Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7879755
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
139 KB
Subscribers
None
View Options
diff --git a/Decay/General/FFSDecayer.cc b/Decay/General/FFSDecayer.cc
--- a/Decay/General/FFSDecayer.cc
+++ b/Decay/General/FFSDecayer.cc
@@ -1,405 +1,411 @@
// -*- C++ -*-
//
// FFSDecayer.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the FFSDecayer class.
//
#include "FFSDecayer.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDT/DecayMode.h"
#include "ThePEG/Helicity/WaveFunction/ScalarWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/SpinorBarWaveFunction.h"
#include "Herwig/Utilities/Kinematics.h"
#include "Herwig/Decay/GeneralDecayMatrixElement.h"
using namespace Herwig;
using namespace ThePEG::Helicity;
IBPtr FFSDecayer::clone() const {
return new_ptr(*this);
}
IBPtr FFSDecayer::fullclone() const {
return new_ptr(*this);
}
void FFSDecayer::setDecayInfo(PDPtr incoming, PDPair outgoing,
VertexBasePtr vertex,
map<ShowerInteraction,VertexBasePtr> & inV,
const vector<map<ShowerInteraction,VertexBasePtr> > & outV,
map<ShowerInteraction,VertexBasePtr> ) {
decayInfo(incoming,outgoing);
vertex_ = dynamic_ptr_cast<AbstractFFSVertexPtr>(vertex);
perturbativeVertex_ = dynamic_ptr_cast<FFSVertexPtr> (vertex);
vector<ShowerInteraction> itemp={ShowerInteraction::QCD,ShowerInteraction::QED};
for(auto & inter : itemp) {
incomingVertex_[inter] = dynamic_ptr_cast<AbstractFFVVertexPtr>(inV.at(inter));
- if (outV[0].at(inter)->getName()==VertexType::FFV){
- outgoingVertexF_[inter] = dynamic_ptr_cast<AbstractFFVVertexPtr>(outV[0].at(inter));
- outgoingVertexS_[inter] = dynamic_ptr_cast<AbstractVSSVertexPtr>(outV[1].at(inter));
+ outgoingVertexF_[inter] = AbstractFFVVertexPtr();
+ outgoingVertexS_[inter] = AbstractVSSVertexPtr();
+ if(outV[0].at(inter)) {
+ if (outV[0].at(inter)->getName()==VertexType::FFV)
+ outgoingVertexF_[inter] = dynamic_ptr_cast<AbstractFFVVertexPtr>(outV[0].at(inter));
+ else
+ outgoingVertexS_[inter] = dynamic_ptr_cast<AbstractVSSVertexPtr>(outV[0].at(inter));
}
- else {
- outgoingVertexF_[inter] = dynamic_ptr_cast<AbstractFFVVertexPtr>(outV[1].at(inter));
- outgoingVertexS_[inter] = dynamic_ptr_cast<AbstractVSSVertexPtr>(outV[0].at(inter));
+ if(outV[1].at(inter)) {
+ if (outV[1].at(inter)->getName()==VertexType::FFV)
+ outgoingVertexF_[inter] = dynamic_ptr_cast<AbstractFFVVertexPtr>(outV[1].at(inter));
+ else
+ outgoingVertexS_[inter] = dynamic_ptr_cast<AbstractVSSVertexPtr>(outV[1].at(inter));
}
}
}
void FFSDecayer::persistentOutput(PersistentOStream & os) const {
os << perturbativeVertex_ << vertex_
<< incomingVertex_ << outgoingVertexF_
<< outgoingVertexS_;
}
void FFSDecayer::persistentInput(PersistentIStream & is, int) {
is >> perturbativeVertex_ >> vertex_
>> incomingVertex_ >> outgoingVertexF_
>> outgoingVertexS_;
}
// The following static variable is needed for the type
// description system in ThePEG.
DescribeClass<FFSDecayer,GeneralTwoBodyDecayer>
describeHerwigFFSDecayer("Herwig::FFSDecayer", "Herwig.so");
void FFSDecayer::Init() {
static ClassDocumentation<FFSDecayer> documentation
("The FFSDecayer class implements the decay of a fermion to "
"a fermion and a scalar.");
}
double FFSDecayer::me2(const int , const Particle & inpart,
const ParticleVector & decay,
MEOption meopt) const {
if(!ME())
ME(new_ptr(GeneralDecayMatrixElement(PDT::Spin1Half,PDT::Spin1Half,PDT::Spin0)));
//Need to use different barred or unbarred spinors depending on
//whether particle is cc or not.
int itype[2];
if(inpart.dataPtr()->CC()) itype[0] = inpart.id() > 0? 0:1;
else itype[0] = 2;
if(decay[0]->dataPtr()->CC()) itype[1] = decay[0]->id() > 0? 0:1;
else itype[1] = 2;
bool ferm(itype[0] == 0 || itype[1] == 0 || (itype[0] == 2 && itype[1] == 2));
if(meopt==Initialize) {
// spinors and rho
if(ferm) {
SpinorWaveFunction ::calculateWaveFunctions(wave_,rho_,
const_ptr_cast<tPPtr>(&inpart),
incoming);
if(wave_[0].wave().Type() != SpinorType::u)
for(unsigned int ix = 0; ix < 2; ++ix) wave_ [ix].conjugate();
}
else {
SpinorBarWaveFunction::calculateWaveFunctions(wavebar_,rho_,
const_ptr_cast<tPPtr>(&inpart),
incoming);
if(wavebar_[0].wave().Type() != SpinorType::v)
for(unsigned int ix = 0; ix < 2; ++ix) wavebar_[ix].conjugate();
}
}
// setup spin info when needed
if(meopt==Terminate) {
// for the decaying particle
if(ferm) {
SpinorWaveFunction::
constructSpinInfo(wave_,const_ptr_cast<tPPtr>(&inpart),incoming,true);
SpinorBarWaveFunction::constructSpinInfo(wavebar_,decay[0],outgoing,true);
}
else {
SpinorBarWaveFunction::
constructSpinInfo(wavebar_,const_ptr_cast<tPPtr>(&inpart),incoming,true);
SpinorWaveFunction::constructSpinInfo(wave_,decay[0],outgoing,true);
}
ScalarWaveFunction::constructSpinInfo(decay[1],outgoing,true);
}
if(ferm)
SpinorBarWaveFunction::
calculateWaveFunctions(wavebar_,decay[0],outgoing);
else
SpinorWaveFunction::
calculateWaveFunctions(wave_ ,decay[0],outgoing);
ScalarWaveFunction scal(decay[1]->momentum(),decay[1]->dataPtr(),outgoing);
Energy2 scale(sqr(inpart.mass()));
for(unsigned int if1 = 0; if1 < 2; ++if1) {
for(unsigned int if2 = 0; if2 < 2; ++if2) {
if(ferm) (*ME())(if1, if2, 0) =
vertex_->evaluate(scale,wave_[if1],wavebar_[if2],scal);
else (*ME())(if2, if1, 0) =
vertex_->evaluate(scale,wave_[if1],wavebar_[if2],scal);
}
}
double output = (ME()->contract(rho_)).real()/scale*UnitRemoval::E2;
// colour and identical particle factors
output *= colourFactor(inpart.dataPtr(),decay[0]->dataPtr(),
decay[1]->dataPtr());
// return the answer
return output;
}
Energy FFSDecayer::partialWidth(PMPair inpart, PMPair outa,
PMPair outb) const {
if( inpart.second < outa.second + outb.second ) return ZERO;
if(perturbativeVertex_) {
double mu1(0.),mu2(0.);
tcPDPtr in = inpart.first->CC() ? tcPDPtr(inpart.first->CC()) : inpart.first;
if(outa.first->iSpin() == PDT::Spin1Half) {
mu1 = outa.second/inpart.second;
mu2 = outb.second/inpart.second;
perturbativeVertex_->setCoupling(sqr(inpart.second), in, outa.first, outb.first);
}
else {
mu1 = outb.second/inpart.second;
mu2 = outa.second/inpart.second;
perturbativeVertex_->setCoupling(sqr(inpart.second), in, outb.first, outa.first);
}
double c2 = norm(perturbativeVertex_->norm());
Complex cl = perturbativeVertex_->left();
Complex cr = perturbativeVertex_->right();
double me2 = c2*( (norm(cl) + norm(cr))*(1. + sqr(mu1) - sqr(mu2))
+ 2.*mu1*(conj(cl)*cr + conj(cr)*cl).real() );
Energy pcm = Kinematics::pstarTwoBodyDecay(inpart.second, outa.second,
outb.second);
Energy output = me2*pcm/16./Constants::pi;
// colour factor
output *= colourFactor(inpart.first,outa.first,outb.first);
// return the answer
return output;
}
else {
return GeneralTwoBodyDecayer::partialWidth(inpart,outa,outb);
}
}
double FFSDecayer::threeBodyME(const int , const Particle & inpart,
const ParticleVector & decay,
ShowerInteraction inter, MEOption meopt) {
int iscal (0), iferm (1), iglu (2);
// get location of outgoing fermion/scalar
if(decay[1]->dataPtr()->iSpin()==PDT::Spin0) swap(iscal,iferm);
// work out whether inpart is a fermion or antifermion
int itype[2];
if(inpart.dataPtr()->CC()) itype[0] = inpart.id() > 0 ? 0 : 1;
else itype[0] = 2;
if(decay[iferm]->dataPtr()->CC()) itype[1] = decay[iferm]->id() > 0 ? 0 : 1;
else itype[1] = 2;
bool ferm(itype[0] == 0 || itype[1] == 0 ||
(itype[0] == 2 && itype[1] == 2 && decay[iscal]->id() < 0));
if(meopt==Initialize) {
// create spinor (bar) for decaying particle
if(ferm) {
SpinorWaveFunction::calculateWaveFunctions(wave3_, rho3_, const_ptr_cast<tPPtr>(&inpart),
incoming);
if(wave3_[0].wave().Type() != SpinorType::u)
for(unsigned int ix = 0; ix < 2; ++ix) wave3_[ix].conjugate();
}
else {
SpinorBarWaveFunction::calculateWaveFunctions(wavebar3_,rho3_, const_ptr_cast<tPPtr>(&inpart),
incoming);
if(wavebar3_[0].wave().Type() != SpinorType::v)
for(unsigned int ix = 0; ix < 2; ++ix) wavebar3_[ix].conjugate();
}
}
// setup spin information when needed
if(meopt==Terminate) {
if(ferm) {
SpinorWaveFunction::
constructSpinInfo(wave3_,const_ptr_cast<tPPtr>(&inpart),incoming,true);
SpinorBarWaveFunction::constructSpinInfo(wavebar3_,decay[iferm],outgoing,true);
}
else {
SpinorBarWaveFunction::
constructSpinInfo(wavebar3_,const_ptr_cast<tPPtr>(&inpart),incoming,true);
SpinorWaveFunction::constructSpinInfo(wave3_,decay[iferm],outgoing,true);
}
ScalarWaveFunction::constructSpinInfo( decay[iscal],outgoing,true);
VectorWaveFunction::constructSpinInfo(gluon_, decay[iglu ],outgoing,true,false);
return 0.;
}
// calulate colour factors and number of colour flows
unsigned int nflow;
vector<DVector> cfactors = getColourFactors(inpart, decay, nflow);
if(nflow==2) cfactors[0][1] = cfactors[1][0];
vector<GeneralDecayMEPtr> ME(nflow,new_ptr(GeneralDecayMatrixElement(PDT::Spin1Half, PDT::Spin0,
PDT::Spin1Half, PDT::Spin1)));
// create wavefunctions
if (ferm) SpinorBarWaveFunction::calculateWaveFunctions(wavebar3_, decay[iferm],outgoing);
else SpinorWaveFunction:: calculateWaveFunctions(wave3_ , decay[iferm],outgoing);
ScalarWaveFunction swave3_(decay[iscal]->momentum(), decay[iscal]->dataPtr(),outgoing);
VectorWaveFunction::calculateWaveFunctions(gluon_, decay[iglu ],outgoing,true);
// // gauge invariance test
// gluon_.clear();
// for(unsigned int ix=0;ix<3;++ix) {
// if(ix==1) gluon_.push_back(VectorWaveFunction());
// else {
// gluon_.push_back(VectorWaveFunction(decay[iglu ]->momentum(),
// decay[iglu ]->dataPtr(),10,
// outgoing));
// }
// }
if (! ((incomingVertex_[inter] && (outgoingVertexF_[inter] || outgoingVertexS_[inter])) ||
(outgoingVertexF_[inter] && outgoingVertexS_[inter])))
throw Exception()
<< "Invalid vertices for radiation in FFS decay in FFSDecayer::threeBodyME"
<< Exception::runerror;
// sort out colour flows
int F(1), S(2);
if (decay[iscal]->dataPtr()->iColour()==PDT::Colour3 &&
decay[iferm]->dataPtr()->iColour()==PDT::Colour8)
swap(F,S);
else if (decay[iferm]->dataPtr()->iColour()==PDT::Colour3bar &&
decay[iscal]->dataPtr()->iColour()==PDT::Colour8)
swap(F,S);
Complex diag;
Energy2 scale(sqr(inpart.mass()));
const GeneralTwoBodyDecayer::CFlow & colourFlow
= colourFlows(inpart, decay);
for(unsigned int ifi = 0; ifi < 2; ++ifi) {
for(unsigned int ifo = 0; ifo < 2; ++ifo) {
for(unsigned int ig = 0; ig < 2; ++ig) {
// radiation from the incoming fermion
if(inpart.dataPtr()->coloured()) {
assert(incomingVertex_[inter]);
double gs = incomingVertex_[inter]->strongCoupling(scale);
if (ferm){
SpinorWaveFunction spinorInter =
incomingVertex_[inter]->evaluate(scale,3,inpart.dataPtr(),wave3_[ifi],
gluon_[2*ig],inpart.mass());
if (wave3_[ifi].particle()->PDGName()!=spinorInter.particle()->PDGName())
throw Exception()
<< wave3_[ifi].particle()->PDGName() << " was changed to "
<< spinorInter.particle()->PDGName() << " in FFSDecayer::threeBodyME"
<< Exception::runerror;
diag = vertex_->evaluate(scale,spinorInter,wavebar3_[ifo],swave3_)/gs;
}
else {
SpinorBarWaveFunction spinorBarInter =
incomingVertex_[inter]->evaluate(scale,3,inpart.dataPtr(),wavebar3_[ifi],
gluon_[2*ig],inpart.mass());
if (wavebar3_[ifi].particle()->PDGName()!=spinorBarInter.particle()->PDGName())
throw Exception()
<< wavebar3_[ifi].particle()->PDGName() << " was changed to "
<< spinorBarInter.particle()->PDGName() << " in FFSDecayer::threeBodyME"
<< Exception::runerror;
diag = vertex_->evaluate(scale,wave3_[ifo], spinorBarInter,swave3_)/gs;
}
for(unsigned int ix=0;ix<colourFlow[0].size();++ix) {
(*ME[colourFlow[0][ix].first])(ifi, 0, ifo, ig) +=
colourFlow[0][ix].second*diag;
}
}
// radiation from outgoing fermion
if(decay[iferm]->dataPtr()->coloured()) {
assert(outgoingVertexF_[inter]);
// ensure you get correct outgoing particle from first vertex
tcPDPtr off = decay[iferm]->dataPtr();
if(off->CC()) off = off->CC();
double gs = outgoingVertexF_[inter]->strongCoupling(scale);
if (ferm) {
SpinorBarWaveFunction spinorBarInter =
outgoingVertexF_[inter]->evaluate(scale,3,off,wavebar3_[ifo],
gluon_[2*ig],decay[iferm]->mass());
if(wavebar3_[ifo].particle()->PDGName()!=spinorBarInter.particle()->PDGName())
throw Exception()
<< wavebar3_[ifo].particle()->PDGName() << " was changed to "
<< spinorBarInter.particle()->PDGName() << " in FFSDecayer::threeBodyME"
<< Exception::runerror;
diag = vertex_->evaluate(scale,wave3_[ifi],spinorBarInter,swave3_)/gs;
}
else {
SpinorWaveFunction spinorInter =
outgoingVertexF_[inter]->evaluate(scale,3,off,wave3_[ifo],
gluon_[2*ig],decay[iferm]->mass());
if(wave3_[ifo].particle()->PDGName()!=spinorInter.particle()->PDGName())
throw Exception()
<< wave3_[ifo].particle()->PDGName() << " was changed to "
<< spinorInter.particle()->PDGName() << " in FFSDecayer::threeBodyME"
<< Exception::runerror;
diag = vertex_->evaluate(scale,spinorInter,wavebar3_[ifi],swave3_)/gs;
}
for(unsigned int ix=0;ix<colourFlow[F].size();++ix) {
(*ME[colourFlow[F][ix].first])(ifi, 0, ifo, ig) +=
colourFlow[F][ix].second*diag;
}
}
// radiation from outgoing scalar
if(decay[iscal]->dataPtr()->coloured()) {
assert(outgoingVertexS_[inter]);
// ensure you get correct ougoing particle from first vertex
tcPDPtr off = decay[iscal]->dataPtr();
if(off->CC()) off = off->CC();
double gs = outgoingVertexS_[inter]->strongCoupling(scale);
ScalarWaveFunction scalarInter =
outgoingVertexS_[inter]->evaluate(scale,3,off,gluon_[2*ig],
swave3_,decay[iscal]->mass());
if(swave3_.particle()->PDGName()!=scalarInter.particle()->PDGName())
throw Exception()
<< swave3_ .particle()->PDGName() << " was changed to "
<< scalarInter.particle()->PDGName() << " in FFSDecayer::threeBodyME"
<< Exception::runerror;
if (ferm){
diag = vertex_->evaluate(scale,wave3_[ifi],wavebar3_[ifo],scalarInter)/gs;
}
else {
diag = vertex_->evaluate(scale,wave3_[ifo],wavebar3_[ifi],scalarInter)/gs;
}
for(unsigned int ix=0;ix<colourFlow[S].size();++ix) {
(*ME[colourFlow[S][ix].first])(ifi, 0, ifo, ig) +=
colourFlow[S][ix].second*diag;
}
}
}
}
}
// contract matrices
double output=0.;
for(unsigned int ix=0; ix<nflow; ++ix){
for(unsigned int iy=0; iy<nflow; ++iy){
output+=cfactors[ix][iy]*(ME[ix]->contract(*ME[iy],rho3_)).real();
}
}
output*=(4.*Constants::pi);
// return the answer
return output;
}
diff --git a/Decay/General/FFVDecayer.cc b/Decay/General/FFVDecayer.cc
--- a/Decay/General/FFVDecayer.cc
+++ b/Decay/General/FFVDecayer.cc
@@ -1,425 +1,429 @@
// -*- C++ -*-
//
// FFVDecayer.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the FFVDecayer class.
