Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7879329
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
9 KB
Subscribers
None
View Options
diff --git a/Shower/Dipole/Kinematics/FIMassiveKinematics.cc b/Shower/Dipole/Kinematics/FIMassiveKinematics.cc
--- a/Shower/Dipole/Kinematics/FIMassiveKinematics.cc
+++ b/Shower/Dipole/Kinematics/FIMassiveKinematics.cc
@@ -1,301 +1,301 @@
// -*- C++ -*-
//
// FIMassiveKinematics.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2007 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the FIMassiveKinematics class.
//
#include "FIMassiveKinematics.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "Herwig/Shower/Dipole/Base/DipoleSplittingInfo.h"
#include "Herwig/Shower/Dipole/Kernels/DipoleSplittingKernel.h"
using namespace Herwig;
FIMassiveKinematics::FIMassiveKinematics()
: DipoleSplittingKinematics() {}
FIMassiveKinematics::~FIMassiveKinematics() {}
IBPtr FIMassiveKinematics::clone() const {
return new_ptr(*this);
}
IBPtr FIMassiveKinematics::fullclone() const {
return new_ptr(*this);
}
pair<double,double> FIMassiveKinematics::kappaSupport(const DipoleSplittingInfo&) const {
return {0.0,1.0};
}
pair<double,double> FIMassiveKinematics::xiSupport(const DipoleSplittingInfo& split) const {
double c = sqrt(1.-4.*sqr(IRCutoff()/generator()->maximumCMEnergy()));
if ( split.index().emitterData()->id() == ParticleID::g ) {
if ( split.emissionData()->id() != ParticleID::g )
return {0.5*(1.-c),0.5*(1.+c)};
double b = log((1.+c)/(1.-c));
return {-b,b};
}
return {-log(0.5*(1.+c)),-log(0.5*(1.-c))};
}
// sbar
Energy FIMassiveKinematics::dipoleScale(const Lorentz5Momentum& pEmitter,
const Lorentz5Momentum& pSpectator) const {
return sqrt(2.*(pEmitter*pSpectator));
}
Energy FIMassiveKinematics::ptMax(Energy dScale,
double, double specX,
const DipoleIndex& ind,
const DipoleSplittingKernel& split) const {
Energy mi = split.emitter(ind)->mass(), m = split.emission(ind)->mass();
Energy2 mi2 = sqr(mi), m2 = sqr(m);
// Energy2 Mi2 = split.emitter(int)->id() + split.emission(int)->id() == 0 ?
// 0.*GeV2 : mi2;
Energy2 Mi2 = mi2 == m2 ? 0.*GeV2 : mi2;
// s^star/x
Energy2 s = sqr(dScale) * (1.-specX)/specX + Mi2;
return .5 * sqrt(s) * rootOfKallen( s/s, mi2/s, m2/s );
}
// what is this? in FF it is given by y+*dScale = sqrt( 2qi*q / bar )->max
Energy FIMassiveKinematics::QMax(Energy dScale,
double, double specX,
const DipoleIndex&,
const DipoleSplittingKernel&) const {
generator()->log() << "FIMassiveKinematics::QMax called.\n" << flush;
assert(false && "implementation missing");
// this is sqrt( 2qi*q ) -> max;
return dScale * sqrt((1.-specX)/specX);
}
Energy FIMassiveKinematics::PtFromQ(Energy scale, const DipoleSplittingInfo& split) const {
// from Martin's thesis
double z = split.lastZ();
Energy mi = split.emitterData()->mass();
Energy m = split.emissionData()->mass();
Energy2 pt2 = z*(1.-z)*sqr(scale) - (1-z)*sqr(mi) - z*sqr(m);
assert(pt2 >= ZERO);
return sqrt(pt2);
}
Energy FIMassiveKinematics::QFromPt(Energy pt, const DipoleSplittingInfo& split) const {
// from Martin's thesis
double z = split.lastZ();
Energy mi = split.emitterData()->mass();
Energy m = split.emissionData()->mass();
Energy2 Q2 = (sqr(pt) + (1-z)*sqr(mi) + z*sqr(m))/(z*(1.-z));
return sqrt(Q2);
}
double FIMassiveKinematics::ptToRandom(Energy pt, Energy,
double,double,
const DipoleIndex&,
const DipoleSplittingKernel&) const {
return log(pt/IRCutoff()) / log(0.5 * generator()->maximumCMEnergy()/IRCutoff());
}
bool FIMassiveKinematics::generateSplitting(double kappa, double xi, double rphi,
DipoleSplittingInfo& info,
const DipoleSplittingKernel&) {
if ( info.spectatorX() < xMin() ) {
jacobian(0.0);
return false;
}
Energy pt = IRCutoff() * pow(0.5 * generator()->maximumCMEnergy()/IRCutoff(),kappa);
if ( pt > info.hardPt() || pt < IRCutoff() ) {
jacobian(0.0);
return false;
}
double z;
double mapZJacobian;
if ( info.index().emitterData()->id() == ParticleID::g ) {
if ( info.emissionData()->id() != ParticleID::g ) {
z = xi;
mapZJacobian = 1.;
} else {
z = exp(xi)/(1.+exp(xi));
mapZJacobian = z*(1.-z);
}
} else {
z = 1.-exp(-xi);
mapZJacobian = 1.-z;
}
// double s = z*(1.-z);
// double xs = info.spectatorX();
// double x = 1. / ( 1. + sqr(pt/info.scale()) / s );
// double zp = 0.5*(1.+sqrt(1.-sqr(pt/info.hardPt())));
// double zm = 0.5*(1.-sqrt(1.-sqr(pt/info.hardPt())));
Energy2 mi2 = sqr(info.emitterData()->mass());
Energy2 m2 = sqr(info.emissionData()->mass());
Energy2 Mi2 = info.emitterData()->id()+info.emissionData()->id() == 0 ?
