Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7877949
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
103 KB
Subscribers
None
View Options
diff --git a/examples/GenFitTimeDep.cc b/examples/GenFitTimeDep.cc
index 2cb6556..02980c1 100644
--- a/examples/GenFitTimeDep.cc
+++ b/examples/GenFitTimeDep.cc
@@ -1,399 +1,399 @@
/*
Copyright 2006 University of Warwick
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/*
Laura++ package authors:
John Back
Paul Harrison
Thomas Latham
*/
#include <iostream>
using std::cout;
using std::cerr;
using std::endl;
#include <vector>
#include <map>
#include "TFile.h"
#include "TH2.h"
#include "TRandom.h"
#include "TString.h"
#include "TSystem.h"
#include "LauDaughters.hh"
#include "LauDecayTimePdf.hh"
#include "LauEffModel.hh"
#include "LauIsobarDynamics.hh"
#include "LauMagPhaseCoeffSet.hh"
#include "LauRandom.hh"
#include "LauRealImagCoeffSet.hh"
#include "LauTimeDepFitModel.hh"
#include "LauVetoes.hh"
#include "LauCategoryFlavTag.hh"
#include "LauParameter.hh"
#include "Lau1DHistPdf.hh"
void usage(const TString& progName)
{
cerr<<"Usage:"<<endl;
cerr<<progName<<" gen [firstExptGen] [nExptGen] [CP eigenvalue]"<<endl;
cerr<<"or"<<endl;
cerr<<progName<<" fit [iFit] [firstExpt] [nExpt] [nExptGen]"<<endl;
}
-int main(const int argc, const char ** argv)
+int main([[maybe_unused]] const int argc, [[maybe_unused]] const char ** argv)
{
//Int_t iFit = 0;
//Int_t firstExpt = 0;
//Int_t firstExptGen = 0;
//Int_t nExpt = 1;
//Int_t nExptGen = 1;
//LauTimeDepFitModel::CPEigenvalue eigenvalue = LauTimeDepFitModel::CPEven;
//Bool_t fixPhiMix(kTRUE);
//Bool_t useSinCos(kFALSE);
//// check the command line arguments
//if (argc<1) {
// usage(argv[0]);
// return EXIT_FAILURE;
//}
//TString command = argv[1];
//if (command != "gen" && command != "fit") {
// usage(argv[0]);
// return EXIT_FAILURE;
//}
//if (command == "fit") {
// if (argc>2) {
// iFit = atoi(argv[2]);
// if (argc>3) {
// firstExpt = atoi(argv[3]);
// if (argc>4) {
// nExpt = atoi(argv[4]);
// if (argc>5) {
// nExptGen = atoi(argv[5]);
// }
// }
// }
// }
// for (firstExptGen = 0; firstExptGen<(firstExpt+nExpt); firstExptGen+=nExptGen) {
// }
// firstExptGen -= nExptGen;
// if ( (nExpt > nExptGen) || (nExptGen%nExpt != 0) ) {
// cerr<<"Error, nExpt must be a factor of nExptGen."<<endl;
// return EXIT_FAILURE;
// }
//} else {
// if (argc>2) {
// firstExptGen = atoi(argv[2]);
// if (argc>3) {
// nExptGen = atoi(argv[3]);
// if (argc>4) {
// Int_t eigval = atoi(argv[4]);
// if ( eigval == 1 ) {
// eigenvalue = LauTimeDepFitModel::CPOdd;
// } else {
// eigenvalue = LauTimeDepFitModel::CPEven;
// }
// }
// }
// }
//}
//Double_t nSigEvents = 5000;
//LauRandom::randomFun()->SetSeed(81648*(firstExptGen+1));
///*
//if ( command == "fit" ) {
// nSigEvents = 840;
//} else {
// if ( eigenvalue == LauTimeDepFitModel::CPEven ) {
// nSigEvents = 410;
// } else {
// nSigEvents = 430;
// LauRandom::randomFun()->SetSeed(58233*(firstExptGen+1));
// }
//}
//*/
//// set up the DP
//LauDaughters* daughtersB0bar = new LauDaughters("B0_bar", "pi+", "pi-", "D0");
//LauDaughters* daughtersB0 = new LauDaughters("B0", "pi+", "pi-", "D0_bar");
//// vetoes
//LauVetoes* vetoes = new LauVetoes();
//vetoes->addMassVeto( 1, 2.000, 2.020 );
//vetoes->addMassVeto( 2, 2.000, 2.020 );
//// efficiency