//
#include "FFVDecayer.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDT/DecayMode.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/SpinorBarWaveFunction.h"
#include "Herwig/Utilities/Kinematics.h"
#include "Herwig/Decay/GeneralDecayMatrixElement.h"
using namespace Herwig;
using namespace ThePEG::Helicity;
IBPtr FFVDecayer::clone() const {
return new_ptr(*this);
}
IBPtr FFVDecayer::fullclone() const {
return new_ptr(*this);
}
void FFVDecayer::setDecayInfo(PDPtr incoming, PDPair outgoing,
VertexBasePtr vertex,
map<ShowerInteraction,VertexBasePtr> & inV,
const vector<map<ShowerInteraction,VertexBasePtr> > & outV,
map<ShowerInteraction,VertexBasePtr> ) {
decayInfo(incoming,outgoing);
vertex_ = dynamic_ptr_cast<AbstractFFVVertexPtr>(vertex);
perturbativeVertex_ = dynamic_ptr_cast<FFVVertexPtr> (vertex);
vector<ShowerInteraction> itemp={ShowerInteraction::QCD,ShowerInteraction::QED};
for(auto & inter : itemp) {
incomingVertex_[inter] = dynamic_ptr_cast<AbstractFFVVertexPtr>(inV.at(inter));
- if (outV[0].at(inter)->getName()==VertexType::FFV){
- outgoingVertexF_[inter] = dynamic_ptr_cast<AbstractFFVVertexPtr>(outV[0].at(inter));
- outgoingVertexV_[inter] = dynamic_ptr_cast<AbstractVVVVertexPtr>(outV[1].at(inter));
+ if(outV[0].at(inter)) {
+ if (outV[0].at(inter)->getName()==VertexType::FFV)
+ outgoingVertexF_[inter] = dynamic_ptr_cast<AbstractFFVVertexPtr>(outV[0].at(inter));
+ else
+ outgoingVertexV_[inter] = dynamic_ptr_cast<AbstractVVVVertexPtr>(outV[0].at(inter));
}
- else {
- outgoingVertexF_[inter] = dynamic_ptr_cast<AbstractFFVVertexPtr>(outV[1].at(inter));
- outgoingVertexV_[inter] = dynamic_ptr_cast<AbstractVVVVertexPtr>(outV[0].at(inter));
+ if(outV[1].at(inter)) {
+ if (outV[1].at(inter)->getName()==VertexType::FFV)
+ outgoingVertexF_[inter] = dynamic_ptr_cast<AbstractFFVVertexPtr>(outV[1].at(inter));
+ else
+ outgoingVertexV_[inter] = dynamic_ptr_cast<AbstractVVVVertexPtr>(outV[1].at(inter));
}
}
}
void FFVDecayer::persistentOutput(PersistentOStream & os) const {
os << vertex_ << perturbativeVertex_
<< incomingVertex_ << outgoingVertexF_
<< outgoingVertexV_;
}
void FFVDecayer::persistentInput(PersistentIStream & is, int) {
is >> vertex_ >> perturbativeVertex_
>> incomingVertex_ >> outgoingVertexF_
>> outgoingVertexV_;
}
double FFVDecayer::me2(const int , const Particle & inpart,
const ParticleVector & decay,
MEOption meopt) const {
if(!ME())
ME(new_ptr(GeneralDecayMatrixElement(PDT::Spin1Half,PDT::Spin1Half,PDT::Spin1)));
// type of process
int itype[2];
- if(inpart.dataPtr()->CC()) itype[0] = inpart.id() > 0 ? 0 : 1;
- else itype[0] = 2;
+ if(inpart.dataPtr()->CC()) itype[0] = inpart.id() > 0 ? 0 : 1;
+ else itype[0] = 2;
if(decay[0]->dataPtr()->CC()) itype[1] = decay[0]->id() > 0 ? 0 : 1;
- else itype[1] = 2;
+ else itype[1] = 2;
//Need to use different barred or unbarred spinors depending on
//whether particle is cc or not.
bool ferm(itype[0] == 0 || itype[1] == 0 || (itype[0] == 2 && itype[1] == 2));
if(meopt==Initialize) {
// spinors and rho
if(ferm) {
SpinorWaveFunction ::calculateWaveFunctions(wave_,rho_,
const_ptr_cast<tPPtr>(&inpart),
incoming);
if(wave_[0].wave().Type() != SpinorType::u)
for(unsigned int ix = 0; ix < 2; ++ix) wave_ [ix].conjugate();
}
else {
SpinorBarWaveFunction::calculateWaveFunctions(wavebar_,rho_,
const_ptr_cast<tPPtr>(&inpart),
incoming);
if(wavebar_[0].wave().Type() != SpinorType::v)
for(unsigned int ix = 0; ix < 2; ++ix) wavebar_[ix].conjugate();
}
}
// setup spin info when needed
if(meopt==Terminate) {
// for the decaying particle
if(ferm) {
SpinorWaveFunction::
constructSpinInfo(wave_,const_ptr_cast<tPPtr>(&inpart),incoming,true);
SpinorBarWaveFunction::constructSpinInfo(wavebar_,decay[0],outgoing,true);
}
else {
SpinorBarWaveFunction::
constructSpinInfo(wavebar_,const_ptr_cast<tPPtr>(&inpart),incoming,true);
SpinorWaveFunction::constructSpinInfo(wave_,decay[0],outgoing,true);
}
VectorWaveFunction::
constructSpinInfo(vector_,decay[1],outgoing,true,false);
}
Energy2 scale(sqr(inpart.mass()));
if(ferm)
SpinorBarWaveFunction::
calculateWaveFunctions(wavebar_,decay[0],outgoing);
else
SpinorWaveFunction::
calculateWaveFunctions(wave_ ,decay[0],outgoing);
bool massless = decay[1]->dataPtr()->mass()==ZERO;
VectorWaveFunction::
calculateWaveFunctions(vector_,decay[1],outgoing,massless);
for(unsigned int if1 = 0; if1 < 2; ++if1) {
for(unsigned int if2 = 0; if2 < 2; ++if2) {
for(unsigned int vhel = 0; vhel < 3; ++vhel) {
if(massless && vhel == 1) ++vhel;
if(ferm)
(*ME())(if1, if2,vhel) =
vertex_->evaluate(scale,wave_[if1],wavebar_[if2],vector_[vhel]);
else
(*ME())(if2, if1, vhel) =
vertex_->evaluate(scale,wave_[if1],wavebar_[if2],vector_[vhel]);
}
}
}
double output=(ME()->contract(rho_)).real()/scale*UnitRemoval::E2;
// colour and identical particle factors
output *= colourFactor(inpart.dataPtr(),decay[0]->dataPtr(),decay[1]->dataPtr());
// return the answer
return output;
}
Energy FFVDecayer::partialWidth(PMPair inpart, PMPair outa,
PMPair outb) const {
if( inpart.second < outa.second + outb.second ) return ZERO;
if(perturbativeVertex_) {
double mu1(outa.second/inpart.second),mu2(outb.second/inpart.second);
tcPDPtr in = inpart.first->CC() ? tcPDPtr(inpart.first->CC()) : inpart.first;
if( outa.first->iSpin() == PDT::Spin1Half)
perturbativeVertex_->setCoupling(sqr(inpart.second), in,
outa.first, outb.first);
else {
swap(mu1,mu2);
perturbativeVertex_->setCoupling(sqr(inpart.second),in,
outb.first,outa.first);
}
Complex cl(perturbativeVertex_->left()),cr(perturbativeVertex_->right());
double me2(0.);
if( mu2 > 0. ) {
me2 = (norm(cl) + norm(cr))*(1. + sqr(mu1*mu2) + sqr(mu2)
- 2.*sqr(mu1) - 2.*sqr(mu2*mu2)
+ sqr(mu1*mu1))
- 6.*mu1*sqr(mu2)*(conj(cl)*cr + conj(cr)*cl).real();
me2 /= sqr(mu2);
}
else
me2 = 2.*( (norm(cl) + norm(cr))*(sqr(mu1) + 1.)
- 4.*mu1*(conj(cl)*cr + conj(cr)*cl).real() );
Energy pcm = Kinematics::pstarTwoBodyDecay(inpart.second, outa.second,
outb.second);
Energy output = norm(perturbativeVertex_->norm())*me2*pcm/16./Constants::pi;
// colour factor
output *= colourFactor(inpart.first,outa.first,outb.first);
// return the answer
return output;
}
else {
return GeneralTwoBodyDecayer::partialWidth(inpart,outa,outb);
}
}
// The following static variable is needed for the type
// description system in ThePEG.
DescribeClass<FFVDecayer,GeneralTwoBodyDecayer>
describeHerwigFFVDecayer("Herwig::FFVDecayer", "Herwig.so");
void FFVDecayer::Init() {
static ClassDocumentation<FFVDecayer> documentation
("There is no documentation for the FFVDecayer class");
}
double FFVDecayer::threeBodyME(const int , const Particle & inpart,
const ParticleVector & decay,
ShowerInteraction inter, MEOption meopt) {
int iferm (0), ivect (1), iglu (2);
// get location of outgoing lepton/vector
if(decay[1]->dataPtr()->iSpin()==PDT::Spin1Half) swap(iferm,ivect);
// work out whether inpart is a fermion or antifermion
int itype[2];
if(inpart.dataPtr()->CC()) itype[0] = inpart.id() > 0 ? 0 : 1;
else itype[0] = 2;
if(decay[iferm]->dataPtr()->CC()) itype[1] = decay[iferm]->id() > 0 ? 0 : 1;
else itype[1] = 2;
bool ferm(itype[0] == 0 || itype[1] == 0 ||
(itype[0] == 2 && itype[1] == 2 && decay[ivect]->id() < 0));
// no emissions from massive vectors
bool massless = decay[ivect]->dataPtr()->mass()==ZERO;
if (outgoingVertexV_[inter] && (! massless))
throw Exception()
<< "No dipoles available for massive vectors in FFVDecayer::threeBodyME"
<< Exception::runerror;
if(meopt==Initialize) {
// create spinor (bar) for decaying particle
if(ferm) {
SpinorWaveFunction::calculateWaveFunctions(wave3_, rho3_, const_ptr_cast<tPPtr>(&inpart),
incoming);
if(wave3_[0].wave().Type() != SpinorType::u)
for(unsigned int ix = 0; ix < 2; ++ix) wave3_[ix].conjugate();
}
else {
SpinorBarWaveFunction::calculateWaveFunctions(wavebar3_,rho3_, const_ptr_cast<tPPtr>(&inpart),
incoming);
if(wavebar3_[0].wave().Type() != SpinorType::v)
for(unsigned int ix = 0; ix < 2; ++ix) wavebar3_[ix].conjugate();
}
}
// setup spin information when needed
if(meopt==Terminate) {
if(ferm) {
SpinorWaveFunction::
constructSpinInfo(wave3_,const_ptr_cast<tPPtr>(&inpart),incoming,true);
SpinorBarWaveFunction::constructSpinInfo(wavebar3_,decay[iferm],outgoing,true);
}
else {
SpinorBarWaveFunction::
constructSpinInfo(wavebar3_,const_ptr_cast<tPPtr>(&inpart),incoming,true);
SpinorWaveFunction::constructSpinInfo(wave3_,decay[iferm],outgoing,true);
}
VectorWaveFunction::constructSpinInfo(vector3_, decay[ivect],outgoing,true,massless);
VectorWaveFunction::constructSpinInfo(gluon_, decay[iglu ],outgoing,true,false);
return 0.;
}
// calulate colour factors and number of colour flows
unsigned int nflow;
vector<DVector> cfactors = getColourFactors(inpart, decay, nflow);
if(nflow==2) cfactors[0][1] = cfactors[1][0];
vector<GeneralDecayMEPtr> ME(nflow,new_ptr(GeneralDecayMatrixElement(PDT::Spin1Half, PDT::Spin1Half,
PDT::Spin1, PDT::Spin1)));
// create wavefunctions
if (ferm) SpinorBarWaveFunction::calculateWaveFunctions(wavebar3_, decay[iferm],outgoing);
else SpinorWaveFunction:: calculateWaveFunctions(wave3_ , decay[iferm],outgoing);
VectorWaveFunction::calculateWaveFunctions(vector3_, decay[ivect],outgoing,massless);
VectorWaveFunction::calculateWaveFunctions(gluon_, decay[iglu ],outgoing,true );
// // gauge invariance test
// gluon_.clear();
// for(unsigned int ix=0;ix<3;++ix) {
// if(ix==1) gluon_.push_back(VectorWaveFunction());
// else {
// gluon_.push_back(VectorWaveFunction(decay[iglu ]->momentum(),
// decay[iglu ]->dataPtr(),10,
// outgoing));
// }
// }
if (! ((incomingVertex_[inter] && (outgoingVertexF_[inter] || outgoingVertexV_[inter])) ||
(outgoingVertexF_[inter] && outgoingVertexV_[inter])))
throw Exception()
<< "Invalid vertices for QCD radiation in FFV decay in FFVDecayer::threeBodyME"
<< Exception::runerror;
// sort out colour flows
int F(1), V(2);
if (decay[iferm]->dataPtr()->iColour()==PDT::Colour3bar &&
decay[ivect]->dataPtr()->iColour()==PDT::Colour8)
swap(F,V);
else if (decay[ivect]->dataPtr()->iColour()==PDT::Colour3 &&
decay[iferm]->dataPtr()->iColour()==PDT::Colour8)
swap(F,V);
Complex diag;
Energy2 scale(sqr(inpart.mass()));
const GeneralTwoBodyDecayer::CFlow & colourFlow
= colourFlows(inpart, decay);
for(unsigned int ifi = 0; ifi < 2; ++ifi) {
for(unsigned int ifo = 0; ifo < 2; ++ifo) {
for(unsigned int iv = 0; iv < 3; ++iv) {
for(unsigned int ig = 0; ig < 2; ++ig) {
// radiation from the incoming fermion
if(inpart.dataPtr()->coloured()) {
assert(incomingVertex_[inter]);
double gs = incomingVertex_[inter]->strongCoupling(scale);
if (ferm){
SpinorWaveFunction spinorInter =
incomingVertex_[inter]->evaluate(scale,3,inpart.dataPtr(),wave3_[ifi],
gluon_[2*ig],inpart.mass());
if (wave3_[ifi].particle()->PDGName()!=spinorInter.particle()->PDGName())
throw Exception()
<< wave3_[ifi].particle()->PDGName() << " was changed to "
<< spinorInter.particle()->PDGName() << " in FFVDecayer::threeBodyME"
<< Exception::runerror;
diag = vertex_->evaluate(scale,spinorInter,wavebar3_[ifo],vector3_[iv])/gs;
}
else {
SpinorBarWaveFunction spinorBarInter =
incomingVertex_[inter]->evaluate(scale,3,inpart.dataPtr(),wavebar3_[ifi],
gluon_[2*ig],inpart.mass());
if (wavebar3_[ifi].particle()->PDGName()!=spinorBarInter.particle()->PDGName())
throw Exception()
<< wavebar3_[ifi].particle()->PDGName() << " was changed to "
<< spinorBarInter.particle()->PDGName() << " in FFVDecayer::threeBodyME"
<< Exception::runerror;
diag = vertex_->evaluate(scale,wave3_[ifo], spinorBarInter,vector3_[iv])/gs;
}
for(unsigned int ix=0;ix<colourFlow[0].size();++ix) {
(*ME[colourFlow[0][ix].first])(ifi, ifo, iv, ig) +=
colourFlow[0][ix].second*diag;
}
}
// radiation from outgoing fermion
if(decay[iferm]->dataPtr()->coloured()) {
assert(outgoingVertexF_[inter]);
// ensure you get correct outgoing particle from first vertex
tcPDPtr off = decay[iferm]->dataPtr();
if(off->CC()) off = off->CC();
double gs = outgoingVertexF_[inter]->strongCoupling(scale);
if (ferm) {
SpinorBarWaveFunction spinorBarInter =
outgoingVertexF_[inter]->evaluate(scale,3,off,wavebar3_[ifo],
gluon_[2*ig],decay[iferm]->mass());
if(wavebar3_[ifo].particle()->PDGName()!=spinorBarInter.particle()->PDGName())
throw Exception()
<< wavebar3_[ifo].particle()->PDGName() << " was changed to "
<< spinorBarInter.particle()->PDGName() << " in FFVDecayer::threeBodyME"
<< Exception::runerror;
diag = vertex_->evaluate(scale,wave3_[ifi],spinorBarInter,vector3_[iv])/gs;
}
else {
SpinorWaveFunction spinorInter =
outgoingVertexF_[inter]->evaluate(scale,3,off,wave3_[ifo],
gluon_[2*ig],decay[iferm]->mass());
if(wave3_[ifo].particle()->PDGName()!=spinorInter.particle()->PDGName())
throw Exception()
<< wave3_[ifo].particle()->PDGName() << " was changed to "
<< spinorInter.particle()->PDGName() << " in FFVDecayer::threeBodyME"
<< Exception::runerror;
diag = vertex_->evaluate(scale,spinorInter,wavebar3_[ifi],vector3_[iv])/gs;
}
for(unsigned int ix=0;ix<colourFlow[F].size();++ix) {
(*ME[colourFlow[F][ix].first])(ifi, ifo, iv, ig) +=
colourFlow[F][ix].second*diag;
}
}
// radiation from outgoing vector
if(decay[ivect]->dataPtr()->coloured()) {
assert(outgoingVertexV_[inter]);
// ensure you get correct ougoing particle from first vertex
tcPDPtr off = decay[ivect]->dataPtr();
if(off->CC()) off = off->CC();
double sign = decay[iferm]->id()>0 ? -1:1;
double gs = outgoingVertexV_[inter]->strongCoupling(scale);
VectorWaveFunction vectorInter =
outgoingVertexV_[inter]->evaluate(scale,3,off,gluon_[2*ig],
vector3_[iv],decay[ivect]->mass());
if(vector3_[iv].particle()->PDGName()!=vectorInter.particle()->PDGName())
throw Exception()
<< vector3_[iv].particle()->PDGName() << " was changed to "
<< vectorInter. particle()->PDGName() << " in FFVDecayer::threeBodyME"
<< Exception::runerror;
if (ferm){
diag = sign*vertex_->evaluate(scale,wave3_[ifi],wavebar3_[ifo],vectorInter)/gs;
}
else {
diag = sign*vertex_->evaluate(scale,wave3_[ifo],wavebar3_[ifi],vectorInter)/gs;
}
for(unsigned int ix=0;ix<colourFlow[V].size();++ix) {
(*ME[colourFlow[V][ix].first])(ifi, ifo, iv, ig) +=
colourFlow[V][ix].second*diag;
}
}
}
if(massless) ++iv;
}
}
}
// contract matrices
double output=0.;
for(unsigned int ix=0; ix<nflow; ++ix){
for(unsigned int iy=0; iy<nflow; ++iy){
output+=cfactors[ix][iy]*(ME[ix]->contract(*ME[iy],rho3_)).real();
}
}
output*=(4.*Constants::pi);
// return the answer
return output;
}
diff --git a/Decay/General/GeneralTwoBodyDecayer.cc b/Decay/General/GeneralTwoBodyDecayer.cc
--- a/Decay/General/GeneralTwoBodyDecayer.cc
+++ b/Decay/General/GeneralTwoBodyDecayer.cc
@@ -1,719 +1,708 @@
// -*- C++ -*-
//
// GeneralTwoBodyDecayer.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the GeneralTwoBodyDecayer class.
