }
+ else
+ assert(false);
+ // Dw
for(unsigned int ix=0;ix<numBrokenGauge;++ix) {
- Dw(ix,ix) = 0.5*I*pi;
+ Dw(ix,ix) = w0;
}
- Complex w1 = -0.5*(T-U);
- Complex w2 = -0.5*(T+U);
for(unsigned int ix=0;ix<numBrokenGauge;ix+=6) {
Dw(ix+0,ix+0) += w1;
Dw(ix+3,ix+3) += w1;
Dw(ix+1,ix+1) +=-w1;
Dw(ix+2,ix+2) +=-w1;
Dw(ix+4,ix+4) += w2;
Dw(ix+5,ix+5) += w2;
}
- Complex z1 = 2.0*g11*g21*(T-U) - I*pi*(g11*g11+g21*g21);
- Complex z2 = 2.0*g21*g12*(T-U) - I*pi*(g21*g21+g12*g12);
- Complex z3 = 2.0*g22*g11*(T-U) - I*pi*(g22*g22+g11*g11);
- Complex z4 = 2.0*g12*g22*(T-U) - I*pi*(g12*g12+g22*g22);
- Complex z5 = (g11*g21+g12*g22)*T - (g21*g12+g11*g22)*U
- - 0.5*I*pi*(g11*g11+g12*g12+g21*g21+g22*g22);
+ // DZ
for(unsigned int ix=0;ix<numBrokenGauge;ix+=6) {
Dz(ix+0,ix+0) = z1;
Dz(ix+1,ix+1) = z2;
Dz(ix+2,ix+2) = z3;
Dz(ix+3,ix+3) = z4;
Dz(ix+4,ix+4) = z5;
Dz(ix+5,ix+5) = z5;
}
- boost::numeric::ublas::matrix<Complex> gam2 = Gamma2(U,T);
+ // G2
G2(0,0) += gam2(0,0);
G2(0,1) += gam2(0,1);
G2(1,0) += gam2(1,0);
G2(1,1) += gam2(1,1);
G2(2,2) += gam2(0,0);
G2(2,3) += gam2(0,1);
G2(3,2) += gam2(1,0);
G2(3,3) += gam2(1,1);
}
}
break;
case QQUU:
case QtQtUU:
case QQtRtR:
{
- assert(iswap==0);
unsigned int numGauge = 2, numBrokenGauge = 4;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = R0(1,0) = R0(2,1) = R0(3,1) = 1.0;
if (oneLoop) {
double g11 = g_Lu;
double g12 = g_Ld;
//double g21 = g_Ru;
double g22 = g_Ru;
-
- Complex w1 = 0.25*I*pi;
+ Complex w1(0.),z1(0.),z2(0.);
+ if(iswap==0) {
+ w1 = 0.25*I*pi;
+ z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
+ z2 = 2.0*g12*g22*(T-U) - I*pi*(g12*g12+g22*g22);
+ G2 = Gamma2Singlet();
+ }
+ else if(iswap==1) {
+ w1 = -0.25*(T-I*pi);
+ z1 = -2.0*g11*g22*U +(T-I*pi)*(g11*g11+g22*g22);
+ z2 = -2.0*g12*g22*U +(T-I*pi)*(g12*g12+g22*g22);
+ G2 = Gamma2SingletST(T);
+ }
+ else if(iswap==2) {
+ w1 = -0.25*(U-I*pi);
+ z1 = 2.0*g11*g22*T +(U-I*pi)*(g11*g11+g22*g22);
+ z2 = 2.0*g12*g22*T +(U-I*pi)*(g12*g12+g22*g22);
+ G2 = Gamma2SingletSU(U);
+ }
+ else
+ assert(false);
for(unsigned int ix=0;ix<numBrokenGauge;++ix) Dw(ix,ix) = w1;
- Complex z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
- Complex z2 = 2.0*g12*g22*(T-U) - I*pi*(g12*g12+g22*g22);
for(unsigned int ix=0;ix<numBrokenGauge;ix+=2) {
Dz(ix+0,ix+0) = z1;
Dz(ix+1,ix+1) = z2;
}
- G2 = Gamma2Singlet();
}
}
break;
case QQDD:
case QtQtDD:
{
- assert(iswap==0);
unsigned int numGauge = 2, numBrokenGauge = 4;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = R0(1,0) = R0(2,1) = R0(3,1) = 1.0;
if (oneLoop) {
double g11 = g_Lu;
double g12 = g_Ld;
//double g21 = g_Rd;
double g22 = g_Rd;
-
- Complex w1 = 0.25*I*pi;
+ Complex w1(0.),z1(0.),z2(0.);
+ if(iswap==0) {
+ w1 = 0.25*I*pi;
+ z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
+ z2 = 2.0*g12*g22*(T-U) - I*pi*(g12*g12+g22*g22);
+ G2 = Gamma2Singlet();
+ }
+ else if(iswap==1) {
+ w1 =-0.25*(T-I*pi);
+ z1 =-2.0*g11*g22*U + (T-I*pi)*(g11*g11+g22*g22);
+ z2 =-2.0*g12*g22*U + (T-I*pi)*(g12*g12+g22*g22);
+ G2 = Gamma2SingletST(T);
+ }
+ else if(iswap==2) {
+ w1 =-0.25*(U-I*pi);
+ z1 = 2.0*g11*g22*T + (U-I*pi)*(g11*g11+g22*g22);
+ z2 = 2.0*g12*g22*T + (U-I*pi)*(g12*g12+g22*g22);
+ G2 = Gamma2Singlet();
+ }
+ else
+ assert(false);
for(unsigned int ix=0;ix<numBrokenGauge;++ix) Dw(ix,ix) = w1;
-
- Complex z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
- Complex z2 = 2.0*g12*g22*(T-U) - I*pi*(g12*g12+g22*g22);
for(unsigned int ix=0;ix<numBrokenGauge;ix+=2) {
Dz(ix+0,ix+0) = z1;
Dz(ix+1,ix+1) = z2;
}
- G2 = Gamma2Singlet();
}
}
break;
case QQLL:
{
assert(iswap==0);
unsigned int numGauge = 2, numBrokenGauge = 6;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,1) = R0(1,1) = R0(2,1) = R0(3,1) = 1.0;
R0(0,0) = R0(3,0) = 0.25;
R0(1,0) = R0(2,0) = -0.25;
R0(4,0) = R0(5,0) = 0.5;
if (oneLoop) {
double g11 = g_Lu;
double g12 = g_Ld;
double g21 = g_Lnu;
double g22 = g_Le;
for (unsigned int i=0; i<6; ++i) {
Dw(i,i) = 0.5*I*pi;
}
Complex w1 = (-1.0/2.0)*(T-U);
Complex w2 = (-1.0/2.0)*(T+U);
Dw(0,0) += w1;
Dw(3,3) += w1;
Dw(1,1) += -1.0*w1;
Dw(2,2) += -1.0*w1;
Dw(4,4) += w2;
Dw(5,5) += w2;
Complex z1 = 2.0*g11*g21*(T-U) - I*pi*(g11*g11+g21*g21);
Complex z2 = 2.0*g21*g12*(T-U) - I*pi*(g21*g21+g12*g12);
Complex z3 = 2.0*g22*g11*(T-U) - I*pi*(g22*g22+g11*g11);
Complex z4 = 2.0*g12*g22*(T-U) - I*pi*(g12*g12+g22*g22);
Complex z5 = (g11*g21+g12*g22)*T - (g21*g12+g11*g22)*U
- 0.5*I*pi*(g11*g11+g12*g12+g21*g21+g22*g22);
Dz(0,0) = z1;
Dz(1,1) = z2;
Dz(2,2) = z3;
Dz(3,3) = z4;
Dz(4,4) = Dz(5,5) = z5;
G2 = Gamma2(U,T);
}
}
break;
case QQEE:
{
assert(iswap==0);
unsigned int numGauge = 1, numBrokenGauge = 2;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = R0(1,0) = 1.0;
if (oneLoop) {
double g11 = g_Lu;
double g12 = g_Ld;
//double g21 = g_Re;
double g22 = g_Re;
Complex w1 = 0.25*I*pi;
Dw(0,0) = Dw(1,1) = w1;
Complex z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
Complex z2 = 2.0*g12*g22*(T-U) - I*pi*(g12*g12+g22*g22);
Dz(0,0) = z1;
Dz(1,1) = z2;
G2(0,0) = Gamma2Singlet()(0,0);
}
}
break;
case UUUU:
case UUUUiden:
case tRtRUU:
{
- assert(iswap==0);
unsigned int numGauge = 2, numBrokenGauge = 2;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = R0(1,1) = 1.0;
if (oneLoop) {
double g11 = g_Ru;
//double g12 = g_Ru;
//double g21 = g_Ru;
double g22 = g_Ru;
// There is no Dw contribution for two SU(2) singlets.
- Complex z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
+ Complex z1(0.);
+ if(iswap==0) {
+ z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
+ }
+ else if(iswap==1) {
+ z1 =-2.0*g11*g22*U + (T-I*pi)*(g11*g11+g22*g22);
+ }
+ else if(iswap==2) {
+ z1 = 2.0*g11*g22*T + (U-I*pi)*(g11*g11+g22*g22);
+ }
Dz(0,0) = Dz(1,1) = z1;
}
}
break;
case UUDD:
case tRtRDD:
{
- assert(iswap==0);
unsigned int numGauge = 2, numBrokenGauge = 2;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = R0(1,1) = 1.0;
if (oneLoop) {
double g11 = g_Ru;
//double g12 = g_Ru;
//double g21 = g_Rd;
double g22 = g_Rd;
// There is no Dw contribution for two SU(2) singlets.
- Complex z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
+ Complex z1(0.);
+ if(iswap==0) {
+ z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
+ }
+ else if(iswap==1) {
+ z1 =-2.0*g11*g22*U + (T-I*pi)*(g11*g11+g22*g22);
+ }
+ else if(iswap==2) {
+ z1 = 2.0*g11*g22*T + (U-I*pi)*(g11*g11+g22*g22);
+ }
+ else
+ assert(false);
Dz(0,0) = Dz(1,1) = z1;
}
}
break;
case UULL:
{
assert(iswap==0);
unsigned int numGauge = 1, numBrokenGauge = 2;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = R0(1,0) = 1.0;
if (oneLoop) {
double g11 = g_Lnu;
double g12 = g_Le;
//double g21 = g_Ru;
double g22 = g_Ru;
Complex w1 = 0.25*I*pi;
Dw(0,0) = Dw(1,1) = w1;
Complex z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
Complex z2 = 2.0*g12*g22*(T-U) - I*pi*(g12*g12+g22*g22);
Dz(0,0) = z1;
Dz(1,1) = z2;
G2(0,0) = Gamma2Singlet()(0,0);
}
}
break;
case UUEE:
{
assert(iswap==0);
unsigned int numGauge = 1, numBrokenGauge = 1;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = 1.0;
if (oneLoop) {
double g11 = g_Ru;
//double g12 = g_Ru;
//double g21 = g_Re;
double g22 = g_Re;
// There is no Dw contribution for two SU(2) singlets.
Complex z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
Dz(0,0) = z1;
}
}
break;
case DDDD:
case DDDDiden:
{
- assert(iswap==0);
unsigned int numGauge = 2, numBrokenGauge = 2;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = R0(1,1) = 1.0;
if (oneLoop) {
double g11 = g_Rd;
//double g12 = g_Rd;
//double g21 = g_Rd;
double g22 = g_Rd;
// There is no Dw contribution for two SU(2) singlets.
- Complex z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
+ Complex z1(0.);
+ if(iswap==0) {
+ z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
+ }
+ else if(iswap==1) {
+ z1 =-2.0*g11*g22*U +(T-I*pi)*(g11*g11+g22*g22);
+ }
+ else if(iswap==2) {
+ z1 = 2.0*g11*g22*T +(U-I*pi)*(g11*g11+g22*g22);
+ }
+ else
+ assert(false);
Dz(0,0) = Dz(1,1) = z1;
}
}
break;
case DDLL:
{
assert(iswap==0);
unsigned int numGauge = 1, numBrokenGauge = 2;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = R0(1,0) = 1.0;
if (oneLoop) {
double g11 = g_Lnu;
double g12 = g_Le;
//double g21 = g_Rd;
double g22 = g_Rd;
Complex w1 = 0.25*I*pi;
Dw(0,0) = Dw(1,1) = w1;
Complex z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
Complex z2 = 2.0*g12*g22*(T-U) - I*pi*(g12*g12+g22*g22);
Dz(0,0) = z1;
Dz(1,1) = z2;
G2(0,0) = Gamma2Singlet()(0,0);
}
}
break;
case DDEE:
{
assert(iswap==0);
unsigned int numGauge = 1, numBrokenGauge = 1;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0 *= 0.0; Dw = Dz *= 0.0;
R0(0,0) = 1.0;
if (oneLoop) {
double g11 = g_Rd;
//double g12 = g_Rd;
//double g21 = g_Re;
double g22 = g_Re;
// There is no Dw contribution for two SU(2) singlets.
Complex z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
Dz(0,0) = z1;
}
}
break;
case LLLL:
case LLLLiden:
{
assert(iswap==0);
unsigned int numGauge = 2, numBrokenGauge = 6;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,1) = R0(1,1) = R0(2,1) = R0(3,1) = 1.0;
R0(0,0) = R0(3,0) = 0.25;
R0(1,0) = R0(2,0) = -0.25;
R0(4,0) = R0(5,0) = 0.5;
if (oneLoop) {
double g11 = g_Lnu;
double g12 = g_Le;
double g21 = g_Lnu;
double g22 = g_Le;
for (int i=0; i<6; i++) {
Dw(i,i) = 0.5*I*pi;
}
Complex w1 = (-1.0/2.0)*(T-U);
Complex w2 = (-1.0/2.0)*(T+U);
Dw(0,0) += w1;
Dw(3,3) += w1;
Dw(1,1) += -1.0*w1;
Dw(2,2) += -1.0*w1;
Dw(4,4) += w2;
Dw(5,5) += w2;
Complex z1 = 2.0*g11*g21*(T-U) - I*pi*(g11*g11+g21*g21);
Complex z2 = 2.0*g21*g12*(T-U) - I*pi*(g21*g21+g12*g12);
Complex z3 = 2.0*g22*g11*(T-U) - I*pi*(g22*g22+g11*g11);
Complex z4 = 2.0*g12*g22*(T-U) - I*pi*(g12*g12+g22*g22);
Complex z5 = (g11*g21+g12*g22)*T - (g21*g12+g11*g22)*U
- 0.5*I*pi*(g11*g11+g12*g12+g21*g21+g22*g22);
Dz(0,0) = z1;
Dz(1,1) = z2;
Dz(2,2) = z3;
Dz(3,3) = z4;
Dz(4,4) = Dz(5,5) = z5;
G2 = Gamma2(U,T);
}
}
break;
case LLEE:
{
assert(iswap==0);
unsigned int numGauge = 1, numBrokenGauge = 2;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = R0(1,0) = 1.0;
if (oneLoop) {
double g11 = g_Lnu;
double g12 = g_Le;
//double g21 = g_Re;
double g22 = g_Re;
Complex w1 = 0.25*I*pi;
Dw(0,0) = Dw(1,1) = w1;
Complex z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
Complex z2 = 2.0*g12*g22*(T-U) - I*pi*(g12*g12+g22*g22);
Dz(0,0) = z1;
Dz(1,1) = z2;
G2(0,0) = Gamma2Singlet()(0,0);
}
}
break;
case EEEE:
case EEEEiden:
{
assert(iswap==0);
unsigned int numGauge = 1, numBrokenGauge = 1;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = 1.0;
if (oneLoop) {
double g11 = g_Re;
//double g12 = g_Re;
//double g21 = g_Re;
double g22 = g_Re;
// There is no Dw contribution for two SU(2) singlets.