//LauEffModel* effModelB0bar = new LauEffModel(daughtersB0bar, vetoes);
//LauEffModel* effModelB0 = new LauEffModel(daughtersB0, vetoes);
////LauParameter * p0 = new LauParameter("calib_p0", 0.0);
////LauParameter * p1 = new LauParameter("calib_p1", 1.0);
//LauParameter * p0 = new LauParameter("calib_p0", 0.4513, -0.5, 0.5, kFALSE); // Set to average value of eta
//LauParameter * p1 = new LauParameter("calib_p1", 1.0, 0.5, 1.5, kFALSE);
//std::vector<LauParameter *> params;
//params.push_back(p0);
//params.push_back(p1);
//LauCategoryFlavTag* flavTag = new LauCategoryFlavTag(params, kTRUE); //, const TString& tagVarName = "", const TString& tagCatVarName = "")
//// signal dynamics
//LauIsobarDynamics* sigModelB0bar = new LauIsobarDynamics(daughtersB0bar, effModelB0bar);
//sigModelB0bar->setIntFileName("integ_B0bar.dat");
//sigModelB0bar->addResonance("D*+_2", 2, LauAbsResonance::RelBW);
//sigModelB0bar->addResonance("D*+_0", 2, LauAbsResonance::RelBW);
//sigModelB0bar->addResonance("D*+", 2, LauAbsResonance::RelBW);
//sigModelB0bar->addResonance("rho0(770)", 3, LauAbsResonance::RelBW);
//sigModelB0bar->addResonance("f_0(980)", 3, LauAbsResonance::RelBW);
//sigModelB0bar->addResonance("f_2(1270)", 3, LauAbsResonance::RelBW);
//LauIsobarDynamics* sigModelB0 = new LauIsobarDynamics(daughtersB0, effModelB0);
//sigModelB0->setIntFileName("integ_B0.dat");
//sigModelB0->addResonance("D*-_2", 1, LauAbsResonance::RelBW);
//sigModelB0->addResonance("D*-_0", 1, LauAbsResonance::RelBW);
//sigModelB0->addResonance("D*-", 1, LauAbsResonance::RelBW);
//sigModelB0->addResonance("rho0(770)", 3, LauAbsResonance::RelBW);
//sigModelB0->addResonance("f_0(980)", 3, LauAbsResonance::RelBW);
//sigModelB0->addResonance("f_2(1270)", 3, LauAbsResonance::RelBW);
//// Avoid running out of memory
//sigModelB0bar->setIntegralBinningFactor(20);
//sigModelB0->setIntegralBinningFactor(20);
//// Tag cat fractions, dilutions and Delta dilutions
//flavTag->addValidTagCat(63);
//// flavTag->addValidTagCat(64);
//// flavTag->addValidTagCat(65);
//// flavTag->addValidTagCat(66);
//// flavTag->addValidTagCat(67);
//// flavTag->addValidTagCat(68);
//flavTag->setSignalTagCatPars(63, 0.2, 1.0, 0.0, kTRUE, kTRUE);
//// flavTag->setSignalTagCatPars(64, 0.2, 1.0, 0.0, kTRUE);
//// flavTag->setSignalTagCatPars(65, 0.2, 1.0, 0.0, kTRUE);
//// flavTag->setSignalTagCatPars(66, 0.2, 1.0, 0.0, kTRUE);
//// flavTag->setSignalTagCatPars(67, 0.1, 1.0, 0.0, kTRUE);
//// flavTag->setSignalTagCatPars(68, 0.1, 1.0, 0.0, kTRUE);
//// fit model
//LauTimeDepFitModel* fitModel = new LauTimeDepFitModel(sigModelB0bar,sigModelB0, flavTag);
//fitModel->setASqMaxValue(1.28);
////File available ~mwhitehe/public/ on lxplus
//TFile* etafile = TFile::Open("histogram.root");
//TH1* etahist = dynamic_cast<TH1*>(etafile->Get("htemp"));
//Lau1DHistPdf* etahistpdf = new Lau1DHistPdf("eta",etahist,0,0.54,kFALSE,kFALSE);
////LauAbsPdf* etahist = new LauAbsPdf();
//fitModel->setSignalFlavTagPdfs(63,etahistpdf);
//std::vector<LauAbsCoeffSet*> coeffset;
//coeffset.push_back( new LauRealImagCoeffSet("D*-_2", 1.00, 0.00, kTRUE, kTRUE) );
//coeffset.push_back( new LauRealImagCoeffSet("D*-_0", 0.53*TMath::Cos( 3.00), 0.53*TMath::Sin( 3.00), kFALSE, kFALSE) );
//coeffset.push_back( new LauRealImagCoeffSet("D*-", 2.83*TMath::Cos(-2.62), 2.83*TMath::Sin(-2.62), kFALSE, kFALSE) );