//
#include "GeneralTwoBodyDecayer.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDT/DecayMode.h"
#include "ThePEG/Utilities/Exception.h"
#include "Herwig/Shower/RealEmissionProcess.h"
using namespace Herwig;
ParticleVector GeneralTwoBodyDecayer::decay(const Particle & parent,
const tPDVector & children) const {
// return empty vector if products heavier than parent
Energy mout(ZERO);
for(tPDVector::const_iterator it=children.begin();
it!=children.end();++it) mout+=(**it).massMin();
if(mout>parent.mass()) return ParticleVector();
// generate the decay
bool cc;
int imode=modeNumber(cc,parent.dataPtr(),children);
// generate the kinematics
ParticleVector decay=generate(generateIntermediates(),cc,imode,parent);
// make the colour connections
colourConnections(parent, decay);
// return the answer
return decay;
}
void GeneralTwoBodyDecayer::doinit() {
PerturbativeDecayer::doinit();
assert( incoming_ && outgoing_.size()==2);
//create phase space mode
tPDVector extpart(3);
extpart[0] = incoming_;
extpart[1] = outgoing_[0];
extpart[2] = outgoing_[1];
addMode(new_ptr(DecayPhaseSpaceMode(extpart, this)), maxWeight_, vector<double>());
}
int GeneralTwoBodyDecayer::modeNumber(bool & cc, tcPDPtr parent,
const tPDVector & children) const {
long parentID = parent->id();
long id1 = children[0]->id();
long id2 = children[1]->id();
cc = false;
long out1 = outgoing_[0]->id();
long out2 = outgoing_[1]->id();
if( parentID == incoming_->id() &&
((id1 == out1 && id2 == out2) ||
(id1 == out2 && id2 == out1)) ) {
return 0;
}
else if(incoming_->CC() && parentID == incoming_->CC()->id()) {
cc = true;
if( outgoing_[0]->CC()) out1 = outgoing_[0]->CC()->id();
if( outgoing_[1]->CC()) out2 = outgoing_[1]->CC()->id();
if((id1 == out1 && id2 == out2) ||
(id1 == out2 && id2 == out1)) return 0;
}
return -1;
}
void GeneralTwoBodyDecayer::
colourConnections(const Particle & parent,
const ParticleVector & out) const {
PDT::Colour incColour(parent.data().iColour());
PDT::Colour outaColour(out[0]->data().iColour());
PDT::Colour outbColour(out[1]->data().iColour());
//incoming colour singlet
if(incColour == PDT::Colour0) {
// colour triplet-colourantitriplet
if((outaColour == PDT::Colour3 && outbColour == PDT::Colour3bar) ||
(outaColour == PDT::Colour3bar && outbColour == PDT::Colour3)) {
bool ac(out[0]->id() < 0);
out[0]->colourNeighbour(out[1],!ac);
}
//colour octet
else if(outaColour == PDT::Colour8 && outbColour == PDT::Colour8) {
out[0]->colourNeighbour(out[1]);
out[0]->antiColourNeighbour(out[1]);
}
// colour singlets
else if(outaColour == PDT::Colour0 && outbColour == PDT::Colour0) {
}
// unknown
else
throw Exception() << "Unknown outgoing colours for decaying "
<< "colour singlet in "
<< "GeneralTwoBodyDecayer::colourConnections "
<< outaColour << " " << outbColour
<< Exception::runerror;
}
//incoming colour triplet
else if(incColour == PDT::Colour3) {
// colour triplet + singlet
if(outaColour == PDT::Colour3 && outbColour == PDT::Colour0) {
out[0]->incomingColour(const_ptr_cast<tPPtr>(&parent));
}
//opposite order
else if(outaColour == PDT::Colour0 && outbColour == PDT::Colour3) {
out[1]->incomingColour(const_ptr_cast<tPPtr>(&parent));
}
// octet + triplet
else if(outaColour == PDT::Colour8 && outbColour == PDT::Colour3) {
out[0]->incomingColour(const_ptr_cast<tPPtr>(&parent));
out[1]->antiColourNeighbour(out[0]);
}
//opposite order
else if(outaColour == PDT::Colour3 && outbColour == PDT::Colour8) {
out[1]->incomingColour(const_ptr_cast<tPPtr>(&parent));
out[0]->antiColourNeighbour(out[1]);
}
else if(outaColour == PDT::Colour3bar && outaColour == PDT::Colour3bar) {
tColinePtr col[2] = {ColourLine::create(out[0],true),
ColourLine::create(out[1],true)};
parent.colourLine()->setSinkNeighbours(col[0],col[1]);
}
else
throw Exception() << "Unknown outgoing colours for decaying "
<< "colour triplet in "
<< "GeneralTwoBodyDecayer::colourConnections() "
<< outaColour << " " << outbColour
<< Exception::runerror;
}
// incoming colour anti triplet
else if(incColour == PDT::Colour3bar) {
// colour antitriplet +singlet
if(outaColour == PDT::Colour3bar && outbColour == PDT::Colour0) {
out[0]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
}
//opposite order
else if(outaColour == PDT::Colour0 && outbColour == PDT::Colour3bar) {
out[1]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
}
//octet + antitriplet
else if(outaColour == PDT::Colour3bar && outbColour == PDT::Colour8) {
out[1]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
out[0]->colourNeighbour(out[1]);
}
//opposite order
else if(outaColour == PDT::Colour8 && outbColour == PDT::Colour3bar) {
out[0]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
out[1]->colourNeighbour(out[0]);
}
else if(outaColour == PDT::Colour3 && outbColour == PDT::Colour3) {
tColinePtr col[2] = {ColourLine::create(out[0]),
ColourLine::create(out[1])};
parent.antiColourLine()->setSourceNeighbours(col[0],col[1]);
}
else
throw Exception() << "Unknown outgoing colours for decaying "
<< "colour antitriplet "
<< "in GeneralTwoBodyDecayer::colourConnections() "
<< outaColour << " " << outbColour
<< Exception::runerror;
}
//incoming colour octet
else if(incColour == PDT::Colour8) {
// triplet-antitriplet
if(outaColour == PDT::Colour3&&outbColour == PDT::Colour3bar) {
out[0]->incomingColour(const_ptr_cast<tPPtr>(&parent));
out[1]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
}
// opposite order
else if(outbColour == PDT::Colour3&&outaColour == PDT::Colour3bar) {
out[0]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
out[1]->incomingColour(const_ptr_cast<tPPtr>(&parent));
}
// neutral octet
else if(outaColour == PDT::Colour0&&outbColour == PDT::Colour8) {
out[1]->incomingColour(const_ptr_cast<tPPtr>(&parent));
out[1]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
}
else if(outbColour == PDT::Colour0&&outaColour == PDT::Colour8) {
out[0]->incomingColour(const_ptr_cast<tPPtr>(&parent));
out[0]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
}
else
throw Exception() << "Unknown outgoing colours for decaying "
<< "colour octet "
<< "in GeneralTwoBodyDecayer::colourConnections() "
<< outaColour << " " << outbColour
<< Exception::runerror;
}
else if(incColour == PDT::Colour6) {
if(outaColour == PDT::Colour3 && outbColour == PDT::Colour3) {
tPPtr tempParent = const_ptr_cast<tPPtr>(&parent);
Ptr<MultiColour>::pointer parentColour =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
(tempParent->colourInfo());
tColinePtr line1 = const_ptr_cast<tColinePtr>(parentColour->colourLines()[0]);
line1->addColoured(dynamic_ptr_cast<tPPtr>(out[0]));
tColinePtr line2 = const_ptr_cast<tColinePtr>(parentColour->colourLines()[1]);
line2->addColoured(dynamic_ptr_cast<tPPtr>(out[1]));
}
else
throw Exception() << "Unknown outgoing colours for decaying "
<< "colour sextet "
<< "in GeneralTwoBodyDecayer::colourConnections() "
<< outaColour << " " << outbColour
<< Exception::runerror;
}
else if(incColour == PDT::Colour6bar) {
if(outaColour == PDT::Colour3bar && outbColour == PDT::Colour3bar) {
tPPtr tempParent = const_ptr_cast<tPPtr>(&parent);
Ptr<MultiColour>::pointer parentColour =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
(tempParent->colourInfo());
tColinePtr line1 = const_ptr_cast<tColinePtr>(parentColour->antiColourLines()[0]);
line1->addAntiColoured(dynamic_ptr_cast<tPPtr>(out[0]));
tColinePtr line2 = const_ptr_cast<tColinePtr>(parentColour->antiColourLines()[1]);
line2->addAntiColoured(dynamic_ptr_cast<tPPtr>(out[1]));
}
else
throw Exception() << "Unknown outgoing colours for decaying "
<< "colour anti-sextet "
<< "in GeneralTwoBodyDecayer::colourConnections() "
<< outaColour << " " << outbColour
<< Exception::runerror;
}
else
throw Exception() << "Unknown incoming colour in "
<< "GeneralTwoBodyDecayer::colourConnections() "
<< incColour
<< Exception::runerror;
}
bool GeneralTwoBodyDecayer::twoBodyMEcode(const DecayMode & dm, int & mecode,
double & coupling) const {
assert(dm.parent()->id() == incoming_->id());
ParticleMSet::const_iterator pit = dm.products().begin();
long id1 = (*pit)->id();
++pit;
long id2 = (*pit)->id();
long id1t(outgoing_[0]->id()), id2t(outgoing_[1]->id());
mecode = -1;
coupling = 1.;
if( id1 == id1t && id2 == id2t ) {
return true;
}
else if( id1 == id2t && id2 == id1t ) {
return false;
}
else
assert(false);
return false;
}
void GeneralTwoBodyDecayer::persistentOutput(PersistentOStream & os) const {
os << incoming_ << outgoing_ << maxWeight_;
}
void GeneralTwoBodyDecayer::persistentInput(PersistentIStream & is, int) {
is >> incoming_ >> outgoing_ >> maxWeight_;
}
// The following static variable is needed for the type
// description system in ThePEG.
DescribeAbstractClass<GeneralTwoBodyDecayer,PerturbativeDecayer>
describeHerwigGeneralTwoBodyDecayer("Herwig::GeneralTwoBodyDecayer", "Herwig.so");
void GeneralTwoBodyDecayer::Init() {
static ClassDocumentation<GeneralTwoBodyDecayer> documentation
("This class is designed to be a base class for all 2 body decays"
"in a general model");
}
double GeneralTwoBodyDecayer::brat(const DecayMode &, const Particle & p,
double oldbrat) const {
ParticleVector children = p.children();
if( children.size() != 2 || !p.data().widthGenerator() )
return oldbrat;
// partial width for this mode
Energy scale = p.mass();
Energy pwidth =
partialWidth( make_pair(p.dataPtr(), scale),
make_pair(children[0]->dataPtr(), children[0]->mass()),
make_pair(children[1]->dataPtr(), children[1]->mass()) );
Energy width = p.data().widthGenerator()->width(p.data(), scale);
return pwidth/width;
}
void GeneralTwoBodyDecayer::doinitrun() {
PerturbativeDecayer::doinitrun();
for(unsigned int ix=0;ix<numberModes();++ix) {
double fact = pow(1.5,int(mode(ix)->externalParticles(0)->iSpin())-1);
mode(ix)->setMaxWeight(fact*mode(ix)->maxWeight());
}
}
double GeneralTwoBodyDecayer::colourFactor(tcPDPtr in, tcPDPtr out1,
tcPDPtr out2) const {
// identical particle symmetry factor
double output = out1->id()==out2->id() ? 0.5 : 1.;
// colour neutral incoming particle
if(in->iColour()==PDT::Colour0) {
// both colour neutral
if(out1->iColour()==PDT::Colour0 && out2->iColour()==PDT::Colour0)
output *= 1.;
// colour triplet/ antitriplet
else if((out1->iColour()==PDT::Colour3 && out2->iColour()==PDT::Colour3bar) ||
(out1->iColour()==PDT::Colour3bar && out2->iColour()==PDT::Colour3 ) ) {
output *= 3.;
}
// colour octet colour octet
else if(out1->iColour()==PDT::Colour8 && out2->iColour()==PDT::Colour8 ) {
output *= 8.;
}
else
throw Exception() << "Unknown colour for the outgoing particles"
<< " for decay colour neutral particle in "
<< "GeneralTwoBodyDecayer::colourFactor() for "
<< in->PDGName() << " -> "
<< out1->PDGName() << " " << out2->PDGName()
<< Exception::runerror;
}
// triplet
else if(in->iColour()==PDT::Colour3) {
// colour triplet + neutral
if((out1->iColour()==PDT::Colour0 && out2->iColour()==PDT::Colour3) ||
(out1->iColour()==PDT::Colour3 && out2->iColour()==PDT::Colour0) ) {
output *= 1.;
}
// colour triplet + octet
else if((out1->iColour()==PDT::Colour8 && out2->iColour()==PDT::Colour3) ||
(out1->iColour()==PDT::Colour3 && out2->iColour()==PDT::Colour8) ) {
output *= 4./3.;
}
// colour anti triplet anti triplet
else if(out1->iColour()==PDT::Colour3bar &&
out2->iColour()==PDT::Colour3bar) {
output *= 2.;
}
else
throw Exception() << "Unknown colour for the outgoing particles"
<< " for decay colour triplet particle in "
<< "GeneralTwoBodyDecayer::colourFactor() for "
<< in->PDGName() << " -> "
<< out1->PDGName() << " " << out2->PDGName()
<< Exception::runerror;
}
// anti triplet
else if(in->iColour()==PDT::Colour3bar) {
// colour anti triplet + neutral
if((out1->iColour()==PDT::Colour0 && out2->iColour()==PDT::Colour3bar ) ||
(out1->iColour()==PDT::Colour3bar && out2->iColour()==PDT::Colour0 ) ) {
output *= 1.;
}
// colour anti triplet + octet
else if((out1->iColour()==PDT::Colour8 && out2->iColour()==PDT::Colour3bar ) ||
(out1->iColour()==PDT::Colour3bar && out2->iColour()==PDT::Colour8 ) ) {
output *= 4./3.;
}
// colour triplet triplet
else if(out1->iColour()==PDT::Colour3 &&
out2->iColour()==PDT::Colour3) {
output *= 2.;
}
else
throw Exception() << "Unknown colour for the outgoing particles"
<< " for decay colour anti triplet particle in "
<< "GeneralTwoBodyDecayer::colourFactor() for "
<< in->PDGName() << " -> "
<< out1->PDGName() << " " << out2->PDGName()
<< Exception::runerror;
}
else if(in->iColour()==PDT::Colour8) {
// colour octet + neutral
if((out1->iColour()==PDT::Colour0 && out2->iColour()==PDT::Colour8 ) ||
(out1->iColour()==PDT::Colour8 && out2->iColour()==PDT::Colour0 ) ) {
output *= 1.;
}
// colour triplet/antitriplet
else if((out1->iColour()==PDT::Colour3 && out2->iColour()==PDT::Colour3bar) ||
(out1->iColour()==PDT::Colour3bar && out2->iColour()==PDT::Colour3 ) ) {
output *= 0.5;
}
else
throw Exception() << "Unknown colour for the outgoing particles"
<< " for decay colour octet particle in "
<< "GeneralTwoBodyDecayer::colourFactor() for "
<< in->PDGName() << " -> "
<< out1->PDGName() << " " << out2->PDGName()
<< Exception::runerror;
}
else if(in->iColour()==PDT::Colour6) {
// colour sextet -> triplet triplet
if( out1->iColour()==PDT::Colour3 && out2->iColour()==PDT::Colour3 ) {
output *= 1.;
}
else
throw Exception() << "Unknown colour for the outgoing particles"
<< " for decay colour sextet particle in "
<< "GeneralTwoBodyDecayer::colourFactor() for "
<< in->PDGName() << " -> "
<< out1->PDGName() << " " << out2->PDGName()
<< Exception::runerror;
}
else if(in->iColour()==PDT::Colour6bar) {
// colour sextet -> triplet triplet
if( out1->iColour()==PDT::Colour3bar && out2->iColour()==PDT::Colour3bar ) {
output *= 1.;
}
else
throw Exception() << "Unknown colour for the outgoing particles"
<< " for decay colour anti-sextet particle in "
<< "GeneralTwoBodyDecayer::colourFactor() for "
<< in->PDGName() << " -> "
<< out1->PDGName() << " " << out2->PDGName()
<< Exception::runerror;
}
else
throw Exception() << "Unknown colour "
<< in->iColour() << " for the decaying particle in "
<< "GeneralTwoBodyDecayer::colourFactor() for "
<< in->PDGName() << " -> "
<< out1->PDGName() << " " << out2->PDGName()
<< Exception::runerror;
return output;
}
Energy GeneralTwoBodyDecayer::partialWidth(PMPair inpart, PMPair outa,
PMPair outb) const {
// select the number of the mode
tPDVector children;
children.push_back(const_ptr_cast<PDPtr>(outa.first));
children.push_back(const_ptr_cast<PDPtr>(outb.first));
bool cc;
int nmode=modeNumber(cc,inpart.first,children);
tcPDPtr newchild[2] = {mode(nmode)->externalParticles(1),
mode(nmode)->externalParticles(2)};
// make the particles
Lorentz5Momentum pparent = Lorentz5Momentum(inpart.second);
PPtr parent = inpart.first->produceParticle(pparent);
Lorentz5Momentum pout[2];
double ctheta,phi;
Kinematics::generateAngles(ctheta,phi);
Kinematics::twoBodyDecay(pparent, outa.second, outb.second,
ctheta, phi,pout[0],pout[1]);
if( ( !cc && outa.first!=newchild[0]) ||
( cc && !(( outa.first->CC() && outa.first->CC() == newchild[0])||
( !outa.first->CC() && outa.first == newchild[0]) )))
swap(pout[0],pout[1]);
ParticleVector decay;
decay.push_back(newchild[0]->produceParticle(pout[0]));
decay.push_back(newchild[1]->produceParticle(pout[1]));
double me = me2(-1,*parent,decay,Initialize);
Energy pcm = Kinematics::pstarTwoBodyDecay(inpart.second,
outa.second, outb.second);
return me/(8.*Constants::pi)*pcm;
}
void GeneralTwoBodyDecayer::decayInfo(PDPtr incoming, PDPair outgoing) {
incoming_=incoming;
outgoing_.clear();
outgoing_.push_back(outgoing.first );
outgoing_.push_back(outgoing.second);
}
double GeneralTwoBodyDecayer::matrixElementRatio(const Particle & inpart,
const ParticleVector & decay2,
const ParticleVector & decay3,
MEOption meopt,
ShowerInteraction inter) {
// calculate R/B
double B = me2 (0, inpart, decay2, meopt);
double R = threeBodyME(0, inpart, decay3, inter, meopt);
return R/B;
}
const vector<DVector> & GeneralTwoBodyDecayer::getColourFactors(const Particle & inpart,
const ParticleVector & decay,
unsigned int & nflow){
// calculate the colour factors for the three-body decay
vector<int> sing,trip,atrip,oct;
for(unsigned int it=0;it<decay.size();++it) {
if (decay[it]->dataPtr()->iColour() == PDT::Colour0 ) sing. push_back(it);
else if(decay[it]->dataPtr()->iColour() == PDT::Colour3 ) trip. push_back(it);
else if(decay[it]->dataPtr()->iColour() == PDT::Colour3bar ) atrip.push_back(it);
else if(decay[it]->dataPtr()->iColour() == PDT::Colour8 ) oct. push_back(it);
}
// require at least one gluon
assert(oct.size()>=1);
// identical particle symmetry factor
double symFactor=1.;
if (( sing.size()==2 && decay[ sing[0]]->id()==decay[ sing[1]]->id()) ||
( trip.size()==2 && decay[ trip[0]]->id()==decay[ trip[1]]->id()) ||
(atrip.size()==2 && decay[atrip[0]]->id()==decay[atrip[1]]->id()) ||
( oct.size()==2 && decay[ oct[0]]->id()==decay[ oct[1]]->id()))
symFactor/=2.;
else if (oct.size()==3 &&
decay[oct[0]]->id()==decay[oct[1]]->id() &&
decay[oct[0]]->id()==decay[oct[2]]->id())
symFactor/=6.;
colour_ = vector<DVector>(1,DVector(1,symFactor*1.));
// decaying colour singlet
if(inpart.dataPtr()->iColour() == PDT::Colour0) {
if(trip.size()==1 && atrip.size()==1 && oct.size()==1) {
nflow = 1;
colour_ = vector<DVector>(1,DVector(1,symFactor*4.));
}
else if (oct.size()==3){
nflow = 1.;
colour_ = vector<DVector>(1,DVector(1,symFactor*24.));
}
else
throw Exception() << "Unknown colour for the outgoing particles"
<< " for decay colour scalar particle in "
<< "GeneralTwoBodyDecayer::getColourFactors() for "
<< inpart. dataPtr()->PDGName() << " -> "
<< decay[0]->dataPtr()->PDGName() << " "