Complex z1 = 2.0*g11*g22*(T-U) - I*pi*(g11*g11+g22*g22);
Dz(0,0) = z1;
}
}
break;
case QQWW:
case LLWW:
{
assert(iswap==0);
unsigned int numGauge = 5, numBrokenGauge = 20;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = 1.0; R0(0,1) = 0.5;
R0(1,0) = 1.0; R0(1,1) = -0.5;
R0(2,0) = cos2; R0(2,2) = -0.5*sin*cos; R0(2,3) = -0.5*sin*cos; R0(2,4) = sin2;
R0(3,0) = sin*cos; R0(3,2) = 0.5*cos2; R0(3,3) = -0.5*sin2; R0(3,4) = -sin*cos;
R0(4,0) = sin*cos; R0(4,2) = -0.5*sin2; R0(4,3) = 0.5*cos2; R0(4,4) = -sin*cos;
R0(5,0) = sin2; R0(5,2) = 0.5*sin*cos; R0(5,3) = 0.5*sin*cos; R0(5,4) = cos2;
R0(6,0) = 1.0; R0(6,1) = -0.5;
R0(7,0) = 1.0; R0(7,1) = 0.5;
R0(8,0) = cos2; R0(8,2) = 0.5*sin*cos; R0(8,3) = 0.5*sin*cos; R0(8,4) = sin2;
R0(9,0) = sin*cos; R0(9,2) = -0.5*cos2; R0(9,3) = 0.5*sin2; R0(9,4) = -sin*cos;
R0(10,0) = sin*cos; R0(10,2) = 0.5*sin2; R0(10,3) = -0.5*cos2; R0(10,4) = -sin*cos;
R0(11,0) = sin2; R0(11,2) = -0.5*sin*cos; R0(11,3) = -0.5*sin*cos; R0(11,4) = cos2;
R0(12,1) = -cos/sqrt(2.0); R0(12,3) = -sin/sqrt(2.0);
R0(13,1) = -sin/sqrt(2.0); R0(13,3) = cos/sqrt(2.0);
R0(14,1) = cos/sqrt(2.0); R0(14,2) = -sin/sqrt(2.0);
R0(15,1) = sin/sqrt(2.0); R0(15,2) = cos/sqrt(2.0);
R0(16,1) = -cos/sqrt(2.0); R0(16,2) = -sin/sqrt(2.0);
R0(17,1) = -sin/sqrt(2.0); R0(17,2) = cos/sqrt(2.0);
R0(18,1) = cos/sqrt(2.0); R0(18,3) = -sin/sqrt(2.0);
R0(19,1) = sin/sqrt(2.0); R0(19,3) = cos/sqrt(2.0);
if (oneLoop) {
double gW = g_W;
double g1(0.),g2(0.);
if (process==QQWW) {
g1 = g_Lu;
g2 = g_Ld;
}
else if (process==LLWW) {
g1 = g_Lnu;
g2 = g_Le;
}
Complex w1 = T-U+5.0/4.0*I*pi;
Complex w2 = -T+U+5.0/4.0*I*pi;
Complex w3 = -0.5*(T+U) + 3.0/4.0*I*pi;
Complex w4 = 0.25*I*pi;
Dw(0,0) = Dw(7,7) = w1;
Dw(1,1) = Dw(6,6) = w2;
for (unsigned int i=12; i<20; i++) {
Dw(i,i) = w3;
}
Dw(2,2) = Dw(3,3) = Dw(4,4) = Dw(5,5) = w4;
Dw(8,8) = Dw(9,9) = Dw(10,10) = Dw(11,11) = w4;
Complex z1 = 2.0*g1*gW*(U-T) - I*pi*(g1*g1+gW*gW);
Complex z2 = 2.0*g1*gW*(T-U) - I*pi*(g1*g1+gW*gW);
Complex z3 = 2.0*g2*gW*(U-T) - I*pi*(g2*g2+gW*gW);
Complex z4 = 2.0*g2*gW*(T-U) - I*pi*(g2*g2+gW*gW);
Complex z5 = -(g2*gW)*T + (g1*gW)*U - I*pi*(g1*g2+g1*gW-g2*gW);
Complex z6 = (g1*gW)*T - (g2*gW)*U - I*pi*(g1*g2+g1*gW-g2*gW);
Complex z7 = -I*pi*g1*g1;
Complex z8 = -I*pi*g2*g2;
Dz(0,0) = z1;
Dz(1,1) = z2;
Dz(2,2) = Dz(3,3) = Dz(4,4) = Dz(5,5) = z7;
Dz(6,6) = z3;
Dz(7,7) = z4;
Dz(8,8) = Dz(9,9) = Dz(10,10) = Dz(11,11) = z8;
Dz(12,12) = Dz(13,13) = Dz(16,16) = Dz(17,17) = z5;
Dz(14,14) = Dz(15,15) = Dz(18,18) = Dz(19,19) = z6;
G2 = Gamma2w(U,T);
}
}
break;
case QQPhiPhi:
case LLPhiPhi:
{
assert(iswap==0);
unsigned int numGauge = 2, numBrokenGauge = 14;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = 0.25; R0(0,1) = 1.0;
R0(1,0) = -1.0/8.0; R0(1,1) = 0.5;
R0(2,0) = I/8.0; R0(2,1) = -I/2.0;
R0(3,0) = -I/8.0; R0(3,1) = I/2.0;
R0(4,0) = -1.0/8.0; R0(4,1) = 1.0/2.0;
R0(5,0) = -1.0/4.0; R0(5,1) = 1.0;
R0(6,0) = 1.0/8.0; R0(6,1) = 1.0/2.0;
R0(7,0) = -I/8.0; R0(7,1) = -I/2.0;
R0(8,0) = I/8.0; R0(8,1) = I/2.0;
R0(9,0) = 1.0/8.0; R0(9,1) = 1.0/2.0;
R0(10,0) = -1.0/(2.0*sqrt(2.0));
R0(11,0) = I/(2.0*sqrt(2.0));
R0(12,0) = -1.0/(2.0*sqrt(2.0));
R0(13,0) = -I/(2.0*sqrt(2.0));
if (oneLoop) {
double g1(0.),g2(0.);
if (process==QQPhiPhi) {
g1 = g_Lu;
g2 = g_Ld;
}
else if (process==LLPhiPhi) {
g1 = g_Lnu;
g2 = g_Le;
}
else
assert(false);
double g3 = g_phiPlus;
Complex w0 = 0.25*I*pi;
Complex w1 = 0.5*(T-U) + 0.5*I*pi;
Complex w2 = -0.5*(T-U) + 0.5*I*pi;
Complex w3 = 0.25*I*(T-U);
Complex w4 = -0.25*(T+U) + 0.25*I*pi;
Dw(0,0) = w2;
Dw(1,1) = w0; Dw(1,2) = w3; Dw(1,3) = -w3; Dw(1,4) = w0;
Dw(2,1) = -w3; Dw(2,2) = w0; Dw(2,3) = -w0; Dw(2,4) = -w3;
Dw(3,1) = w3; Dw(3,2) = -w0; Dw(3,3) = w0; Dw(3,4) = w3;
Dw(4,1) = w0; Dw(4,2) = w3; Dw(4,3) = -w3; Dw(4,4) = w0;
Dw(5,5) = w1;
Dw(6,6) = w0; Dw(6,7) = -w3; Dw(6,8) = w3; Dw(6,9) = w0;
Dw(7,6) = w3; Dw(7,7) = w0; Dw(7,8) = -w0; Dw(7,9) = w3;
Dw(8,6) = -w3; Dw(8,7) = -w0; Dw(8,8) = w0; Dw(8,9) = -w3;
Dw(9,6) = w0; Dw(9,7) = -w3; Dw(9,8) = w3; Dw(9,9) = w0;
Dw(10,10) = w4; Dw(10,11) = I*w4;
Dw(11,10) = -I*w4; Dw(11,11) = w4;
Dw(12,12) = w4; Dw(12,13) = -I*w4;
Dw(13,12) = I*w4; Dw(13,13) = w4;
Complex z1 = 2.0*g3*g1*(T-U) - I*pi*(g3*g3+g1*g1);
Complex z2 = 2.0*g3*g2*(T-U) - I*pi*(g3*g3+g2*g2);
Complex z3 = -I*pi*g1*g1;
Complex z4 = 0.5*I*g1*(T-U);
Complex z5 = 0.25*I*pi;
Complex z6 = -I*pi*g2*g2;
Complex z7 = 0.5*I*g2*(T-U);
Complex z8 = g3*g1*T-g3*g2*U-I*pi*(g1*g2-g2*g3+g1*g3);
Complex z9 = 0.5*I*g2*T-0.5*I*g1*U+pi/2.0*g2-pi/2.0*g1+pi/2.0*g3;
Dz(0,0) = z1;
Dz(1,1) = z3; Dz(1,2) = -z4; Dz(1,3) = z4; Dz(1,4) = -z5;
Dz(2,1) = z4; Dz(2,2) = z3; Dz(2,3) = z5; Dz(2,4) = z4;
Dz(3,1) = -z4; Dz(3,2) = z5; Dz(3,3) = z3; Dz(3,4) = -z4;
Dz(4,1) = -z5; Dz(4,2) = -z4; Dz(4,3) = z4; Dz(4,4) = z3;
Dz(5,5) = z2;
Dz(6,6) = z6; Dz(6,7) = -z7; Dz(6,8) = z7; Dz(6,9) = -z5;
Dz(7,6) = z7; Dz(7,7) = z6; Dz(7,8) = z5; Dz(7,9) = z7;
Dz(8,6) = -z7; Dz(8,7) = z5; Dz(8,8) = z6; Dz(8,9) = -z7;
Dz(9,6) = -z5; Dz(9,7) = -z7; Dz(9,8) = z7; Dz(9,9) = z6;
Dz(10,10) = z8; Dz(10,11) = -z9;
Dz(11,10) = z9; Dz(11,11) = z8;
Dz(12,12) = z8; Dz(12,13) = z9;
Dz(13,12) = -z9; Dz(13,13) = z8;
G2 = Gamma2(U,T);
}
}
break;
case QQWG:
{
assert(iswap==0);
unsigned int numGauge = 1, numBrokenGauge = 6;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = 1.0/sqrt(2);
R0(1,0) = 1.0/sqrt(2);
R0(2,0) = cos/2.0;
R0(3,0) = sin/2.0;
R0(4,0) = -cos/2.0;
R0(5,0) = -sin/2.0;
if (oneLoop) {
double g1 = g_Lu;
double g2 = g_Ld;
double gW = g_W;
Complex w1 = -0.5*(T+U) + 0.75*I*pi;
Complex w2 = 0.25*I*pi;
Dw(0,0) = Dw(1,1) = w1;
Dw(2,2) = Dw(3,3) = Dw(4,4) = Dw(5,5) = w2;
Complex z1 = gW*g1*T - gW*g2*U - I*pi*(g1*g2+g1*gW-g2*gW);
Complex z2 = gW*g1*U - gW*g2*T - I*pi*(g2*g1+g1*gW-g2*gW);
Complex z3 = -I*pi*g1*g1;
Complex z4 = -I*pi*g2*g2;
Dz(0,0) = z1;
Dz(1,1) = z2;
Dz(2,2) = z3;
Dz(3,3) = z3;
Dz(4,4) = z4;
Dz(5,5) = z4;
G2(0,0) = -7.0/4.0*I*pi + (U+T);
}
}
break;
case QQBG:
{
assert(iswap==0);
unsigned int numGauge = 1, numBrokenGauge = 4;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = -sin;
R0(1,0) = cos;
R0(2,0) = -sin;
R0(3,0) = cos;
if (oneLoop) {
double g1 = g_Lu;
double g2 = g_Ld;
Complex w2 = 0.25*I*pi;
Dw(0,0) = Dw(1,1) = Dw(2,2) = Dw(3,3) = w2;
Complex z3 = -I*pi*g1*g1;
Complex z4 = -I*pi*g2*g2;
Dz(0,0) = z3;
Dz(1,1) = z3;
Dz(2,2) = z4;
Dz(3,3) = z4;
G2(0,0) = Gamma2Singlet()(0,0);
}
}
break;
case QQGG:
case QtQtGG:
{
unsigned int numGauge = 3, numBrokenGauge = 6;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = R0(3,0) = 1.0;
R0(1,1) = R0(4,1) = 1.0;
R0(2,2) = R0(5,2) = 1.0;
double g1 = g_Lu;
double g2 = g_Ld;
Complex w2(0.),z3(0.),z4(0.);
if (oneLoop) {
if(iswap==0) {
w2 = 0.25*I*pi;
z3 = -I*pi*g1*g1;
z4 = -I*pi*g2*g2;
G2(0,0) = G2(1,1) = G2(2,2) = Gamma2Singlet()(0,0);
}
else if(iswap==1) {
w2 = 0.25*(-T+I*pi);
z3 = (T-I*pi)*sqr(g1);
z4 = (T-I*pi)*sqr(g2);
G2(0,0) = G2(1,1) = G2(2,2) = Gamma2SingletST(T)(0,0);
}
+ else if(iswap==2) {
+ w2 = 0.25*(-U+I*pi);
+ z3 = (U-I*pi)*g1*g1;
+ z4 = (U-I*pi)*g2*g2;
+ G2(0,0) = G2(1,1) = G2(2,2) = Gamma2SingletSU(U)(0,0);
+ }
else
assert(false);
Dw(0,0) = Dw(1,1) = Dw(2,2) = Dw(3,3) = Dw(4,4) = Dw(5,5) = w2;
Dz(0,0) = Dz(1,1) = Dz(2,2) = z3;
Dz(3,3) = Dz(4,4) = Dz(5,5) = z4;
}
}
break;
case UUBB:
case DDBB:
case EEBB:
{
assert(iswap==0);
unsigned int numGauge = 1, numBrokenGauge = 4;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = sin2;
R0(1,0) = -sin*cos;
R0(2,0) = -sin*cos;
R0(3,0) = cos2;
if (oneLoop) {
double g1(0.);
if (process==UUBB) {
g1 = g_Ru;
}
else if (process==DDBB) {
g1 = g_Rd;
}
else if (process==EEBB) {
g1 = g_Re;
}
else
assert(false);
// There is no Dw contribution for two SU(2) singlets.
Complex z1 = -I*pi*g1*g1;
Dz(0,0) = Dz(1,1) = Dz(2,2) = Dz(3,3) = z1;
}
}
break;
case UUPhiPhi:
case DDPhiPhi:
case EEPhiPhi:
{
assert(iswap==0);
unsigned int numGauge = 1, numBrokenGauge = 5;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = 1.0;
R0(1,0) = 0.5;
R0(2,0) = -0.5*I;
R0(3,0) = 0.5*I;
R0(4,0) = 0.5;
if (oneLoop) {
double g1(0.);
if (process==UUPhiPhi) {
g1 = g_Ru;
}
else if (process==DDPhiPhi) {
g1 = g_Rd;
}
else if (process==EEPhiPhi) {
g1 = g_Re;
}
double g3 = g_phiPlus;
Dw(0,0) = Dw(1,4) = Dw(4,1) = 0.25*I*pi;
Dw(2,3) = Dw(3,2) = -0.25*I*pi;
Complex z1 = 2.0*g3*g1*(T-U) - I*pi*(g3*g3+g1*g1);
Complex z2 = 0.5*I*g1*g1;
Complex z3 = -I*pi*g1*g1;
Complex z4 = 0.25*I*pi;
Dz(0,0) = z1;
Dz(1,1) = z3; Dz(1,2) = -z2; Dz(1,3) = z2; Dz(1,4) = -z4;
Dz(2,1) = z2; Dz(2,2) = z3; Dz(2,3) = z4; Dz(2,4) = z2;
Dz(3,1) = -z2; Dz(3,2) = z4; Dz(3,3) = z3; Dz(3,4) = -z2;
Dz(4,1) = -z4; Dz(4,2) = -z2; Dz(4,3) = z2; Dz(4,4) = z3;
G2(0,0) = Gamma2Singlet()(0,0);
}
}
break;
case UUBG:
case DDBG:
{
assert(iswap==0);
unsigned int numGauge = 1, numBrokenGauge = 2;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = -sin;
R0(1,0) = cos;
if (oneLoop) {
double g1(0.);
if (process==UUBG) {
g1 = g_Ru;
}
else if (process==DDBG) {
g1 = g_Rd;
}
else
assert(false);
// There is no Dw contribution for two SU(2) singlets.
Complex z1 = -I*pi*g1*g1;
Dz(0,0) = Dz(1,1) = z1;
}
}
break;
case UUGG:
case tRtRGG:
case DDGG:
{
unsigned int numGauge = 3, numBrokenGauge = 3;
R0 = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numGauge);
G2 = boost::numeric::ublas::zero_matrix<Complex>(numGauge,numGauge);
Dw = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Dz = boost::numeric::ublas::zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
R0(0,0) = R0(1,1) = R0(2,2) = 1.0;
if (oneLoop) {
double g1(0.);
if ((process==UUGG)||(process==tRtRGG)) {
g1 = g_Ru;
}
else if (process==DDGG) {
g1 = g_Rd;
}
else
assert(false);
Complex z1(0.);
// There is no Dw contribution for two SU(2) singlets.
if(iswap==0) {
z1 = -I*pi*sqr(g1);
}
else if(iswap==1) {
z1 = (T-I*pi)*sqr(g1);
}
+ else if(iswap==2) {
+ z1 = (U-I*pi)*sqr(g1);
+ }
else
assert(false);
Dz(0,0) = Dz(1,1) = Dz(2,2) = z1;
}
}
break;
default:
assert(false);
}
double aW = ElectroWeakReweighter::coupling()->aW(mu);
double aZ = ElectroWeakReweighter::coupling()->aZ(mu);
Energy mZ = ElectroWeakReweighter::coupling()->mZ();
Energy mW = ElectroWeakReweighter::coupling()->mW();
if (!oneLoop) {
return R0;
}
boost::numeric::ublas::matrix<Complex> output(R0);
boost::numeric::ublas::matrix<Complex> temp(R0.size1(),R0.size2());
boost::numeric::ublas::axpy_prod(R0,G2,temp);
output+=aW/(4.0*pi)*4.0*log(mW/mu)*temp;
boost::numeric::ublas::axpy_prod(Dw,R0,temp);
output+=aW/(4.0*pi)*4.0*log(mW/mu)*temp;
boost::numeric::ublas::axpy_prod(Dz,R0,temp);
output+=aZ/(4.0*pi)*4.0*log(mZ/mu)*temp;
return output;
}
diff --git a/MatrixElement/EW/ElectroWeakReweighter.cc b/MatrixElement/EW/ElectroWeakReweighter.cc
--- a/MatrixElement/EW/ElectroWeakReweighter.cc
+++ b/MatrixElement/EW/ElectroWeakReweighter.cc
@@ -1,907 +1,1924 @@
// -*- C++ -*-
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ElectroWeakReweighter class.
//
#include "ElectroWeakReweighter.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "boost/numeric/ublas/matrix.hpp"
#include "boost/numeric/ublas/operation.hpp"
#include "EWProcess.h"
#include "HighEnergyMatching.h"
#include "ElectroWeakMatching.h"
#include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/SpinorBarWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "ThePEG/Helicity/epsilon.h"
using namespace Herwig;
tEWCouplingsPtr ElectroWeakReweighter::staticEWCouplings_ = tEWCouplingsPtr();
ElectroWeakReweighter::ElectroWeakReweighter() {}
ElectroWeakReweighter::~ElectroWeakReweighter() {}
IBPtr ElectroWeakReweighter::clone() const {
return new_ptr(*this);
}
IBPtr ElectroWeakReweighter::fullclone() const {
return new_ptr(*this);
}
void ElectroWeakReweighter::persistentOutput(PersistentOStream & os) const {
os << EWCouplings_ << collinearSudakov_ << softSudakov_;
}
void ElectroWeakReweighter::persistentInput(PersistentIStream & is, int) {
is >> EWCouplings_ >> collinearSudakov_ >> softSudakov_;
}
// The following static variable is needed for the type
// description system in ThePEG.
DescribeClass<ElectroWeakReweighter,ReweightBase>
describeHerwigElectroWeakReweighter("Herwig::ElectroWeakReweighter", "HwMEEW.so");
void ElectroWeakReweighter::Init() {
static ClassDocumentation<ElectroWeakReweighter> documentation
("There is no documentation for the ElectroWeakReweighter class");
static Reference<ElectroWeakReweighter,EWCouplings> interfaceEWCouplings
("EWCouplings",
"The object to calculate the electroweak couplings",
&ElectroWeakReweighter::EWCouplings_, false, false, true, false, false);
static Reference<ElectroWeakReweighter,CollinearSudakov> interfaceCollinearSudakov
("CollinearSudakov",
"The collinear Sudakov",
&ElectroWeakReweighter::collinearSudakov_, false, false, true, false, false);
static Reference<ElectroWeakReweighter,SoftSudakov> interfaceSoftSudakov
("SoftSudakov",
"The soft Sudakov",
&ElectroWeakReweighter::softSudakov_, false, false, true, false, false);
}
namespace {
void axpy_prod_local(const boost::numeric::ublas::matrix<Complex> & A,
const boost::numeric::ublas::matrix<complex<InvEnergy2> > & B,
boost::numeric::ublas::matrix<complex<InvEnergy2> > & C) {
assert(A.size2()==B.size1());
C.resize(A.size1(),B.size2());
for(unsigned int ix=0;ix<A.size1();++ix) {
for(unsigned int iy=0;iy<B.size2();++iy) {
C(ix,iy) = ZERO;
for(unsigned int iz=0;iz<A.size2();++iz) {
C(ix,iy) += A(ix,iz)*B(iz,iy);
}
}
}
}
void axpy_prod_local(const boost::numeric::ublas::matrix<complex<InvEnergy2> > & A,
const boost::numeric::ublas::vector<complex<Energy2> > & B,
boost::numeric::ublas::vector<Complex > & C) {
assert(A.size2()==B.size());
C.resize(A.size1());
for(unsigned int ix=0;ix<A.size1();++ix) {
C(ix) = ZERO;
for(unsigned int iz=0;iz<A.size2();++iz) {
C(ix) += A(ix,iz)*B(iz);
}
}
}
void axpy_prod_local(const boost::numeric::ublas::matrix<complex<InvEnergy2> > & A,
const boost::numeric::ublas::matrix<Complex> & B,
boost::numeric::ublas::matrix<complex<InvEnergy2> > & C) {
assert(A.size2()==B.size1());
C.resize(A.size1(),B.size2());
for(unsigned int ix=0;ix<A.size1();++ix) {
for(unsigned int iy=0;iy<B.size2();++iy) {
C(ix,iy) = ZERO;
for(unsigned int iz=0;iz<A.size2();++iz) {
C(ix,iy) += A(ix,iz)*B(iz,iy);
}
}
}
}
}
double ElectroWeakReweighter::weight() const {
EWCouplings_->initialize();
staticEWCouplings_ = EWCouplings_;
// cerr << "aEM\n";
// for(Energy scale=10.*GeV; scale<10*TeV; scale *= 1.1) {
// cerr << scale/GeV << " "
// << EWCouplings_->aEM(scale) << "\n";
// }
// cerr << "aS\n";
// for(Energy scale=10.*GeV; scale<10*TeV; scale *= 1.4) {
// cerr << scale/GeV << " "
// << EWCouplings_->aS(scale) << "\n";
// }
// cerr << "y_t\n";
// for(Energy scale=10.*GeV; scale<10*TeV; scale *= 1.4) {
// cerr << scale/GeV << " "
// << EWCouplings_->y_t(scale) << "\n";
// }
// cerr << "lambda\n";
// for(Energy scale=91.2*GeV; scale<10*TeV; scale *= 1.4) {
// cerr << scale/GeV << " "
// << EWCouplings_->lambda(scale) << "\n";
// }
// cerr << "vev\n";
// for(Energy scale=91.2*GeV; scale<10*TeV; scale *= 1.4) {
// cerr << scale/GeV << " "
// << EWCouplings_->vev(scale)/GeV << "\n";
// }
// collinearSudakov_->makePlots();
// Energy2 s = sqr(5000.*GeV);
// Energy2 t = -0.25*s;
// Energy2 u = -0.75*s;
// testEvolution(s,t,u);
- cerr << subProcess() << "\n";
- cerr << *subProcess() << "\n";
- cerr << subProcess()->outgoing()[0] << *subProcess()->outgoing()[0] << "\n";
- cerr << subProcess()->outgoing()[0]->spinInfo() << "\n";
- cerr << subProcess()->outgoing()[0]->spinInfo()->productionVertex() << "\n";
+ // cerr << subProcess() << "\n";
+ // cerr << *subProcess() << "\n";
+ // cerr << subProcess()->outgoing()[0] << *subProcess()->outgoing()[0] << "\n";
+ // cerr << subProcess()->outgoing()[0]->spinInfo() << "\n";
+ // cerr << subProcess()->outgoing()[0]->spinInfo()->productionVertex() << "\n";
if(subProcess()->outgoing().size()!=2)
return 1.;
// processes with gg initial-state
if(subProcess()->incoming().first->id()==ParticleID::g &&
subProcess()->incoming().second->id()==ParticleID::g) {
if(subProcess()->outgoing()[0]->id()==ParticleID::g &&
subProcess()->outgoing()[1]->id()==ParticleID::g)
return 1.;
else if(abs(subProcess()->outgoing()[0]->id())<=5 &&
subProcess()->outgoing()[0]->id()==-subProcess()->outgoing()[1]->id()) {
return reweightggqqbar();
}
else
assert(false);
}
// processes with q qbar initial-state
- else if(abs(subProcess()->incoming().first->id())<=5 &&
- subProcess()->incoming().first->id()==-subProcess()->incoming().second->id()) {
- if(subProcess()->outgoing()[0]->id()==ParticleID::g &&
- subProcess()->outgoing()[1]->id()==ParticleID::g)
- return reweightqqbargg();
- else
- assert(false);
+ else if((subProcess()->incoming().first ->id() > 0 &&
+ subProcess()->incoming().first ->id()<= 5 &&
+ subProcess()->incoming().second->id() < 0 &&
+ subProcess()->incoming().second->id()>=-5) ||
+ (subProcess()->incoming().second->id() > 0 &&
+ subProcess()->incoming().second->id()<= 5 &&
+ subProcess()->incoming().first ->id() < 0 &&
+ subProcess()->incoming().first ->id()>=-5)) {
+ // identical flavour q qbar
+ if(subProcess()->incoming().first ->id() == -subProcess()->incoming().second->id()) {
+ // q qbar -> gg
+ if(subProcess()->outgoing()[0]->id()==ParticleID::g &&
+ subProcess()->outgoing()[1]->id()==ParticleID::g)
+ return reweightqqbargg();
+ // q qbar -> q' q'bar
+ else if(subProcess()->outgoing()[0]->id() == -subProcess()->outgoing()[1]->id() &&
+ abs(subProcess()->outgoing()[0]->id())<=5)
+ return reweightqqbarqqbarS();
+ }
+ // different flavour q qbar
+ else {
+ if((subProcess()->outgoing()[0]->id() > 0 &&
+ subProcess()->outgoing()[0]->id()<= 5 &&
+ subProcess()->outgoing()[1]->id() < 0 &&