//coeffset.push_back( new LauRealImagCoeffSet("rho0(770)", 1.22*TMath::Cos( 2.25), 1.22*TMath::Sin( 2.25), kFALSE, kFALSE) );
//coeffset.push_back( new LauRealImagCoeffSet("f_0(980)", 0.19*TMath::Cos(-2.48), 0.19*TMath::Sin(-2.48), kFALSE, kFALSE) );
//coeffset.push_back( new LauRealImagCoeffSet("f_2(1270)", 0.75*TMath::Cos( 2.97), 0.75*TMath::Sin( 2.97), kFALSE, kFALSE) );
//for (std::vector<LauAbsCoeffSet*>::iterator iter=coeffset.begin(); iter!=coeffset.end(); ++iter) {
// fitModel->setAmpCoeffSet(*iter);
//}
//fitModel->setCPEigenvalue( eigenvalue );
//fitModel->setPhiMix( 2.0*LauConstants::beta, fixPhiMix, useSinCos );
//// Delta t PDFs
//const Double_t minDt(0.0);
//const Double_t maxDt(20.0);
//const Double_t minDtErr(0.0);
//const Double_t maxDtErr(2.5);
//const Int_t nGauss(3);
//std::vector<Bool_t> scale(nGauss);
//scale[0] = kTRUE;
//scale[1] = kTRUE;
//scale[2] = kFALSE;
//// TString dtErrHistoFileName("Err/histErr_500_");
//// std::map<Int_t,TFile*> dtErrHistoFiles;
//// std::map<Int_t,TH1F*> dtErrHistos;
//std::vector<LauAbsRValue*> dtPars(10);
//TString mean0Name("dt_"); mean0Name += "_mean_0";
//TString mean1Name("dt_"); mean1Name += "_mean_1";
//TString mean2Name("dt_"); mean2Name += "_mean_2";
//TString sigma0Name("dt_"); sigma0Name += "_sigma_0";
//TString sigma1Name("dt_"); sigma1Name += "_sigma_1";
//TString sigma2Name("dt_"); sigma2Name += "_sigma_2";
//TString frac1Name("dt_"); frac1Name += "_frac_1";
//TString frac2Name("dt_"); frac2Name += "_frac_2";
//TString tauName("dt_"); tauName += "_tau";
//TString freqName("dt_"); freqName += "_deltaM";
//LauParameter * mean0 = new LauParameter(mean0Name, -0.181);
//LauParameter * mean1 = new LauParameter(mean1Name, -1.27);
//LauParameter * mean2 = new LauParameter(mean2Name, 0.0);
//LauParameter * sigma0 = new LauParameter(sigma0Name, 1.067);
//LauParameter * sigma1 = new LauParameter(sigma1Name, 3.0);
//LauParameter * sigma2 = new LauParameter(sigma2Name, 8.0);
//LauParameter * frac1 = new LauParameter(frac1Name, 0.0930);
//LauParameter * frac2 = new LauParameter(frac2Name, 0.0036);
//LauParameter * tau = new LauParameter(tauName, 1.536);
//LauParameter * freq = new LauParameter(freqName, 0.502);
//TString mean0tagcat63Name("dt_"); mean0tagcat63Name += 63; mean0tagcat63Name += "_mean_0";
//TString sigma0tagcat63Name("dt_"); sigma0tagcat63Name += 63; sigma0tagcat63Name += "_sigma_0";
//LauParameter * mean0tagcat63 = new LauParameter(mean0tagcat63Name, -0.031);
//LauParameter * sigma0tagcat63 = new LauParameter(sigma0tagcat63Name, 0.972);
//for ( Int_t tagCat(0); tagCat<64; ++tagCat ) {
// // TString histoFileName(dtErrHistoFileName);
// // histoFileName += tagCat; histoFileName += ".root";
// // dtErrHistoFiles[tagCat] = TFile::Open(histoFileName);
// // dtErrHistos[tagCat] = dynamic_cast<TH1F*>(dtErrHistoFiles[tagCat]->Get("histErr"));
// if (tagCat==0){
// dtPars[0] = mean0;
// dtPars[1] = mean1;
// dtPars[2] = mean2;
// dtPars[3] = sigma0;
// dtPars[4] = sigma1;
// dtPars[5] = sigma2;
// dtPars[6] = frac1;
// dtPars[7] = frac2;
// dtPars[8] = tau;
// dtPars[9] = freq;
// } else if (tagCat==63){
// dtPars[0] = mean0tagcat63;
// dtPars[1] = mean1->createClone();
// dtPars[2] = mean2->createClone();
// dtPars[3] = sigma0tagcat63;
// dtPars[4] = sigma1->createClone();
// dtPars[5] = sigma2->createClone();