<< decay[1]->dataPtr()->PDGName() << " "
<< decay[2]->dataPtr()->PDGName()
<< Exception::runerror;
}
// decaying colour triplet
else if(inpart.dataPtr()->iColour() == PDT::Colour3) {
if(trip.size()==1 && sing.size()==1 && oct.size()==1) {
nflow = 1;
colour_ = vector<DVector>(1,DVector(1,symFactor*4./3.));
}
else if(trip.size()==1 && oct.size()==2) {
nflow = 2;
colour_.clear();
colour_.resize(2,DVector(2,0.));
colour_[0][0] = symFactor*16./9.; colour_[0][1] = -symFactor*2./9.;
colour_[1][0] = -symFactor*2./9.; colour_[1][1] = symFactor*16./9.;
}
else
throw Exception() << "Unknown colour for the outgoing particles"
<< " for decay colour triplet particle in "
<< "GeneralTwoBodyDecayer::getColourFactors() for "
<< inpart. dataPtr()->PDGName() << " -> "
<< decay[0]->dataPtr()->PDGName() << " "
<< decay[1]->dataPtr()->PDGName() << " "
<< decay[2]->dataPtr()->PDGName()
<< Exception::runerror;
}
// decaying colour anti-triplet
else if(inpart.dataPtr()->iColour() == PDT::Colour3bar) {
if(atrip.size()==1 && sing.size()==1 && oct.size()==1) {
nflow = 1;
colour_ = vector<DVector>(1,DVector(1,symFactor*4./3.));
}
else if(atrip.size()==1 && oct.size()==2){
nflow = 2;
colour_.clear();
colour_ .resize(2,DVector(2,0.));
colour_[0][0] = symFactor*16./9.; colour_[0][1] = -symFactor*2./9.;
colour_[1][0] = -symFactor*2./9.; colour_[1][1] = symFactor*16./9.;
}
else
throw Exception() << "Unknown colour for the outgoing particles"
<< " for decay colour anti-triplet particle in "
<< "GeneralTwoBodyDecayer::getColourFactors() for "
<< inpart. dataPtr()->PDGName() << " -> "
<< decay[0]->dataPtr()->PDGName() << " "
<< decay[1]->dataPtr()->PDGName() << " "
<< decay[2]->dataPtr()->PDGName()
<< Exception::runerror;
}
// decaying colour octet
else if(inpart.dataPtr()->iColour() == PDT::Colour8) {
if(oct.size()==1 && trip.size()==1 && atrip.size()==1) {
nflow = 2;
colour_.clear();
colour_.resize(2,DVector(2,0.));
colour_[0][0] = symFactor*2./3. ; colour_[0][1] = -symFactor*1./12.;
colour_[1][0] = -symFactor*1./12.; colour_[1][1] = symFactor*2./3. ;
}
else if (oct.size()==2 && sing.size()==1){
nflow = 1;
colour_ = vector<DVector>(1,DVector(1,symFactor*3.));
}
else
throw Exception() << "Unknown colour for the outgoing particles"
<< " for decay colour octet particle in "
<< "GeneralTwoBodyDecayer::getColourFactors() for "
<< inpart. dataPtr()->PDGName() << " -> "
<< decay[0]->dataPtr()->PDGName() << " "
<< decay[1]->dataPtr()->PDGName() << " "
<< decay[2]->dataPtr()->PDGName()
<< Exception::runerror;
}
else
throw Exception() << "Unknown colour for the decaying particle in "
<< "GeneralTwoBodyDecayer::getColourFactors() for "
<< inpart. dataPtr()->PDGName() << " -> "
<< decay[0]->dataPtr()->PDGName() << " "
<< decay[1]->dataPtr()->PDGName() << " "
<< decay[2]->dataPtr()->PDGName()
<< Exception::runerror;
return colour_;
}
const GeneralTwoBodyDecayer::CFlow &
GeneralTwoBodyDecayer::colourFlows(const Particle & inpart,
const ParticleVector & decay) {
// static initialization of commonly used colour structures
static const CFlow init = CFlow(3, CFlowPairVec(1, make_pair(0, 1.)));
static CFlow tripflow = init;
static CFlow atripflow = init;
static CFlow octflow = init;
static const CFlow fpflow = CFlow(4, CFlowPairVec(1, make_pair(0, 1.)));
static bool initialized = false;
if (! initialized) {
tripflow[2].resize(2, make_pair(0,1.));
tripflow[2][0] = make_pair(0, 1.);
tripflow[2][1] = make_pair(1,-1.);
tripflow[1][0] = make_pair(1, 1.);
atripflow[1].resize(2, make_pair(0,1.));
atripflow[1][0] = make_pair(0, 1.);
atripflow[1][1] = make_pair(1,-1.);
atripflow[2][0] = make_pair(1, 1.);
octflow[0].resize(2, make_pair(0,1.));
octflow[0][0] = make_pair(0,-1.);
octflow[0][1] = make_pair(1, 1.);
octflow[2][0] = make_pair(1, 1.);
initialized = true;
}
// main function body
int sing=0,trip=0,atrip=0,oct=0;
for (size_t it=0; it<decay.size(); ++it) {
switch ( decay[it]->dataPtr()->iColour() ) {
case PDT::Colour0: ++sing; break;
case PDT::Colour3: ++trip; break;
case PDT::Colour3bar: ++atrip; break;
case PDT::Colour8: ++oct; break;
/// @todo: handle these better
case PDT::ColourUndefined: break;
case PDT::Coloured: break;
case PDT::Colour6: break;
case PDT::Colour6bar: break;
}
}
// require a gluon
assert(oct>=1);
const CFlow * retval = 0;
bool inconsistent4PV = true;
// decaying colour triplet
if(inpart.dataPtr()->iColour() == PDT::Colour3 &&
trip==1 && oct==2) {
retval = &tripflow;
}
// decaying colour anti-triplet
else if(inpart.dataPtr()->iColour() == PDT::Colour3bar &&
atrip==1 && oct==2){
retval = &atripflow;
}
// decaying colour octet
else if(inpart.dataPtr()->iColour() == PDT::Colour8 &&
oct==1 && trip==1 && atrip==1) {
retval = &octflow;
}
else {
inconsistent4PV = false;
- retval = &init;
+ retval = &fpflow;
}
-
- // // if a 4 point vertex exists, add a colour flow for it
- // if ( fourPointVertex_.find(ShowerInteraction::QCD)!=fourPointVertex_.end() ) {
- // if ( inconsistent4PV )
- // throw Exception() << "Unknown colour flows for 4 point vertex in "
- // << "GeneralTwoBodyDecayer::colourFlows()"
- // << Exception::runerror;
- // else {
- // retval = &fpflow;
- // }
- // }
return *retval;
}
double GeneralTwoBodyDecayer::threeBodyME(const int , const Particle &,
const ParticleVector &,
ShowerInteraction, MEOption) {
throw Exception() << "Base class PerturbativeDecayer::threeBodyME() "
<< "called, should have an implementation in the inheriting class"
<< Exception::runerror;
return 0.;
}
diff --git a/Decay/General/SSVDecayer.cc b/Decay/General/SSVDecayer.cc
--- a/Decay/General/SSVDecayer.cc
+++ b/Decay/General/SSVDecayer.cc
@@ -1,333 +1,339 @@
// -*- C++ -*-
//
// SSVDecayer.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SSVDecayer class.
//
#include "SSVDecayer.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDT/DecayMode.h"
#include "Herwig/Utilities/Kinematics.h"
#include "ThePEG/Helicity/WaveFunction/ScalarWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "Herwig/Decay/GeneralDecayMatrixElement.h"
using namespace Herwig;
using namespace ThePEG::Helicity;
IBPtr SSVDecayer::clone() const {
return new_ptr(*this);
}
IBPtr SSVDecayer::fullclone() const {
return new_ptr(*this);
}
void SSVDecayer::setDecayInfo(PDPtr incoming, PDPair outgoing,
VertexBasePtr vertex,
map<ShowerInteraction,VertexBasePtr> & inV,
const vector<map<ShowerInteraction,VertexBasePtr> > & outV,
map<ShowerInteraction,VertexBasePtr> fourV) {
decayInfo(incoming,outgoing);
vertex_ = dynamic_ptr_cast<AbstractVSSVertexPtr>(vertex);
perturbativeVertex_ = dynamic_ptr_cast<VSSVertexPtr> (vertex);
vector<ShowerInteraction> itemp={ShowerInteraction::QCD,ShowerInteraction::QED};
for(auto & inter : itemp) {
incomingVertex_[inter] = dynamic_ptr_cast<AbstractVSSVertexPtr>(inV.at(inter));
fourPointVertex_[inter] = dynamic_ptr_cast<AbstractVVSSVertexPtr>(fourV.at(inter));
- if (outV[0].at(inter)->getName()==VertexType::VSS){
- outgoingVertexS_[inter] = dynamic_ptr_cast<AbstractVSSVertexPtr>(outV[0].at(inter));
- outgoingVertexV_[inter] = dynamic_ptr_cast<AbstractVVVVertexPtr>(outV[1].at(inter));
+ outgoingVertexS_[inter] = AbstractVSSVertexPtr();
+ outgoingVertexV_[inter] = AbstractVVVVertexPtr();
+ if(outV[0].at(inter)) {
+ if (outV[0].at(inter)->getName()==VertexType::VSS)
+ outgoingVertexS_[inter] = dynamic_ptr_cast<AbstractVSSVertexPtr>(outV[0].at(inter));
+ else
+ outgoingVertexV_[inter] = dynamic_ptr_cast<AbstractVVVVertexPtr>(outV[0].at(inter));
}
- else {
- outgoingVertexS_[inter] = dynamic_ptr_cast<AbstractVSSVertexPtr>(outV[1].at(inter));
- outgoingVertexV_[inter] = dynamic_ptr_cast<AbstractVVVVertexPtr>(outV[0].at(inter));
+ if(outV[1].at(inter)) {
+ if (outV[1].at(inter)->getName()==VertexType::VSS)
+ outgoingVertexS_[inter] = dynamic_ptr_cast<AbstractVSSVertexPtr>(outV[1].at(inter));
+ else
+ outgoingVertexV_[inter] = dynamic_ptr_cast<AbstractVVVVertexPtr>(outV[1].at(inter));
}
}
}
void SSVDecayer::persistentOutput(PersistentOStream & os) const {
os << vertex_ << perturbativeVertex_
<< incomingVertex_ << outgoingVertexS_
<< outgoingVertexV_ << fourPointVertex_;
}
void SSVDecayer::persistentInput(PersistentIStream & is, int) {
is >> vertex_ >> perturbativeVertex_
>> incomingVertex_ >> outgoingVertexS_
>> outgoingVertexV_ >> fourPointVertex_;
}
// The following static variable is needed for the type
// description system in ThePEG.
DescribeClass<SSVDecayer,GeneralTwoBodyDecayer>
describeHerwigSSVDecayer("Herwig::SSVDecayer", "Herwig.so");
void SSVDecayer::Init() {
static ClassDocumentation<SSVDecayer> documentation
("This implements the decay of a scalar to a vector and a scalar");
}
double SSVDecayer::me2(const int , const Particle & inpart,
const ParticleVector & decay,
MEOption meopt) const {
unsigned int isc(0),ivec(1);
if(decay[0]->dataPtr()->iSpin() != PDT::Spin0) swap(isc,ivec);
if(!ME()) {
if(ivec==1)
ME(new_ptr(GeneralDecayMatrixElement(PDT::Spin0,PDT::Spin0,PDT::Spin1)));
else
ME(new_ptr(GeneralDecayMatrixElement(PDT::Spin0,PDT::Spin1,PDT::Spin0)));
}
if(meopt==Initialize) {
ScalarWaveFunction::
calculateWaveFunctions(rho_,const_ptr_cast<tPPtr>(&inpart),incoming);
swave_ = ScalarWaveFunction(inpart.momentum(),inpart.dataPtr(),incoming);
}
if(meopt==Terminate) {
ScalarWaveFunction::
constructSpinInfo(const_ptr_cast<tPPtr>(&inpart),incoming,true);
ScalarWaveFunction::
constructSpinInfo(decay[isc],outgoing,true);
VectorWaveFunction::
constructSpinInfo(vector_,decay[ivec],outgoing,true,false);
}
VectorWaveFunction::
calculateWaveFunctions(vector_,decay[ivec],outgoing,false);
ScalarWaveFunction sca(decay[isc]->momentum(),decay[isc]->dataPtr(),outgoing);
Energy2 scale(sqr(inpart.mass()));
//make sure decay matrix element is in the correct order
double output(0.);
if(ivec == 0) {
for(unsigned int ix = 0; ix < 3; ++ix)
(*ME())(0, ix, 0) = vertex_->evaluate(scale,vector_[ix],sca, swave_);
}
else {
for(unsigned int ix = 0; ix < 3; ++ix)
(*ME())(0, 0, ix) = vertex_->evaluate(scale,vector_[ix],sca,swave_);
}
output = (ME()->contract(rho_)).real()/scale*UnitRemoval::E2;
// colour and identical particle factors
output *= colourFactor(inpart.dataPtr(),decay[0]->dataPtr(),
decay[1]->dataPtr());
// return the answer
return output;
}
Energy SSVDecayer:: partialWidth(PMPair inpart, PMPair outa,
PMPair outb) const {
if( inpart.second < outa.second + outb.second ) return ZERO;
if(perturbativeVertex_) {
double mu1sq(sqr(outa.second/inpart.second)),
mu2sq(sqr(outb.second/inpart.second));
tcPDPtr in = inpart.first->CC() ? tcPDPtr(inpart.first->CC()) : inpart.first;
if(outa.first->iSpin() == PDT::Spin0) {
perturbativeVertex_->setCoupling(sqr(inpart.second), outb.first, outa.first,in);
}
else {
swap(mu1sq,mu2sq);
perturbativeVertex_->setCoupling(sqr(inpart.second), outa.first, outb.first,in);
}
double me2(0.);
if(mu2sq == 0.)
me2 = -2.*mu1sq - 2.;
else
me2 = ( sqr(mu2sq - mu1sq) - 2.*(mu2sq + mu1sq) + 1. )/mu2sq;
Energy pcm = Kinematics::pstarTwoBodyDecay(inpart.second, outa.second,
outb.second);
Energy output = pcm*me2*norm(perturbativeVertex_->norm())/8./Constants::pi;
// colour factor
output *= colourFactor(inpart.first,outa.first,outb.first);
// return the answer
return output;
}
else {
return GeneralTwoBodyDecayer::partialWidth(inpart,outa,outb);
}
}
double SSVDecayer::threeBodyME(const int , const Particle & inpart,
const ParticleVector & decay,
ShowerInteraction inter, MEOption meopt) {
int iscal (0), ivect (1), iglu (2);
// get location of outgoing scalar/vector
if(decay[1]->dataPtr()->iSpin()==PDT::Spin0) swap(iscal,ivect);
// no emissions from massive vectors
if (outgoingVertexV_[inter] && decay[ivect]->dataPtr()->mass()!=ZERO)
throw Exception()
<< "No dipoles available for massive vectors in SSVDecayer::threeBodyME"
<< Exception::runerror;
if(meopt==Initialize) {
// create scalar wavefunction for decaying particle
ScalarWaveFunction::calculateWaveFunctions(rho3_,const_ptr_cast<tPPtr>(&inpart),incoming);
swave3_ = ScalarWaveFunction(inpart.momentum(),inpart.dataPtr(),incoming);
}
// setup spin information when needed
if(meopt==Terminate) {
ScalarWaveFunction::
constructSpinInfo(const_ptr_cast<tPPtr>(&inpart),incoming,true);
ScalarWaveFunction::
constructSpinInfo(decay[iscal],outgoing,true);
VectorWaveFunction::
constructSpinInfo(vector3_,decay[ivect],outgoing,true,false);
VectorWaveFunction::
constructSpinInfo(gluon_, decay[iglu ],outgoing,true,false);
return 0.;
}
// calculate colour factors and number of colour flows
unsigned int nflow;
vector<DVector> cfactors = getColourFactors(inpart, decay, nflow);
if(nflow==2) cfactors[0][1]=cfactors[1][0];
vector<GeneralDecayMEPtr> ME(nflow,new_ptr(GeneralDecayMatrixElement(PDT::Spin0, PDT::Spin0,
PDT::Spin1, PDT::Spin1)));
// create wavefunctions
ScalarWaveFunction scal_(decay[iscal]->momentum(), decay[iscal]->dataPtr(),outgoing);
VectorWaveFunction::calculateWaveFunctions(vector3_,decay[ivect],outgoing,false);
VectorWaveFunction::calculateWaveFunctions(gluon_, decay[iglu ],outgoing,true );
// // gauge invariance test
// gluon_.clear();
// for(unsigned int ix=0;ix<3;++ix) {
// if(ix==1) gluon_.push_back(VectorWaveFunction());
// else {
// gluon_.push_back(VectorWaveFunction(decay[iglu ]->momentum(),
// decay[iglu ]->dataPtr(),10,
// outgoing));
// }
// }
if (! ((incomingVertex_[inter] && (outgoingVertexS_[inter] || outgoingVertexV_[inter])) ||
(outgoingVertexS_[inter] && outgoingVertexV_[inter])))
throw Exception()
<< "Invalid vertices for QCD radiation in SSV decay in SSVDecayer::threeBodyME"
<< Exception::runerror;
// sort out colour flows
int S(1), V(2);
if (decay[iscal]->dataPtr()->iColour()==PDT::Colour3bar &&
decay[ivect]->dataPtr()->iColour()==PDT::Colour8)
swap(S,V);
else if (decay[ivect]->dataPtr()->iColour()==PDT::Colour3 &&
decay[iscal]->dataPtr()->iColour()==PDT::Colour8)
swap(S,V);
Energy2 scale(sqr(inpart.mass()));
const GeneralTwoBodyDecayer::CFlow & colourFlow
= colourFlows(inpart, decay);
for(unsigned int iv = 0; iv < 3; ++iv) {
for(unsigned int ig = 0; ig < 2; ++ig) {
// radiation from the incoming scalar
if(inpart.dataPtr()->coloured()) {
assert(incomingVertex_[inter]);
ScalarWaveFunction scalarInter =
incomingVertex_[inter]->evaluate(scale,3,inpart.dataPtr(),
gluon_[2*ig],swave3_,inpart.mass());
if (swave3_.particle()->PDGName()!=scalarInter.particle()->PDGName())
throw Exception()
<< swave3_ .particle()->PDGName() << " was changed to "
<< scalarInter.particle()->PDGName() << " in SSVDecayer::threeBodyME"
<< Exception::runerror;
double gs = incomingVertex_[inter]->strongCoupling(scale);
double sign = 1.;//inpart.dataPtr()->id()>0 ? 1:-1;
Complex diag = sign * vertex_->evaluate(scale,vector3_[iv],scal_,scalarInter)/gs;
for(unsigned int ix=0;ix<colourFlow[0].size();++ix) {
(*ME[colourFlow[0][ix].first])(0, 0, iv, ig) +=
colourFlow[0][ix].second*diag;
}
}
// radiation from the outgoing scalar
if(decay[iscal]->dataPtr()->coloured()) {
assert(outgoingVertexS_[inter]);
// ensure you get correct outgoing particle from first vertex
tcPDPtr off = decay[iscal]->dataPtr();
if(off->CC()) off = off->CC();
ScalarWaveFunction scalarInter =
outgoingVertexS_[inter]->evaluate(scale,3,off,gluon_[2*ig],scal_,decay[iscal]->mass());
if (scal_.particle()->PDGName()!=scalarInter.particle()->PDGName())
throw Exception()
<< scal_ .particle()->PDGName() << " was changed to "
<< scalarInter.particle()->PDGName() << " in SSVDecayer::threeBodyME"
<< Exception::runerror;
double gs = outgoingVertexS_[inter]->strongCoupling(scale);
double sign = 1.;//decay[iscal]->dataPtr()->id()>0 ? -1:1;
Complex diag = sign*vertex_->evaluate(scale,vector3_[iv],scalarInter,swave3_)/gs;
for(unsigned int ix=0;ix<colourFlow[S].size();++ix) {
(*ME[colourFlow[S][ix].first])(0, 0, iv, ig) +=
colourFlow[S][ix].second*diag;
}
}
// radiation from outgoing vector
if(decay[ivect]->dataPtr()->coloured()) {
assert(outgoingVertexV_[inter]);
// ensure you get correct outgoing particle from first vertex
tcPDPtr off = decay[ivect]->dataPtr();
if(off->CC()) off = off->CC();
VectorWaveFunction vectorInter =
outgoingVertexV_[inter]->evaluate(scale,3,off,gluon_[2*ig],
vector3_[iv],decay[ivect]->mass());
if(vector3_[iv].particle()->PDGName()!=vectorInter.particle()->PDGName())
throw Exception()
<< vector3_[iv].particle()->PDGName() << " was changed to "
<< vectorInter. particle()->PDGName() << " in SSVDecayer::threeBodyME"
<< Exception::runerror;
double sign = 1.;//decay[iscal]->id()>0 ? -1:1;
double gs = outgoingVertexV_[inter]->strongCoupling(scale);
Complex diag = sign*vertex_->evaluate(scale,vectorInter,scal_,swave3_)/gs;
for(unsigned int ix=0;ix<colourFlow[V].size();++ix) {
(*ME[colourFlow[V][ix].first])(0, 0, iv, ig) +=
colourFlow[V][ix].second*diag;
}
}
// radiation from 4 point vertex
if (fourPointVertex_[inter]){
double gs = fourPointVertex_[inter]->strongCoupling(scale);
double sign = decay[iscal]->id()>0 ? -1:-1;
Complex diag = sign*fourPointVertex_[inter]->evaluate(scale, gluon_[2*ig], vector3_[iv],
scal_, swave3_)/gs;
for(unsigned int ix=0;ix<colourFlow[3].size();++ix) {
(*ME[colourFlow[3][ix].first])(0, 0, iv, ig) +=
colourFlow[3][ix].second*diag;
}
}
}
}
// contract matrices
double output=0.;
for(unsigned int ix=0; ix<nflow; ++ix){
for(unsigned int iy=0; iy<nflow; ++iy){
output+=cfactors[ix][iy]*(ME[ix]->contract(*ME[iy],rho3_)).real();
}
}
output*=(4.*Constants::pi);
// return the answer
return output;
}
diff --git a/Decay/Perturbative/SMTopDecayer.cc b/Decay/Perturbative/SMTopDecayer.cc
--- a/Decay/Perturbative/SMTopDecayer.cc
+++ b/Decay/Perturbative/SMTopDecayer.cc
@@ -1,786 +1,790 @@
// -*- C++ -*-
//
// SMTopDecayer.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SMTopDecayer class.