+ subProcess()->outgoing()[1]->id()>=-5) ||
+ (subProcess()->outgoing()[1]->id() > 0 &&
+ subProcess()->outgoing()[1]->id()<= 5 &&
+ subProcess()->outgoing()[0]->id() < 0 &&
+ subProcess()->outgoing()[0]->id()>=-5)) {
+ return reweightqqbarqqbarT();
+ }
+ else
+ assert(false);
+ }
}
// processes with q g initial-state
else if((subProcess()->incoming().first ->id()> 0 &&
subProcess()->incoming().first ->id()<=5 &&
subProcess()->incoming().second->id()==ParticleID::g) ||
(subProcess()->incoming().second->id()> 0 &&
subProcess()->incoming().second->id()<=5 &&
subProcess()->incoming().first ->id()==ParticleID::g)) {
// qg -> qg
if((subProcess()->outgoing()[0]->id()> 0 &&
subProcess()->outgoing()[0]->id()<=5 &&
subProcess()->outgoing()[1]->id()==ParticleID::g) ||
(subProcess()->outgoing()[1]->id()> 0 &&
subProcess()->outgoing()[1]->id()<=5 &&
subProcess()->outgoing()[0]->id()==ParticleID::g))
return reweightqgqg();
// unknown
else
assert(false);
}
// processes with qbar g initial-state
else if((subProcess()->incoming().first ->id()>=-5 &&
subProcess()->incoming().first ->id()< 0 &&
subProcess()->incoming().second->id()==ParticleID::g) ||
(subProcess()->incoming().second->id()>=-5 &&
subProcess()->incoming().second->id()< 0 &&
subProcess()->incoming().first ->id()==ParticleID::g)) {
if((subProcess()->outgoing()[0]->id()>=-5 &&
subProcess()->outgoing()[0]->id()< 0 &&
subProcess()->outgoing()[1]->id()==ParticleID::g) ||
(subProcess()->outgoing()[1]->id()>=-5 &&
subProcess()->outgoing()[1]->id()< 0 &&
subProcess()->outgoing()[0]->id()==ParticleID::g))
return reweightqbargqbarg();
else
assert(false);
}
+ // processes with q q initial-state
+ else if( subProcess()->incoming().first ->id()> 0 &&
+ subProcess()->incoming().first ->id()<=5 &&
+ subProcess()->incoming().second->id()> 0 &&
+ subProcess()->incoming().second->id()<=5 ) {
+ if(subProcess()->outgoing()[0]->id()> 0 &&
+ subProcess()->outgoing()[0]->id()<=5 &&
+ subProcess()->outgoing()[1]->id()> 0 &&
+ subProcess()->outgoing()[1]->id()<=5)
+ return reweightqqqq();
+ else
+ assert(false);
+ }
+ // processes with qbar qbar initial-state
+ else if( subProcess()->incoming().first ->id()< 0 &&
+ subProcess()->incoming().first ->id()>= -5 &&
+ subProcess()->incoming().second->id()< 0 &&
+ subProcess()->incoming().second->id()>= -5 ) {
+ if(subProcess()->outgoing()[0]->id()< 0 &&
+ subProcess()->outgoing()[0]->id()>= -5 &&
+ subProcess()->outgoing()[1]->id()< 0 &&
+ subProcess()->outgoing()[1]->id()>= -5)
+ return reweightqbarqbarqbarqbar();
+ else
+ assert(false);
+ }
// unknown initial-state
else
assert(false);
assert(false);
staticEWCouplings_ = tEWCouplingsPtr();
}
void ElectroWeakReweighter::testEvolution(Energy2 s,Energy2 t, Energy2 u) const {
Energy highScale = sqrt(s);
Energy ewScale = coupling()->mZ();
Energy lowScale = 50.0*GeV;
for (unsigned int i=0; i<45;++i) {
EWProcess::Process process = (EWProcess::Process)i;
cerr << "process " << process << "\n";
// result for all EW and QCD SCET contributions:
boost::numeric::ublas::matrix<complex<InvEnergy2> > highMatch_val
= HighEnergyMatching::highEnergyMatching(highScale,s,t,u,process,true,true);
boost::numeric::ublas::matrix<Complex> highRunning_val
= softSudakov_->highEnergyRunning(highScale,ewScale,s,t,u,process,0);
boost::numeric::ublas::matrix<Complex> ewMatch_val =
ElectroWeakMatching::electroWeakMatching(ewScale,s,t,u,process,true,0);
boost::numeric::ublas::matrix<Complex> lowRunning_val =
softSudakov_->lowEnergyRunning(ewScale,lowScale,s,t,u,process,0);
boost::numeric::ublas::matrix<Complex> collinearHighRunning_val =
collinearSudakov_->highEnergyRunning(highScale,ewScale,s,process,false);
boost::numeric::ublas::matrix<Complex> collinearEWMatch_val =
collinearSudakov_->electroWeakMatching(ewScale,s,process,true);
boost::numeric::ublas::matrix<Complex> collinearLowRunning_val =
collinearSudakov_->lowEnergyRunning(ewScale,lowScale,s,process);
boost::numeric::ublas::matrix<Complex> lowMatchTemp_val =
boost::numeric::ublas::zero_matrix<Complex>(ewMatch_val.size1(),ewMatch_val.size2());
for (unsigned int ii=0; ii<ewMatch_val.size1(); ++ii) {
for (unsigned int jj=0; jj<ewMatch_val.size2(); ++jj) {
lowMatchTemp_val(ii,jj) = collinearEWMatch_val(ii,jj)*ewMatch_val(ii,jj);
}
}
boost::numeric::ublas::matrix<Complex> temp(highRunning_val.size1(),collinearHighRunning_val.size2());
boost::numeric::ublas::axpy_prod(highRunning_val,collinearHighRunning_val,temp);
boost::numeric::ublas::matrix<Complex> temp2(collinearLowRunning_val.size1(),lowRunning_val.size2());
boost::numeric::ublas::axpy_prod(collinearLowRunning_val,lowRunning_val,temp2);
boost::numeric::ublas::matrix<Complex> temp3(temp2.size1(),lowMatchTemp_val.size2());
boost::numeric::ublas::axpy_prod(temp2,lowMatchTemp_val,temp3);
temp2.resize(temp3.size1(),temp.size2());
boost::numeric::ublas::axpy_prod(temp3,temp,temp2);
boost::numeric::ublas::matrix<complex<InvEnergy2> > result(temp2.size1(),highMatch_val.size2());
axpy_prod_local(temp2,highMatch_val,result);
for(unsigned int ix=0;ix<result.size1();++ix) {
for(unsigned int iy=0;iy<result.size2();++iy) {
cerr << s*result(ix,iy) << " ";
}
cerr << "\n";
}
}
}
namespace {
void SackGluonPolarizations(Lorentz5Momentum &p1,
Lorentz5Momentum &p2,
Lorentz5Momentum &p3,
Lorentz5Momentum &p4,
Energy2 s, Energy2 t, Energy2 u, Energy2 m2,
vector<LorentzVector<Complex> > & eps3,
vector<LorentzVector<Complex> > & eps4,
unsigned int iopt) {
static const Complex I(0.,1.);
// p1 is p-, p2 is p+
// p3 is k-, p4 is k+
// both final-state
if(iopt==0) {
// swap t and u due Aneesh's defn
Energy3 den1 = sqrt((u*t-sqr(m2))*(s-4.*m2));
Energy3 den2 = sqrt(s*(u*t-sqr(m2)));
LorentzVector<Complex> eps3Para = (m2+t)/den1*p1 -(m2+u)/den1*p2 +(u-t)/den1*p3;
LorentzVector<Complex> eps3Perp = 2./den2*epsilon(p1,p2,p3);
LorentzVector<Complex> eps4Para = (m2+t)/den1*p2 -(m2+u)/den1*p1 +(u-t)/den1*p4;
LorentzVector<Complex> eps4Perp = 2./den2*epsilon(p1,p2,p4);
eps3.push_back(sqrt(0.5)*(eps3Para+I*eps3Perp));
eps3.push_back(sqrt(0.5)*(eps3Para-I*eps3Perp));
eps4.push_back(sqrt(0.5)*(eps4Para+I*eps4Perp));
eps4.push_back(sqrt(0.5)*(eps4Para-I*eps4Perp));
if(m2!=ZERO) assert(false);
}
// both initial-state
else if(iopt==1) {
if(m2!=ZERO) assert(false);
LorentzVector<Complex> eps3Para( 1., 0.,0.,0.);
LorentzVector<Complex> eps3Perp( 0.,-1.,0.,0.);
LorentzVector<Complex> eps4Para(-1.,0.,0., 0.);
LorentzVector<Complex> eps4Perp( 0., 1.,0.,0.);
eps3.push_back(sqrt(0.5)*(eps3Para+I*eps3Perp));
eps3.push_back(sqrt(0.5)*(eps3Para-I*eps3Perp));
eps4.push_back(sqrt(0.5)*(eps4Para+I*eps4Perp));
eps4.push_back(sqrt(0.5)*(eps4Para-I*eps4Perp));
}
else if(iopt==2) {
// rotation into the 2,3 Breit frame
Lorentz5Momentum pa = p3-p2;
Axis axis(pa.vect().unit());
LorentzRotation rot;
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
if ( sinth > 1.e-9 )
rot.setRotate(-acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
rot.rotateX(Constants::pi);
rot.boostZ( pa.e()/pa.vect().mag());
Lorentz5Momentum ptemp=rot*p2;
Boost trans = -1./ptemp.e()*ptemp.vect();
trans.setZ(0.);
rot.boost(trans);
LorentzVector<Complex> eps3Para( 1., 0.,0.,0.);
LorentzVector<Complex> eps3Perp( 0.,-1.,0.,0.);
LorentzVector<Complex> eps4Para(-1.,0.,0., 0.);
LorentzVector<Complex> eps4Perp( 0., 1.,0.,0.);
eps3.push_back(sqrt(0.5)*(eps3Para+I*eps3Perp));
eps3.push_back(sqrt(0.5)*(eps3Para-I*eps3Perp));
eps4.push_back(sqrt(0.5)*(eps4Para+I*eps4Perp));
eps4.push_back(sqrt(0.5)*(eps4Para-I*eps4Perp));
rot = rot.invert();
for(unsigned int ix=0;ix<2;++ix) {
eps3[ix] *=rot;
eps4[ix] *=rot;
}
}
else if(iopt==3) {
// rotation into the 1,4 Breit frame
Lorentz5Momentum pa = p4-p1;
Axis axis(pa.vect().unit());
LorentzRotation rot;
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
if ( sinth > 1.e-9 )
rot.setRotate(-acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
rot.rotateX(Constants::pi);
rot.boostZ( pa.e()/pa.vect().mag());
Lorentz5Momentum ptemp=rot*p1;
Boost trans = -1./ptemp.e()*ptemp.vect();
trans.setZ(0.);
rot.boost(trans);
LorentzVector<Complex> eps3Para( 1., 0.,0.,0.);
LorentzVector<Complex> eps3Perp( 0.,-1.,0.,0.);
LorentzVector<Complex> eps4Para(-1.,0.,0., 0.);
LorentzVector<Complex> eps4Perp( 0., 1.,0.,0.);
eps3.push_back(sqrt(0.5)*(eps3Para+I*eps3Perp));
eps3.push_back(sqrt(0.5)*(eps3Para-I*eps3Perp));
eps4.push_back(sqrt(0.5)*(eps4Para+I*eps4Perp));
eps4.push_back(sqrt(0.5)*(eps4Para-I*eps4Perp));
rot = rot.invert();
for(unsigned int ix=0;ix<2;++ix) {
eps3[ix] *=rot;
eps4[ix] *=rot;
}
}
else
assert(false);
}
}
double ElectroWeakReweighter::reweightqqbargg() const {
// momenta and invariants
Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
tcPDPtr q = subProcess()->incoming().first ->dataPtr();
Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
tcPDPtr qbar = subProcess()->incoming().second->dataPtr();
if(subProcess()->incoming().first->id()<0) {
swap(p1,p2 );
swap(q ,qbar);
}
Lorentz5Momentum p3 = subProcess()->outgoing()[0]->momentum();
Lorentz5Momentum p4 = subProcess()->outgoing()[1]->momentum();
tcPDPtr g = subProcess()->outgoing()[1]->dataPtr();
Energy2 s = (p1+p2).m2();
Energy2 t = (p1-p4).m2();
Energy2 u = (p1-p3).m2();
// boost to partonci rest frame
Lorentz5Momentum psum=p1+p2;
LorentzRotation boost(-psum.boostVector());
p1 *= boost;
p2 *= boost;
p3 *= boost;
p4 *= boost;
// LO and EW corrected matrix element coefficients
boost::numeric::ublas::matrix<complex<InvEnergy2> >
bornQQGGweights,bornRRGGweights,EWQQGGweights,EWRRGGweights;
// quark left doublet
if(q->id()!=5) {
bornQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,true ,0);
EWQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,false,0);
}
else {
bornQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,true ,0);
EWQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,false,0);
}
// quark right singlet
if(abs(subProcess()->incoming().first->id())%2==0) {
bornRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,true ,0);
EWRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,false,0);
}
else {
bornRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,true ,0);
EWRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,false,0);
}
SpinorWaveFunction qw(p1,q ,incoming);
SpinorBarWaveFunction qbarw(p2,qbar,incoming);
vector<LorentzVector<Complex> > eps3,eps4;
SackGluonPolarizations(p1,p2,p3,p4,s,t,u,ZERO,eps3,eps4,0);
boost::numeric::ublas::matrix<Complex>
bornME = boost::numeric::ublas::zero_matrix<Complex>(3,3),
EWME = boost::numeric::ublas::zero_matrix<Complex>(3,3);
for(unsigned int iq=0;iq<2;++iq) {
if(iq==0) {
qw.reset (0);
qbarw.reset(1);
}
else {
qw.reset (1);
qbarw.reset(0);
}
LorentzVector<complex<Energy> > current = iq==0 ?
qw.dimensionedWave(). leftCurrent(qbarw.dimensionedWave()) :
qw.dimensionedWave().rightCurrent(qbarw.dimensionedWave());
for(unsigned int i1=0;i1<2;++i1) {
complex<Energy> d31 = eps3[i1].dot(p1);
for(unsigned int i2=0;i2<2;++i2) {
// g1w.reset(2*i1);
// g2w.reset(2*i2);
boost::numeric::ublas::vector<complex<Energy2> > M(5);
Complex d34 = eps3[i1].dot(eps4[i2]);
complex<Energy> d42 = eps4[i2].dot(p2);
// M0 in paper
M(0) = qw.dimensionedWave().slash(eps3[i1])
.slash(p4-p2).vectorCurrent(qbarw.dimensionedWave()).dot(eps4[i2]);
// M4 in paper
M(2) = current.dot(eps4[i2])*d31;
// M5 in paper
M(3) = -current.dot(eps3[i1])*d42;
// M1 in paper (missing factor)
M(1) = current.dot(p4);
// M6 in paper
M(4) = M(1)*d31*d42/GeV2;
// M1 final factor
M(1) *= d34;
// coefficient of different contributions
boost::numeric::ublas::vector<Complex> Cborn(3),CEW(3),Ctest(3);
// Ctest(0) = 1./6.*( MEU+MET);
// Ctest(1) = 0.5*( MEU+MET);
// Ctest(2) = 0.5*(MEU+MES-MET+MES);
if(iq==0) {
axpy_prod_local(bornQQGGweights,M,Cborn);
axpy_prod_local(EWQQGGweights ,M,CEW );
}
else {
axpy_prod_local(bornRRGGweights,M,Cborn);
axpy_prod_local(EWRRGGweights ,M,CEW );
}
unsigned int ioff = (Cborn.size()==6 && q->id()%2!=0) ? 3 : 0;
for(unsigned int ix=0;ix<3;++ix) {
for(unsigned int iy=0;iy<3;++iy) {
bornME(ix,iy) += Cborn(ix+ioff)*conj(Cborn(iy+ioff));
EWME (ix,iy) += CEW (ix+ioff)*conj(CEW (iy+ioff));
}
}
}
}
}
double born = 24.*real(bornME(0,0))+20./3.*real(bornME(1,1))+12.*real(bornME(2,2));
double EW = 24.*real(EWME(0,0))+20./3.*real(EWME(1,1))+12.*real(EWME(2,2));
return EW/born;
}
boost::numeric::ublas::matrix<complex<InvEnergy2> >
ElectroWeakReweighter::evaluateRunning(EWProcess::Process process, Energy2 s,
Energy2 t, Energy2 u, bool born,
unsigned int iswap) const {
using namespace boost::numeric::ublas;
bool SU3save = coupling()->SU3();
bool EWsave = coupling()-> EW();
Energy highScale = sqrt(s);
Energy ewScale = coupling()->mZ();
Energy lowScale = ewScale;
// result for all EW and QCD SCET contributions:
// MATCHING CONTRIBUTIONS
// high energy matching
matrix<complex<InvEnergy2> > highMatch_val;
if(iswap==0)
highMatch_val = HighEnergyMatching::highEnergyMatching(highScale,s,t,u,process,!born,false);
else if(iswap==1)
highMatch_val = HighEnergyMatching::highEnergyMatching(highScale,t,s,u,process,!born,false);
+ else if(iswap==2)
+ highMatch_val = HighEnergyMatching::highEnergyMatching(highScale,u,t,s,process,!born,false);
else
assert(false);
// low energy matching
matrix<Complex>
ewMatch_val = ElectroWeakMatching::electroWeakMatching(ewScale,s,t,u,process,!born,iswap);
matrix<Complex> collinearEWMatch_val =
collinearSudakov_->electroWeakMatching(ewScale,s,process,!born);
// EVOLUTION
matrix<Complex> highRunning_val,lowRunning_val,
collinearHighRunning_val,collinearLowRunning_val;
// born process
if(born) {
highRunning_val = identity_matrix<Complex>(softSudakov_->numberGauge(process));
lowRunning_val = identity_matrix<Complex>(softSudakov_->numberBrokenGauge(process));
collinearHighRunning_val = identity_matrix<Complex>(softSudakov_->numberGauge(process));
collinearLowRunning_val = identity_matrix<Complex>(softSudakov_->numberBrokenGauge(process));
}
// EW corrected
else {
coupling()->SU3(false);
coupling()-> EW( true);
highRunning_val = softSudakov_->highEnergyRunning(highScale, ewScale,s,t,u,process,iswap);
lowRunning_val = softSudakov_->lowEnergyRunning ( ewScale,lowScale,s,t,u,process,iswap);
collinearHighRunning_val = collinearSudakov_->highEnergyRunning(highScale,ewScale,s,process,false);
collinearLowRunning_val = collinearSudakov_->lowEnergyRunning(ewScale,lowScale,s,process);
};
matrix<Complex> lowMatchTemp_val =
zero_matrix<Complex>(ewMatch_val.size1(),ewMatch_val.size2());
for (unsigned int ii=0; ii<ewMatch_val.size1(); ++ii) {
for (unsigned int jj=0; jj<ewMatch_val.size2(); ++jj) {
lowMatchTemp_val(ii,jj) = collinearEWMatch_val(ii,jj)*ewMatch_val(ii,jj);
}
}
// perform all the multiplications
matrix<Complex> temp(highRunning_val.size1(),collinearHighRunning_val.size2());
axpy_prod(highRunning_val,collinearHighRunning_val,temp);
matrix<Complex> temp2(collinearLowRunning_val.size1(),lowRunning_val.size2());
axpy_prod(collinearLowRunning_val,lowRunning_val,temp2);
matrix<Complex> temp3(temp2.size1(),lowMatchTemp_val.size2());
axpy_prod(temp2,lowMatchTemp_val,temp3);
temp2.resize(temp3.size1(),temp.size2());
axpy_prod(temp3,temp,temp2);
matrix<complex<InvEnergy2> > result(temp2.size1(),highMatch_val.size2());
axpy_prod_local(temp2,highMatch_val,result);
// reset the couplings
coupling()->SU3(SU3save);
coupling()-> EW( EWsave);
// return the answer
return result;
}
double ElectroWeakReweighter::reweightggqqbar() const {
// momenta and invariants
Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
Lorentz5Momentum p3 = subProcess()->outgoing()[0]->momentum();
Lorentz5Momentum p4 = subProcess()->outgoing()[1]->momentum();
tcPDPtr qbar = subProcess()->outgoing()[0]->dataPtr();
tcPDPtr q = subProcess()->outgoing()[1]->dataPtr();
if(q->id()<0) {
swap(p3,p4 );
swap(q ,qbar);
}
Energy2 s = (p1+p2).m2();
Energy2 t = (p1-p4).m2();
Energy2 u = (p1-p3).m2();
// boost to partonic rest frame and rescale momenta of outgoing
// so zero mass
Lorentz5Momentum psum=p1+p2;
LorentzRotation boost(-psum.boostVector());
p1 *= boost;
p2 *= boost;
p3 *= boost;
p4 *= boost;
p3.setMass(ZERO);
p3.rescaleRho();
p4.setMass(ZERO);
p4.rescaleRho();
// LO and EW matrix element coefficents
boost::numeric::ublas::matrix<complex<InvEnergy2> >
bornQQGGweights,bornRRGGweights,EWQQGGweights,EWRRGGweights;
// quark left doublet
if(q->id()<5) {
bornQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,true ,0);
EWQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,false,0);
}
else {
bornQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,true ,0);
EWQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,false,0);
}
// quark right singlet
if(q->id()==0) {
if(q->id()==6) {
bornRRGGweights = evaluateRunning(EWProcess::tRtRGG,s,t,u,true ,0);
EWRRGGweights = evaluateRunning(EWProcess::tRtRGG,s,t,u,false,0);
}
else {
bornRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,true ,0);
EWRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,false,0);
}
}
else {
bornRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,true ,0);
EWRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,false,0);
}
SpinorWaveFunction qw(p4,qbar,incoming);
SpinorBarWaveFunction qbarw(p3,q ,incoming);
vector<LorentzVector<Complex> > eps1,eps2;
SackGluonPolarizations(p1,p2,p3,p4,s,t,u,ZERO,eps1,eps2,1);
boost::numeric::ublas::matrix<Complex>
bornME = boost::numeric::ublas::zero_matrix<Complex>(3,3),
EWME = boost::numeric::ublas::zero_matrix<Complex>(3,3);
// helicities of outgoing quarks
for(unsigned int iq=0;iq<2;++iq) {
if(iq==0) {
qw.reset (0);
qbarw.reset(1);
}
else {
qw.reset (1);
qbarw.reset(0);
}
LorentzVector<complex<Energy> > current = iq==0 ?