// dtPars[6] = frac1->createClone();
// dtPars[7] = frac2->createClone();
// dtPars[8] = tau->createClone();
// dtPars[9] = freq->createClone();
// } else {
// dtPars[0] = mean0->createClone();
// dtPars[1] = mean1->createClone();
// dtPars[2] = mean2->createClone();
// dtPars[3] = sigma0->createClone();
// dtPars[4] = sigma1->createClone();
// dtPars[5] = sigma2->createClone();
// dtPars[6] = frac1->createClone();
// dtPars[7] = frac2->createClone();
// dtPars[8] = tau->createClone();
// dtPars[9] = freq->createClone();
// }
// LauDecayTimePdf * dtPdf = new LauDecayTimePdf( "deltaTAvg", "deltaTAvgErr", dtPars, minDt, maxDt, minDtErr, maxDtErr, LauDecayTimePdf::ExpTrig, nGauss, scale, LauDecayTimePdf::DecayTime );
// // dtPdf->setErrorHisto(dtErrHistos[tagCat]);
// dtPdf->doSmearing(kFALSE);
// fitModel->setSignalDtPdf( tagCat, dtPdf );
// if (tagCat==0) {
// tagCat=62;
// }
//}
//// set the number of signal events
//LauParameter* nSigPar = new LauParameter("signalEvents", nSigEvents, -2.0*nSigEvents, 2.0*nSigEvents, kTRUE);
//fitModel->setNSigEvents(nSigPar);
//// set the number of experiments
//if (command == "fit") {
// fitModel->setNExpts(nExpt, firstExpt);
//} else {
// fitModel->setNExpts(nExptGen, firstExptGen);
//}
//// Do not calculate asymmetric errors.
//fitModel->useAsymmFitErrors(kFALSE);
//// Randomise initial fit values for the signal mode
//fitModel->useRandomInitFitPars(kTRUE);
//// Switch off Poissonian smearing of total number of events
//fitModel->doPoissonSmearing(kFALSE);
//// Switch on Extended ML Fit option
//fitModel->doEMLFit(kFALSE);
//// Write LaTeX table
//fitModel->writeLatexTable(kFALSE);
//TString dataFile("");
//TString treeName("fitTree");
//TString rootFileName("");
//TString tableFileName("");
//TString fitToyFileName("");
//TString splotFileName("");
//if (command == "fit") {
// dataFile = "data";
// dataFile += "_expts"; dataFile += firstExptGen; dataFile += "-"; dataFile += firstExptGen+nExptGen-1;
// dataFile += ".root";
// rootFileName = "fit"; rootFileName += iFit;
// rootFileName += "_expts"; rootFileName += firstExpt; rootFileName += "-"; rootFileName += firstExpt+nExpt-1;
// rootFileName += ".root";
// tableFileName = "fitResults_"; tableFileName += iFit;
// tableFileName += "_expts"; tableFileName += firstExpt; tableFileName += "-"; tableFileName += firstExpt+nExpt-1;
// fitToyFileName = "fitToyMC_"; fitToyFileName += iFit;
// fitToyFileName += "_expts"; fitToyFileName += firstExpt; fitToyFileName += "-"; fitToyFileName += firstExpt+nExpt-1;
// fitToyFileName += ".root";
// splotFileName = "splot_"; splotFileName += iFit;
// splotFileName += "_expts"; splotFileName += firstExpt; splotFileName += "-"; splotFileName += firstExpt+nExpt-1;
// splotFileName += ".root";
//} else {
// dataFile = "data";
// dataFile += "_expts"; dataFile += firstExptGen; dataFile += "-"; dataFile += firstExptGen+nExptGen-1; dataFile += "_CP";
// if ( eigenvalue == LauTimeDepFitModel::CPEven ) {
// dataFile += "even";
// } else {
// dataFile += "odd";
// }
// dataFile += ".root";
// rootFileName = "dummy.root";
// tableFileName = "genResults";
//}
//// Generate toy from the fitted parameters
////fitModel->compareFitData(10, fitToyFileName);
//// Write out per-event likelihoods and sWeights
////fitModel->writeSPlotData(splotFileName, "splot", kFALSE);
//// Run!