//
#include "SMTopDecayer.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/ParVector.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDT/DecayMode.h"
#include "Herwig/Decay/DecayVertex.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "Herwig/PDT/ThreeBodyAllOn1IntegralCalculator.h"
#include "Herwig/Shower/RealEmissionProcess.h"
#include "Herwig/Shower/Core/Base/ShowerProgenitor.h"
#include "Herwig/Shower/Core/Base/ShowerParticle.h"
#include "Herwig/Shower/Core/Base/Branching.h"
#include "Herwig/Decay/GeneralDecayMatrixElement.h"
using namespace Herwig;
using namespace ThePEG::Helicity;
SMTopDecayer::SMTopDecayer()
: _wquarkwgt(6,0.),_wleptonwgt(3,0.), _xg_sampling(1.5),
_initialenhance(1.), _finalenhance(2.3), _useMEforT2(true) {
_wleptonwgt[0] = 0.302583;
_wleptonwgt[1] = 0.301024;
_wleptonwgt[2] = 0.299548;
_wquarkwgt[0] = 0.851719;
_wquarkwgt[1] = 0.0450162;
_wquarkwgt[2] = 0.0456962;
_wquarkwgt[3] = 0.859839;
_wquarkwgt[4] = 3.9704e-06;
_wquarkwgt[5] = 0.000489657;
generateIntermediates(true);
}
bool SMTopDecayer::accept(tcPDPtr parent, const tPDVector & children) const {
if(abs(parent->id()) != ParticleID::t) return false;
int id0(0),id1(0),id2(0);
for(tPDVector::const_iterator it = children.begin();
it != children.end();++it) {
int id=(**it).id(),absid(abs(id));
if(absid==ParticleID::b&&double(id)/double(parent->id())>0) {
id0=id;
}
else {
switch (absid) {
case ParticleID::nu_e:
case ParticleID::nu_mu:
case ParticleID::nu_tau:
id1 = id;
break;
case ParticleID::eminus:
case ParticleID::muminus:
case ParticleID::tauminus:
id2 = id;
break;
case ParticleID::b:
case ParticleID::d:
case ParticleID::s:
id1 = id;
break;
case ParticleID::u:
case ParticleID::c:
id2=id;
break;
default :
break;
}
}
}
if(id0==0||id1==0||id2==0) return false;
if(double(id1)/double(id2)>0) return false;
return true;
}
ParticleVector SMTopDecayer::decay(const Particle & parent,
const tPDVector & children) const {
int id1(0),id2(0);
for(tPDVector::const_iterator it = children.begin();
it != children.end();++it) {
int id=(**it).id(),absid=abs(id);
if(absid == ParticleID::b && double(id)/double(parent.id())>0) continue;
//leptons
if(absid > 10 && absid%2==0) id1=absid;
if(absid > 10 && absid%2==1) id2=absid;
//quarks
if(absid < 10 && absid%2==0) id2=absid;
if(absid < 10 && absid%2==1) id1=absid;
}
unsigned int imode(0);
if(id2 >=11 && id2<=16) imode = (id1-12)/2;
else imode = id1+1+id2/2;
bool cc = parent.id() == ParticleID::tbar;
ParticleVector out(generate(true,cc,imode,parent));
//arrange colour flow
PPtr pparent=const_ptr_cast<PPtr>(&parent);
out[1]->incomingColour(pparent,out[1]->id()<0);
ParticleVector products = out[0]->children();
if(products[0]->hasColour())
products[0]->colourNeighbour(products[1],true);
else if(products[0]->hasAntiColour())
products[0]->colourNeighbour(products[1],false);
return out;
}
void SMTopDecayer::persistentOutput(PersistentOStream & os) const {
os << FFWVertex_ << FFGVertex_ << FFPVertex_ << WWWVertex_
<< _wquarkwgt << _wleptonwgt << _wplus
<< _initialenhance << _finalenhance << _xg_sampling << _useMEforT2;
}
void SMTopDecayer::persistentInput(PersistentIStream & is, int) {
is >> FFWVertex_ >> FFGVertex_ >> FFPVertex_ >> WWWVertex_
>> _wquarkwgt >> _wleptonwgt >> _wplus
>> _initialenhance >> _finalenhance >> _xg_sampling >> _useMEforT2;
}
// The following static variable is needed for the type
// description system in ThePEG.
DescribeClass<SMTopDecayer,PerturbativeDecayer>
describeHerwigSMTopDecayer("Herwig::SMTopDecayer", "HwPerturbativeDecay.so");
void SMTopDecayer::Init() {
static ClassDocumentation<SMTopDecayer> documentation
("This is the implementation of the SMTopDecayer which "
"decays top quarks into bottom quarks and either leptons "
"or quark-antiquark pairs including the matrix element for top decay",
"The matrix element correction for top decay \\cite{Hamilton:2006ms}.",
"%\\cite{Hamilton:2006ms}\n"
"\\bibitem{Hamilton:2006ms}\n"
" K.~Hamilton and P.~Richardson,\n"
" ``A simulation of QCD radiation in top quark decays,''\n"
" JHEP {\\bf 0702}, 069 (2007)\n"
" [arXiv:hep-ph/0612236].\n"
" %%CITATION = JHEPA,0702,069;%%\n");
static ParVector<SMTopDecayer,double> interfaceQuarkWeights
("QuarkWeights",
"Maximum weights for the hadronic decays",
&SMTopDecayer::_wquarkwgt, 6, 1.0, 0.0, 10.0,
false, false, Interface::limited);
static ParVector<SMTopDecayer,double> interfaceLeptonWeights
("LeptonWeights",
"Maximum weights for the semi-leptonic decays",
&SMTopDecayer::_wleptonwgt, 3, 1.0, 0.0, 10.0,
false, false, Interface::limited);
static Parameter<SMTopDecayer,double> interfaceEnhancementFactor
("InitialEnhancementFactor",
"The enhancement factor for initial-state radiation in the shower to ensure"
" the weight for the matrix element correction is less than one.",
&SMTopDecayer::_initialenhance, 1.0, 1.0, 10000.0,
false, false, Interface::limited);
static Parameter<SMTopDecayer,double> interfaceFinalEnhancementFactor
("FinalEnhancementFactor",
"The enhancement factor for final-state radiation in the shower to ensure"
" the weight for the matrix element correction is less than one",
&SMTopDecayer::_finalenhance, 1.6, 1.0, 1000.0,
false, false, Interface::limited);
static Parameter<SMTopDecayer,double> interfaceSamplingTopHardMEC
("SamplingTopHardMEC",
"The importance sampling power for choosing an initial xg, "
"to sample xg according to xg^-_xg_sampling",
&SMTopDecayer::_xg_sampling, 1.5, 1.2, 2.0,
false, false, Interface::limited);
static Switch<SMTopDecayer,bool> interfaceUseMEForT2
("UseMEForT2",
"Use the matrix element correction, if available to fill the T2"
" region for the decay shower and don't fill using the shower",
&SMTopDecayer::_useMEforT2, true, false, false);
static SwitchOption interfaceUseMEForT2Shower
(interfaceUseMEForT2,
"Shower",
"Use the shower to fill the T2 region",
false);
static SwitchOption interfaceUseMEForT2ME
(interfaceUseMEForT2,
"ME",
"Use the Matrix element to fill the T2 region",
true);
}
double SMTopDecayer::me2(const int, const Particle & inpart,
const ParticleVector & decay,
MEOption meopt) const {
if(!ME())
ME(new_ptr(GeneralDecayMatrixElement(PDT::Spin1Half,PDT::Spin1Half,
PDT::Spin1Half,PDT::Spin1Half)));
// spinors etc for the decaying particle
if(meopt==Initialize) {
// spinors and rho
if(inpart.id()>0)
SpinorWaveFunction ::calculateWaveFunctions(_inHalf,_rho,
const_ptr_cast<tPPtr>(&inpart),
incoming);
else
SpinorBarWaveFunction::calculateWaveFunctions(_inHalfBar,_rho,
const_ptr_cast<tPPtr>(&inpart),
incoming);
}
// setup spin info when needed
if(meopt==Terminate) {
// for the decaying particle
if(inpart.id()>0) {
SpinorWaveFunction::
constructSpinInfo(_inHalf,const_ptr_cast<tPPtr>(&inpart),incoming,true);
SpinorBarWaveFunction::constructSpinInfo(_inHalfBar,decay[0],outgoing,true);
SpinorWaveFunction ::constructSpinInfo(_outHalf ,decay[1],outgoing,true);
SpinorBarWaveFunction::constructSpinInfo(_outHalfBar,decay[2],outgoing,true);
}
else {
SpinorBarWaveFunction::
constructSpinInfo(_inHalfBar,const_ptr_cast<tPPtr>(&inpart),incoming,true);
SpinorWaveFunction::constructSpinInfo(_inHalf,decay[0],outgoing,true);
SpinorBarWaveFunction::constructSpinInfo(_outHalfBar,decay[1],outgoing,true);
SpinorWaveFunction ::constructSpinInfo(_outHalf ,decay[2],outgoing,true);
}
}
if ( ( decay[1]->momentum() + decay[2]->momentum() ).m()
< decay[1]->data().constituentMass() + decay[2]->data().constituentMass() )
return 0.0;
// spinors for the decay product
if(inpart.id()>0) {
SpinorBarWaveFunction::calculateWaveFunctions(_inHalfBar ,decay[0],outgoing);
SpinorWaveFunction ::calculateWaveFunctions(_outHalf ,decay[1],outgoing);
SpinorBarWaveFunction::calculateWaveFunctions(_outHalfBar,decay[2],outgoing);
}
else {
SpinorWaveFunction ::calculateWaveFunctions(_inHalf ,decay[0],outgoing);
SpinorBarWaveFunction::calculateWaveFunctions(_outHalfBar,decay[1],outgoing);
SpinorWaveFunction ::calculateWaveFunctions(_outHalf ,decay[2],outgoing);
}
Energy2 scale(sqr(inpart.mass()));
if(inpart.id() == ParticleID::t) {
//Define intermediate vector wave-function for Wplus
tcPDPtr Wplus(getParticleData(ParticleID::Wplus));
VectorWaveFunction inter;
unsigned int thel,bhel,fhel,afhel;
for(thel = 0;thel<2;++thel){
for(bhel = 0;bhel<2;++bhel){
inter = FFWVertex_->evaluate(scale,1,Wplus,_inHalf[thel],
_inHalfBar[bhel]);
for(afhel=0;afhel<2;++afhel){
for(fhel=0;fhel<2;++fhel){
(*ME())(thel,bhel,afhel,fhel) =
FFWVertex_->evaluate(scale,_outHalf[afhel],
_outHalfBar[fhel],inter);
}
}
}
}
}
else if(inpart.id() == ParticleID::tbar) {
VectorWaveFunction inter;
tcPDPtr Wminus(getParticleData(ParticleID::Wminus));
unsigned int tbhel,bbhel,afhel,fhel;
for(tbhel = 0;tbhel<2;++tbhel){
for(bbhel = 0;bbhel<2;++bbhel){
inter = FFWVertex_->
evaluate(scale,1,Wminus,_inHalf[bbhel],_inHalfBar[tbhel]);
for(afhel=0;afhel<2;++afhel){
for(fhel=0;fhel<2;++fhel){
(*ME())(tbhel,bbhel,fhel,afhel) =
FFWVertex_->evaluate(scale,_outHalf[afhel],
_outHalfBar[fhel],inter);
}
}
}
}
}
double output = (ME()->contract(_rho)).real();
if(abs(decay[1]->id())<=6) output *=3.;
return output;
}
void SMTopDecayer::doinit() {
PerturbativeDecayer::doinit();
//get vertices from SM object
tcHwSMPtr hwsm = dynamic_ptr_cast<tcHwSMPtr>(standardModel());
if(!hwsm) throw InitException() << "Must have Herwig::StandardModel in "
<< "SMTopDecayer::doinit()";
FFWVertex_ = hwsm->vertexFFW();
FFGVertex_ = hwsm->vertexFFG();
FFPVertex_ = hwsm->vertexFFP();
WWWVertex_ = hwsm->vertexWWW();
//initialise
FFWVertex_->init();
FFGVertex_->init();
FFPVertex_->init();
WWWVertex_->init();
//set up decay modes
_wplus = getParticleData(ParticleID::Wplus);
DecayPhaseSpaceModePtr mode;
DecayPhaseSpaceChannelPtr Wchannel;
tPDVector extpart(4);
vector<double> wgt(1,1.0);
extpart[0] = getParticleData(ParticleID::t);
extpart[1] = getParticleData(ParticleID::b);
//lepton modes
for(int i=11; i<17;i+=2) {
extpart[2] = getParticleData(-i);
extpart[3] = getParticleData(i+1);
mode = new_ptr(DecayPhaseSpaceMode(extpart,this));
Wchannel = new_ptr(DecayPhaseSpaceChannel(mode));
Wchannel->addIntermediate(extpart[0],0,0.0,-1,1);
Wchannel->addIntermediate(_wplus,0,0.0,2,3);
Wchannel->init();
mode->addChannel(Wchannel);
addMode(mode,_wleptonwgt[(i-11)/2],wgt);
}
//quark modes
unsigned int iz=0;
for(int ix=1;ix<6;ix+=2) {
for(int iy=2;iy<6;iy+=2) {
// check that the combination of particles is allowed
if(FFWVertex_->allowed(-ix,iy,ParticleID::Wminus)) {
extpart[2] = getParticleData(-ix);
extpart[3] = getParticleData( iy);
mode = new_ptr(DecayPhaseSpaceMode(extpart,this));
Wchannel = new_ptr(DecayPhaseSpaceChannel(mode));
Wchannel->addIntermediate(extpart[0],0,0.0,-1,1);
Wchannel->addIntermediate(_wplus,0,0.0,2,3);
Wchannel->init();
mode->addChannel(Wchannel);
addMode(mode,_wquarkwgt[iz],wgt);
++iz;
}
else {
throw InitException() << "SMTopDecayer::doinit() the W vertex"
<< "cannot handle all the quark modes"
<< Exception::abortnow;
}
}
}
}
void SMTopDecayer::dataBaseOutput(ofstream & os,bool header) const {
if(header) os << "update decayers set parameters=\"";
// parameters for the PerturbativeDecayer base class
for(unsigned int ix=0;ix<_wquarkwgt.size();++ix) {
os << "newdef " << name() << ":QuarkWeights " << ix << " "
<< _wquarkwgt[ix] << "\n";
}
for(unsigned int ix=0;ix<_wleptonwgt.size();++ix) {
os << "newdef " << name() << ":LeptonWeights " << ix << " "
<< _wleptonwgt[ix] << "\n";
}
PerturbativeDecayer::dataBaseOutput(os,false);
if(header) os << "\n\" where BINARY ThePEGName=\"" << fullName() << "\";" << endl;
}
void SMTopDecayer::doinitrun() {
PerturbativeDecayer::doinitrun();
if(initialize()) {
for(unsigned int ix=0;ix<numberModes();++ix) {
if(ix<3) _wleptonwgt[ix ] = mode(ix)->maxWeight();
else _wquarkwgt [ix-3] = mode(ix)->maxWeight();
}
}
}
WidthCalculatorBasePtr SMTopDecayer::threeBodyMEIntegrator(const DecayMode & dm) const {
// identify W decay products
int sign = dm.parent()->id() > 0 ? 1 : -1;
int iferm(0),ianti(0);
for(ParticleMSet::const_iterator pit=dm.products().begin();
pit!=dm.products().end();++pit) {
int id = (**pit).id();
if(id*sign != ParticleID::b) {
if (id*sign > 0 ) iferm = id*sign;
else ianti = id*sign;
}
}
assert(iferm!=0&&ianti!=0);
// work out which mode we are doing
int imode(-1);
for(unsigned int ix=0;ix<numberModes();++ix) {
if(mode(ix)->externalParticles(2)->id() == ianti &&
mode(ix)->externalParticles(3)->id() == iferm ) {
imode = ix;
break;
}
}
assert(imode>=0);
// get the masses we need
Energy m[3] = {mode(imode)->externalParticles(1)->mass(),
mode(imode)->externalParticles(3)->mass(),
mode(imode)->externalParticles(2)->mass()};
return
new_ptr(ThreeBodyAllOn1IntegralCalculator<SMTopDecayer>
(3,_wplus->mass(),_wplus->width(),0.0,*this,imode,m[0],m[1],m[2]));
}
InvEnergy SMTopDecayer::threeBodydGammads(const int imode, const Energy2 mt2,
const Energy2 mffb2, const Energy mb,
const Energy mf, const Energy mfb) const {
Energy mffb(sqrt(mffb2));
Energy mw(_wplus->mass());
Energy2 mw2(sqr(mw)),gw2(sqr(_wplus->width()));
Energy mt(sqrt(mt2));
Energy Eb = 0.5*(mt2-mffb2-sqr(mb))/mffb;
Energy Ef = 0.5*(mffb2-sqr(mfb)+sqr(mf))/mffb;
Energy Ebm = sqrt(sqr(Eb)-sqr(mb));
Energy Efm = sqrt(sqr(Ef)-sqr(mf));
Energy2 upp = sqr(Eb+Ef)-sqr(Ebm-Efm);
Energy2 low = sqr(Eb+Ef)-sqr(Ebm+Efm);
InvEnergy width=(dGammaIntegrand(mffb2,upp,mt,mb,mf,mfb,mw)-
dGammaIntegrand(mffb2,low,mt,mb,mf,mfb,mw))
/32./mt2/mt/8/pow(Constants::pi,3)/(sqr(mffb2-mw2)+mw2*gw2);
// couplings
width *= 0.25*sqr(4.*Constants::pi*generator()->standardModel()->alphaEM(mt2)/
generator()->standardModel()->sin2ThetaW());
width *= generator()->standardModel()->CKM(*mode(imode)->externalParticles(0),
*mode(imode)->externalParticles(1));
if(abs(mode(imode)->externalParticles(2)->id())<=6) {
width *=3.;
if(abs(mode(imode)->externalParticles(2)->id())%2==0)
width *=generator()->standardModel()->CKM(*mode(imode)->externalParticles(2),
*mode(imode)->externalParticles(3));
else
width *=generator()->standardModel()->CKM(*mode(imode)->externalParticles(3),
*mode(imode)->externalParticles(2));
}
// final spin average
assert(!std::isnan(double(width*MeV)));
return 0.5*width;
}
Energy6 SMTopDecayer::dGammaIntegrand(Energy2 mffb2, Energy2 mbf2, Energy mt,
Energy mb, Energy mf, Energy mfb, Energy mw) const {
Energy2 mt2(sqr(mt)) ,mb2(sqr(mb)) ,mf2(sqr(mf )),mfb2(sqr(mfb )),mw2(sqr(mw ));
Energy4 mt4(sqr(mt2)),mb4(sqr(mb2)),mf4(sqr(mf2)),mfb4(sqr(mfb2)),mw4(sqr(mw2));
return -mbf2 * ( + 6 * mb2 * mf2 * mfb2 * mffb2 + 6 * mb2 * mt2 * mfb2 * mffb2
+ 6 * mb2 * mt2 * mf2 * mffb2 + 12 * mb2 * mt2 * mf2 * mfb2
- 3 * mb2 * mfb4 * mffb2 + 3 * mb2 * mf2 * mffb2 * mffb2
- 3 * mb2 * mf4 * mffb2 - 6 * mb2 * mt2 * mfb4
- 6 * mb2 * mt2 * mf4 - 3 * mb4 * mfb2 * mffb2
- 3 * mb4 * mf2 * mffb2 - 6 * mb4 * mf2 * mfb2
+ 3 * mt4 * mf4 + 3 * mb4 * mfb4
+ 3 * mb4 * mf4 + 3 * mt4 * mfb4
+ 3 * mb2 * mfb2 * mffb2 * mffb2 + 3 * mt2 * mfb2 * mffb2 * mffb2
- 3 * mt2 * mfb4 * mffb2 + 3 * mt2 * mf2 * mffb2 * mffb2
- 3 * mt2 * mf4 * mffb2 - 3 * mt4 * mfb2 * mffb2
- 3 * mt4 * mf2 * mffb2 - 6 * mt4 * mf2 * mfb2
+ 6 * mt2 * mf2 * mfb2 * mffb2 + 12 * mt2 * mf2 * mw4
+ 12 * mb2 * mfb2 * mw4 + 12 * mb2 * mt2 * mw4
+ 6 * mw2 * mt2 * mfb2 * mbf2 - 12 * mw2 * mt2 * mf2 * mffb2
- 6 * mw2 * mt2 * mf2 * mbf2 - 12 * mw2 * mt2 * mf2 * mfb2
- 12 * mw2 * mb2 * mfb2 * mffb2 - 6 * mw2 * mb2 * mfb2 * mbf2
+ 6 * mw2 * mb2 * mf2 * mbf2 - 12 * mw2 * mb2 * mf2 * mfb2
- 12 * mw2 * mb2 * mt2 * mfb2 - 12 * mw2 * mb2 * mt2 * mf2
+ 12 * mf2 * mfb2 * mw4 + 4 * mbf2 * mbf2 * mw4
- 6 * mfb2 * mbf2 * mw4 - 6 * mf2 * mbf2 * mw4
- 6 * mt2 * mbf2 * mw4 - 6 * mb2 * mbf2 * mw4
+ 12 * mw2 * mt2 * mf4 + 12 * mw2 * mt4 * mf2
+ 12 * mw2 * mb2 * mfb4 + 12 * mw2 * mb4 * mfb2) /mw4 / 3.;
}
void SMTopDecayer::initializeMECorrection(RealEmissionProcessPtr born, double & initial,
double & final) {
// check the outgoing particles
PPtr part[2];
for(unsigned int ix=0;ix<born->bornOutgoing().size();++ix) {
part[ix]= born->bornOutgoing()[ix];
}
// check the final-state particles and get the masses
if(abs(part[0]->id())==ParticleID::Wplus&&abs(part[1]->id())==ParticleID::b) {
_ma=part[0]->mass();
_mc=part[1]->mass();
}
else if(abs(part[1]->id())==ParticleID::Wplus&&abs(part[0]->id())==ParticleID::b) {
_ma=part[1]->mass();
_mc=part[0]->mass();
}
else {
return;
}
// set the top mass
_mt=born->bornIncoming()[0]->mass();
// set the gluon mass
_mg=getParticleData(ParticleID::g)->constituentMass();
// set the radiation enhancement factors
initial = _initialenhance;
final = _finalenhance;
// reduced mass parameters
_a=sqr(_ma/_mt);
_g=sqr(_mg/_mt);
_c=sqr(_mc/_mt);
double lambda = sqrt(1.+sqr(_a)+sqr(_c)-2.*_a-2.*_c-2.*_a*_c);
_ktb = 0.5*(3.-_a+_c+lambda);
_ktc = 0.5*(1.-_a+3.*_c+lambda);
useMe();
}
bool SMTopDecayer::softMatrixElementVeto(ShowerProgenitorPtr initial,
ShowerParticlePtr parent,Branching br) {
// check if we need to apply the full correction
long id[2]={abs(initial->progenitor()->id()),abs(parent->id())};
// the initial-state correction
if(id[0]==ParticleID::t&&id[1]==ParticleID::t) {
Energy pt=br.kinematics->pT();
// check if hardest so far
// if not just need to remove effect of enhancement
bool veto(false);
// if not hardest so far
if(pt<initial->highestpT())
veto=!UseRandom::rndbool(1./_initialenhance);
// if hardest so far do calculation
else {
// values of kappa and z
double z(br.kinematics->z()),kappa(sqr(br.kinematics->scale()/_mt));
// parameters for the translation
double w(1.-(1.-z)*(kappa-1.)),u(1.+_a-_c-(1.-z)*kappa),v(sqr(u)-4.*_a*w*z);
// veto if outside phase space
if(v<0.)