qw.dimensionedWave(). leftCurrent(qbarw.dimensionedWave()) :
qw.dimensionedWave().rightCurrent(qbarw.dimensionedWave());
for(unsigned int i1=0;i1<2;++i1) {
complex<Energy> d31 = eps1[i1].dot(p3);
for(unsigned int i2=0;i2<2;++i2) {
boost::numeric::ublas::vector<complex<Energy2> > M(5);
Complex d34 = eps1[i1].dot(eps2[i2]);
complex<Energy> d42 = eps2[i2].dot(p4);
// M0 in paper
M(0) = qw.dimensionedWave().slash(eps1[i1])
.slash(p2-p4).vectorCurrent(qbarw.dimensionedWave()).dot(eps2[i2]);
// M4 in paper
M(2) = current.dot(eps2[i2])*d31;
// M5 in paper
M(3) = -current.dot(eps1[i1])*d42;
// M1 in paper (missing factor)
M(1) = current.dot(p2);
// M6 in paper
M(4) = M(1)*d31*d42/GeV2;
// M1 final factor
M(1) *= d34;
// coefficient of different contributions
boost::numeric::ublas::vector<Complex> Cborn(3),CEW(3);
if(iq==0) {
axpy_prod_local(bornQQGGweights,M,Cborn);
axpy_prod_local(EWQQGGweights ,M,CEW );
}
else {
axpy_prod_local(bornRRGGweights,M,Cborn);
axpy_prod_local(EWRRGGweights ,M,CEW );
}
unsigned int ioff = (Cborn.size()==6 && q->id()%2!=0) ? 3 : 0;
for(unsigned int ix=0;ix<3;++ix) {
for(unsigned int iy=0;iy<3;++iy) {
bornME(ix,iy) += Cborn(ix+ioff)*conj(Cborn(iy+ioff));
EWME (ix,iy) += CEW (ix+ioff)*conj(CEW (iy+ioff));
}
}
}
}
}
double born = 24.*real(bornME(0,0))+20./3.*real(bornME(1,1))+12.*real(bornME(2,2));
double EW = 24.*real(EWME(0,0))+20./3.*real(EWME(1,1))+12.*real(EWME(2,2));
return EW/born;
}
double ElectroWeakReweighter::reweightqgqg() const {
// momenta and invariants
Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
tcPDPtr q;
if(subProcess()->incoming().first->id()!=ParticleID::g) {
q = subProcess()->incoming().first ->dataPtr();
}
else {
q = subProcess()->incoming().second->dataPtr();
swap(p1,p2);
}
Lorentz5Momentum p3 = subProcess()->outgoing()[0]->momentum();
Lorentz5Momentum p4 = subProcess()->outgoing()[1]->momentum();
if(subProcess()->outgoing()[0]->id()!=ParticleID::g)
swap(p3,p4);
Energy2 s = (p1+p2).m2();
Energy2 t = (p1-p4).m2();
Energy2 u = (p1-p3).m2();
// boost to partonic rest frame
Lorentz5Momentum psum=p1+p2;
LorentzRotation boost(-psum.boostVector());
p1 *= boost;
p2 *= boost;
p3 *= boost;
p4 *= boost;
// LO and EW corrected matrix element coefficients
boost::numeric::ublas::matrix<complex<InvEnergy2> >
bornQQGGweights,bornRRGGweights,EWQQGGweights,EWRRGGweights;
// quark left doublet
if(q->id()!=5) {
bornQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,true ,1);
EWQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,false,1);
}
else {
bornQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,true ,1);
EWQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,false,1);
}
// quark right singlet
if(abs(q->id())%2==0) {
bornRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,true ,1);
EWRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,false,1);
}
else {
bornRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,true ,1);
EWRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,false,1);
}
SpinorWaveFunction qw(p1,q,incoming);
SpinorBarWaveFunction qbarw(p4,q,outgoing);
vector<LorentzVector<Complex> > eps2,eps3;
SackGluonPolarizations(p1,p2,p3,p4,s,t,u,ZERO,eps2,eps3,2);
// compute the matrix elements
boost::numeric::ublas::matrix<Complex>
bornME = boost::numeric::ublas::zero_matrix<Complex>(3,3),
EWME = boost::numeric::ublas::zero_matrix<Complex>(3,3),
testME = boost::numeric::ublas::zero_matrix<Complex>(3,3);
for(unsigned int iq=0;iq<2;++iq) {
if(iq==0) {
qw.reset (0);
qbarw.reset(0);
}
else {
qw.reset (1);
qbarw.reset(1);
}
LorentzVector<complex<Energy> > current = iq==0 ?
qw.dimensionedWave(). leftCurrent(qbarw.dimensionedWave()) :
qw.dimensionedWave().rightCurrent(qbarw.dimensionedWave());
for(unsigned int i1=0;i1<2;++i1) {
complex<Energy> d31 = eps3[i1].dot(p1);
for(unsigned int i2=0;i2<2;++i2) {
boost::numeric::ublas::vector<complex<Energy2> > M(5);
Complex d34 = eps3[i1].dot(eps2[i2]);
complex<Energy> d42 = eps2[i2].dot(p4);
// M0 in paper
M(0) = qw.dimensionedWave().slash(eps3[i1])
.slash(p2-p4).vectorCurrent(qbarw.dimensionedWave()).dot(eps2[i2]);
// M4 in paper
M(2) = current.dot(eps2[i2])*d31;
// M5 in paper
M(3) = -current.dot(eps3[i1])*d42;
// M1 in paper (missing factor)
M(1) = current.dot(p2);
// M6 in paper
M(4) = M(1)*d31*d42/GeV2;
// M1 final factor
M(1) *= d34;
// coefficient of different contributions
boost::numeric::ublas::vector<Complex> Cborn(3),CEW(3);
if(iq==0) {
axpy_prod_local(bornQQGGweights,M,Cborn);
axpy_prod_local(EWQQGGweights ,M,CEW );
}
else {
axpy_prod_local(bornRRGGweights,M,Cborn);
axpy_prod_local(EWRRGGweights ,M,CEW );
}
unsigned int ioff = (Cborn.size()==6 && q->id()%2!=0) ? 3 : 0;
for(unsigned int ix=0;ix<3;++ix) {
for(unsigned int iy=0;iy<3;++iy) {
bornME(ix,iy) += Cborn(ix+ioff)*conj(Cborn(iy+ioff));
EWME (ix,iy) += CEW (ix+ioff)*conj(CEW (iy+ioff));
}
}
}
}
}
double born = 24.*real(bornME(0,0))+20./3.*real(bornME(1,1))+12.*real(bornME(2,2));
double EW = 24.*real(EWME(0,0))+20./3.*real(EWME(1,1))+12.*real(EWME(2,2));
return EW/born;
}
double ElectroWeakReweighter::reweightqbargqbarg() const {
// momenta and invariants
Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
tcPDPtr qbar;
if(subProcess()->incoming().first->id()==ParticleID::g) {
qbar = subProcess()->incoming().second->dataPtr();
}
else {
qbar = subProcess()->incoming().first ->dataPtr();
swap(p1,p2);
}
Lorentz5Momentum p3 = subProcess()->outgoing()[0]->momentum();
Lorentz5Momentum p4 = subProcess()->outgoing()[1]->momentum();
if(subProcess()->outgoing()[0]->id()==ParticleID::g)
swap(p3,p4);
Energy2 s = (p1+p2).m2();
Energy2 t = (p1-p4).m2();
Energy2 u = (p1-p3).m2();
// boost to partonci rest frame
Lorentz5Momentum psum=p1+p2;
LorentzRotation boost(-psum.boostVector());
p1 *= boost;
p2 *= boost;
p3 *= boost;
p4 *= boost;
// LO and EW corrected matrix element coefficients
boost::numeric::ublas::matrix<complex<InvEnergy2> >
bornQQGGweights,bornRRGGweights,EWQQGGweights,EWRRGGweights;
// quark left doublet
if(qbar->id()!=-5) {
bornQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,true ,1);
EWQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,false,1);
}
else {
bornQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,true ,1);
EWQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,false,1);
}
// quark right singlet
if(abs(qbar->id())%2==0) {
bornRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,true ,1);
EWRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,false,1);
}
else {
bornRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,true ,1);
EWRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,false,1);
}
SpinorWaveFunction qw(p3,qbar,outgoing);
SpinorBarWaveFunction qbarw(p2,qbar,incoming);
vector<LorentzVector<Complex> > eps1,eps4;
SackGluonPolarizations(p1,p2,p3,p4,s,t,u,ZERO,eps1,eps4,3);
boost::numeric::ublas::matrix<Complex>
bornME = boost::numeric::ublas::zero_matrix<Complex>(3,3),
EWME = boost::numeric::ublas::zero_matrix<Complex>(3,3);
for(unsigned int iq=0;iq<2;++iq) {
if(iq==0) {
qw.reset (1);
qbarw.reset(1);
}
else {
qw.reset (0);
qbarw.reset(0);
}
LorentzVector<complex<Energy> > current = iq==0 ?
qw.dimensionedWave(). leftCurrent(qbarw.dimensionedWave()) :
qw.dimensionedWave().rightCurrent(qbarw.dimensionedWave());
for(unsigned int i1=0;i1<2;++i1) {
complex<Energy> d31 = eps1[i1].dot(p3);
for(unsigned int i2=0;i2<2;++i2) {
boost::numeric::ublas::vector<complex<Energy2> > M(5);
Complex d34 = eps1[i1].dot(eps4[i2]);
complex<Energy> d42 = eps4[i2].dot(p2);
// M0 in paper
M(0) = qw.dimensionedWave().slash(eps1[i1])
.slash(p4-p2).vectorCurrent(qbarw.dimensionedWave()).dot(eps4[i2]);
// M4 in paper
M(2) = current.dot(eps4[i2])*d31;
// M5 in paper
M(3) = -current.dot(eps1[i1])*d42;
// M1 in paper (missing factor)
M(1) = current.dot(p4);
// M6 in paper
M(4) = M(1)*d31*d42/GeV2;
// M1 final factor
M(1) *= d34;
// coefficient of different contributions
boost::numeric::ublas::vector<Complex> Cborn(3),CEW(3);
if(iq==0) {
axpy_prod_local(bornQQGGweights,M,Cborn);
axpy_prod_local(EWQQGGweights ,M,CEW );
}
else {
axpy_prod_local(bornRRGGweights,M,Cborn);
axpy_prod_local(EWRRGGweights ,M,CEW );
}
unsigned int ioff = (Cborn.size()==6 && abs(qbar->id())%2!=0) ? 3 : 0;
for(unsigned int ix=0;ix<3;++ix) {
for(unsigned int iy=0;iy<3;++iy) {
bornME(ix,iy) += Cborn(ix+ioff)*conj(Cborn(iy+ioff));
EWME (ix,iy) += CEW (ix+ioff)*conj(CEW (iy+ioff));
}
}
}
}
}
double born = 24.*real(bornME(0,0))+20./3.*real(bornME(1,1))+12.*real(bornME(2,2));
double EW = 24.*real(EWME(0,0))+20./3.*real(EWME(1,1))+12.*real(EWME(2,2));
return EW/born;
}
+
+double ElectroWeakReweighter::reweightqqbarqqbarS() const {
+ // momenta and invariants
+ Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
+ tcPDPtr q1 = subProcess()->incoming().first ->dataPtr();
+ Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
+ tcPDPtr q1bar = subProcess()->incoming().second->dataPtr();
+ if(q1->id()<0) {
+ swap(p1,p2 );
+ swap(q1 ,q1bar);
+ }
+ Lorentz5Momentum p3 = subProcess()->outgoing()[0]->momentum();
+ tcPDPtr q2bar = subProcess()->outgoing()[0]->dataPtr();
+ Lorentz5Momentum p4 = subProcess()->outgoing()[1]->momentum();
+ tcPDPtr q2 = subProcess()->outgoing()[1]->dataPtr();
+ if(q2bar->id()>0) {
+ swap(p3,p4 );
+ swap(q2 ,q2bar);
+ }
+ Energy2 s = (p1+p2).m2();
+ Energy2 t = (p1-p4).m2();
+ Energy2 u = (p1-p3).m2();
+ // boost to partonci rest frame
+ Lorentz5Momentum psum=p1+p2;
+ LorentzRotation boost(-psum.boostVector());
+ p1 *= boost;
+ p2 *= boost;
+ p3 *= boost;
+ p4 *= boost;
+ p3.setMass(ZERO);
+ p3.rescaleRho();
+ p4.setMass(ZERO);
+ p4.rescaleRho();
+ // LO and EW corrected matrix element coefficients
+ boost::numeric::ublas::matrix<complex<InvEnergy2> >
+ bornLLLLWeights,bornLLRRWeights,bornRRLLWeights,bornRRRRWeights,
+ EWLLLLWeights,EWLLRRWeights,EWRRLLWeights,EWRRRRWeights;
+ bool ident = q1->id()==q2->id();
+ // LL -> LL
+ if((q1->id()<=4&& q2->id()<=4)|| (q1->id()==5 && q2->id()==5)) {
+ if(!ident) {
+ bornLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,true ,0);
+ EWLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,false,0);
+ }
+ else {
+ bornLLLLWeights = evaluateRunning(EWProcess::QQQQiden,s,t,u,true ,0);
+ EWLLLLWeights = evaluateRunning(EWProcess::QQQQiden,s,t,u,false,0);
+ }
+ }
+ else if(q1->id()==5 || q2->id()>=5) {
+ bornLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,true ,0);
+ EWLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,false,0);
+ }
+ else
+ assert(false);
+ // RR -> LL
+ if(q1->id()%2==0) {
+ if(q2->id()<5) {
+ bornRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,0);
+ EWRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,0);
+ }
+ else {
+ bornRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,0);
+ EWRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,0);
+ }
+ }
+ else {
+ if(q2->id()<5) {
+ bornRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,0);
+ EWRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,0);
+ }
+ else {
+ bornRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,0);
+ EWRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,0);
+ }
+ }
+ // LL -> RR
+ if(q1->id()<=4) {
+ if(q2->id()%2!=0) {
+ bornLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,0);
+ EWLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,0);
+ }
+ else if (q2->id()==6) {
+ bornLLRRWeights = evaluateRunning(EWProcess::QQtRtR,s,t,u,true ,0);
+ EWLLRRWeights = evaluateRunning(EWProcess::QQtRtR,s,t,u,false,0);
+ }
+ else {
+ bornLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,0);
+ EWLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,0);
+ }
+ }
+ else {
+ if(q2->id()%2!=0) {
+ bornLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,0);
+ EWLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,0);
+ }
+ else {
+ bornLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,0);
+ EWLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,0);
+ }
+ }
+ // RR -> RR
+ if(q1->id()%2==0) {
+ if(q2->id()==6) {
+ bornRRRRWeights = evaluateRunning(EWProcess::tRtRUU,s,t,u,true ,0);
+ EWRRRRWeights = evaluateRunning(EWProcess::tRtRUU,s,t,u,false,0);
+ }
+ else if(q2->id()%2==0) {
+ if(ident) {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUUUiden,s,t,u,true ,0);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUUUiden,s,t,u,false,0);
+ }
+ else {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,true ,0);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,false,0);
+ }
+ }
+ else {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,0);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,0);
+ }
+ }
+ else {
+ if(q2->id()==6) {
+ bornRRRRWeights = evaluateRunning(EWProcess::tRtRDD,s,t,u,true ,0);
+ EWRRRRWeights = evaluateRunning(EWProcess::tRtRDD,s,t,u,false,0);
+ }
+ else if(q2->id()%2==0) {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,0);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,0);
+ }
+ else {
+ if(ident) {
+ bornRRRRWeights = evaluateRunning(EWProcess::DDDDiden,s,t,u,true ,0);
+ EWRRRRWeights = evaluateRunning(EWProcess::DDDDiden,s,t,u,false,0);
+ }
+ else {
+ bornRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,true ,0);
+ EWRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,false,0);
+ }
+ }
+ }
+ // extra terms for identical particles
+ boost::numeric::ublas::matrix<complex<InvEnergy2> >
+ borntChannelWeights,EWtChannelWeights;
+ if(ident) {
+ if(q1->id()%2==0) {
+ borntChannelWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,1);
+ EWtChannelWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,1);
+ }
+ else if(q1->id()==5) {
+ borntChannelWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,1);
+ EWtChannelWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,1);
+ }
+ else {
+ borntChannelWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,1);
+ EWtChannelWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,1);
+ }
+ }
+ SpinorWaveFunction q1w(p1,q1 ,incoming);
+ SpinorBarWaveFunction q1barw(p2,q1bar,incoming);
+ SpinorWaveFunction q2barw(p3,q2bar,outgoing);
+ SpinorBarWaveFunction q2w(p4,q2 ,outgoing);
+ boost::numeric::ublas::matrix<Complex>
+ bornME = boost::numeric::ublas::zero_matrix<Complex>(2,2),
+ EWME = boost::numeric::ublas::zero_matrix<Complex>(2,2);
+ for(unsigned int iq1=0;iq1<2;++iq1) {
+ if(iq1==0) {
+ q1w.reset (0);
+ q1barw.reset(1);
+ }
+ else {
+ q1w.reset (1);
+ q1barw.reset(0);
+ }
+ LorentzVector<complex<Energy> > current1 =
+ q1w.dimensionedWave().vectorCurrent(q1barw.dimensionedWave());
+ for(unsigned int iq2=0;iq2<2;++iq2) {
+ if(iq2==0) {
+ q2w.reset (0);
+ q2barw.reset(1);
+ }
+ else {
+ q2w.reset (1);
+ q2barw.reset(0);
+ }
+ LorentzVector<complex<Energy> > current2 =
+ q2barw.dimensionedWave().vectorCurrent(q2w.dimensionedWave());
+ complex<Energy2> amp = current1.dot(current2);
+ vector<Complex> Cborn(2),CEW(2);
+ // amplitudes
+ if(iq1==0) {
+ // LL
+ if(iq2==0) {
+ unsigned int ioff;
+ if(q1->id()%2==0) {
+ ioff = q2->id()%2==0 ? 0 : 2;
+ }
+ else {
+ ioff = q2->id()%2==0 ? 1 : 3;
+ }
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornLLLLWeights(6*ix+ioff,0);
+ CEW [ix] = amp* EWLLLLWeights(6*ix+ioff,0);
+ }
+ }
+ // LR
+ else {
+ unsigned int ioff = q1->id()%2==0 ? 0 : 1;
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornLLRRWeights(2*ix+ioff,0);
+ CEW [ix] = amp* EWLLRRWeights(2*ix+ioff,0);
+ }
+ }
+ }
+ else {
+ if(iq2==0) {
+ unsigned int ioff=q2->id()%2==0 ? 0 : 1;
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornRRLLWeights(2*ix+ioff,0);
+ CEW [ix] = amp* EWRRLLWeights(2*ix+ioff,0);
+ }
+ }
+ else {
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornRRRRWeights(ix,0);
+ CEW [ix] = amp* EWRRRRWeights(ix,0);
+ }
+ }
+ }
+ // square
+ for(unsigned int ix=0;ix<2;++ix) {
+ for(unsigned int iy=0;iy<2;++iy) {
+ bornME(ix,iy) += Cborn[ix]*conj(Cborn[iy]);
+ EWME (ix,iy) += CEW [ix]*conj(CEW [iy]);
+ }
+ }
+ }
+ }
+ // extra t-channel pieces if identical flavours
+ if(ident) {
+ for(unsigned int iq1=0;iq1<2;++iq1) {
+ q1w.reset(iq1);
+ q2w.reset(iq1);
+ LorentzVector<complex<Energy> > current1 =
+ q1w.dimensionedWave().vectorCurrent(q2w.dimensionedWave());
+ q1barw.reset(iq1);
+ q2barw.reset(iq1);
+ LorentzVector<complex<Energy> > current2 =
+ q2barw.dimensionedWave().vectorCurrent(q1barw.dimensionedWave());
+ complex<Energy2> amp = current1.dot(current2);
+ vector<Complex> Cborn(2),CEW(2);
+ unsigned int ioff = q1->id()%2==0 ? 0 : 1;
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*borntChannelWeights(2*ix+ioff,0);
+ CEW [ix] = amp* EWtChannelWeights(2*ix+ioff,0);
+ }
+ // square
+ for(unsigned int ix=0;ix<2;++ix) {
+ for(unsigned int iy=0;iy<2;++iy) {
+ bornME(ix,iy) += Cborn[ix]*conj(Cborn[iy]);
+ EWME (ix,iy) += CEW [ix]*conj(CEW [iy]);
+ }
+ }
+ }
+ }
+ // colour factors
+ double born = 2.*real(bornME(0,0))+9.*real(bornME(1,1));
+ double EW = 2.*real( EWME(0,0))+9.*real( EWME(1,1));
+ return EW/born;
+}
+
+double ElectroWeakReweighter::reweightqqbarqqbarT() const {
+ // momenta and invariants
+ Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
+ tcPDPtr q1 = subProcess()->incoming().first ->dataPtr();
+ Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
+ tcPDPtr q1bar = subProcess()->incoming().second->dataPtr();
+ if(q1->id()<0) {
+ swap(p1,p2 );
+ swap(q1 ,q1bar);
+ }
+ Lorentz5Momentum p3 = subProcess()->outgoing()[0]->momentum();
+ tcPDPtr q2bar = subProcess()->outgoing()[0]->dataPtr();
+ Lorentz5Momentum p4 = subProcess()->outgoing()[1]->momentum();
+ tcPDPtr q2 = subProcess()->outgoing()[1]->dataPtr();
+ if(q2bar->id()>0) {
+ swap(p3,p4 );
+ swap(q2 ,q2bar);
+ }
+ Energy2 s = (p1+p2).m2();
+ Energy2 t = (p1-p4).m2();
+ Energy2 u = (p1-p3).m2();
+ // boost to partonci rest frame
+ Lorentz5Momentum psum=p1+p2;
+ LorentzRotation boost(-psum.boostVector());
+ p1 *= boost;
+ p2 *= boost;
+ p3 *= boost;
+ p4 *= boost;
+ p3.setMass(ZERO);
+ p3.rescaleRho();
+ p4.setMass(ZERO);
+ p4.rescaleRho();
+ assert(q1==q2 && q1bar==q2bar);
+ assert( q1->id() != -q1bar->id() && q2->id() != -q2bar->id() );
+ // LO and EW corrected matrix element coefficients
+ boost::numeric::ublas::matrix<complex<InvEnergy2> >
+ bornLLLLWeights,bornLLRRWeights,bornRRLLWeights,bornRRRRWeights,
+ EWLLLLWeights,EWLLRRWeights,EWRRLLWeights,EWRRRRWeights;
+ // LL
+ if( q1->id() == ParticleID::b ||
+ q1bar->id() == ParticleID::bbar ) {
+ bornLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,true ,1);
+ EWLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,false,1);
+ }
+ else {
+ bornLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,true ,1);
+ EWLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,false,1);
+ }
+ // RR -> LL
+ if(q1->id()%2==0) {
+ if(q1bar->id()==ParticleID::bbar) {
+ bornRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,1);
+ EWRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,1);
+ }
+ else {
+ bornRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,1);
+ EWRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,1);
+ }
+ }
+ else {
+ if(q1bar->id()==ParticleID::bbar) {
+ bornRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,1);
+ EWRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,1);
+ }
+ else {
+ bornRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,1);
+ EWRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,1);
+ }
+ }
+ // LL -> RR
+ if(abs(q1bar->id())%2==0) {
+ if(q1->id()==ParticleID::b) {
+ bornLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,1);
+ EWLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,1);
+ }
+ else {
+ bornLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,1);
+ EWLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,1);
+ }
+ }
+ else {
+ if(q1->id()==ParticleID::b) {
+ bornLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,1);
+ EWLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,1);
+ }
+ else {
+ bornLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,1);
+ EWLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,1);
+ }
+ }
+ // RR -> RR
+ if(q1->id()%2==0) {
+ if(abs(q1bar->id())%2==0) {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,true ,1);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,false,1);
+ }
+ else {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,1);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,1);
+ }
+ }
+ else {
+ if(abs(q1bar->id())%2==0) {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,1);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,1);
+ }
+ else {
+ bornRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,true ,1);
+ EWRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,false,1);
+ }
+ }
+ // calculate the spinors
+ SpinorWaveFunction q1w(p1,q1 ,incoming);
+ SpinorBarWaveFunction q1barw(p2,q1bar,incoming);
+ SpinorWaveFunction q2barw(p3,q2bar,outgoing);
+ SpinorBarWaveFunction q2w(p4,q2 ,outgoing);
+ boost::numeric::ublas::matrix<Complex>
+ bornME = boost::numeric::ublas::zero_matrix<Complex>(2,2),
+ EWME = boost::numeric::ublas::zero_matrix<Complex>(2,2);
+ for(unsigned int iq1=0;iq1<2;++iq1) {
+ q1w.reset(iq1);
+ q2w.reset(iq1);
+ LorentzVector<complex<Energy> > current1 =
+ q1w.dimensionedWave().vectorCurrent(q2w.dimensionedWave());
+ for(unsigned int iq2=0;iq2<2;++iq2) {
+ q1barw.reset(iq2);
+ q2barw.reset(iq2);
+ LorentzVector<complex<Energy> > current2 =
+ q2barw.dimensionedWave().vectorCurrent(q1barw.dimensionedWave());
+ // calculate the amplitude
+ complex<Energy2> amp = current1.dot(current2);
+ vector<Complex> Cborn(2),CEW(2);
+ if(iq1==0) {
+ // LL RR
+ if(iq2==0) {
+ unsigned int ioff = q1->id()%2==0 ? 0 : 1;
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornLLRRWeights(2*ix+ioff,0);
+ CEW [ix] = amp* EWLLRRWeights(2*ix+ioff,0);
+ }
+ }
+ // LL LL
+ else {
+ unsigned int ioff;
+ if(q1->id()%2==0) {
+ ioff = abs(q1bar->id())%2==0 ? 0 : 2;
+ }
+ else {
+ ioff = abs(q1bar->id())%2==0 ? 1 : 3;
+ }
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornLLLLWeights(6*ix+ioff,0);
+ CEW [ix] = amp* EWLLLLWeights(6*ix+ioff,0);
+ }
+ }
+ }
+ else {
+ // RR RR
+ if(iq2==0) {
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornRRRRWeights(ix,0);
+ CEW [ix] = amp* EWRRRRWeights(ix,0);
+ }
+ }
+ // RR LL
+ else {
+ unsigned int ioff=abs(q1bar->id())%2==0 ? 0 : 1;
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornRRLLWeights(2*ix+ioff,0);
+ CEW [ix] = amp* EWRRLLWeights(2*ix+ioff,0);
+ }
+ }
+ }
+ // square
+ for(unsigned int ix=0;ix<2;++ix) {
+ for(unsigned int iy=0;iy<2;++iy) {
+ bornME(ix,iy) += Cborn[ix]*conj(Cborn[iy]);
+ EWME (ix,iy) += CEW [ix]*conj(CEW [iy]);
+ }
+ }
+ }
+ }
+ // colour factors
+ double born = 2.*real(bornME(0,0))+9.*real(bornME(1,1));
+ double EW = 2.*real( EWME(0,0))+9.*real( EWME(1,1));
+ return EW/born;
+}
+
+double ElectroWeakReweighter::reweightqqqq() const {
+ // momenta and invariants
+ Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
+ tcPDPtr q1 = subProcess()->incoming().first ->dataPtr();
+ Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
+ tcPDPtr q2 = subProcess()->incoming().second->dataPtr();
+ Lorentz5Momentum p3 = subProcess()->outgoing()[0] ->momentum();
+ tcPDPtr q3 = subProcess()->outgoing()[0] ->dataPtr();
+ Lorentz5Momentum p4 = subProcess()->outgoing()[1] ->momentum();
+ tcPDPtr q4 = subProcess()->outgoing()[1] ->dataPtr();
+ if(q1->id()!=q3->id()) {
+ swap(q3,q4);
+ swap(p3,p4);
+ }
+ assert(q1->id()==q3->id());
+ assert(q2->id()==q4->id());
+ Energy2 s = (p1+p2).m2();
+ Energy2 t = (p1-p4).m2();
+ Energy2 u = (p1-p3).m2();
+ // boost to partonci rest frame
+ Lorentz5Momentum psum=p1+p2;
+ LorentzRotation boost(-psum.boostVector());
+ p1 *= boost;
+ p2 *= boost;
+ p3 *= boost;
+ p4 *= boost;
+ p3.setMass(ZERO);
+ p3.rescaleRho();
+ p4.setMass(ZERO);
+ p4.rescaleRho();
+ // LO and EW corrected matrix element coefficients
+ boost::numeric::ublas::matrix<complex<InvEnergy2> >
+ bornLLLLWeights,bornLLRRWeights,bornRRLLWeights,bornRRRRWeights,
+ EWLLLLWeights,EWLLRRWeights,EWRRLLWeights,EWRRRRWeights;
+ bool ident = q1->id()==q2->id();
+ // LL -> LL
+ if((q1->id()<=4&& q2->id()<=4)|| (q1->id()==5 && q2->id()==5)) {
+ if(!ident) {
+ bornLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,true ,2);
+ EWLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,false,2);
+ }
+ else {
+ bornLLLLWeights = evaluateRunning(EWProcess::QQQQiden,s,t,u,true ,2);
+ EWLLLLWeights = evaluateRunning(EWProcess::QQQQiden,s,t,u,false,2);
+ }
+ }
+ else if(q1->id()==5 || q2->id()==5) {
+ bornLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,true ,2);
+ EWLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,false,2);
+ }
+ else
+ assert(false);
+ // RR -> LL
+ if(q1->id()%2==0) {
+ if(q2->id()<5) {
+ bornRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,2);
+ EWRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,2);
+ }
+ else {
+ bornRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,2);
+ EWRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,2);
+ }
+ }
+ else {
+ if(q2->id()<5) {
+ bornRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,2);
+ EWRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,2);
+ }
+ else {
+ bornRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,2);
+ EWRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,2);
+ }
+ }
+ // LL -> RR
+ if(q1->id()<=4) {
+ if(q2->id()%2!=0) {
+ bornLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,2);
+ EWLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,2);
+ }
+ else {
+ bornLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,2);
+ EWLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,2);
+ }
+ }
+ else {
+ if(q2->id()%2!=0) {
+ bornLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,2);
+ EWLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,2);
+ }
+ else {
+ bornLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,2);
+ EWLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,2);
+ }
+ }
+ // RR -> RR
+ if(q1->id()%2==0) {
+ if(q2->id()%2==0) {
+ if(ident) {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUUUiden,s,t,u,true ,2);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUUUiden,s,t,u,false,2);
+ }
+ else {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,true ,2);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,false,2);
+ }
+ }
+ else {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,2);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,2);
+ }
+ }
+ else {
+ if(q2->id()%2==0) {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,2);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,2);
+ }
+ else {
+ if(ident) {
+ bornRRRRWeights = evaluateRunning(EWProcess::DDDDiden,s,t,u,true ,2);
+ EWRRRRWeights = evaluateRunning(EWProcess::DDDDiden,s,t,u,false,2);
+ }
+ else {
+ bornRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,true ,2);
+ EWRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,false,2);
+ }
+ }
+ }
+ // extra terms for identical particles
+ boost::numeric::ublas::matrix<complex<InvEnergy2> >
+ borntChannelWeights,EWtChannelWeights;
+ if(ident) {
+ if(q1->id()%2==0) {
+ borntChannelWeights = evaluateRunning(EWProcess::QQUU,s,u,t,true ,2);
+ EWtChannelWeights = evaluateRunning(EWProcess::QQUU,s,u,t,false,2);
+ }
+ else if(q1->id()==5) {
+ borntChannelWeights = evaluateRunning(EWProcess::QtQtDD,s,u,t,true ,2);
+ EWtChannelWeights = evaluateRunning(EWProcess::QtQtDD,s,u,t,false,2);
+ }
+ else {
+ borntChannelWeights = evaluateRunning(EWProcess::QQDD,s,u,t,true ,2);
+ EWtChannelWeights = evaluateRunning(EWProcess::QQDD,s,u,t,false,2);
+ }
+ }
+ SpinorWaveFunction q1w(p1,q1,incoming);
+ SpinorWaveFunction q2w(p2,q2,incoming);
+ SpinorBarWaveFunction q3w(p3,q3,outgoing);
+ SpinorBarWaveFunction q4w(p4,q4,outgoing);
+ boost::numeric::ublas::matrix<Complex>
+ bornME = boost::numeric::ublas::zero_matrix<Complex>(2,2),
+ EWME = boost::numeric::ublas::zero_matrix<Complex>(2,2);
+ for(unsigned int iq1=0;iq1<2;++iq1) {
+ q1w.reset(iq1);
+ q3w.reset(iq1);
+ LorentzVector<complex<Energy> > current1 =
+ q1w.dimensionedWave().vectorCurrent(q3w.dimensionedWave());
+ for(unsigned int iq2=0;iq2<2;++iq2) {
+ q2w.reset(iq2);
+ q4w.reset(iq2);
+ LorentzVector<complex<Energy> > current2 =
+ q2w.dimensionedWave().vectorCurrent(q4w.dimensionedWave());
+ complex<Energy2> amp = current1.dot(current2);
+ vector<Complex> Cborn(2),CEW(2);
+ // amplitudes
+ if(iq1==0) {
+ // LL
+ if(iq2==0) {
+ unsigned int ioff;
+ if(q1->id()%2==0) {
+ ioff = q2->id()%2==0 ? 0 : 2;
+ }
+ else {
+ ioff = q2->id()%2==0 ? 1 : 3;
+ }
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornLLLLWeights(6*ix+ioff,0);
+ CEW [ix] = amp* EWLLLLWeights(6*ix+ioff,0);
+ }
+ }
+ // LR
+ else {
+ unsigned int ioff = q1->id()%2==0 ? 0 : 1;
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornLLRRWeights(2*ix+ioff,0);
+ CEW [ix] = amp* EWLLRRWeights(2*ix+ioff,0);
+ }
+ }
+ }
+ else {
+ if(iq2==0) {
+ unsigned int ioff=q2->id()%2==0 ? 0 : 1;
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornRRLLWeights(2*ix+ioff,0);
+ CEW [ix] = amp* EWRRLLWeights(2*ix+ioff,0);
+ }
+ }
+ else {
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornRRRRWeights(ix,0);
+ CEW [ix] = amp* EWRRRRWeights(ix,0);
+ }
+ }
+ }
+ // square
+ for(unsigned int ix=0;ix<2;++ix) {
+ for(unsigned int iy=0;iy<2;++iy) {
+ bornME(ix,iy) += Cborn[ix]*conj(Cborn[iy]);
+ EWME (ix,iy) += CEW [ix]*conj(CEW [iy]);
+ }
+ }
+ }
+ }
+ // extra u-channel pieces if identical flavours
+ if(ident) {
+ for(unsigned int iq1=0;iq1<2;++iq1) {
+ q1w.reset(iq1);
+ q4w.reset(iq1);
+ LorentzVector<complex<Energy> > current1 =
+ q1w.dimensionedWave().vectorCurrent(q4w.dimensionedWave());
+ if(iq1==0) {
+ q2w.reset(1);
+ q3w.reset(1);
+ }
+ else {
+ q2w.reset(0);
+ q3w.reset(0);
+ }
+ LorentzVector<complex<Energy> > current2 =
+ q2w.dimensionedWave().vectorCurrent(q3w.dimensionedWave());
+ complex<Energy2> amp = current1.dot(current2);
+ vector<Complex> Cborn(2),CEW(2);
+ unsigned int ioff = q1->id()%2==0 ? 0 : 1;
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*borntChannelWeights(2*ix+ioff,0);
+ CEW [ix] = amp* EWtChannelWeights(2*ix+ioff,0);
+ }
+ // square
+ for(unsigned int ix=0;ix<2;++ix) {
+ for(unsigned int iy=0;iy<2;++iy) {
+ bornME(ix,iy) += Cborn[ix]*conj(Cborn[iy]);
+ EWME (ix,iy) += CEW [ix]*conj(CEW [iy]);
+ }
+ }
+ }
+ }
+ // colour factors
+ double born = 2.*real(bornME(0,0))+9.*real(bornME(1,1));
+ double EW = 2.*real( EWME(0,0))+9.*real( EWME(1,1));
+ return EW/born;
+}
+
+double ElectroWeakReweighter::reweightqbarqbarqbarqbar() const {
+ // momenta and invariants
+ Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
+ tcPDPtr qbar1 = subProcess()->incoming().first ->dataPtr();
+ Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
+ tcPDPtr qbar2 = subProcess()->incoming().second->dataPtr();
+ Lorentz5Momentum p3 = subProcess()->outgoing()[0] ->momentum();
+ tcPDPtr qbar3 = subProcess()->outgoing()[0] ->dataPtr();
+ Lorentz5Momentum p4 = subProcess()->outgoing()[1] ->momentum();
+ tcPDPtr qbar4 = subProcess()->outgoing()[1] ->dataPtr();
+ if(qbar1->id()!=qbar3->id()) {
+ swap(qbar3,qbar4);
+ swap(p3,p4);
+ }
+ assert(qbar1->id()==qbar3->id());
+ assert(qbar2->id()==qbar4->id());
+ Energy2 s = (p1+p2).m2();
+ Energy2 t = (p1-p4).m2();
+ Energy2 u = (p1-p3).m2();
+ // boost to partonic rest frame
+ Lorentz5Momentum psum=p1+p2;
+ LorentzRotation boost(-psum.boostVector());
+ p1 *= boost;
+ p2 *= boost;
+ p3 *= boost;
+ p4 *= boost;
+ p3.setMass(ZERO);
+ p3.rescaleRho();
+ p4.setMass(ZERO);
+ p4.rescaleRho();
+ // LO and EW corrected matrix element coefficients
+ boost::numeric::ublas::matrix<complex<InvEnergy2> >
+ bornLLLLWeights,bornLLRRWeights,bornRRLLWeights,bornRRRRWeights,
+ EWLLLLWeights,EWLLRRWeights,EWRRLLWeights,EWRRRRWeights;
+ bool ident = qbar1->id()==qbar2->id();
+ // LL -> LL
+ if((abs(qbar1->id())<=4 && abs(qbar2->id())<=4) ||
+ (abs(qbar1->id())==5 && abs(qbar2->id())==5)) {
+ if(!ident) {
+ bornLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,true ,2);
+ EWLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,false,2);
+ }
+ else {
+ bornLLLLWeights = evaluateRunning(EWProcess::QQQQiden,s,t,u,true ,2);
+ EWLLLLWeights = evaluateRunning(EWProcess::QQQQiden,s,t,u,false,2);
+ }
+ }
+ else if(abs(qbar1->id())==5 || abs(qbar2->id())==5) {
+ bornLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,true ,2);
+ EWLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,false,2);
+ }
+ else
+ assert(false);
+ // RR -> LL
+ if(abs(qbar1->id())%2==0) {
+ if(abs(qbar2->id())<5) {
+ bornRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,2);
+ EWRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,2);
+ }
+ else {
+ bornRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,2);
+ EWRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,2);
+ }
+ }
+ else {
+ if(abs(qbar2->id())<5) {
+ bornRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,2);
+ EWRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,2);
+ }
+ else {
+ bornRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,2);
+ EWRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,2);
+ }
+ }
+ // LL -> RR
+ if(abs(qbar1->id())<=4) {
+ if(abs(qbar2->id())%2!=0) {
+ bornLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,2);
+ EWLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,2);
+ }
+ else {
+ bornLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,2);
+ EWLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,2);
+ }
+ }
+ else {
+ if(abs(qbar2->id())%2!=0) {
+ bornLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,2);
+ EWLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,2);
+ }
+ else {
+ bornLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,2);
+ EWLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,2);
+ }
+ }
+ // RR -> RR
+ if(abs(qbar1->id())%2==0) {
+ if(abs(qbar2->id())%2==0) {
+ if(ident) {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUUUiden,s,t,u,true ,2);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUUUiden,s,t,u,false,2);
+ }
+ else {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,true ,2);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,false,2);
+ }
+ }
+ else {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,2);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,2);
+ }
+ }
+ else {
+ if(abs(qbar2->id())%2==0) {
+ bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,2);
+ EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,2);
+ }
+ else {
+ if(ident) {
+ bornRRRRWeights = evaluateRunning(EWProcess::DDDDiden,s,t,u,true ,2);
+ EWRRRRWeights = evaluateRunning(EWProcess::DDDDiden,s,t,u,false,2);
+ }
+ else {
+ bornRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,true ,2);
+ EWRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,false,2);
+ }
+ }
+ }
+ // extra terms for identical particles
+ boost::numeric::ublas::matrix<complex<InvEnergy2> >
+ borntChannelWeights,EWtChannelWeights;
+ if(ident) {
+ if(abs(qbar1->id())%2==0) {
+ borntChannelWeights = evaluateRunning(EWProcess::QQUU,s,u,t,true ,2);
+ EWtChannelWeights = evaluateRunning(EWProcess::QQUU,s,u,t,false,2);
+ }
+ else if(abs(qbar1->id())==5) {
+ borntChannelWeights = evaluateRunning(EWProcess::QtQtDD,s,u,t,true ,2);
+ EWtChannelWeights = evaluateRunning(EWProcess::QtQtDD,s,u,t,false,2);
+ }
+ else {
+ borntChannelWeights = evaluateRunning(EWProcess::QQDD,s,u,t,true ,2);
+ EWtChannelWeights = evaluateRunning(EWProcess::QQDD,s,u,t,false,2);
+ }
+ }
+ SpinorBarWaveFunction qbar1w(p1,qbar1,incoming);
+ SpinorBarWaveFunction qbar2w(p2,qbar2,incoming);
+ SpinorWaveFunction qbar3w(p3,qbar3,outgoing);
+ SpinorWaveFunction qbar4w(p4,qbar4,outgoing);
+ boost::numeric::ublas::matrix<Complex>
+ bornME = boost::numeric::ublas::zero_matrix<Complex>(2,2),
+ EWME = boost::numeric::ublas::zero_matrix<Complex>(2,2);
+ for(unsigned int iq1=0;iq1<2;++iq1) {
+ qbar1w.reset(iq1);
+ qbar3w.reset(iq1);
+ LorentzVector<complex<Energy> > current1 =
+ qbar3w.dimensionedWave().vectorCurrent(qbar1w.dimensionedWave());
+ for(unsigned int iq2=0;iq2<2;++iq2) {
+ qbar2w.reset(iq2);
+ qbar4w.reset(iq2);
+ LorentzVector<complex<Energy> > current2 =
+ qbar4w.dimensionedWave().vectorCurrent(qbar2w.dimensionedWave());
+ complex<Energy2> amp = current1.dot(current2);
+ vector<Complex> Cborn(2),CEW(2);
+ // amplitudes
+ if(iq1==1) {
+ // LL
+ if(iq2==1) {
+ unsigned int ioff;
+ if(abs(qbar1->id())%2==0) {
+ ioff = abs(qbar2->id())%2==0 ? 0 : 2;
+ }
+ else {
+ ioff = abs(qbar2->id())%2==0 ? 1 : 3;
+ }
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornLLLLWeights(6*ix+ioff,0);
+ CEW [ix] = amp* EWLLLLWeights(6*ix+ioff,0);
+ }
+ }
+ // LR
+ else {
+ unsigned int ioff = abs(qbar1->id())%2==0 ? 0 : 1;
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornLLRRWeights(2*ix+ioff,0);
+ CEW [ix] = amp* EWLLRRWeights(2*ix+ioff,0);
+ }
+ }
+ }
+ else {
+ if(iq2==1) {
+ unsigned int ioff=abs(qbar2->id())%2==0 ? 0 : 1;
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornRRLLWeights(2*ix+ioff,0);
+ CEW [ix] = amp* EWRRLLWeights(2*ix+ioff,0);
+ }
+ }
+ else {
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*bornRRRRWeights(ix,0);
+ CEW [ix] = amp* EWRRRRWeights(ix,0);
+ }
+ }
+ }
+ // square
+ for(unsigned int ix=0;ix<2;++ix) {
+ for(unsigned int iy=0;iy<2;++iy) {
+ bornME(ix,iy) += Cborn[ix]*conj(Cborn[iy]);
+ EWME (ix,iy) += CEW [ix]*conj(CEW [iy]);
+ }
+ }
+ }
+ }
+ // extra u-channel pieces if identical flavours
+ if(ident) {
+ for(unsigned int iq1=0;iq1<2;++iq1) {
+ qbar1w.reset(iq1);
+ qbar4w.reset(iq1);
+ LorentzVector<complex<Energy> > current1 =
+ qbar4w.dimensionedWave().vectorCurrent(qbar1w.dimensionedWave());
+ if(iq1==0) {
+ qbar2w.reset(1);
+ qbar3w.reset(1);
+ }
+ else {
+ qbar2w.reset(0);
+ qbar3w.reset(0);
+ }
+ LorentzVector<complex<Energy> > current2 =
+ qbar3w.dimensionedWave().vectorCurrent(qbar2w.dimensionedWave());
+ complex<Energy2> amp = current1.dot(current2);
+ vector<Complex> Cborn(2),CEW(2);
+ unsigned int ioff = abs(qbar1->id())%2==0 ? 0 : 1;
+ for(unsigned int ix=0;ix<2;++ix) {
+ Cborn[ix] = amp*borntChannelWeights(2*ix+ioff,0);
+ CEW [ix] = amp* EWtChannelWeights(2*ix+ioff,0);
+ }
+ // square
+ for(unsigned int ix=0;ix<2;++ix) {
+ for(unsigned int iy=0;iy<2;++iy) {
+ bornME(ix,iy) += Cborn[ix]*conj(Cborn[iy]);
+ EWME (ix,iy) += CEW [ix]*conj(CEW [iy]);
+ }
+ }
+ }
+ }
+ // colour factors
+ double born = 2.*real(bornME(0,0))+9.*real(bornME(1,1));
+ double EW = 2.*real( EWME(0,0))+9.*real( EWME(1,1));
+ return EW/born;
+}
diff --git a/MatrixElement/EW/ElectroWeakReweighter.h b/MatrixElement/EW/ElectroWeakReweighter.h
--- a/MatrixElement/EW/ElectroWeakReweighter.h
+++ b/MatrixElement/EW/ElectroWeakReweighter.h
@@ -1,175 +1,195 @@
// -*- C++ -*-
#ifndef Herwig_ElectroWeakReweighter_H
#define Herwig_ElectroWeakReweighter_H
//
// This is the declaration of the ElectroWeakReweighter class.