//fitModel->run(command, dataFile, treeName, rootFileName, tableFileName);
return EXIT_SUCCESS;
}
diff --git a/examples/Test_Dpipi_efficiencyHist.cc b/examples/Test_Dpipi_efficiencyHist.cc
index ca82f31..ef4782b 100755
--- a/examples/Test_Dpipi_efficiencyHist.cc
+++ b/examples/Test_Dpipi_efficiencyHist.cc
@@ -1,397 +1,397 @@
#include <iostream>
using std::cout;
using std::cerr;
using std::endl;
#include <vector>
#include <map>
#include "TFile.h"
#include "TH2.h"
#include "TH1D.h"
#include "TRandom.h"
#include "TString.h"
#include "TSystem.h"
#include "LauDaughters.hh"
#include "LauDecayTimePdf.hh"
#include "LauEffModel.hh"
#include "LauIsobarDynamics.hh"
#include "LauMagPhaseCoeffSet.hh"
#include "LauRandom.hh"
#include "LauRealImagCoeffSet.hh"
#include "LauTimeDepFitModel.hh"
#include "LauVetoes.hh"
#include "LauFlavTag.hh"
#include "Lau1DHistPdf.hh"
#include "Lau1DCubicSpline.hh"
void usage(const TString& progName)
{
cerr<<"Usage:"<<endl;
cerr<<progName<<" gen D_type [firstExptGen] [nExptGen] [CP eigenvalue]"<<endl;
cerr<<"or"<<endl;
cerr<<progName<<" fit D_type [port] [iFit] [firstExpt] [nExpt] [nExptGen]"<<endl;
}
-int main(const int argc, const char ** argv)
+int main([[maybe_unused]] const int argc, [[maybe_unused]] const char ** argv)
{
//const TString dtype = argv[2];
//Int_t port = 0;
//Int_t iFit = 0;
//Int_t firstExpt = 0;
//Int_t firstExptGen = 0;
//Int_t nExpt = 1;
//Int_t nExptGen = 1;
//LauTimeDepFitModel::CPEigenvalue eigenvalue = LauTimeDepFitModel::CPEven;
//Bool_t fixPhiMix(kFALSE);
//Bool_t useSinCos(kTRUE);
//// check the command line arguments
//if (argc<1) {
// usage(argv[0]);
// return EXIT_FAILURE;
//}
//TString command = argv[1];
//if (command != "gen" && command != "fit") {
// usage(argv[0]);
// return EXIT_FAILURE;
//}
//if (command == "fit") {
// if (argc>3) {
// port = atoi(argv[3]);
// if (argc>4) {
// iFit = atoi(argv[4]);
// if (argc>5) {
// firstExpt = atoi(argv[5]);
// if (argc>6) {
// nExpt = atoi(argv[6]);
// if (argc>7) {
// nExptGen = atoi(argv[7]);
// }
// }
// }
// }
// }
// for (firstExptGen = 0; firstExptGen<(firstExpt+nExpt); firstExptGen+=nExptGen) {
// }
// firstExptGen -= nExptGen;
// if ( (nExpt > nExptGen) || (nExptGen%nExpt != 0) ) {
// cerr<<"Error, nExpt must be a factor of nExptGen."<<endl;
// return EXIT_FAILURE;
// }
//} else {
// if (argc>3) {
// firstExptGen = atoi(argv[3]);
// if (argc>4) {
// nExptGen = atoi(argv[4]);
// if (argc>5) {
// Int_t eigval = atoi(argv[5]);
// if ( eigval == 1 ) {
// eigenvalue = LauTimeDepFitModel::CPOdd;
// } else {
// eigenvalue = LauTimeDepFitModel::CPEven;
// }
// }
// }
// }
//}
//cout<<"dtype "<<dtype<<" port "<<port<<" iFit "<<iFit<<" firstExpt "<<firstExpt<<" nExpt "<<nExpt<<endl;
//Double_t nSigEvents(0);
//if (dtype=="CPEven"){
// nSigEvents = 15000;
//} else {
// nSigEvents = 10000;
//}
//LauDaughters* daughtersB0bar(0);