veto=true;
// otherwise calculate the weight
else {
v = sqrt(v);
double xa((0.5*(u+v)/w+0.5*(u-v)/z)),xg((1.-z)*kappa);
double f(me(xa,xg)),
J(0.5*(u+v)/sqr(w)-0.5*(u-v)/sqr(z)+_a*sqr(w-z)/(v*w*z));
double wgt(f*J*2./kappa/(1.+sqr(z)-2.*z/kappa)/_initialenhance);
// This next `if' prevents the hardest emission from the
// top shower ever entering the so-called T2 region of the
// phase space if that region is to be populated by the hard MEC.
if(_useMEforT2&&xg>xgbcut(_ktb)) wgt = 0.;
if(wgt>1.) {
generator()->log() << "Violation of maximum for initial-state "
<< " soft veto in "
<< "SMTopDecayer::softMatrixElementVeto"
<< "xg = " << xg << " xa = " << xa
<< "weight = " << wgt << "\n";
wgt=1.;
}
// compute veto from weight
veto = !UseRandom::rndbool(wgt);
}
// if not vetoed reset max
if(!veto) initial->highestpT(pt);
}
// if vetoing reset the scale
if(veto) parent->vetoEmission(br.type,br.kinematics->scale());
// return the veto
return veto;
}
// final-state correction
else if(id[0]==ParticleID::b&&id[1]==ParticleID::b) {
Energy pt=br.kinematics->pT();
// check if hardest so far
// if not just need to remove effect of enhancement
bool veto(false);
// if not hardest so far
if(pt<initial->highestpT()) return !UseRandom::rndbool(1./_finalenhance);
// if hardest so far do calculation
// values of kappa and z
double z(br.kinematics->z()),kappa(sqr(br.kinematics->scale()/_mt));
// momentum fractions
double xa(1.+_a-_c-z*(1.-z)*kappa),r(0.5*(1.+_c/(1.+_a-xa))),root(sqr(xa)-4.*_a);
if(root<0.) {
generator()->log() << "Imaginary root for final-state veto in "
<< "SMTopDecayer::softMatrixElementVeto"
<< "\nz = " << z << "\nkappa = " << kappa
<< "\nxa = " << xa
<< "\nroot^2= " << root;
parent->vetoEmission(br.type,br.kinematics->scale());
return true;
}
root=sqrt(root);
double xg((2.-xa)*(1.-r)-(z-r)*root);
// xfact (below) is supposed to equal xg/(1-z).
double xfact(z*kappa/2./(z*(1.-z)*kappa+_c)*(2.-xa-root)+root);
// calculate the full result
double f(me(xa,xg));
// jacobian
double J(z*root);
double wgt(f*J*2.*kappa/(1.+sqr(z)-2.*_c/kappa/z)/sqr(xfact)/_finalenhance);
if(wgt>1.) {
generator()->log() << "Violation of maximum for final-state soft veto in "
<< "SMTopDecayer::softMatrixElementVeto"
<< "xg = " << xg << " xa = " << xa
<< "weight = " << wgt << "\n";
wgt=1.;
}
// compute veto from weight
veto = !UseRandom::rndbool(wgt);
// if vetoing reset the scale
if(veto) parent->vetoEmission(br.type,br.kinematics->scale());
// return the veto
return veto;
}
// otherwise don't veto
else return !UseRandom::rndbool(1./_finalenhance);
}
double SMTopDecayer::me(double xw,double xg) {
double prop(1.+_a-_c-xw),xg2(sqr(xg));
double lambda=sqrt(1.+_a*_a+_c*_c-2.*_a-2.*_c-2.*_a*_c);
double denom=(1.-2*_a*_a+_a+_c*_a+_c*_c-2.*_c);
double wgt=-_c*xg2/prop+(1.-_a+_c)*xg-(prop*(1 - xg)+xg2)
+(0.5*(1.+2.*_a+_c)*sqr(prop-xg)*xg+2.*_a*prop*xg2)/denom;
return wgt/(lambda*prop);
}
// xgbcut is the point along the xg axis where the upper bound on the
// top quark (i.e. b) emission phase space goes back on itself in the
// xa vs xg plane i.e. roughly mid-way along the xg axis in
// the xa vs xg Dalitz plot.
double SMTopDecayer::xgbcut(double kt) {
double lambda2 = 1.+_a*_a+_c*_c-2.*_a-2.*_c-2.*_a*_c;
double num1 = kt*kt*(1.-_a-_c);
double num2 = 2.*kt*sqrt(_a*(kt*kt*_c+lambda2*(kt-1.)));
return (num1-num2)/(kt*kt-4.*_a*(kt-1.));
}
double SMTopDecayer::loME(const Particle & inpart, const ParticleVector & decay) {
// spinors
vector<SpinorWaveFunction > swave;
vector<SpinorBarWaveFunction> awave;
vector<VectorWaveFunction> vwave;
+ tPPtr Wboson = abs(decay[0]->id())==ParticleID::Wplus ? decay[0] : decay[1];
+ tPPtr bquark = abs(decay[0]->id())==ParticleID::Wplus ? decay[1] : decay[0];
// spinors
if(inpart.id()>0) {
SpinorWaveFunction ::calculateWaveFunctions(swave,const_ptr_cast<tPPtr>(&inpart),
incoming);
- SpinorBarWaveFunction::calculateWaveFunctions(awave,decay[0],outgoing);
+ SpinorBarWaveFunction::calculateWaveFunctions(awave,bquark,outgoing);
}
else {
SpinorBarWaveFunction::calculateWaveFunctions(awave,const_ptr_cast<tPPtr>(&inpart),
incoming);
- SpinorWaveFunction ::calculateWaveFunctions(swave,decay[0],outgoing);
+ SpinorWaveFunction ::calculateWaveFunctions(swave,bquark,outgoing);
}
// polarization vectors
- VectorWaveFunction::calculateWaveFunctions(vwave,decay[1],outgoing,false);
+ VectorWaveFunction::calculateWaveFunctions(vwave,Wboson,outgoing,false);
Energy2 scale(sqr(inpart.mass()));
double me=0.;
if(inpart.id() == ParticleID::t) {
for(unsigned int thel = 0; thel < 2; ++thel) {
for(unsigned int bhel = 0; bhel < 2; ++bhel) {
for(unsigned int whel = 0; whel < 3; ++whel) {
Complex diag = FFWVertex_->evaluate(scale,swave[thel],awave[bhel],vwave[whel]);
me += norm(diag);
}
}
}
}
else if(inpart.id() == ParticleID::tbar) {
for(unsigned int thel = 0; thel < 2; ++thel) {
for(unsigned int bhel = 0; bhel < 2; ++bhel){
for(unsigned int whel = 0; whel < 3; ++whel) {
Complex diag = FFWVertex_->evaluate(scale,swave[bhel],awave[thel],vwave[whel]);
me += norm(diag);
}
}
}
}
return me;
}
double SMTopDecayer::realME(const Particle & inpart, const ParticleVector & decay,
ShowerInteraction inter) {
// vertex for emission from fermions
AbstractFFVVertexPtr vertex = inter==ShowerInteraction::QCD ? FFGVertex_ : FFPVertex_;
// spinors
vector<SpinorWaveFunction > swave;
vector<SpinorBarWaveFunction> awave;
vector<VectorWaveFunction> vwave,gwave;
+ tPPtr Wboson = abs(decay[0]->id())==ParticleID::Wplus ? decay[0] : decay[1];
+ tPPtr bquark = abs(decay[0]->id())==ParticleID::Wplus ? decay[1] : decay[0];
// spinors
if(inpart.id()>0) {
SpinorWaveFunction ::calculateWaveFunctions(swave,const_ptr_cast<tPPtr>(&inpart),
incoming);
- SpinorBarWaveFunction::calculateWaveFunctions(awave,decay[0],outgoing);
+ SpinorBarWaveFunction::calculateWaveFunctions(awave,bquark,outgoing);
}
else {
SpinorBarWaveFunction::calculateWaveFunctions(awave,const_ptr_cast<tPPtr>(&inpart),
incoming);
- SpinorWaveFunction ::calculateWaveFunctions(swave,decay[0],outgoing);
+ SpinorWaveFunction ::calculateWaveFunctions(swave,bquark,outgoing);
}
// polarization vectors
- VectorWaveFunction::calculateWaveFunctions(vwave,decay[1],outgoing,false);
+ VectorWaveFunction::calculateWaveFunctions(vwave,Wboson,outgoing,false);
VectorWaveFunction::calculateWaveFunctions(gwave,decay[2],outgoing,true );
Energy2 scale(sqr(inpart.mass()));
double me=0.;
vector<Complex> diag(3,0.);
if(inpart.id() == ParticleID::t) {
for(unsigned int thel = 0; thel < 2; ++thel) {
for(unsigned int bhel = 0; bhel < 2; ++bhel) {
for(unsigned int whel = 0; whel < 3; ++whel) {
for(unsigned int ghel =0; ghel <3; ghel+=2) {
// emission from top
SpinorWaveFunction interF = vertex->evaluate(scale,3,inpart.dataPtr(),swave[thel],gwave[ghel]);
diag[0] = FFWVertex_->evaluate(scale,interF,awave[bhel],vwave[whel]);
// emission from bottom
- SpinorBarWaveFunction interB = vertex->evaluate(scale,3,decay[0]->dataPtr(),awave[bhel],gwave[ghel]);
+ SpinorBarWaveFunction interB = vertex->evaluate(scale,3,bquark->dataPtr(),awave[bhel],gwave[ghel]);
diag[1] = FFWVertex_->evaluate(scale,swave[thel],interB,vwave[whel]);
// emission from W
if(inter==ShowerInteraction::QED) {
- VectorWaveFunction interV = WWWVertex_->evaluate(scale,3,decay[1]->dataPtr()->CC(),vwave[whel],gwave[ghel]);
+ VectorWaveFunction interV = WWWVertex_->evaluate(scale,3,Wboson->dataPtr()->CC(),vwave[whel],gwave[ghel]);
diag[1] = FFWVertex_->evaluate(scale,swave[thel],awave[bhel],interV);
}
Complex sum = std::accumulate(diag.begin(),diag.end(),Complex(0.));
me += norm(sum);
}
}
}
}
}
else if(inpart.id() == ParticleID::tbar) {
for(unsigned int thel = 0; thel < 2; ++thel) {
for(unsigned int bhel = 0; bhel < 2; ++bhel){
for(unsigned int whel = 0; whel < 3; ++whel) {
for(unsigned int ghel =0; ghel <3; ghel+=2) {
// emission from top
SpinorBarWaveFunction interB = vertex->evaluate(scale,3,inpart.dataPtr(),awave[thel],gwave[ghel]);
diag[1] = FFWVertex_->evaluate(scale,swave[bhel],interB,vwave[whel]);
// emission from bottom
- SpinorWaveFunction interF = vertex->evaluate(scale,3,decay[0]->dataPtr(),swave[bhel],gwave[ghel]);
+ SpinorWaveFunction interF = vertex->evaluate(scale,3,bquark->dataPtr(),swave[bhel],gwave[ghel]);
diag[0] = FFWVertex_->evaluate(scale,interF,awave[thel],vwave[whel]);
// emission from W
if(inter==ShowerInteraction::QED) {
- VectorWaveFunction interV = WWWVertex_->evaluate(scale,3,decay[1]->dataPtr()->CC(),vwave[whel],gwave[ghel]);
+ VectorWaveFunction interV = WWWVertex_->evaluate(scale,3,Wboson->dataPtr()->CC(),vwave[whel],gwave[ghel]);
diag[1] = FFWVertex_->evaluate(scale,swave[bhel],awave[thel],interV);
}
Complex sum = std::accumulate(diag.begin(),diag.end(),Complex(0.));
me += norm(sum);
}
}
}
}
}
// divide out the coupling
me /= norm(vertex->norm());
// return the total
return me;
}
double SMTopDecayer::matrixElementRatio(const Particle & inpart,
const ParticleVector & decay2,
const ParticleVector & decay3,
MEOption ,
ShowerInteraction inter) {
double Nc = standardModel()->Nc();
double Cf = (sqr(Nc) - 1.) / (2.*Nc);
// if(inter==ShowerInteraction::QED) return 0.;
// double f = (1. + sqr(e2()) - 2.*sqr(s2()) + s2() + s2()*e2() - 2.*e2());
//
//
// double B = f/s2();
// Energy2 PbPg = decay3[0]->momentum()*decay3[2]->momentum();
// Energy2 PtPg = inpart.momentum()*decay3[2]->momentum();
// Energy2 PtPb = inpart.momentum()*decay3[0]->momentum();
// double R = Cf *((-4.*sqr(mb())*f/s2()) * ((sqr(mb())*e2()/sqr(PbPg)) +
// (sqr(mb())/sqr(PtPg)) - 2.*(PtPb/(PtPg*PbPg))) +
// (16. + 8./s2() + 8.*e2()/s2()) * ((PtPg/PbPg) + (PbPg/PtPg)) -
// (16./s2()) * (1. + e2()));
// return R/B*Constants::pi;
double Bnew = loME(inpart,decay2);
double Rnew = realME(inpart,decay3,inter);
double output = Rnew/Bnew*4.*Constants::pi*sqr(inpart.mass())*UnitRemoval::InvE2;
if(inter==ShowerInteraction::QCD) output *= Cf;
return output;
}
diff --git a/Decay/PerturbativeDecayer.cc b/Decay/PerturbativeDecayer.cc
--- a/Decay/PerturbativeDecayer.cc
+++ b/Decay/PerturbativeDecayer.cc
@@ -1,944 +1,957 @@
// -*- C++ -*-
//
// This is the implementation of the non-inlined, non-templated member
// functions of the PerturbativeDecayer class.
//
#include "PerturbativeDecayer.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Utilities/EnumIO.h"
using namespace Herwig;
void PerturbativeDecayer::persistentOutput(PersistentOStream & os) const {
os << ounit(pTmin_,GeV) << oenum(inter_) << alphaS_ << alphaEM_;
}
void PerturbativeDecayer::persistentInput(PersistentIStream & is, int) {
is >> iunit(pTmin_,GeV) >> ienum(inter_) >> alphaS_ >> alphaEM_;
}
// The following static variable is needed for the type
// description system in ThePEG.