//
#include "ThePEG/MatrixElement/ReweightBase.h"
#include "EWCouplings.h"
#include "CollinearSudakov.h"
#include "SoftSudakov.h"
namespace Herwig {
using namespace ThePEG;
/**
* The ElectroWeakReweighter class.
*
* @see \ref ElectroWeakReweighterInterfaces "The interfaces"
* defined for ElectroWeakReweighter.
*/
class ElectroWeakReweighter: public ReweightBase {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
ElectroWeakReweighter();
/**
* The destructor.
*/
virtual ~ElectroWeakReweighter();
//@}
public:
/**
* Return the weight for the kinematical configuation provided by
* the assigned XComb object (in the LastXCombInfo base class).
*/
virtual double weight() const;
/**
*
*/
static tEWCouplingsPtr coupling() {
assert(staticEWCouplings_);
return staticEWCouplings_;
}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/**
* Functions to reweight specific processes
*/
//@{
/**
* Reweight \f$g g\to q\bar{q}\f$
*/
double reweightggqqbar() const;
/**
* Reweight \f$q\bar{q}\to g g\f$
*/
double reweightqqbargg() const;
/**
* Reweight \f$q g\to qg\f$
*/
double reweightqgqg() const;
/**
* Reweight \f$q g\to qg\f$
*/
double reweightqbargqbarg() const;
+
+ /**
+ * Reweight \f$q\bar{q}\to q'\bar{q'}\f$ (s-channel)
+ */
+ double reweightqqbarqqbarS() const;
+
+ /**
+ * Reweight \f$q\bar{q}\to q'\bar{q'}\f$ (t-channel)
+ */
+ double reweightqqbarqqbarT() const;
+
+ /**
+ * Reweight \f$qq \to qq\f$
+ */
+ double reweightqqqq() const;
+
+ /**
+ * Reweight \f$\bar{q}\bar{q} \to \bar{q}\bar{q}\f$
+ */
+ double reweightqbarqbarqbarqbar() const;
//@}
protected:
/**
* Check the evolution for a fixed s,t,u
*/
void testEvolution(Energy2 s,Energy2 t, Energy2 u) const;
/**
* Evalaute the running
*/
boost::numeric::ublas::matrix<complex<InvEnergy2> >
evaluateRunning(EWProcess::Process process, Energy2 s,
Energy2 t, Energy2 u, bool born,
unsigned int iswap) const;
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
ElectroWeakReweighter & operator=(const ElectroWeakReweighter &);
private:
/**
* The Electroweak Couplings
*/
EWCouplingsPtr EWCouplings_;
/**
* The Collinear Sudakov
*/
CollinearSudakovPtr collinearSudakov_;
/**
* The Soft Sudakov
*/
SoftSudakovPtr softSudakov_;
/**
* The couplings to allow global access
*/
static tEWCouplingsPtr staticEWCouplings_;
};
}
#endif /* Herwig_ElectroWeakReweighter_H */
diff --git a/MatrixElement/EW/GroupInvariants.h b/MatrixElement/EW/GroupInvariants.h
--- a/MatrixElement/EW/GroupInvariants.h
+++ b/MatrixElement/EW/GroupInvariants.h
@@ -1,407 +1,495 @@
// -*- C++ -*-
//
// GroupInvariants.h is a part of Herwig - A multi-purpose Monte Carlo event generator
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
//
#ifndef HERWIG_GroupInvariants_H
#define HERWIG_GroupInvariants_H
#include "ThePEG/Config/ThePEG.h"
#include "ThePEG/Config/Unitsystem.h"
#include <cassert>
#include <boost/numeric/ublas/matrix.hpp>
namespace Herwig {
using namespace ThePEG;
namespace GroupInvariants {
/**
* Simple struct for storing the different gauge contributions
*/
struct GaugeContributions {
/**
* Default Constructor
*/
GaugeContributions(double inSU3=0.,
double inSU2=0., double inU1=0.)
: SU3(inSU3),SU2(inSU2),U1(inU1)
{}
/**
* \f$SU(3)\f$
*/
double SU3;
/**
* \f$SU(2)\f$
*/
double SU2;
/**
* \f$U(1)\f$
*/
double U1;
};
/**
* The \f$SU(N)\f$ \f$C_A\f$
*/
inline double C_A(unsigned int N) {
return N !=1 ? double(N) : 0.;
}
/**
* The \f$SU(N)\f$ \f$C_F\f$
*/
inline double C_F(unsigned int N) {
return N !=1 ? 0.5*(double(N*N)-1.)/double(N) : 1.;
}
/*
* The \f$SU(N)\f$ \f$C_d\f$
*/
inline double C_d(unsigned int N) {
return (double(N*N)-4.)/double(N);
}
/**
* The \f$SU(N)\f$\f$C_1\f$
*/
inline double C_1(unsigned int N) {
double N2(N*N);
return 0.25*(N2-1.0)/N2;
}
/**
* \f$T_F\f$
*/
inline double T_F(unsigned int N, bool high) {
if(high) {
return N !=1 ? 0.5 : 5.0/3.0;
}
else {
return N !=1 ? 0.5 : 20.0/3.0;
}
}
/**
* \f$t_S\f$
*/
inline double t_S(unsigned int, bool ) {
return 0.5;
}
/**
* / Number of complex scalars in the fundamental rep. of SU(N)/U(1)
*/
inline double n_S(unsigned int N, bool high) {
if(high) {
if(N==2 || N==1) return 1.0;
else if(N==3) return 0.0;
else assert(false);
}
else {
if(N>=1&&N<=3) return 0.;
else assert(false);
}
}
/**
* Number of Dirac Fermions in the fund. rep. of SU(N) (or U(1) for N==1)
*/
inline double n_F(unsigned int N, bool high) {
if(high) {
if(N==1) return 3.0;
else if(N==2 || N==3) return 6.0;
else assert(false);
}
else {
if(N==1) return 1.0;
else if(N==2) return 0.0;
else if(N==3) return 5.0;
else assert(false);
}
}
/**
* Find K_i for gauge group N. high=false for running at mu<mZ
*/
double K_Factor(unsigned int i,unsigned int N, bool high);
/**
* Find B_i for gauge group N, high energy
*/
double B_Factor(int i, int N, bool fermion, bool longitudinal);
/**
* Find B_i for gauge group N, low energy
*/
double B_Factor_Low(int i, int N, bool fermion, double boostFactor);
/**
* Contributions to the Cusps
*/
GaugeContributions cuspContributions(Energy mu, int K_ORDER, bool high);
/**
* Contributions to B, high energy
*/
GaugeContributions BContributions(Energy mu, int B_ORDER,
bool fermion, bool longitudinal);
/**
* Contributions to B, low energy
*/
GaugeContributions BContributionsLow(Energy mu, int B_ORDER,
bool fermion, double boostFactor);
inline Complex PlusLog(double arg) {
static const Complex I(0,1.0);
if (arg>0.0)
return log(arg);
else if (arg<0.0)
return log(-arg)+I*Constants::pi;
else
assert(false);
}
inline Complex MinusLog(double arg) {
static const Complex I(0,1.0);
if (arg>0.0)
return log(arg);
else if (arg<0.0)
return log(-arg)-I*Constants::pi;
else
assert(false);
}
inline Complex getT(Energy2 s, Energy2 t) {
return MinusLog(-t/GeV2) - MinusLog(-s/GeV2);
}
inline Complex getU(Energy2 s, Energy2 u) {
return MinusLog(-u/GeV2) - MinusLog(-s/GeV2);
}
inline boost::numeric::ublas::matrix<Complex> Gamma2(Complex U, Complex T) {
boost::numeric::ublas::matrix<Complex> output(2,2);
static const Complex I(0,1.0);
using Constants::pi;
output(0,0) = (-3.0/2.0)*I*pi + (T+U);
output(1,1) = (-3.0/2.0)*I*pi;
output(0,1) = 2.0*(T-U);
output(1,0) = (3.0/8.0)*(T-U);
return output;
}
+ inline boost::numeric::ublas::matrix<Complex> Gamma2ST(Complex U, Complex T) {
+ boost::numeric::ublas::matrix<Complex> output(2,2);
+ static const Complex I(0,1.0);
+ using Constants::pi;
+ output(0,0) = 3./2.*(T-I*pi) + U -2.*T;
+ output(1,1) = 3./2.*(T-I*pi);
+ output(0,1) = -2.0*U;
+ output(1,0) = -(3.0/8.0)*U;
+ return output;
+ }
+
+ inline boost::numeric::ublas::matrix<Complex> Gamma2SU(Complex U, Complex T) {
+ boost::numeric::ublas::matrix<Complex> output(2,2);
+ static const Complex I(0,1.0);
+ using Constants::pi;
+ output(0,0) = 3./2.*(U-I*pi) + T - 2.*U;
+ output(1,1) = 3./2.*(U-I*pi);
+ output(0,1) = 2.0*T;
+ output(1,0) = (3.0/8.0)*T;
+ return output;
+ }
+
inline boost::numeric::ublas::matrix<Complex> Gamma2w(Complex U, Complex T) {
boost::numeric::ublas::matrix<Complex> output = boost::numeric::ublas::zero_matrix<Complex>(5,5);
static const Complex I(0,1.0);
using Constants::pi;
output(0,0) += -I*pi*11.0/4.0;
output(0,1) += U-T;
output(1,0) += 2.0*(U-T);
output(1,1) += -I*pi*11.0/4.0 + (T+U);
output(2,2) += -7.0/4.0*I*pi + (U+T);
output(3,3) += -7.0/4.0*I*pi + (U+T);
output(4,4) += -3.0/4.0*I*pi;
return output;
}
inline boost::numeric::ublas::matrix<Complex> Gamma2Singlet() {
using namespace boost::numeric::ublas;
matrix<Complex> output = zero_matrix<Complex>(2,2);
static const Complex I(0,1.0);
using Constants::pi;
output(0,0) = output(1,1) = -0.75*I*pi;
return output;
}
inline boost::numeric::ublas::matrix<Complex> Gamma2SingletST(Complex T) {
using namespace boost::numeric::ublas;
matrix<Complex> output = zero_matrix<Complex>(2,2);
static const Complex I(0,1.0);
using Constants::pi;
output(0,0) = output(1,1) = 0.75*(T-I*pi);
return output;
}
+ inline boost::numeric::ublas::matrix<Complex> Gamma2SingletSU(Complex U) {
+ using namespace boost::numeric::ublas;
+ matrix<Complex> output = zero_matrix<Complex>(2,2);
+ static const Complex I(0,1.0);
+ using Constants::pi;
+ output(0,0) = output(1,1) = 0.75*(U-I*pi);
+ return output;
+ }
+
inline Complex Gamma1(double hypercharge) {
Complex I(0,1.0);
return -I*Constants::pi*sqr(hypercharge);
}
inline Complex Gamma1ST(double hypercharge,Complex T) {
Complex I(0,1.0);
return (T-I*Constants::pi)*sqr(hypercharge);
}
+
+ inline Complex Gamma1SU(double hypercharge,Complex U) {
+ Complex I(0,1.0);
+ return (U-I*Constants::pi)*sqr(hypercharge);
+ }
inline Complex Gamma1(double y1, double y2, Complex T, Complex U) {
Complex I(0,1.0);
return -I*Constants::pi*(y1*y1+y2*y2) + 2.0*y1*y2*(T-U);
}
inline Complex Gamma1ST(double y1, double y2, Complex T, Complex U) {
Complex I(0,1.0);
return (T-I*Constants::pi)*(y1*y1+y2*y2) - 2.0*y1*y2*U;
}
+ inline Complex Gamma1SU(double y1, double y2, Complex T, Complex U) {
+ Complex I(0,1.0);
+ return (U-I*Constants::pi)*(y1*y1+y2*y2) + 2.0*y1*y2*T;
+ }
+
inline Complex Gamma1(double y1, double y2, double y3, double y4,
Complex T, Complex U) {
Complex I(0,1.0);
return -I*Constants::pi*(y1*y1+y2*y2+y3*y3+y4*y4)/2.0 +
(y1*y4+y2*y3)*T - (y1*y3+y2*y4)*U;
}
inline Complex Gamma1ST(double y1, double y2, double y3, double y4,
Complex T, Complex U) {
Complex I(0,1.0);
return (T-I*Constants::pi)*(y1*y1+y2*y2+y3*y3+y4*y4)/2.0 -
(y1*y4+y2*y3)*T - (y1*y3+y2*y4)*(U-T);
}
+
+ inline Complex Gamma1SU(double y1, double y2, double y3, double y4,
+ Complex T, Complex U) {
+ Complex I(0,1.0);
+ return (U-I*Constants::pi)*(y1*y1+y2*y2+y3*y3+y4*y4)/2.0 +
+ (y1*y4+y2*y3)*(T-U) + (y1*y3+y2*y4)*U;
+ }
inline boost::numeric::ublas::matrix<Complex> Gamma3(Complex U, Complex T) {
boost::numeric::ublas::matrix<Complex> output = boost::numeric::ublas::zero_matrix<Complex>(2,2);
static const Complex I(0,1.0);
using Constants::pi;
output(0,0) = -(8.0/3.0)*I*pi;
output(1,1) = -(8.0/3.0)*I*pi;
output(0,0) += (7.0/3.0)*T + (2.0/3.0)*U;
output(0,1) = 2.0*(T-U);
output(1,0) = (4.0/9.0)*(T-U);
return output;
}
+ inline boost::numeric::ublas::matrix<Complex> Gamma3ST(Complex U, Complex T) {
+ boost::numeric::ublas::matrix<Complex> output = boost::numeric::ublas::zero_matrix<Complex>(2,2);
+ static const Complex I(0,1.0);
+ using Constants::pi;
+ output(0,0) = 8./3.*(T-I*pi);
+ output(1,1) = 8./3.*(T-I*pi);
+ output(0,0) += -3.*T + 2./3.*U;
+ output(0,1) = -2.*U;
+ output(1,0) = -4./9.*U;
+ return output;
+ }
+
+ inline boost::numeric::ublas::matrix<Complex> Gamma3SU(Complex U, Complex T) {
+ boost::numeric::ublas::matrix<Complex> output = boost::numeric::ublas::zero_matrix<Complex>(2,2);
+ static const Complex I(0,1.0);
+ using Constants::pi;
+ output(0,0) = 8./3.*(U-I*pi);
+ output(1,1) = 8./3.*(U-I*pi);
+ output(0,0) += 7./3.*T -3.*U;
+ output(0,1) = 2.*T;
+ output(1,0) = 4./9.*T;
+ return output;
+ }
+
inline boost::numeric::ublas::matrix<Complex> Gamma3g(Complex U, Complex T) {
boost::numeric::ublas::matrix<Complex> output = boost::numeric::ublas::zero_matrix<Complex>(3,3);
static const Complex I(0,1.0);
using Constants::pi;
output(0,2) = U-T;
output(1,1) = 3.0/2.0*(T+U);
output(1,2) = 3.0/2.0*(U-T);
output(2,0) = 2.0*(U-T);
output(2,1) = 5.0/6.0*(U-T);
output(2,2) = 3.0/2.0*(T+U);
for (unsigned int i=0; i<3; i++) {
output(i,i) += -13.0/3.0*I*pi;
}
return output;
}
inline boost::numeric::ublas::matrix<Complex> Gamma3gST(Complex U, Complex T) {
boost::numeric::ublas::matrix<Complex> output = boost::numeric::ublas::zero_matrix<Complex>(3,3);
static const Complex I(0,1.0);
using Constants::pi;
output(0,2) = U;
output(1,1) = 3.0/2.0*(U-2.*T);
output(1,2) = 3.0/2.0*U;
output(2,0) = 2.0*U;
output(2,1) = 5.0/6.0*U;
output(2,2) = 3.0/2.0*(U-2.*T);
for (unsigned int i=0; i<3; i++) {
output(i,i) += 13.0/3.0*(T-I*pi);
}
return output;
}
+ inline boost::numeric::ublas::matrix<Complex> Gamma3gSU(Complex U, Complex T) {
+ boost::numeric::ublas::matrix<Complex> output = boost::numeric::ublas::zero_matrix<Complex>(3,3);
+ static const Complex I(0,1.0);
+ using Constants::pi;
+ output(0,2) = -T;
+ output(1,1) = 3./2.*(T-2.*U);
+ output(1,2) = -3./2.*T;
+ output(2,0) = -2.0*T;
+ output(2,1) =-5./6.*T;
+ output(2,2) = 3./2.*(T-2.*U);
+ for (unsigned int i=0; i<3; i++) {
+ output(i,i) += 13./3.*(U-I*pi);
+ }
+ return output;
+ }
+
inline boost::numeric::ublas::matrix<Complex> Gamma3Singlet() {
boost::numeric::ublas::matrix<Complex> output = boost::numeric::ublas::zero_matrix<Complex>(2,2);
static const Complex I(0,1.0);
using Constants::pi;
output(0,0) = output(1,1) = -4.0/3.0*I*pi;
return output;
}
/**
* Number of fermion generations (only used in gauge boson HighCMatching)
*/
inline double n_g() { return 3.0; }
/**
* Number of complex scalars in the fundamental rep. of SU(N)
*/
inline double nSWeyl(unsigned int N, bool high) {
if(high) {
if(N==2 || N==1) return 1.0;
else if (N==3) return 0.0;
else assert(false);
}
else {
if( N==1 || N==3 ) return 0.0;
else assert(false);
}
}
/**
* Number of Weyl Fermions in the fundamental rep. of SU(N)
*/
inline double nFWeyl(unsigned int N, bool high) {
if(high) {
if(N==2 || N==3) return 12.0;
else assert(false);
}
else {
if(N==3) return 10.0;
else if(N==1) return 2.0;
else assert(false);
}
}
inline double TFWeyl(unsigned int) {
return 0.5;
}
inline double tSWeyl(unsigned int) {
return 0.5;
}
inline Complex WFunction(Energy mu, Energy2 s) {
using Constants::pi;
assert(abs(s)>ZERO);
Complex ln = MinusLog(-s/(mu*mu));
return (-1.0*ln*ln + 3.0*ln+pi*pi/6.0-8.0);
}
/**
* \fX_N\f% function, v is either t or u
*/
inline Complex XNFunction(unsigned int N, Energy mu, Energy2 s, Energy2 v) {
using Constants::pi;
assert(abs(s)>ZERO);
Complex ls = MinusLog(-s/(mu*mu));
return (2.0*C_F(N)*WFunction(mu,s) +
C_A(N)*(2.0*ls*ls - 2.0*MinusLog((s+v)/(mu*mu))*ls -
11.0/3.0*ls + pi*pi + 85.0/9.0) +
(2.0/3.0*ls - 10.0/9.0) * TFWeyl(N) * nFWeyl(N,true) +
(1.0/3.0*ls - 8.0/9.0) * TFWeyl(N) * nSWeyl(N,true));
}
/**
* \f$\Pi_1\f$ function
*/
inline Complex PI1_function(Energy mu, Energy2 s) {
assert(abs(s)>ZERO);
return ((41.0/6.0)*MinusLog(-s/(mu*mu))-104.0/9.0);
}
/**
* \f$\tilde{f}\f$ function, v is either t or u
*/
inline Complex fTildeFunction(Energy mu, Energy2 s, Energy2 v) {
using Constants::pi;
assert(abs(s)>ZERO);
Complex ls = MinusLog(-s/GeV2), lv = MinusLog(-v/GeV2);
Complex lsv = MinusLog((s+v)/GeV2);
return (-2.0*double(s/(s+v))*(lv-ls) +
double(s*(s+2.0*v)/((s+v)*(s+v))) * ((lv-ls)*(lv-ls) + pi*pi) +
4.0*MinusLog(-s/(mu*mu))*(lv-lsv));
}
}
}
#endif // HERWIG_GroupInvariants_H
diff --git a/MatrixElement/EW/SoftSudakov.cc b/MatrixElement/EW/SoftSudakov.cc
--- a/MatrixElement/EW/SoftSudakov.cc
+++ b/MatrixElement/EW/SoftSudakov.cc
@@ -1,1146 +1,1321 @@
// -*- C++ -*-
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SoftSudakov class.
//
#include "SoftSudakov.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "GroupInvariants.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "expm-1.h"
using namespace Herwig;
using namespace GroupInvariants;
SoftSudakov::SoftSudakov() : K_ORDER_(3), integrator_(0.,1e-5,1000) {}
SoftSudakov::~SoftSudakov() {}
IBPtr SoftSudakov::clone() const {
return new_ptr(*this);
}
IBPtr SoftSudakov::fullclone() const {
return new_ptr(*this);
}
void SoftSudakov::persistentOutput(PersistentOStream & os) const {
os << K_ORDER_;
}
void SoftSudakov::persistentInput(PersistentIStream & is, int) {
is >> K_ORDER_;
}
// The following static variable is needed for the type
// description system in ThePEG.