//LauDaughters* daughtersB0(0);
//LauEffModel* effModelB0bar(0);
//LauEffModel* effModelB0(0);
//LauVetoes* vetoes = new LauVetoes();
////vetoes->addMassVeto( 2, 2.00776, 2.01276 );
//daughtersB0bar = new LauDaughters("B0_bar", "pi+", "pi-", "D0");
//daughtersB0 = new LauDaughters("B0", "pi+", "pi-", "D0_bar");
//// efficiency
//effModelB0bar = new LauEffModel(daughtersB0bar, vetoes);
//effModelB0 = new LauEffModel(daughtersB0, vetoes);
//LauIsobarDynamics* sigModelB0bar(0);
//LauIsobarDynamics* sigModelB0(0);
//LauTimeDepFitModel* fitModel(0);
//std::vector<LauParameter *> params;
//LauFlavTag* flavTag = new LauFlavTag(params, kTRUE, "tagFlv", "tagCat");
//flavTag->setTrueTagVarName("trueTag");
//
//// Use alternative tagging calibration parameters?
////flavTag->useAveOmegaDeltaOmega();
//TFile* etafile(0);
//TH1* etahist(0);
//Lau1DHistPdf* etahistpdf(0);
- ////if (command == "gen"){
+ ////if (command == "gen"){
// etafile = TFile::Open("histogram.root");
// etahist = dynamic_cast<TH1*>(etafile->Get("htemp"));
// etahistpdf = new Lau1DHistPdf("eta",etahist,0,0.54,kFALSE,kFALSE);
////}
//// signal dynamics
//sigModelB0bar = new LauIsobarDynamics(daughtersB0bar, effModelB0bar);
//sigModelB0bar->setIntFileName("integ_B0bar.dat");
//sigModelB0bar->addResonance("D*+_2", 2, LauAbsResonance::RelBW);
//sigModelB0bar->addResonance("D*+_0", 2, LauAbsResonance::RelBW);
//sigModelB0bar->addResonance("rho0(770)", 3, LauAbsResonance::RelBW);
//sigModelB0bar->addResonance("f_0(980)", 3, LauAbsResonance::RelBW);
//sigModelB0bar->addResonance("f_2(1270)", 3, LauAbsResonance::RelBW);
//sigModelB0 = new LauIsobarDynamics(daughtersB0, effModelB0);
//sigModelB0->setIntFileName("integ_B0.dat");
//sigModelB0->addResonance("D*-_2", 1, LauAbsResonance::RelBW);
//sigModelB0->addResonance("D*-_0", 1, LauAbsResonance::RelBW);
//sigModelB0->addResonance("rho0(770)", 3, LauAbsResonance::RelBW);
//sigModelB0->addResonance("f_0(980)", 3, LauAbsResonance::RelBW);
//sigModelB0->addResonance("f_2(1270)", 3, LauAbsResonance::RelBW);
//// fit model
//fitModel = new LauTimeDepFitModel(sigModelB0bar,sigModelB0,flavTag);
//fitModel->setASqMaxValue(1.45);
//std::vector<LauAbsCoeffSet*> coeffset;
//coeffset.push_back( new LauRealImagCoeffSet("D*-_2", 1.00, 0.00, kTRUE, kTRUE) );
//coeffset.push_back( new LauRealImagCoeffSet("D*-_0", 0.53*TMath::Cos( 3.00), 0.53*TMath::Sin( 3.00), kFALSE, kFALSE) );
//coeffset.push_back( new LauRealImagCoeffSet("rho0(770)", 1.22*TMath::Cos( 2.25), 1.22*TMath::Sin( 2.25), kFALSE, kFALSE) );
//coeffset.push_back( new LauRealImagCoeffSet("f_0(980)", 0.19*TMath::Cos(-2.48), 0.19*TMath::Sin(-2.48), kFALSE, kFALSE) );
//coeffset.push_back( new LauRealImagCoeffSet("f_2(1270)", 0.75*TMath::Cos( 2.97), 0.75*TMath::Sin( 2.97), kFALSE, kFALSE) );
//for (std::vector<LauAbsCoeffSet*>::iterator iter=coeffset.begin(); iter!=coeffset.end(); ++iter) {