DescribeAbstractClass<PerturbativeDecayer,DecayIntegrator>
describeHerwigPerturbativeDecayer("Herwig::PerturbativeDecayer",
"Herwig.so HwPerturbativeDecay.so");
void PerturbativeDecayer::Init() {
static ClassDocumentation<PerturbativeDecayer> documentation
("The PerturbativeDecayer class is the mase class for perturbative decays in Herwig");
static Parameter<PerturbativeDecayer,Energy> interfacepTmin
("pTmin",
"Minimum transverse momentum from gluon radiation",
&PerturbativeDecayer::pTmin_, GeV, 1.0*GeV, 0.0*GeV, 10.0*GeV,
false, false, Interface::limited);
static Switch<PerturbativeDecayer,ShowerInteraction> interfaceInteractions
("Interactions",
"which interactions to include for the hard corrections",
&PerturbativeDecayer::inter_, ShowerInteraction::QCD, false, false);
static SwitchOption interfaceInteractionsQCD
(interfaceInteractions,
"QCD",
"QCD Only",
ShowerInteraction::QCD);
static SwitchOption interfaceInteractionsQED
(interfaceInteractions,
"QED",
"QED only",
ShowerInteraction::QED);
static SwitchOption interfaceInteractionsQCDandQED
(interfaceInteractions,
"QCDandQED",
"Both QCD and QED",
ShowerInteraction::Both);
static Reference<PerturbativeDecayer,ShowerAlpha> interfaceAlphaS
("AlphaS",
"Object for the coupling in the generation of hard QCD radiation",
&PerturbativeDecayer::alphaS_, false, false, true, true, false);
static Reference<PerturbativeDecayer,ShowerAlpha> interfaceAlphaEM
("AlphaEM",
"Object for the coupling in the generation of hard QED radiation",
&PerturbativeDecayer::alphaEM_, false, false, true, true, false);
}
double PerturbativeDecayer::matrixElementRatio(const Particle & ,
const ParticleVector & ,
const ParticleVector & ,
MEOption ,
ShowerInteraction ) {
throw Exception() << "Base class PerturbativeDecayer::matrixElementRatio() "
<< "called, should have an implementation in the inheriting class"
<< Exception::runerror;
return 0.;
}
RealEmissionProcessPtr PerturbativeDecayer::generateHardest(RealEmissionProcessPtr born) {
return getHardEvent(born,false,inter_);
}
RealEmissionProcessPtr PerturbativeDecayer::applyHardMatrixElementCorrection(RealEmissionProcessPtr born) {
return getHardEvent(born,true,ShowerInteraction::QCD);
}
RealEmissionProcessPtr PerturbativeDecayer::getHardEvent(RealEmissionProcessPtr born,
bool inDeadZone,
ShowerInteraction inter) {
// check one incoming
assert(born->bornIncoming().size()==1);
// check exactly two outgoing particles
assert(born->bornOutgoing().size()==2); // search for coloured particles
bool colouredParticles=born->bornIncoming()[0]->dataPtr()->coloured();
bool chargedParticles=born->bornIncoming()[0]->dataPtr()->charged();
for(unsigned int ix=0;ix<born->bornOutgoing().size();++ix) {
if(born->bornOutgoing()[ix]->dataPtr()->coloured())
colouredParticles=true;
if(born->bornOutgoing()[ix]->dataPtr()->charged())
chargedParticles=true;
}
// if no coloured/charged particles return
if ( !colouredParticles && !chargedParticles ) return RealEmissionProcessPtr();
if ( !colouredParticles && inter==ShowerInteraction::QCD ) return RealEmissionProcessPtr();
if ( ! chargedParticles && inter==ShowerInteraction::QED ) return RealEmissionProcessPtr();
// for decay b -> a c
// set progenitors
PPtr cProgenitor = born->bornOutgoing()[0];
PPtr aProgenitor = born->bornOutgoing()[1];
// get the decaying particle
PPtr bProgenitor = born->bornIncoming()[0];
// identify which dipoles are required
vector<DipoleType> dipoles;
if(!identifyDipoles(dipoles,aProgenitor,bProgenitor,cProgenitor,inter)) {
return RealEmissionProcessPtr();
}
Energy trialpT = pTmin_;
LorentzRotation eventFrame;
vector<Lorentz5Momentum> momenta;
vector<Lorentz5Momentum> trialMomenta(4);
PPtr finalEmitter, finalSpectator;
PPtr trialEmitter, trialSpectator;
DipoleType finalType(FFa,ShowerInteraction::QCD);
for (int i=0; i<int(dipoles.size()); ++i) {
// assign emitter and spectator based on current dipole
if (dipoles[i].type==FFc || dipoles[i].type==IFc || dipoles[i].type==IFbc){
trialEmitter = cProgenitor;
trialSpectator = aProgenitor;
}
else if (dipoles[i].type==FFa || dipoles[i].type==IFa || dipoles[i].type==IFba){
trialEmitter = aProgenitor;
trialSpectator = cProgenitor;
}
// find rotation from lab to frame with the spectator along -z
LorentzRotation trialEventFrame(bProgenitor->momentum().findBoostToCM());
Lorentz5Momentum pspectator = (trialEventFrame*trialSpectator->momentum());
trialEventFrame.rotateZ( -pspectator.phi() );
trialEventFrame.rotateY( -pspectator.theta() - Constants::pi );
// invert it
trialEventFrame.invert();
// try to generate an emission
pT_ = pTmin_;
vector<Lorentz5Momentum> trialMomenta
= hardMomenta(bProgenitor, trialEmitter, trialSpectator,
dipoles, i, inDeadZone);
// select dipole which gives highest pT emission
if(pT_>trialpT) {
trialpT = pT_;
momenta = trialMomenta;
eventFrame = trialEventFrame;
finalEmitter = trialEmitter;
finalSpectator = trialSpectator;
finalType = dipoles[i];
if (dipoles[i].type==FFc || dipoles[i].type==FFa ) {
if((momenta[3]+momenta[1]).m2()-momenta[1].m2()>
(momenta[3]+momenta[2]).m2()-momenta[2].m2()) {
swap(finalEmitter,finalSpectator);
swap(momenta[1],momenta[2]);
}
}
}
}
pT_ = trialpT;
// if no emission return
if(momenta.empty()) {
if(inter==ShowerInteraction::Both || inter==ShowerInteraction::QCD)
born->pT()[ShowerInteraction::QCD] = pTmin_;
if(inter==ShowerInteraction::Both || inter==ShowerInteraction::QED)
born->pT()[ShowerInteraction::QED] = pTmin_;
return born;
}
// rotate momenta back to the lab
for(unsigned int ix=0;ix<momenta.size();++ix) {
momenta[ix] *= eventFrame;
}
// set maximum pT for subsequent branchings
if(inter==ShowerInteraction::Both || inter==ShowerInteraction::QCD)
born->pT()[ShowerInteraction::QCD] = pT_;
if(inter==ShowerInteraction::Both || inter==ShowerInteraction::QED)
born->pT()[ShowerInteraction::QED] = pT_;
// get ParticleData objects
tcPDPtr b = bProgenitor ->dataPtr();
tcPDPtr e = finalEmitter ->dataPtr();
tcPDPtr s = finalSpectator->dataPtr();
tcPDPtr boson = getParticleData(finalType.interaction==ShowerInteraction::QCD ?
ParticleID::g : ParticleID::gamma);
// create new ShowerParticles
PPtr emitter = e ->produceParticle(momenta[1]);
PPtr spectator = s ->produceParticle(momenta[2]);
PPtr gauge = boson->produceParticle(momenta[3]);
PPtr incoming = b ->produceParticle(bProgenitor->momentum());
// insert the particles
born->incoming().push_back(incoming);
unsigned int iemit(0),ispect(0);
for(unsigned int ix=0;ix<born->bornOutgoing().size();++ix) {
if(born->bornOutgoing()[ix]==finalEmitter) {
born->outgoing().push_back(emitter);
iemit = born->outgoing().size();
}
else if(born->bornOutgoing()[ix]==finalSpectator) {
born->outgoing().push_back(spectator);
ispect = born->outgoing().size();
}
}
born->outgoing().push_back(gauge);
if(!spectator->dataPtr()->coloured() ||
(finalType.type != FFa && finalType.type!=FFc) ) ispect = 0;
born->emitter(iemit);
born->spectator(ispect);
born->emitted(3);
+ // boost if being use as ME correction
+ if(inDeadZone) {
+ if(finalType.type==IFa || finalType.type==IFba) {
+ LorentzRotation trans(cProgenitor->momentum().findBoostToCM());
+ trans.boost(spectator->momentum().boostVector());
+ born->transformation(trans);
+ }
+ else if(finalType.type==IFc || finalType.type==IFbc) {
+ LorentzRotation trans(bProgenitor->momentum().findBoostToCM());
+ trans.boost(spectator->momentum().boostVector());
+ born->transformation(trans);
+ }
+ }
// set the interaction
born->interaction(finalType.interaction);
// set up colour lines
getColourLines(born);
// return the tree
return born;
}
bool PerturbativeDecayer::identifyDipoles(vector<DipoleType> & dipoles,
PPtr & aProgenitor,
PPtr & bProgenitor,
PPtr & cProgenitor,
ShowerInteraction inter) const {
// identify any QCD dipoles
if(inter==ShowerInteraction::QCD ||
inter==ShowerInteraction::Both) {
PDT::Colour bColour = bProgenitor->dataPtr()->iColour();
PDT::Colour cColour = cProgenitor->dataPtr()->iColour();
PDT::Colour aColour = aProgenitor->dataPtr()->iColour();
// decaying colour singlet
if (bColour==PDT::Colour0 ) {
if ((cColour==PDT::Colour3 && aColour==PDT::Colour3bar) ||
(cColour==PDT::Colour3bar && aColour==PDT::Colour3) ||
(cColour==PDT::Colour8 && aColour==PDT::Colour8)){
dipoles.push_back(DipoleType(FFa,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(FFc,ShowerInteraction::QCD));
}
}
// decaying colour triplet
else if (bColour==PDT::Colour3 ) {
if (cColour==PDT::Colour3 && aColour==PDT::Colour0){
dipoles.push_back(DipoleType(IFbc,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(IFc ,ShowerInteraction::QCD));
}
else if (cColour==PDT::Colour0 && aColour==PDT::Colour3){
dipoles.push_back(DipoleType(IFba,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(IFa ,ShowerInteraction::QCD));
}
else if (cColour==PDT::Colour8 && aColour==PDT::Colour3){
dipoles.push_back(DipoleType(IFbc,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(IFc ,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(FFc ,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(FFa ,ShowerInteraction::QCD));
}
else if (cColour==PDT::Colour3 && aColour==PDT::Colour8){
dipoles.push_back(DipoleType(IFba,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(IFa ,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(FFc ,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(FFa ,ShowerInteraction::QCD));
}
}
// decaying colour anti-triplet
else if (bColour==PDT::Colour3bar) {
if ((cColour==PDT::Colour3bar && aColour==PDT::Colour0)){
dipoles.push_back(DipoleType(IFbc,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(IFc ,ShowerInteraction::QCD));
}
else if ((cColour==PDT::Colour0 && aColour==PDT::Colour3bar)){
dipoles.push_back(DipoleType(IFba,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(IFa ,ShowerInteraction::QCD));
}
else if (cColour==PDT::Colour8 && aColour==PDT::Colour3bar){
dipoles.push_back(DipoleType(IFbc,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(IFc ,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(FFc ,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(FFa ,ShowerInteraction::QCD));
}
else if (cColour==PDT::Colour3bar && aColour==PDT::Colour8){
dipoles.push_back(DipoleType(IFba,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(IFa ,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(FFc ,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(FFa ,ShowerInteraction::QCD));
}
}
// decaying colour octet
else if (bColour==PDT::Colour8){
if ((cColour==PDT::Colour3 && aColour==PDT::Colour3bar) ||
(cColour==PDT::Colour3bar && aColour==PDT::Colour3)){
dipoles.push_back(DipoleType(IFba,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(IFbc,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(IFa,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(IFc,ShowerInteraction::QCD));
}
else if (cColour==PDT::Colour8 && aColour==PDT::Colour0){
dipoles.push_back(DipoleType(IFbc,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(IFc,ShowerInteraction::QCD));
}
else if (cColour==PDT::Colour0 && aColour==PDT::Colour8){
dipoles.push_back(DipoleType(IFba,ShowerInteraction::QCD));
dipoles.push_back(DipoleType(IFa,ShowerInteraction::QCD));
}
}
}
// QED dipoles
if(inter==ShowerInteraction::Both ||
inter==ShowerInteraction::QED) {
const bool & bCharged = bProgenitor->dataPtr()->charged();
const bool & cCharged = cProgenitor->dataPtr()->charged();
const bool & aCharged = aProgenitor->dataPtr()->charged();
// initial-final
if(bCharged && aCharged) {
dipoles.push_back(DipoleType(IFba,ShowerInteraction::QED));
dipoles.push_back(DipoleType(IFa ,ShowerInteraction::QED));
}
if(bCharged && cCharged) {
dipoles.push_back(DipoleType(IFbc,ShowerInteraction::QED));
dipoles.push_back(DipoleType(IFc ,ShowerInteraction::QED));
}
// final-state
if(aCharged && cCharged) {
dipoles.push_back(DipoleType(FFa,ShowerInteraction::QED));
dipoles.push_back(DipoleType(FFc,ShowerInteraction::QED));
}
}
// check colour structure is allowed
return !dipoles.empty();
}
vector<Lorentz5Momentum> PerturbativeDecayer::hardMomenta(PPtr in, PPtr emitter,
PPtr spectator,
const vector<DipoleType> &dipoles,
int i, bool inDeadZone) {
double C = 6.3;
double ymax = 10.;
double ymin = -ymax;
// get masses of the particles
mb_ = in ->momentum().mass();
e_ = emitter ->momentum().mass()/mb_;
s_ = spectator->momentum().mass()/mb_;
e2_ = sqr(e_);
s2_ = sqr(s_);
vector<Lorentz5Momentum> particleMomenta (4);
Energy2 lambda = sqr(mb_)*sqrt(1.+sqr(s2_)+sqr(e2_)-2.*s2_-2.*e2_-2.*s2_*e2_);
// calculate A
double A = (ymax-ymin)*C/Constants::twopi;
if(dipoles[i].interaction==ShowerInteraction::QCD)
A *= alphaS() ->overestimateValue();
else
A *= alphaEM()->overestimateValue();
Energy pTmax = mb_*(sqr(1.-s_)-e2_)/(2.*(1.-s_));
// if no possible branching return
if ( pTmax < pTmin_ ) {
particleMomenta.clear();
return particleMomenta;
}
while (pTmax >= pTmin_) {
// generate pT, y and phi values
Energy pT = pTmax*pow(UseRandom::rnd(),(1./A));
if (pT < pTmin_) {
particleMomenta.clear();
break;
}
double phi = UseRandom::rnd()*Constants::twopi;
double y = ymin+UseRandom::rnd()*(ymax-ymin);
double weight[2] = {0.,0.};
double xs[2], xe[2], xe_z[2], xg;
for (unsigned int j=0; j<2; j++) {
// check if the momenta are physical
if (!calcMomenta(j, pT, y, phi, xg, xs[j], xe[j], xe_z[j], particleMomenta))
continue;
// check if point lies within phase space
if (!psCheck(xg, xs[j]))
continue;
// check if point lies within the dead-zone (if required)
if(inDeadZone) {
if(!inTotalDeadZone(xg,xs[j],dipoles,i)) continue;
}
// decay products for 3 body decay
PPtr inpart = in ->dataPtr()->produceParticle(particleMomenta[0]);
ParticleVector decay3;
decay3.push_back(emitter ->dataPtr()->produceParticle(particleMomenta[1]));
decay3.push_back(spectator->dataPtr()->produceParticle(particleMomenta[2]));
if(dipoles[i].interaction==ShowerInteraction::QCD)
decay3.push_back(getParticleData(ParticleID::g )->produceParticle(particleMomenta[3]));
else
decay3.push_back(getParticleData(ParticleID::gamma)->produceParticle(particleMomenta[3]));
// decay products for 2 body decay
Lorentz5Momentum p1(ZERO,ZERO, lambda/2./mb_,(mb_/2.)*(1.+e2_-s2_),mb_*e_);
Lorentz5Momentum p2(ZERO,ZERO,-lambda/2./mb_,(mb_/2.)*(1.+s2_-e2_),mb_*s_);
ParticleVector decay2;
decay2.push_back(emitter ->dataPtr()->produceParticle(p1));
decay2.push_back(spectator->dataPtr()->produceParticle(p2));
- if (dipoles[i].type==FFc || dipoles[i].type==IFc || dipoles[i].type==IFbc){
+ if (dipoles[i].type==FFa || dipoles[i].type==IFa || dipoles[i].type==IFba) {
swap(decay2[0],decay2[1]);
swap(decay3[0],decay3[1]);
}
// calculate matrix element ratio R/B
double meRatio = matrixElementRatio(*inpart,decay2,decay3,Initialize,dipoles[i].interaction);
// calculate dipole factor
InvEnergy2 dipoleSum = ZERO;
InvEnergy2 numerator = ZERO;
for (int k=0; k<int(dipoles.size()); ++k) {
// skip dipoles which are not of the interaction being considered
if(dipoles[k].interaction!=dipoles[i].interaction) continue;
InvEnergy2 dipole = abs(calculateDipole(dipoles[k],*inpart,decay3));
dipoleSum += dipole;
if (k==i) numerator = dipole;
}
meRatio *= numerator/dipoleSum;
// calculate jacobian
Energy2 denom = (mb_-particleMomenta[3].e())*particleMomenta[2].vect().mag() -
particleMomenta[2].e()*particleMomenta[3].z();
InvEnergy2 J = (particleMomenta[2].vect().mag2())/(lambda*denom);
// calculate weight
weight[j] = meRatio*fabs(sqr(pT)*J)/C/Constants::twopi;
if(dipoles[i].interaction==ShowerInteraction::QCD)
weight[j] *= alphaS() ->ratio(pT*pT);
else
weight[j] *= alphaEM()->ratio(pT*pT);
}
// accept point if weight > R