DescribeClass<SoftSudakov,Interfaced>
describeHerwigSoftSudakov("Herwig::SoftSudakov", "HwMEEW.so");
void SoftSudakov::Init() {
static ClassDocumentation<SoftSudakov> documentation
("The SoftSudakov class implements the soft EW Sudakov");
}
InvEnergy SoftSudakov::operator ()(Energy mu) const {
// Include K-factor Contributions (Cusps):
GaugeContributions cusp = cuspContributions(mu,K_ORDER_,high_);
Complex gamma = cusp.SU3*G3_(row_,col_) + cusp.SU2*G2_(row_,col_) + cusp.U1*G1_(row_,col_);
if (real_) {
return gamma.real()/mu;
}
else {
return gamma.imag()/mu;
}
}
boost::numeric::ublas::matrix<Complex>
SoftSudakov::evaluateSoft(boost::numeric::ublas::matrix<Complex> & G3,
boost::numeric::ublas::matrix<Complex> & G2,
boost::numeric::ublas::matrix<Complex> & G1,
Energy mu_h, Energy mu_l, bool high) {
assert( G3.size1() == G2.size1() && G3.size1() == G1.size1() &&
G3.size2() == G2.size2() && G3.size2() == G1.size2() &&
G3.size1() == G3.size2());
G3_ = G3;
G2_ = G2;
G1_ = G1;
high_ = high;
unsigned int NN = G3_.size1();
// gamma is the matrix to be numerically integrated to run the coefficients.
boost::numeric::ublas::matrix<Complex> gamma(NN,NN);
for(row_=0;row_<NN;++row_) {
for(col_=0;col_<NN;++col_) {
if(G3_(row_,col_) == 0. && G2_(row_,col_) == 0. && G1_(row_,col_) == 0.) {
gamma(row_,col_) = 0.;
}
else {
real_ = true;
gamma(row_,col_).real(integrator_.value(*this,mu_h,mu_l));
real_ = false;
gamma(row_,col_).imag(integrator_.value(*this,mu_h,mu_l));
}
}
}
// Resummed:
return boost::numeric::ublas::expm_pad(gamma,7);
}
boost::numeric::ublas::matrix<Complex>
SoftSudakov::lowEnergyRunning(Energy EWScale, Energy lowScale,
Energy2 s, Energy2 t, Energy2 u,
Herwig::EWProcess::Process process,
unsigned int iswap) {
using namespace EWProcess;
using namespace boost::numeric::ublas;
using Constants::pi;
static const Complex I(0,1.0);
Complex T = getT(s,t), U = getU(s,u);
matrix<Complex> G1, G2, G3;
unsigned int numBrokenGauge;
switch (process) {
case QQQQ:
case QQQQiden:
case QtQtQQ:
{
- assert(iswap==0);
numBrokenGauge = 12;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
- matrix<Complex> gam3 = Gamma3(U,T);
+ matrix<Complex> gam3;
+ if(iswap==0) {
+ gam3 = Gamma3(U,T);
+ G1(0,0) = G1(6,6) = Gamma1(2.0/3.0,2.0/3.0,2.0/3.0,2.0/3.0,T,U);
+ G1(1,1) = G1(7,7) = Gamma1(-1.0/3.0,-1.0/3.0,2.0/3.0,2.0/3.0,T,U);
+ G1(2,2) = G1(8,8) = Gamma1(2.0/3.0,2.0/3.0,-1.0/3.0,-1.0/3.0,T,U);
+ G1(3,3) = G1(9,9) = Gamma1(-1.0/3.0,-1.0/3.0,-1.0/3.0,-1.0/3.0,T,U);
+ G1(4,4) = G1(10,10) = Gamma1(-1.0/3.0,2.0/3.0,2.0/3.0,-1.0/3.0,T,U);
+ G1(5,5) = G1(11,11) = Gamma1(2.0/3.0,-1.0/3.0,-1.0/3.0,2.0/3.0,T,U);
+ }
+ else if(iswap==1) {
+ gam3 = Gamma3ST(U,T);
+ G1(0,0) = G1(6,6) = Gamma1ST(2.0/3.0,2.0/3.0,2.0/3.0,2.0/3.0,T,U);
+ G1(1,1) = G1(7,7) = Gamma1ST(-1.0/3.0,-1.0/3.0,2.0/3.0,2.0/3.0,T,U);
+ G1(2,2) = G1(8,8) = Gamma1ST(2.0/3.0,2.0/3.0,-1.0/3.0,-1.0/3.0,T,U);
+ G1(3,3) = G1(9,9) = Gamma1ST(-1.0/3.0,-1.0/3.0,-1.0/3.0,-1.0/3.0,T,U);
+ G1(4,4) = G1(10,10) = Gamma1ST(-1.0/3.0,2.0/3.0,2.0/3.0,-1.0/3.0,T,U);
+ G1(5,5) = G1(11,11) = Gamma1ST(2.0/3.0,-1.0/3.0,-1.0/3.0,2.0/3.0,T,U);
+ }
+ else if(iswap==2) {
+ gam3 = Gamma3SU(U,T);
+ G1(0,0) = G1(6,6) = Gamma1SU( 2.0/3.0,2.0/3.0,2.0/3.0,2.0/3.0,T,U);
+ G1(1,1) = G1(7,7) = Gamma1SU(-1.0/3.0,-1.0/3.0,2.0/3.0,2.0/3.0,T,U);
+ G1(2,2) = G1(8,8) = Gamma1SU( 2.0/3.0,2.0/3.0,-1.0/3.0,-1.0/3.0,T,U);
+ G1(3,3) = G1(9,9) = Gamma1SU(-1.0/3.0,-1.0/3.0,-1.0/3.0,-1.0/3.0,T,U);
+ G1(4,4) = G1(10,10) = Gamma1SU(-1.0/3.0,2.0/3.0,2.0/3.0,-1.0/3.0,T,U);
+ G1(5,5) = G1(11,11) = Gamma1SU( 2.0/3.0,-1.0/3.0,-1.0/3.0,2.0/3.0,T,U);
+ }
+ else
+ assert(false);
for (unsigned int i=0; i<numBrokenGauge/2; i++) {
G3(i,i) += gam3(0,0);
G3(i,i+6) += gam3(0,1);
G3(i+6,i) += gam3(1,0);
G3(i+6,i+6) += gam3(1,1);
}
- G1(0,0) = G1(6,6) = Gamma1(2.0/3.0,2.0/3.0,2.0/3.0,2.0/3.0,T,U);
- G1(1,1) = G1(7,7) = Gamma1(-1.0/3.0,-1.0/3.0,2.0/3.0,2.0/3.0,T,U);
- G1(2,2) = G1(8,8) = Gamma1(2.0/3.0,2.0/3.0,-1.0/3.0,-1.0/3.0,T,U);
- G1(3,3) = G1(9,9) = Gamma1(-1.0/3.0,-1.0/3.0,-1.0/3.0,-1.0/3.0,T,U);
- G1(4,4) = G1(10,10) = Gamma1(-1.0/3.0,2.0/3.0,2.0/3.0,-1.0/3.0,T,U);
- G1(5,5) = G1(11,11) = Gamma1(2.0/3.0,-1.0/3.0,-1.0/3.0,2.0/3.0,T,U);
}
break;
case QQUU:
case QtQtUU:
case QQtRtR:
{
- assert(iswap==0);
numBrokenGauge = 4;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
- matrix<Complex> gam3 = Gamma3(U,T);
+ matrix<Complex> gam3;
+ if(iswap==0) {
+ gam3 = Gamma3(U,T);
+ G1(0,0) = G1(2,2) = Gamma1(2.0/3.0,2.0/3.0,T,U);
+ G1(1,1) = G1(3,3) = Gamma1(2.0/3.0,-1.0/3.0,T,U);
+ }
+ else if(iswap==1) {
+ gam3 = Gamma3ST(U,T);
+ G1(0,0) = G1(2,2) = Gamma1ST(2.0/3.0,2.0/3.0,T,U);
+ G1(1,1) = G1(3,3) = Gamma1ST(2.0/3.0,-1.0/3.0,T,U);
+ }
+ else if(iswap==2) {
+ gam3 = Gamma3SU(U,T);
+ G1(0,0) = G1(2,2) = Gamma1SU(2.0/3.0,2.0/3.0,T,U);
+ G1(1,1) = G1(3,3) = Gamma1SU(2.0/3.0,-1.0/3.0,T,U);
+ }
+ else
+ assert(false);
+
for (unsigned int i=0; i<numBrokenGauge/2; i++) {
G3(i,i) += gam3(0,0);
G3(i,i+2) += gam3(0,1);
G3(i+2,i) += gam3(1,0);
G3(i+2,i+2) += gam3(1,1);
}
- G1(0,0) = G1(2,2) = Gamma1(2.0/3.0,2.0/3.0,T,U);
- G1(1,1) = G1(3,3) = Gamma1(2.0/3.0,-1.0/3.0,T,U);
}
break;
case QQDD:
case QtQtDD:
{
- assert(iswap==0);
numBrokenGauge = 4;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
- matrix<Complex> gam3 = Gamma3(U,T);
+ matrix<Complex> gam3;
+ if(iswap==0) {
+ gam3 = Gamma3(U,T);
+ G1(0,0) = G1(2,2) = Gamma1(-1.0/3.0,2.0/3.0,T,U);
+ G1(1,1) = G1(3,3) = Gamma1(-1.0/3.0,-1.0/3.0,T,U);
+ }
+ else if(iswap==1) {
+ gam3 = Gamma3ST(U,T);
+ G1(0,0) = G1(2,2) = Gamma1ST(-1.0/3.0,2.0/3.0,T,U);
+ G1(1,1) = G1(3,3) = Gamma1ST(-1.0/3.0,-1.0/3.0,T,U);
+ }
+ else if(iswap==2) {
+ gam3 = Gamma3SU(U,T);
+ G1(0,0) = G1(2,2) = Gamma1SU(-1.0/3.0,2.0/3.0,T,U);
+ G1(1,1) = G1(3,3) = Gamma1SU(-1.0/3.0,-1.0/3.0,T,U);
+ }
+ else
+ assert(false);
for (unsigned int i=0; i<numBrokenGauge/2; i++) {
G3(i,i) += gam3(0,0);
G3(i,i+2) += gam3(0,1);
G3(i+2,i) += gam3(1,0);
G3(i+2,i+2) += gam3(1,1);
}
- G1(0,0) = G1(2,2) = Gamma1(-1.0/3.0,2.0/3.0,T,U);
- G1(1,1) = G1(3,3) = Gamma1(-1.0/3.0,-1.0/3.0,T,U);
}
break;
case QQLL:
{
assert(iswap==0);
numBrokenGauge = 6;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Complex gam3s = Gamma3Singlet()(0,0);
for (unsigned int i=0; i<numBrokenGauge; i++) {
G3(i,i) = gam3s;
}
G1(0,0) = Gamma1(2.0/3.0,2.0/3.0,0.0,0.0,T,U);
G1(1,1) = Gamma1(-1.0/3.0,-1.0/3.0,0.0,0.0,T,U);
G1(2,2) = Gamma1(2.0/3.0,2.0/3.0,-1.0,-1.0,T,U);
G1(3,3) = Gamma1(-1.0/3.0,-1.0/3.0,-1.0,-1.0,T,U);
G1(4,4) = Gamma1(-1.0/3.0,2.0/3.0,0.0,-1.0,T,U);
G1(5,5) = Gamma1(2.0/3.0,-1.0/3.0,-1.0,0.0,T,U);
}
break;
case QQEE:
{
assert(iswap==0);
numBrokenGauge = 2;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Complex gam3s = Gamma3Singlet()(0,0);
for (unsigned int i=0; i<2; i++) {
G3(i,i) += gam3s;
}
G1(0,0) = Gamma1(2.0/3.0,-1.0,T,U);
G1(1,1) = Gamma1(-1.0/3.0,-1.0,T,U);
}
break;
case UUUU:
case UUUUiden:
case tRtRUU:
- assert(iswap==0);
numBrokenGauge = 2;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
- G3 = Gamma3(U,T);
- G1(0,0) = G1(1,1) = Gamma1(2.0/3.0,2.0/3.0,T,U);
+ if(iswap==0) {
+ G3 = Gamma3(U,T);
+ G1(0,0) = G1(1,1) = Gamma1(2.0/3.0,2.0/3.0,T,U);
+ }
+ else if(iswap==1) {
+ G3 = Gamma3ST(U,T);
+ G1(0,0) = G1(1,1) = Gamma1ST(2.0/3.0,2.0/3.0,T,U);
+ }
+ else if(iswap==2) {
+ G3 = Gamma3SU(U,T);
+ G1(0,0) = G1(1,1) = Gamma1SU(2.0/3.0,2.0/3.0,T,U);
+ }
+ else
+ assert(false);
break;
case UUDD:
case tRtRDD:
- assert(iswap==0);
numBrokenGauge = 2;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
- G3 = Gamma3(U,T);
- G1(0,0) = G1(1,1) = Gamma1(-1.0/3.0,2.0/3.0,T,U);
+ if(iswap==0) {
+ G3 = Gamma3(U,T);
+ G1(0,0) = G1(1,1) = Gamma1(-1.0/3.0,2.0/3.0,T,U);
+ }
+ else if(iswap==1) {
+ G3 = Gamma3ST(U,T);
+ G1(0,0) = G1(1,1) = Gamma1ST(-1.0/3.0,2.0/3.0,T,U);
+ }
+ else if(iswap==2) {
+ G3 = Gamma3SU(U,T);
+ G1(0,0) = G1(1,1) = Gamma1SU(-1.0/3.0,2.0/3.0,T,U);
+ }
+ else
+ assert(false);
break;
case UULL:
assert(iswap==0);
numBrokenGauge = 2;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3(0,0) = G3(1,1) = Gamma3Singlet()(0,0);
G1(0,0) = Gamma1(2.0/3.0,0.0,T,U);
G1(1,1) = Gamma1(2.0/3.0,-1.0,T,U);
break;
case UUEE:
assert(iswap==0);
numBrokenGauge = 1;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3(0,0) = Gamma3Singlet()(0,0);
G1(0,0) = Gamma1(2.0/3.0,-1.0,T,U);
break;
case DDDD:
case DDDDiden:
- assert(iswap==0);
numBrokenGauge = 2;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
- G3 = Gamma3(U,T);
- G1(0,0) = G1(1,1) = Gamma1(-1.0/3.0,-1.0/3.0,T,U);
+ if(iswap==0) {
+ G3 = Gamma3(U,T);
+ G1(0,0) = G1(1,1) = Gamma1(-1.0/3.0,-1.0/3.0,T,U);
+ }
+ else if(iswap==1) {
+ G3 = Gamma3ST(U,T);
+ G1(0,0) = G1(1,1) = Gamma1ST(-1.0/3.0,-1.0/3.0,T,U);
+ }
+ else if(iswap==2) {
+ G3 = Gamma3SU(U,T);
+ G1(0,0) = G1(1,1) = Gamma1SU(-1.0/3.0,-1.0/3.0,T,U);
+ }
+ else
+ assert(false);
break;
case DDLL:
assert(iswap==0);
numBrokenGauge = 2;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3(0,0) = G3(1,1) = Gamma3Singlet()(0,0);
G1(0,0) = Gamma1(-1.0/3.0,0.0,T,U);
G1(1,1) = Gamma1(-1.0/3.0,-1.0,T,U);
break;
case DDEE:
assert(iswap==0);
numBrokenGauge = 1;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3(0,0) = Gamma3Singlet()(0,0);
G1(0,0) = Gamma1(-1.0/3.0,-1.0,T,U);
break;
case LLLL:
case LLLLiden:
assert(iswap==0);
numBrokenGauge = 6;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G1(0,0) = Gamma1(0.0,0.0,0.0,0.0,T,U);
G1(1,1) = Gamma1(-1.0,-1.0,0.0,0.0,T,U);
G1(2,2) = Gamma1(0.0,0.0,-1.0,-1.0,T,U);
G1(3,3) = Gamma1(-1.0,-1.0,-1.0,-1.0,T,U);
G1(4,4) = Gamma1(-1.0,0.0,0.0,-1.0,T,U);
G1(5,5) = Gamma1(0.0,-1.0,-1.0,0.0,T,U);
break;
case LLEE:
assert(iswap==0);
numBrokenGauge = 2;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G1(0,0) = Gamma1(0.0,-1.0,T,U);
G1(1,1) = Gamma1(-1.0,-1.0,T,U);
break;
case EEEE:
case EEEEiden:
assert(iswap==0);
numBrokenGauge = 1;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G1(0,0) = Gamma1(-1.0,-1.0,T,U);
break;
case QQWW:
{
assert(iswap==0);
numBrokenGauge = 20;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Complex gam3s = Gamma3Singlet()(0,0);
for (unsigned int i=0; i<numBrokenGauge; i++) {
G3(i,i) = gam3s;
}
G1(0,0) = Gamma1(2./3.,2./3.,-1.,-1.,T,U);
G1(1,1) = Gamma1(2./3.,2./3.,1.,1.,T,U);
G1(2,2) = Gamma1(2./3.,2./3.,0.,0.,T,U);
G1(3,3) = Gamma1(2./3.,2./3.,0.,0.,T,U);
G1(4,4) = Gamma1(2./3.,2./3.,0.,0.,T,U);
G1(5,5) = Gamma1(2./3.,2./3.,0.,0.,T,U);
G1(6,6) = Gamma1(-1./3.,-1./3.,-1.,-1.,T,U);
G1(7,7) = Gamma1(-1./3.,-1./3.,1.,1.,T,U);
G1(8,8) = Gamma1(-1./3.,-1./3.,0.,0.,T,U);
G1(9,9) = Gamma1(-1./3.,-1./3.,0.,0.,T,U);
G1(10,10) = Gamma1(-1./3.,-1./3.,0.,0.,T,U);
G1(11,11) = Gamma1(-1./3.,-1./3.,0.,0.,T,U);
G1(12,12) = Gamma1(-1./3.,2./3.,0.,-1.,T,U);
G1(13,13) = Gamma1(-1./3.,2./3.,0.,-1.,T,U);
G1(14,14) = Gamma1(-1./3.,2./3.,1.,0.,T,U);
G1(15,15) = Gamma1(-1./3.,2./3.,1.,0.,T,U);
G1(16,16) = Gamma1(2./3.,-1./3.,-1.,0.,T,U);
G1(17,17) = Gamma1(2./3.,-1./3.,-1.,0.,T,U);
G1(18,18) = Gamma1(2./3.,-1./3.,0.,1.,T,U);
G1(19,19) = Gamma1(2./3.,-1./3.,0.,1.,T,U);
}
break;
case QQPhiPhi:
{
assert(iswap==0);
numBrokenGauge = 14;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Complex gam3s = Gamma3Singlet()(0,0);
for (unsigned int i=0; i<numBrokenGauge; i++) {
G3(i,i) = gam3s;
}
G1(0,0) = Gamma1(2./3.,2./3.,1.,1.,T,U);
G1(1,1) = Gamma1(2./3.,2./3.,0.,0.,T,U);
G1(2,2) = Gamma1(2./3.,2./3.,0.,0.,T,U);
G1(3,3) = Gamma1(2./3.,2./3.,0.,0.,T,U);
G1(4,4) = Gamma1(2./3.,2./3.,0.,0.,T,U);
G1(5,5) = Gamma1(-1./3.,-1./3.,1.,1.,T,U);
G1(6,6) = Gamma1(-1./3.,-1./3.,0.,0.,T,U);
G1(7,7) = Gamma1(-1./3.,-1./3.,0.,0.,T,U);
G1(8,8) = Gamma1(-1./3.,-1./3.,0.,0.,T,U);
G1(9,9) = Gamma1(-1./3.,-1./3.,0.,0.,T,U);
G1(10,10) = Gamma1(-1./3.,2./3.,1.,0.,T,U);
G1(11,11) = Gamma1(-1./3.,2./3.,1.,0.,T,U);
G1(12,12) = Gamma1(2./3.,-1./3.,0.,1.,T,U);
G1(13,13) = Gamma1(2./3.,-1./3.,0.,1.,T,U);
}
break;
case QQWG:
assert(iswap==0);
numBrokenGauge = 6;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
for (unsigned int i=0; i<numBrokenGauge; i++) {
G3(i,i) = -17.0/6.0*I*pi + 3.0/2.0*(U+T);
}
G1(0,0) = Gamma1(-1./3.,2./3.,1.,0.,T,U);
G1(1,1) = Gamma1(2./3.,-1./3.,-1.,0.,T,U);
G1(2,2) = Gamma1(2./3.,2./3.,0.,0.,T,U);
G1(3,3) = Gamma1(2./3.,2./3.,0.,0.,T,U);
G1(4,4) = Gamma1(-1./3.,-1./3.,0.,0.,T,U);
G1(5,5) = Gamma1(-1./3.,-1./3.,0.,0.,T,U);
break;
case QQBG:
assert(iswap==0);
numBrokenGauge = 4;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
for (unsigned int i=0; i<numBrokenGauge; i++) {
G3(i,i) = -4.0/3.0*I*pi + 3.0/2.0*(U+T-I*pi);
}
G1(0,0) = Gamma1(2./3.,2./3.,0.,0.,T,U);
G1(1,1) = Gamma1(2./3.,2./3.,0.,0.,T,U);
G1(2,2) = Gamma1(-1./3.,-1./3.,0.,0.,T,U);
G1(3,3) = Gamma1(-1./3.,-1./3.,0.,0.,T,U);
break;
case QQGG:
case QtQtGG:
{
numBrokenGauge = 6;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
matrix<Complex> gam3g;
Complex gam1a(0.),gam1b(0.);
if(iswap==0) {
gam3g = Gamma3g(U,T);
gam1a = Gamma1( 2./3.,0.,T,U);
gam1b = Gamma1(-1./3.,0.,T,U);
}
else if(iswap==1) {
gam3g = Gamma3gST(U,T);
gam1a = Gamma1ST( 2./3.,0.,T,U);
gam1b = Gamma1ST(-1./3.,0.,T,U);
}
+ else if(iswap==2) {
+ gam3g = Gamma3gSU(U,T);
+ gam1a = Gamma1SU( 2./3.,0.,T,U);
+ gam1b = Gamma1SU(-1./3.,0.,T,U);
+ }
else
assert(false);
for(unsigned int ix=0;ix<3;++ix) {
for(unsigned int iy=0;iy<3;++iy) {
G3(ix ,iy ) = gam3g(ix,iy);
G3(ix+3,iy+3) = gam3g(ix,iy);
}
}
G1(0,0) = G1(1,1) = G1(2,2) = gam1a;
G1(3,3) = G1(4,4) = G1(5,5) = gam1b;
}
break;
case LLWW:
assert(iswap==0);
numBrokenGauge = 20;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G1(0,0) = Gamma1(0.,0.,-1.,-1.,T,U);
G1(1,1) = Gamma1(0.,0.,1.,1.,T,U);
G1(2,2) = Gamma1(0.,0.,0.,0.,T,U);
G1(3,3) = Gamma1(0.,0.,0.,0.,T,U);
G1(4,4) = Gamma1(0.,0.,0.,0.,T,U);
G1(5,5) = Gamma1(0.,0.,0.,0.,T,U);
G1(6,6) = Gamma1(-1.,-1.,-1.,-1.,T,U);
G1(7,7) = Gamma1(-1.,-1.,1.,1.,T,U);
G1(8,8) = Gamma1(-1.,-1.,0.,0.,T,U);
G1(9,9) = Gamma1(-1.,-1.,0.,0.,T,U);
G1(10,10) = Gamma1(-1.,-1.,0.,0.,T,U);
G1(11,11) = Gamma1(-1.,-1.,0.,0.,T,U);
G1(12,12) = Gamma1(-1.,0.,0.,-1.,T,U);
G1(13,13) = Gamma1(-1.,0.,0.,-1.,T,U);
G1(14,14) = Gamma1(-1.,0.,1.,0.,T,U);
G1(15,15) = Gamma1(-1.,0.,1.,0.,T,U);
G1(16,16) = Gamma1(0.,-1.,-1.,0.,T,U);
G1(17,17) = Gamma1(0.,-1.,-1.,0.,T,U);
G1(18,18) = Gamma1(0.,-1.,0.,1.,T,U);
G1(19,19) = Gamma1(0.,-1.,0.,1.,T,U);
break;
case LLPhiPhi:
assert(iswap==0);
numBrokenGauge = 14;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G1(0,0) = Gamma1(0.,0.,1.,1.,T,U);
G1(1,1) = Gamma1(0.,0.,0.,0.,T,U);
G1(2,2) = Gamma1(0.,0.,0.,0.,T,U);
G1(3,3) = Gamma1(0.,0.,0.,0.,T,U);
G1(4,4) = Gamma1(0.,0.,0.,0.,T,U);
G1(5,5) = Gamma1(-1.,-1.,1.,1.,T,U);