0.*GeV2 : mi2;
// s^star/x
Energy2 s = sqr(info.scale()) * (1.-info.spectatorX())/info.spectatorX() + Mi2;
double xs = info.spectatorX();
double x = 1. / ( 1. +
( sqr(pt) + (1.-z)*mi2 + z*m2 - z*(1.-z)*Mi2 ) /
( z*(1.-z)*s ) );
Energy hard=info.hardPt();
if(openZBoundaries()==1){
hard=.5 * sqrt(s) * rootOfKallen( s/s, mi2/s, m2/s );
}
Energy2 sdip = sqr(info.scale()) + Mi2;
if(openZBoundaries()==2){
hard=min(0.5*sqrt(s) *
rootOfKallen( s/s, mi2/s, m2/s ) ,
sqrt(sdip) *
rootOfKallen( sdip/sdip, mi2/sdip, m2/sdip ));
}
double ptRatio = sqrt(1.-sqr(pt/info.hardPt()));
double zm1 = .5*( 1.+(mi2-m2)/s - rootOfKallen(s/s,mi2/s,m2/s) * ptRatio);
double zp1 = .5*( 1.+(mi2-m2)/s + rootOfKallen(s/s,mi2/s,m2/s) * ptRatio);
if ( // pt < IRCutoff() ||
// pt > info.hardPt() ||
z > zp1 || z < zm1 ||
x < xs ) {
jacobian(0.0);
return false;
}
// additional purely kinematic constraints
double mui2 = x*mi2/sqr(info.scale());
double mu2 = x*m2/sqr(info.scale());
double Mui2 = x*Mi2/sqr(info.scale());
double xp = 1. + Mui2 - sqr(sqrt(mui2)+sqrt(mu2));
double root = sqr(1.-x+Mui2-mui2-mu2)-4.*mui2*mu2;
if( root < 0. && root>-1e-10 )
root = 0.;
else if (root <0. ) {
jacobian(0.0);
return false;
}
root = sqrt(root);
double zm = .5*( 1.-x+Mui2+mui2-mui2 - root ) / (1.-x+Mui2);
double zp = .5*( 1.-x+Mui2+mui2-mui2 + root ) / (1.-x+Mui2);
if (x > xp ||
z > zp || z < zm ) {
jacobian(0.0);
return false;
}
double phi = 2.*Constants::pi*rphi;
-// Compute and store the jacobian
+ // Compute and store the jacobian
Energy2 pt2 = sqr(pt);
- double jacPt2 = 1. / ( 1. + sqr(1.-z)*mi2/pt2 + z*z*m2/pt2 );
+ double jacPt2 = 1. / ( 1. + (1.-z)*mi2/pt2 + z*m2/pt2 - z*(1.-z)*Mi2/pt2 );
jacobian( jacPt2 * mapZJacobian * 2.*log(0.5 * generator()->maximumCMEnergy()/IRCutoff()));
lastPt(pt);
lastZ(z);
lastPhi(phi);
lastSpectatorZ(x);
if ( theMCCheck )
theMCCheck->book(1.,info.spectatorX(),info.scale(),info.hardPt(),pt,z,jacobian());
return true;
}
void FIMassiveKinematics::generateKinematics(const Lorentz5Momentum& pEmitter,
const Lorentz5Momentum& pSpectator,
const DipoleSplittingInfo& dInfo) {
Energy pt = dInfo.lastPt();
double z = dInfo.lastZ();
Lorentz5Momentum kt =
getKt (pSpectator, pEmitter, pt, dInfo.lastPhi(),true);
Energy2 mi2 = sqr(dInfo.emitterData()->mass());
Energy2 m2 = sqr(dInfo.emissionData()->mass());
Energy2 Mi2 = dInfo.emitterData()->id() + dInfo.emissionData()->id() == 0 ?
0.*GeV2 : mi2;
double xInv = ( 1. +
(pt*pt+(1.-z)*mi2+z*m2-z*(1.-z)*Mi2) /
(z*(1.-z)*sqr(dInfo.scale())) );
Lorentz5Momentum em = z*pEmitter +
(sqr(pt)+mi2-z*z*Mi2)/(z*sqr(dInfo.scale()))*pSpectator + kt;
em.setMass(sqrt(mi2));
em.rescaleEnergy();
Lorentz5Momentum emm = (1.-z)*pEmitter +
(pt*pt+m2-sqr(1.-z)*Mi2)/((1.-z)*sqr(dInfo.scale()))*pSpectator - kt;
emm.setMass(sqrt(m2));
emm.rescaleEnergy();
Lorentz5Momentum spe = xInv*pSpectator;
spe.setMass(ZERO);
spe.rescaleEnergy();
emitterMomentum(em);
emissionMomentum(emm);
spectatorMomentum(spe);
}
// If needed, insert default implementations of function defined
// in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
void FIMassiveKinematics::persistentOutput(PersistentOStream & ) const {
}
void FIMassiveKinematics::persistentInput(PersistentIStream & , int) {
}
ClassDescription<FIMassiveKinematics> FIMassiveKinematics::initFIMassiveKinematics;
// Definition of the static class description member.
void FIMassiveKinematics::Init() {
static ClassDocumentation<FIMassiveKinematics> documentation
("FIMassiveKinematics implements massless splittings "
"off a final-initial dipole.");
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 7:58 PM (1 d, 7 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3798275
Default Alt Text
(9 KB)
Attached To
R563 testingHerwigHG
Event Timeline
Log In to Comment