// fitModel->setAmpCoeffSet(*iter);
//}
//fitModel->setCPEigenvalue( eigenvalue );
//fitModel->setPhiMix( 2.0*LauConstants::beta, fixPhiMix, useSinCos );
//fitModel->setAsymmetries(0.0,kFALSE);
//int tagCat(-1);
//// Tag cat fractions, dilutions and Delta dilutions
//if (dtype=="CPEven"){
// flavTag->addValidTagCat(63);
// flavTag->setSignalTagCatPars(63, 0.6, 1.0, 0.0, kTRUE, kTRUE,"PerEvtMistag",0.5,0.5,1.0,1.0,0.0);
// tagCat=63;
//} else {
// // Still need tagCat 63 in QFS channels for calibration etc
// flavTag->addValidTagCat(63);
// flavTag->setSignalTagCatPars(63, 0.6, 1.0, 0.0, kTRUE, kTRUE,"PerEvtMistag",0.5,0.5,1.0,1.0,0.0);
// tagCat=63;
//}
- ////if (command == "gen"){
+ ////if (command == "gen"){
// fitModel->setSignalFlavTagPdfs(63,etahistpdf);
////}
//// Delta t PDFs
//const Double_t minDt(0.0);
//const Double_t maxDt(20.0);
//const Double_t minDtErr(0.0);
//const Double_t maxDtErr(2.5);
//const Int_t nGauss(3);
//std::vector<Bool_t> scale(nGauss);
//scale[0] = kTRUE;
//scale[1] = kTRUE;
//scale[2] = kFALSE;
//std::vector<LauAbsRValue*> dtPars(10);
//std::vector<LauAbsRValue*> dtParsExp(9);
//TString mean0Name("dt_"); mean0Name += "_mean_0";
//TString mean1Name("dt_"); mean1Name += "_mean_1";
//TString mean2Name("dt_"); mean2Name += "_mean_2";
//TString sigma0Name("dt_"); sigma0Name += "_sigma_0";
//TString sigma1Name("dt_"); sigma1Name += "_sigma_1";
//TString sigma2Name("dt_"); sigma2Name += "_sigma_2";
//TString frac1Name("dt_"); frac1Name += "_frac_1";
//TString frac2Name("dt_"); frac2Name += "_frac_2";
//TString tauName("dt_"); tauName += "_tau";
//TString freqName("dt_"); freqName += "_deltaM";
//LauParameter * mean0 = new LauParameter(mean0Name, -0.181);
//LauParameter * mean1 = new LauParameter(mean1Name, -1.27);
//LauParameter * mean2 = new LauParameter(mean2Name, 0.0);
//LauParameter * sigma0 = new LauParameter(sigma0Name, 1.067);
//LauParameter * sigma1 = new LauParameter(sigma1Name, 3.0);
//LauParameter * sigma2 = new LauParameter(sigma2Name, 8.0);
//LauParameter * frac1 = new LauParameter(frac1Name, 0.0930);
//LauParameter * frac2 = new LauParameter(frac2Name, 0.0036);
//LauParameter * tau = new LauParameter(tauName, 1.520);
//LauParameter * freq = new LauParameter(freqName, 0.5064);
//TString mean0tagcat63Name("dt_"); mean0tagcat63Name += 63; mean0tagcat63Name += "_mean_0";
//TString sigma0tagcat63Name("dt_"); sigma0tagcat63Name += 63; sigma0tagcat63Name += "_sigma_0";
//LauParameter * mean0tagcat63 = new LauParameter(mean0tagcat63Name, -0.031);
//LauParameter * sigma0tagcat63 = new LauParameter(sigma0tagcat63Name, 0.972);
//dtPars[0] = mean0; dtParsExp[0] = mean0;
//dtPars[1] = mean1; dtParsExp[1] = mean1;
//dtPars[2] = mean2; dtParsExp[2] = mean2;
//dtPars[3] = sigma0; dtParsExp[3] = sigma0;
//dtPars[4] = sigma1; dtParsExp[4] = sigma1;