G1(6,6) = Gamma1(-1.,-1.,0.,0.,T,U);
G1(7,7) = Gamma1(-1.,-1.,0.,0.,T,U);
G1(8,8) = Gamma1(-1.,-1.,0.,0.,T,U);
G1(9,9) = Gamma1(-1.,-1.,0.,0.,T,U);
G1(10,10) = Gamma1(-1.,0.,1.,0.,T,U);
G1(11,11) = Gamma1(-1.,0.,1.,0.,T,U);
G1(12,12) = Gamma1(0.,-1.,0.,1.,T,U);
G1(13,13) = Gamma1(0.,-1.,0.,1.,T,U);
break;
case UUBB:
{
assert(iswap==0);
numBrokenGauge = 4;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Complex gam3s = Gamma3Singlet()(0,0);
for (unsigned int i=0; i<numBrokenGauge; i++) {
G3(i,i) = gam3s;
G1(i,i) = Gamma1(2./3.,0.,T,U);
}
}
break;
case UUPhiPhi:
{
assert(iswap==0);
numBrokenGauge = 5;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Complex gam3s = Gamma3Singlet()(0,0);
for (unsigned int i=0; i<numBrokenGauge; i++) {
G3(i,i) = gam3s;
}
G1(0,0) = Gamma1(2.0/3.0,2.0/3.0,1.,1.,T,U);
G1(1,1) = G1(2,2) = G1(3,3) = G1(4,4) = Gamma1(2./3.,0.,T,U);
}
break;
case UUBG:
{
assert(iswap==0);
numBrokenGauge = 2;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Complex gam1 = Gamma1(2./3.,0.,T,U);
for (unsigned int i=0; i<numBrokenGauge; i++) {
G3(i,i) = -4.0/3.0*I*pi + 3.0/2.0*(U+T-I*pi);
G1(i,i) = gam1;
}
}
break;
case DDGG:
case UUGG:
case tRtRGG:
{
numBrokenGauge = 3;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Complex gam1(0.);
double Y = process==DDGG ? -1./3. : 2./3.;
if(iswap==0) {
G3 = Gamma3g(U,T);
gam1 = Gamma1(Y,0.,T,U);
}
else if(iswap==1) {
G3 = Gamma3gST(U,T);
gam1 = Gamma1ST(Y,0.,T,U);
}
+ else if(iswap==2) {
+ G3 = Gamma3gSU(U,T);
+ gam1 = Gamma1SU(Y,0.,T,U);
+ }
else
assert(false);
G1(0,0) = G1(1,1) = G1(2,2) = gam1;
}
break;
case DDBB:
{
assert(iswap==0);
numBrokenGauge = 4;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Complex gam3s = Gamma3Singlet()(0,0);
Complex gam1 = Gamma1(-1./3.,0.,T,U);
for (unsigned int i=0; i<numBrokenGauge; i++) {
G3(i,i) = gam3s;
G1(i,i) = gam1;
}
}
break;
case DDPhiPhi:
{
assert(iswap==0);
numBrokenGauge = 5;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Complex gam3s = Gamma3Singlet()(0,0);
for (unsigned int i=0; i<numBrokenGauge; i++) {
G3(i,i) = gam3s;
}
G1(0,0) = Gamma1(-1.0/3.0,-1.0/3.0,1.,1.,T,U);
G1(1,1) = G1(2,2) = G1(3,3) = G1(4,4) = Gamma1(-1./3.,0.,T,U);
}
break;
case DDBG:
assert(iswap==0);
numBrokenGauge = 2;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
for (unsigned int i=0; i<numBrokenGauge; i++) {
G3(i,i) = -4.0/3.0*I*pi + 3.0/2.0*(U+T-I*pi);
}
G1(0,0) = G1(1,1) = Gamma1(-1./3.,0.,T,U);
break;
case EEBB:
{
assert(iswap==0);
numBrokenGauge = 4;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
Complex gam1 = Gamma1(-1.,0.,T,U);
for (unsigned int i=0; i<numBrokenGauge; i++) {
G1(i,i) = gam1;
};
}
break;
case EEPhiPhi:
assert(iswap==0);
numBrokenGauge = 5;
G1 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G2 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G3 = zero_matrix<Complex>(numBrokenGauge,numBrokenGauge);
G1(0,0) = Gamma1(-1.,1.,T,U);
G1(1,1) = G1(2,2) = G1(3,3) = G1(4,4) = Gamma1(-1.,0.,T,U);
break;
default:
assert(false);
}
// return the answer
if (EWScale==lowScale) {
return identity_matrix<Complex>(G1.size1());
}
else {
return evaluateSoft(G3,G2,G1,EWScale,lowScale,false);
}
}
boost::numeric::ublas::matrix<Complex>
SoftSudakov::highEnergyRunning(Energy highScale, Energy EWScale,
Energy2 s, Energy2 t, Energy2 u,
Herwig::EWProcess::Process process,
unsigned int iswap) {
using namespace EWProcess;
using namespace boost::numeric::ublas;
using Constants::pi;
static const Complex I(0,1.0);
Complex T = getT(s,t), U = getU(s,u);
matrix<Complex> G1,G2,G3;
unsigned int numGauge;
switch (process) {
case QQQQ:
case QQQQiden:
case QtQtQQ:
{
- assert(iswap==0);
numGauge = 4;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
- matrix<Complex> gam3 = Gamma3(U,T);
+ matrix<Complex> gam3,gam2;
+ if(iswap==0) {
+ gam3 = Gamma3(U,T);
+ gam2 = Gamma2(U,T);
+ G1(0,0) = G1(1,1) = G1(2,2) = G1(3,3) = Gamma1(1.0/6.0,1.0/6.0,T,U);
+ }
+ else if(iswap==1) {
+ gam3 = Gamma3ST(U,T);
+ gam2 = Gamma2ST(U,T);
+ G1(0,0) = G1(1,1) = G1(2,2) = G1(3,3) = Gamma1ST(1.0/6.0,1.0/6.0,T,U);
+ }
+ else if(iswap==2) {
+ gam3 = Gamma3SU(U,T);
+ gam2 = Gamma2SU(U,T);
+ G1(0,0) = G1(1,1) = G1(2,2) = G1(3,3) = Gamma1SU(1.0/6.0,1.0/6.0,T,U);
+ }
+ else
+ assert(false);
G3(0,0) += gam3(0,0);
G3(0,2) += gam3(0,1);
G3(2,0) += gam3(1,0);
G3(2,2) += gam3(1,1);
G3(1,1) += gam3(0,0);
G3(1,3) += gam3(0,1);
G3(3,1) += gam3(1,0);
G3(3,3) += gam3(1,1);
- matrix<Complex> gam2 = Gamma2(U,T);
G2(0,0) += gam2(0,0);
G2(0,1) += gam2(0,1);
G2(1,0) += gam2(1,0);
G2(1,1) += gam2(1,1);
G2(2,2) += gam2(0,0);
G2(2,3) += gam2(0,1);
G2(3,2) += gam2(1,0);
G2(3,3) += gam2(1,1);
- G1(0,0) = G1(1,1) = G1(2,2) = G1(3,3) = Gamma1(1.0/6.0,1.0/6.0,T,U);
}
break;
case QQUU:
case QtQtUU:
case QQtRtR:
- assert(iswap==0);
numGauge = 2;
G1 = zero_matrix<Complex>(numGauge,numGauge);
- G3 = Gamma3(U,T);
- G2 = Gamma2Singlet();
- G1(0,0) = G1(1,1) = Gamma1(2.0/3.0,1.0/6.0,T,U);
+ if(iswap==0) {
+ G3 = Gamma3(U,T);
+ G2 = Gamma2Singlet();
+ G1(0,0) = G1(1,1) = Gamma1(2.0/3.0,1.0/6.0,T,U);
+ }
+ else if(iswap==1) {
+ G3 = Gamma3ST(U,T);
+ G2 = Gamma2SingletST(T);
+ G1(0,0) = G1(1,1) = Gamma1ST(2.0/3.0,1.0/6.0,T,U);
+ }
+ else if(iswap==2) {
+ G3 = Gamma3SU(U,T);
+ G2 = Gamma2SingletSU(U);
+ G1(0,0) = G1(1,1) = Gamma1SU(2.0/3.0,1.0/6.0,T,U);
+ }
+ else
+ assert(false);
break;
case QQDD:
case QtQtDD:
- assert(iswap==0);
numGauge = 2;
G1 = zero_matrix<Complex>(numGauge,numGauge);
- G3 = Gamma3(U,T);
- G2 = Gamma2Singlet();
- G1(0,0) = G1(1,1) = Gamma1(-1.0/3.0,1.0/6.0,T,U);
+ if(iswap==0) {
+ G3 = Gamma3(U,T);
+ G2 = Gamma2Singlet();
+ G1(0,0) = G1(1,1) = Gamma1(-1.0/3.0,1.0/6.0,T,U);
+ }
+ else if(iswap==1) {
+ G3 = Gamma3ST(U,T);
+ G2 = Gamma2SingletST(T);
+ G1(0,0) = G1(1,1) = Gamma1ST(-1.0/3.0,1.0/6.0,T,U);
+ }
+ else if(iswap==2) {
+ G3 = Gamma3SU(U,T);
+ G2 = Gamma2SingletSU(U);
+ G1(0,0) = G1(1,1) = Gamma1SU(-1.0/3.0,1.0/6.0,T,U);
+ }
+ else
+ assert(false);
break;
case QQLL:
assert(iswap==0);
numGauge = 2;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G3 = Gamma3Singlet();
G2 = Gamma2(U,T);
G1(0,0) = G1(1,1) = Gamma1(-1.0/2.0,1.0/6.0,T,U);
break;
case QQEE:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G3(0,0) = Gamma3Singlet()(0,0);
G2(0,0) = Gamma2Singlet()(0,0);
G1(0,0) = Gamma1(-1.0,1.0/6.0,T,U);
break;
case UUUU:
case UUUUiden:
case tRtRUU:
- assert(iswap==0);
numGauge = 2;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
- G3 = Gamma3(U,T);
- G1(0,0) = G1(1,1) = Gamma1(2.0/3.0,2.0/3.0,T,U);
+ if(iswap==0) {
+ G3 = Gamma3(U,T);
+ G1(0,0) = G1(1,1) = Gamma1(2.0/3.0,2.0/3.0,T,U);
+ }
+ else if(iswap==1) {
+ G3 = Gamma3ST(U,T);
+ G1(0,0) = G1(1,1) = Gamma1ST(2.0/3.0,2.0/3.0,T,U);
+ }
+ else if(iswap==2) {
+ G3 = Gamma3SU(U,T);
+ G1(0,0) = G1(1,1) = Gamma1SU(2.0/3.0,2.0/3.0,T,U);
+ }
+ else
+ assert(false);
break;
case UUDD:
case tRtRDD:
- assert(iswap==0);
numGauge = 2;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
- G3 = Gamma3(U,T);
- G1(0,0) = G1(1,1) = Gamma1(-1.0/3.0,2.0/3.0,T,U);
+ if(iswap==0) {
+ G3 = Gamma3(U,T);
+ G1(0,0) = G1(1,1) = Gamma1(-1.0/3.0,2.0/3.0,T,U);
+ }
+ else if(iswap==1) {
+ G3 = Gamma3ST(U,T);
+ G1(0,0) = G1(1,1) = Gamma1ST(-1.0/3.0,2.0/3.0,T,U);
+ }
+ else if(iswap==2) {
+ G3 = Gamma3SU(U,T);
+ G1(0,0) = G1(1,1) = Gamma1SU(-1.0/3.0,2.0/3.0,T,U);
+ }
+ else
+ assert(false);
break;
case UULL:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G3(0,0) = Gamma3Singlet()(0,0);
G2(0,0) = Gamma2Singlet()(0,0);
G1(0,0) = Gamma1(-1.0/2.0,2.0/3.0,T,U);
break;
case UUEE:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G3(0,0) = Gamma3Singlet()(0,0);
G1(0,0) = Gamma1(-1.0,2.0/3.0,T,U);
break;
case DDDD:
case DDDDiden:
- assert(iswap==0);
numGauge = 2;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
- G3 = Gamma3(U,T);
- G1(0,0) = G1(1,1) = Gamma1(-1.0/3.0,-1.0/3.0,T,U);
+ if(iswap==0) {
+ G3 = Gamma3(U,T);
+ G1(0,0) = G1(1,1) = Gamma1(-1.0/3.0,-1.0/3.0,T,U);
+ }
+ else if(iswap==1) {
+ G3 = Gamma3ST(U,T);
+ G1(0,0) = G1(1,1) = Gamma1ST(-1.0/3.0,-1.0/3.0,T,U);
+ }
+ else if(iswap==2) {
+ G3 = Gamma3SU(U,T);
+ G1(0,0) = G1(1,1) = Gamma1SU(-1.0/3.0,-1.0/3.0,T,U);
+ }
+ else
+ assert(false);
break;
case DDLL:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G3(0,0) = Gamma3Singlet()(0,0);
G2(0,0) = Gamma2Singlet()(0,0);
G1(0,0) = Gamma1(-1.0/2.0,-1.0/3.0,T,U);
break;
case DDEE:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G3(0,0) = Gamma3Singlet()(0,0);
G1(0,0) = Gamma1(-1.0,-1.0/3.0,T,U);
break;
case LLLL:
case LLLLiden:
assert(iswap==0);
numGauge = 2;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G2 = Gamma2(U,T);
G1(0,0) = G1(1,1) = Gamma1(-1.0/2.0,-1.0/2.0,T,U);
break;
case LLEE:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G2(0,0) = Gamma2Singlet()(0,0);
G1(0,0) = Gamma1(-1.0,-1.0/2.0,T,U);
break;
case EEEE:
case EEEEiden:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G1(0,0) = Gamma1(-1.0,-1.0,T,U);
break;
case QQWW:
{
assert(iswap==0);
numGauge = 5;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
Complex gam3s = Gamma3Singlet()(0,0);
for (unsigned int i=0; i<5; i++) {
G3(i,i) = gam3s;
G1(i,i) = Gamma1(1.0/6.0);
}
G2 = Gamma2w(U,T);
}
break;
case QQPhiPhi:
assert(iswap==0);
numGauge = 2;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G3 = Gamma3Singlet();
G2 = Gamma2(U,T);
G1(0,0) = G1(1,1) = Gamma1(1.0/2.0,1.0/6.0,T,U);
break;
case QQWG:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G3(0,0) = -17.0/6.0*I*pi + 3.0/2.0*(U+T);
G2(0,0) = -7.0/4.0*I*pi + (U+T);
G1(0,0) = Gamma1(1.0/6.0);
break;
case QQBG:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G3(0,0) = -4.0/3.0*I*pi + 3.0/2.0*(U+T-I*pi);
G2(0,0) = -3.0/4.0*I*pi;
G1(0,0) = Gamma1(1.0/6.0);
break;
case QQGG:
case QtQtGG:
{
numGauge = 3;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
Complex gam2s,gam1;
if(iswap==0) {
G3 = Gamma3g(U,T);
gam2s = Gamma2Singlet()(0,0);
gam1 = Gamma1(1.0/6.0);
}
else if(iswap==1) {
G3 = Gamma3gST(U,T);
gam2s = Gamma2SingletST(T)(0,0);
gam1 = Gamma1ST(1.0/6.0,T);
}
+ else if(iswap==2) {
+ G3 = Gamma3gSU(U,T);
+ gam2s = Gamma2SingletSU(U)(0,0);
+ gam1 = Gamma1SU(1.0/6.0,U);
+ }
else
assert(false);
for (unsigned int i=0; i<3; i++) {
G2(i,i) = gam2s;
G1(i,i) = gam1;
}
}
break;
case LLWW:
assert(iswap==0);
numGauge = 5;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
for (unsigned int i=0; i<5; i++) {
G1(i,i) = Gamma1(-1.0/2.0);
}
G2 = Gamma2w(U,T);
break;
case LLPhiPhi:
assert(iswap==0);
numGauge = 2;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G2 = Gamma2(U,T);
G1(0,0) = G1(1,1) = Gamma1(1.0/2.0,-1.0/2.0,T,U);
break;
case UUBB:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G3(0,0) = Gamma3Singlet()(0,0);
G1(0,0) = Gamma1(2.0/3.0);
break;
case UUPhiPhi:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G3(0,0) = Gamma3Singlet()(0,0);
G2(0,0) = Gamma2Singlet()(0,0);
G1(0,0) = Gamma1(1.0/2.0,2.0/3.0,T,U);
break;
case UUBG:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G3(0,0) = -4.0/3.0*I*pi + 3.0/2.0*(U+T-I*pi);
G1(0,0) = Gamma1(2.0/3.0);
break;
case DDGG:
case UUGG:
case tRtRGG:
{
numGauge = 3;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
double Y = process==DDGG ? -1./3. : 2./3.;
Complex gam1(0.);
if(iswap==0) {
G3 = Gamma3g(U,T);
gam1 = Gamma1(Y);
}
else if(iswap==1) {
G3 = Gamma3gST(U,T);
gam1 = Gamma1ST(Y,T);
}
+ else if(iswap==2) {
+ G3 = Gamma3gSU(U,T);
+ gam1 = Gamma1SU(Y,U);
+ }
else
assert(false);
for (unsigned int i=0; i<3; i++) {
G1(i,i) = gam1;
}
}
break;
case DDBB:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G3(0,0) = Gamma3Singlet()(0,0);
G1(0,0) = Gamma1(-1.0/3.0);
break;
case DDPhiPhi:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G3(0,0) = Gamma3Singlet()(0,0);
G2(0,0) = Gamma2Singlet()(0,0);
G1(0,0) = Gamma1(1.0/2.0,-1.0/3.0,T,U);
break;
case DDBG:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G3(0,0) = -4.0/3.0*I*pi + 3.0/2.0*(U+T-I*pi);
G1(0,0) = Gamma1(-1.0/3.0);
break;
case EEBB:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G1(0,0) = Gamma1(-1.0);
break;
case EEPhiPhi:
assert(iswap==0);
numGauge = 1;
G1 = zero_matrix<Complex>(numGauge,numGauge);
G2 = zero_matrix<Complex>(numGauge,numGauge);
G3 = zero_matrix<Complex>(numGauge,numGauge);
G2(0,0) = Gamma2Singlet()(0,0);
G1(0,0) = Gamma1(1.0/2.0,-1.0,T,U);
break;
default:
assert(false);
}
return evaluateSoft(G3,G2,G1,highScale,EWScale,true);
}
unsigned int SoftSudakov::numberGauge(Herwig::EWProcess::Process process) {
using namespace EWProcess;
switch (process) {
case QQQQ:
case QQQQiden:
case QtQtQQ:
return 4;
case QQUU:
case QtQtUU:
case QQtRtR:
return 2;
case QQDD:
case QtQtDD:
return 2;
case QQLL:
return 2;
case QQEE:
return 1;
case UUUU:
case UUUUiden:
case tRtRUU:
return 2;
case UUDD:
case tRtRDD:
return 2;
case UULL:
return 1;
case UUEE:
return 1;
case DDDD:
case DDDDiden:
return 2;
case DDLL:
return 1;
case DDEE:
return 1;
case LLLL:
case LLLLiden:
return 2;
case LLEE:
return 1;
case EEEE:
case EEEEiden:
return 1;
case QQWW:
return 5;
case QQPhiPhi:
return 2;
case QQWG:
return 1;
case QQBG:
return 1;
case QQGG:
case QtQtGG:
return 3;
case LLWW:
return 5;
case LLPhiPhi:
return 2;
case UUBB:
return 1;
case UUPhiPhi:
return 1;
case UUBG:
return 1;
case UUGG:
case tRtRGG:
return 3;
case DDBB:
return 1;
case DDPhiPhi:
return 1;
case DDBG:
return 1;
case DDGG:
return 3;
case EEBB:
return 1;
case EEPhiPhi:
return 1;
default:
assert(false);
}
}
unsigned int SoftSudakov::numberBrokenGauge(Herwig::EWProcess::Process process) {
using namespace EWProcess;
switch (process) {
case QQQQ:
case QQQQiden:
case QtQtQQ:
return 12;
case QQUU:
case QtQtUU:
case QQtRtR:
return 4;
case QQDD:
case QtQtDD:
return 4;
case QQLL:
return 6;
case QQEE:
return 2;
case UUUU:
case UUUUiden:
case tRtRUU:
return 2;
case UUDD:
case tRtRDD:
return 2;
case UULL:
return 2;
case UUEE:
return 1;
case DDDD:
case DDDDiden:
return 2;
case DDLL:
return 2;
case DDEE:
return 1;
case LLLL:
case LLLLiden:
return 6;
case EEEE:
case EEEEiden:
return 1;
case QQWW:
return 20;
case QQPhiPhi:
return 14;
case QQWG:
return 6;
case QQBG:
return 4;
case QQGG:
case QtQtGG:
return 6;
case LLWW:
return 20;
case LLPhiPhi:
return 14;
case UUBB:
return 4;
case UUPhiPhi:
return 5;
case UUBG:
return 2;
case UUGG:
case tRtRGG:
return 3;
case DDBB:
return 4;
case DDPhiPhi:
return 5;
case DDBG:
return 2;
case DDGG:
return 3;
case EEBB:
return 4;
case EEPhiPhi:
return 5;
default:
assert(false);
}
}

File Metadata

Mime Type
text/x-diff
Expires
Sat, Dec 21, 6:35 PM (5 h, 19 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023389
Default Alt Text
(162 KB)

Event Timeline