if (weight[0] + weight[1] > UseRandom::rnd()) {
if (weight[0] > (weight[0] + weight[1])*UseRandom::rnd()) {
particleMomenta[1].setE( (mb_/2.)*xe [0]);
particleMomenta[1].setZ( (mb_/2.)*xe_z[0]);
particleMomenta[2].setE( (mb_/2.)*xs [0]);
particleMomenta[2].setZ(-(mb_/2.)*sqrt(sqr(xs[0])-4.*s2_));
}
else {
particleMomenta[1].setE( (mb_/2.)*xe [1]);
particleMomenta[1].setZ( (mb_/2.)*xe_z[1]);
particleMomenta[2].setE( (mb_/2.)*xs [1]);
particleMomenta[2].setZ(-(mb_/2.)*sqrt(sqr(xs[1])-4.*s2_));
}
pT_ = pT;
break;
}
// if there's no branching lower the pT
pTmax = pT;
}
return particleMomenta;
}
bool PerturbativeDecayer::calcMomenta(int j, Energy pT, double y, double phi,
double& xg, double& xs, double& xe, double& xe_z,
vector<Lorentz5Momentum>& particleMomenta){
// calculate xg
xg = 2.*pT*cosh(y) / mb_;
if (xg>(1. - sqr(e_ + s_)) || xg<0.) return false;
// calculate the two values of xs
double xT = 2.*pT / mb_;
double A = 4.-4.*xg+sqr(xT);
double B = 4.*(3.*xg-2.+2.*e2_-2.*s2_-sqr(xg)-xg*e2_+xg*s2_);
double L = 1.+sqr(s2_)+sqr(e2_)-2.*s2_-2.*e2_-2.*s2_*e2_;
double det = 16.*( -L*sqr(xT)+pow(xT,4)*s2_+2.*xg*sqr(xT)*(1.-s2_-e2_)+
L*sqr(xg)-sqr(xg*xT)*(1.+s2_)+pow(xg,4)+
2.*pow(xg,3)*(-1.+s2_+e2_) );
if (det<0.) return false;
if (j==0) xs = (-B+sqrt(det))/(2.*A);
if (j==1) xs = (-B-sqrt(det))/(2.*A);
// check value of xs is physical
if (xs>(1.+s2_-e2_) || xs<2.*s_) return false;
// calculate xe
xe = 2.-xs-xg;
// check value of xe is physical
if (xe>(1.+e2_-s2_) || xe<2.*e_) return false;
// calculate xe_z
double root1 = sqrt(max(0.,sqr(xs)-4.*s2_)), root2 = sqrt(max(0.,sqr(xe)-4.*e2_-sqr(xT)));
double epsilon_p = -root1+xT*sinh(y)+root2;
double epsilon_m = -root1+xT*sinh(y)-root2;
// find direction of emitter
if (fabs(epsilon_p) < 1.e-10) xe_z = sqrt(sqr(xe)-4.*e2_-sqr(xT));
else if (fabs(epsilon_m) < 1.e-10) xe_z = -sqrt(sqr(xe)-4.*e2_-sqr(xT));
else return false;
// check the emitter is on shell
if (fabs((sqr(xe)-sqr(xT)-sqr(xe_z)-4.*e2_))>1.e-10) return false;
// calculate 4 momenta
particleMomenta[0].setE ( mb_);
particleMomenta[0].setX ( ZERO);
particleMomenta[0].setY ( ZERO);
particleMomenta[0].setZ ( ZERO);
particleMomenta[0].setMass( mb_);
particleMomenta[1].setE ( mb_*xe/2.);
particleMomenta[1].setX (-pT*cos(phi));
particleMomenta[1].setY (-pT*sin(phi));
particleMomenta[1].setZ ( mb_*xe_z/2.);
particleMomenta[1].setMass( mb_*e_);
particleMomenta[2].setE ( mb_*xs/2.);
particleMomenta[2].setX ( ZERO);
particleMomenta[2].setY ( ZERO);
particleMomenta[2].setZ (-mb_*sqrt(sqr(xs)-4.*s2_)/2.);
particleMomenta[2].setMass( mb_*s_);
particleMomenta[3].setE ( pT*cosh(y));
particleMomenta[3].setX ( pT*cos(phi));
particleMomenta[3].setY ( pT*sin(phi));
particleMomenta[3].setZ ( pT*sinh(y));
particleMomenta[3].setMass( ZERO);
return true;
}
bool PerturbativeDecayer::psCheck(const double xg, const double xs) {
// check is point is in allowed region of phase space
double xe_star = (1.-s2_+e2_-xg)/sqrt(1.-xg);
double xg_star = xg/sqrt(1.-xg);
if ((sqr(xe_star)-4.*e2_) < 1e-10) return false;
double xs_max = (4.+4.*s2_-sqr(xe_star+xg_star)+
sqr(sqrt(sqr(xe_star)-4.*e2_)+xg_star))/ 4.;
double xs_min = (4.+4.*s2_-sqr(xe_star+xg_star)+
sqr(sqrt(sqr(xe_star)-4.*e2_)-xg_star))/ 4.;
if (xs < xs_min || xs > xs_max) return false;
return true;
}
InvEnergy2 PerturbativeDecayer::calculateDipole(const DipoleType & dipoleId,
const Particle & inpart,
const ParticleVector & decay3) {
// calculate dipole for decay b->ac
InvEnergy2 dipole = ZERO;
double x1 = 2.*decay3[0]->momentum().e()/mb_;
double x2 = 2.*decay3[1]->momentum().e()/mb_;
double xg = 2.*decay3[2]->momentum().e()/mb_;
double mu12 = sqr(decay3[0]->mass()/mb_);
double mu22 = sqr(decay3[1]->mass()/mb_);
tcPDPtr part[3] = {inpart.dataPtr(),decay3[0]->dataPtr(),decay3[1]->dataPtr()};
if(dipoleId.type==FFc || dipoleId.type == IFc || dipoleId.type == IFbc) {
swap(part[1],part[2]);
swap(x1,x2);
swap(mu12,mu22);
}
// radiation from b with initial-final connection
if (dipoleId.type==IFba || dipoleId.type==IFbc) {
dipole = -2./sqr(mb_*xg);
dipole *= colourCoeff(part[0],part[1],part[2],dipoleId);
}
// radiation from a/c with initial-final connection
else if (dipoleId.type==IFa || dipoleId.type==IFc) {
double z = 1. - xg/(1.-mu22+mu12);
dipole = (-2.*mu12/sqr(1.-x2+mu22-mu12)/sqr(mb_) + (1./(1.-x2+mu22-mu12)/sqr(mb_))*
(2./(1.-z)-dipoleSpinFactor(part[1],z)));
dipole *= colourCoeff(part[1],part[0],part[2],dipoleId);
}
// radiation from a/c with final-final connection
else if (dipoleId.type==FFa || dipoleId.type==FFc) {
double z = 1. + ((x1-1.+mu22-mu12)/(x2-2.*mu22));
double y = (1.-x2-mu12+mu22)/(1.-mu12-mu22);
double vt = sqrt((1.-sqr(e_+s_))*(1.-sqr(e_-s_)))/(1.-mu12-mu22);
double v = sqrt(sqr(2.*mu22+(1.-mu12-mu22)*(1.-y))-4.*mu22)
/(1.-y)/(1.-mu12-mu22);
if(part[1]->iSpin()!=PDT::Spin1) {
dipole = (1./(1.-x2+mu22-mu12)/sqr(mb_))*
((2./(1.-z*(1.-y)))-vt/v*(dipoleSpinFactor(part[1],z)+(2.*mu12/(1.+mu22-mu12-x2))));
}
else {
dipole = (1./(1.-x2+mu22-mu12)/sqr(mb_))*
(1./(1.-z*(1.-y))+1./(1.-(1.-z)*(1.-y))+(z*(1.-z)-2.)/v-vt/v*(2.*mu12/(1.+mu22-mu12-x2)));
}
dipole *= colourCoeff(part[1],part[2],part[0],dipoleId);
}
// coupling prefactors
dipole *= 8.*Constants::pi;
if(dipoleId.interaction==ShowerInteraction::QCD)
dipole *= alphaS() ->value(mb_*mb_);
else
dipole *= alphaEM()->value(mb_*mb_);
// return the answer
return dipole;
}
double PerturbativeDecayer::dipoleSpinFactor(tcPDPtr part, double z){
// calculate the spin dependent component of the dipole
if (part->iSpin()==PDT::Spin0)
return 2.;
else if (part->iSpin()==PDT::Spin1Half)
return (1. + z);
else if (part->iSpin()==PDT::Spin1)
return -(z*(1.-z) - 1./(1.-z) + 1./z -2.);
return 0.;
}
double PerturbativeDecayer::colourCoeff(tcPDPtr emitter,
tcPDPtr spectator,
tcPDPtr other,
DipoleType dipole) {
if(dipole.interaction==ShowerInteraction::QCD) {
// calculate the colour factor of the dipole
double numerator=1.;
double denominator=1.;
if (emitter->iColour()!=PDT::Colour0 &&
spectator->iColour()!=PDT::Colour0 &&
other->iColour()!=PDT::Colour0) {
if (emitter->iColour() ==PDT::Colour3 ||
emitter->iColour() ==PDT::Colour3bar) numerator=-4./3;
else if (emitter->iColour() ==PDT::Colour8) numerator=-3. ;
denominator=-1.*numerator;
if (spectator->iColour()==PDT::Colour3 ||
spectator->iColour()==PDT::Colour3bar) numerator-=4./3;
else if (spectator->iColour()==PDT::Colour8) numerator-=3. ;
if (other->iColour() ==PDT::Colour3 ||
other->iColour() ==PDT::Colour3bar) numerator+=4./3;
else if (other->iColour() ==PDT::Colour8) numerator+=3. ;
numerator*=(-1./2.);
}
if (emitter->iColour()==PDT::Colour3 ||
emitter->iColour()== PDT::Colour3bar) numerator*=4./3.;
else if (emitter->iColour()==PDT::Colour8 &&
spectator->iColour()!=PDT::Colour8) numerator*=3.;
else if (emitter->iColour()==PDT::Colour8 &&
spectator->iColour()==PDT::Colour8) numerator*=6.;
return (numerator/denominator);
}
else {
double val = double(emitter->iCharge()*spectator->iCharge())/9.;
// FF dipoles
if(dipole.type==FFa || dipole.type == FFc) {
return val;
}
else {
return -val;
}
}
}
void PerturbativeDecayer::getColourLines(RealEmissionProcessPtr real) {
// extract the particles
vector<PPtr> branchingPart;
branchingPart.push_back(real->incoming()[0]);
for(unsigned int ix=0;ix<real->outgoing().size();++ix) {
branchingPart.push_back(real->outgoing()[ix]);
}
vector<unsigned int> sing,trip,atrip,oct;
for (size_t ib=0;ib<branchingPart.size()-1;++ib) {
if (branchingPart[ib]->dataPtr()->iColour()==PDT::Colour0 ) sing. push_back(ib);
else if(branchingPart[ib]->dataPtr()->iColour()==PDT::Colour3 ) trip. push_back(ib);
else if(branchingPart[ib]->dataPtr()->iColour()==PDT::Colour3bar) atrip.push_back(ib);
else if(branchingPart[ib]->dataPtr()->iColour()==PDT::Colour8 ) oct. push_back(ib);
}
// decaying colour singlet
if (branchingPart[0]->dataPtr()->iColour()==PDT::Colour0) {
// 0 -> 3 3bar
if (trip.size()==1 && atrip.size()==1) {
if(real->interaction()==ShowerInteraction::QCD) {
branchingPart[atrip[0]]->colourConnect(branchingPart[ 3 ]);
branchingPart[ 3 ]->colourConnect(branchingPart[trip[0]]);
}
else {
branchingPart[atrip[0]]->colourConnect(branchingPart[trip[0]]);
}
}
// 0 -> 8 8
else if (oct.size()==2 ) {
if(real->interaction()==ShowerInteraction::QCD) {
bool col = UseRandom::rndbool();
branchingPart[oct[0]]->colourConnect(branchingPart[ 3 ],col);
branchingPart[ 3 ]->colourConnect(branchingPart[oct[1]],col);
branchingPart[oct[1]]->colourConnect(branchingPart[oct[0]],col);
}
else {
branchingPart[oct[0]]->colourConnect(branchingPart[oct[1]]);
branchingPart[oct[1]]->colourConnect(branchingPart[oct[0]]);
}
}
else
assert(real->interaction()==ShowerInteraction::QED);
}
// decaying colour triplet
else if (branchingPart[0]->dataPtr()->iColour()==PDT::Colour3 ){
// 3 -> 3 0
if (trip.size()==2 && sing.size()==1) {
if(real->interaction()==ShowerInteraction::QCD) {
branchingPart[3]->incomingColour(branchingPart[trip[0]]);
branchingPart[3]-> colourConnect(branchingPart[trip[1]]);
}
else {
branchingPart[trip[1]]->incomingColour(branchingPart[trip[0]]);
}
} // 3 -> 3 8
else if (trip.size()==2 && oct.size()==1) {
if(real->interaction()==ShowerInteraction::QCD) {
// 8 emit incoming partner
if(real->emitter()==oct[0]&&real->spectator()==0) {
branchingPart[ 3 ]->incomingColour(branchingPart[trip[0]]);
branchingPart[ 3 ]-> colourConnect(branchingPart[oct[0] ]);
branchingPart[oct[0]]-> colourConnect(branchingPart[trip[1]]);
}
// 8 emit final spectator or vice veras
else {
branchingPart[oct[0]]->incomingColour(branchingPart[trip[0]]);
branchingPart[oct[0]]-> colourConnect(branchingPart[ 3 ]);
branchingPart[ 3 ]-> colourConnect(branchingPart[trip[1]]);
}
}
else {
branchingPart[oct[0]]->incomingColour(branchingPart[trip[0]]);
branchingPart[oct[0]]-> colourConnect(branchingPart[trip[1]]);
}
}
else
assert(false);
}
// decaying colour anti-triplet
else if (branchingPart[0]->dataPtr()->iColour()==PDT::Colour3bar) {
// 3bar -> 3bar 0
if (atrip.size()==2 && sing.size()==1) {
if(real->interaction()==ShowerInteraction::QCD) {
branchingPart[3]->incomingColour(branchingPart[atrip[0]],true);
branchingPart[3]-> colourConnect(branchingPart[atrip[1]],true);
}
else {
branchingPart[atrip[1]]->incomingColour(branchingPart[atrip[0]],true);
}
}
// 3 -> 3 8
else if (atrip.size()==2 && oct.size()==1){
if(real->interaction()==ShowerInteraction::QCD) {
// 8 emit incoming partner
if(real->emitter()==oct[0]&&real->spectator()==0) {
branchingPart[ 3 ]->incomingColour(branchingPart[atrip[0]],true);
branchingPart[ 3 ]-> colourConnect(branchingPart[oct[0] ],true);
branchingPart[oct[0]]-> colourConnect(branchingPart[atrip[1]],true);
}
// 8 emit final spectator or vice veras
else {
if(real->interaction()==ShowerInteraction::QCD) {
branchingPart[oct[0]]->incomingColour(branchingPart[atrip[0]],true);
branchingPart[oct[0]]-> colourConnect(branchingPart[ 3 ],true);
branchingPart[3]-> colourConnect(branchingPart[atrip[1]] ,true);
}
}
}
else {
branchingPart[oct[0]]->incomingColour(branchingPart[atrip[0]],true);
branchingPart[oct[0]]-> colourConnect(branchingPart[atrip[1]],true);
}
}
else
assert(false);
}
// decaying colour octet
else if(branchingPart[0]->dataPtr()->iColour()==PDT::Colour8 ) {
// 8 -> 3 3bar
if (trip.size()==1 && atrip.size()==1) {
if(real->interaction()==ShowerInteraction::QCD) {
// 3 emits
if(trip[0]==real->emitter()) {
branchingPart[3] ->incomingColour(branchingPart[oct[0]] );
branchingPart[3] -> colourConnect(branchingPart[trip[0]]);
branchingPart[atrip[0]]->incomingColour(branchingPart[oct[0]],true);
}
// 3bar emits
else {
branchingPart[3] ->incomingColour(branchingPart[oct[0]] ,true);
branchingPart[3] -> colourConnect(branchingPart[atrip[0]],true);
branchingPart[trip[0]]->incomingColour(branchingPart[oct[0]] );
}
}
else {
branchingPart[trip[0]]->incomingColour(branchingPart[oct[0]] );
branchingPart[atrip[0]]->incomingColour(branchingPart[oct[0]],true);
}
}
// 8 -> 8 0
else if (sing.size()==1 && oct.size()==2) {
if(real->interaction()==ShowerInteraction::QCD) {
bool col = UseRandom::rndbool();
branchingPart[ 3 ]->colourConnect (branchingPart[oct[1]], col);
branchingPart[ 3 ]->incomingColour(branchingPart[oct[0]], col);
branchingPart[oct[1]]->incomingColour(branchingPart[oct[0]],!col);
}
else {
branchingPart[oct[1]]->incomingColour(branchingPart[oct[0]]);
branchingPart[oct[1]]->incomingColour(branchingPart[oct[0]],true);
}
}
else
assert(false);
}
}
PerturbativeDecayer::phaseSpaceRegion
PerturbativeDecayer::inInitialFinalDeadZone(double xg, double xa,
double a, double c) const {
double lam = sqrt(1.+a*a+c*c-2.*a-2.*c-2.*a*c);
double kappab = 1.+0.5*(1.-a+c+lam);
double kappac = kappab-1.+c;
double kappa(0.);
// check whether or not in the region for emission from c
double r = 0.5;
if(c!=0.) r += 0.5*c/(1.+a-xa);
double pa = sqrt(sqr(xa)-4.*a);
double z = ((2.-xa)*(1.-r)+r*pa-xg)/pa;
if(z<1. && z>0.) {
kappa = (1.+a-c-xa)/(z*(1.-z));
if(kappa<kappac)
return emissionFromC;
}
// check in region for emission from b (T1)
double cq = sqr(1.+a-c)-4*a;
double bq = -2.*kappab*(1.-a-c);
double aq = sqr(kappab)-4.*a*(kappab-1);
double dis = sqr(bq)-4.*aq*cq;
z=1.-(-bq-sqrt(dis))/2./aq;
double w = 1.-(1.-z)*(kappab-1.);
double xgmax = (1.-z)*kappab;
// possibly in T1 region
if(xg<xgmax) {
z = 1.-xg/kappab;
kappa=kappab;
}
// possibly in T2 region
else {
aq = 4.*a;
bq = -4.*a*(2.-xg);
cq = sqr(1.+a-c-xg);
dis = sqr(bq)-4.*aq*cq;
z = (-bq-sqrt(dis))/2./aq;
kappa = xg/(1.-z);
}
// compute limit on xa
double u = 1.+a-c-(1.-z)*kappa;
w = 1.-(1.-z)*(kappa-1.);
double v = sqr(u)-4.*z*a*w;
if(v<0. && v>-1e-10) v= 0.;
v = sqrt(v);
if(xa<0.5*((u+v)/w+(u-v)/z))
return xg<xgmax ? emissionFromA1 : emissionFromA2;
else
return deadZone;
}
PerturbativeDecayer::phaseSpaceRegion
PerturbativeDecayer::inFinalFinalDeadZone(double xb, double xc,
double b, double c) const {
// basic kinematics
double lam = sqrt(1.+b*b+c*c-2.*b-2.*c-2.*b*c);
// check whether or not in the region for emission from b
double r = 0.5;
if(b!=0.) r+=0.5*b/(1.+c-xc);
double pc = sqrt(sqr(xc)-4.*c);
double z = -((2.-xc)*r-r*pc-xb)/pc;
if(z<1. and z>0.) {
if((1.-b+c-xc)/(z*(1.-z))<0.5*(1.+b-c+lam)) return emissionFromB;
}
// check whether or not in the region for emission from c
r = 0.5;
if(c!=0.) r+=0.5*c/(1.+b-xb);
double pb = sqrt(sqr(xb)-4.*b);
z = -((2.-xb)*r-r*pb-xc)/pb;
if(z<1. and z>0.) {
if((1.-c+b-xb)/(z*(1.-z))<0.5*(1.-b+c+lam)) return emissionFromC;
}
return deadZone;
}
bool PerturbativeDecayer::inTotalDeadZone(double xg, double xs,
const vector<DipoleType> & dipoles,
int i) {
double xb,xc,b,c;
if(dipoles[i].type==FFa || dipoles[i].type == IFa || dipoles[i].type == IFba) {
xc = xs;
xb = 2.-xg-xs;
b = e2_;
c = s2_;
}
else {
xb = xs;
xc = 2.-xg-xs;
b = s2_;
c = e2_;
}
for(unsigned int ix=0;ix<dipoles.size();++ix) {
if(dipoles[ix].interaction!=dipoles[i].interaction)
continue;
// should also remove negative QED dipoles but shouldn't be an issue unless we
// support QED ME corrections
switch (dipoles[ix].type) {
case FFa :
if(inFinalFinalDeadZone(xb,xc,b,c)!=deadZone) return false;
break;
case FFc :
if(inFinalFinalDeadZone(xc,xb,c,b)!=deadZone) return false;
break;
case IFa : case IFba:
if(inInitialFinalDeadZone(xg,xc,c,b)!=deadZone) return false;
break;
case IFc : case IFbc:
if(inInitialFinalDeadZone(xg,xb,b,c)!=deadZone) return false;
break;
}
}
return true;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 8:53 PM (1 d, 2 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3790594
Default Alt Text
(139 KB)
Attached To
R563 testingHerwigHG
Event Timeline
Log In to Comment