//dtPars[5] = sigma2; dtParsExp[5] = sigma2;
//dtPars[6] = frac1; dtParsExp[6] = frac1;
//dtPars[7] = frac2; dtParsExp[7] = frac2;
//dtPars[8] = tau; dtParsExp[8] = tau;
//dtPars[9] = freq;
////Decay time acceptance spline - same for all tag cats (though doesn't have to be)
//std::vector<Double_t> dtvals;
//dtvals.push_back(0.0); dtvals.push_back(1.0); dtvals.push_back(2.0); dtvals.push_back(4.0); dtvals.push_back(6.0);
//dtvals.push_back(8.0); dtvals.push_back(11.0); dtvals.push_back(14.0); dtvals.push_back(17.0); dtvals.push_back(20.0);
//std::vector<Double_t> effvals;
//effvals.push_back(0.0); effvals.push_back(0.15); effvals.push_back(0.25); effvals.push_back(0.33); effvals.push_back(0.38);
//effvals.push_back(0.4); effvals.push_back(0.43); effvals.push_back(0.45); effvals.push_back(0.47); effvals.push_back(0.50);
//
////Lau1DCubicSpline* dtEffSpline = new Lau1DCubicSpline(dtvals,effvals);
// //Lau1DCubicSpline* dtEffSpline = new Lau1DCubicSpline(dtvals,effvals,Lau1DCubicSpline::StandardSpline,Lau1DCubicSpline::Natural,Lau1DCubicSpline::Natural);
//const Int_t nBins = 9;
//const Double_t edges[nBins + 1] = {0,1,2,4,6,8,11,14,17,20};
//const Double_t binFilling[nBins] = {0.0075,0.02,0.029,0.655,0.69,0.715,0.74,0.76,0.785};
//TH1D effHist("effHist","Histogram of efficiencies", nBins, edges);
//for( Int_t i = 1 ; i <= nBins ; ++i ){ effHist.SetBinContent(i, binFilling[i-1]); }
//if (dtype=="CPEven"){
// LauDecayTimePdf * dtPdf = new LauDecayTimePdf( "deltaTAvg", "deltaTAvgErr", dtPars, minDt, maxDt, minDtErr, maxDtErr, LauDecayTimePdf::ExpTrig, nGauss, scale, LauDecayTimePdf::DecayTime, LauDecayTimePdf::Flat );
// dtPdf->doSmearing(kFALSE);
// dtPdf->setEffiHist(&effHist);
// // dtPdf->setEffiSpline(dtEffSpline, effPars0);
// fitModel->setSignalDtPdf( 0, dtPdf );
//} else {
// LauDecayTimePdf * dtPdf = new LauDecayTimePdf( "deltaTAvg", "deltaTAvgErr", dtPars, minDt, maxDt, minDtErr, maxDtErr, LauDecayTimePdf::ExpTrig, nGauss, scale, LauDecayTimePdf::DecayTime, LauDecayTimePdf::Flat );
// dtPdf->doSmearing(kFALSE);
// dtPdf->setEffiHist(&effHist);
// // dtPdf->setEffiSpline(dtEffSpline, effPars0);
// fitModel->setSignalDtPdf( 0, dtPdf );
//}
////if (tagCat==63){
// dtPars[0] = mean0tagcat63;
// dtPars[1] = mean1->createClone();
// dtPars[2] = mean2->createClone();
// dtPars[3] = sigma0tagcat63;
// dtPars[4] = sigma1->createClone();
// dtPars[5] = sigma2->createClone();
// dtPars[6] = frac1->createClone();
// dtPars[7] = frac2->createClone();
// dtPars[8] = tau->createClone();
// dtPars[9] = freq->createClone();
// //LauDecayTimePdf * dtPdf = new LauDecayTimePdf( "deltaTAvg", "deltaTAvgErr", dtPars, minDt, maxDt, minDtErr, maxDtErr, LauDecayTimePdf::ExpTrig, nGauss, scale, LauDecayTimePdf::DecayTime );
// if (dtype=="CPEven"){
// LauDecayTimePdf * dtPdf = new LauDecayTimePdf( "deltaTAvg", "deltaTAvgErr", dtPars, minDt, maxDt, minDtErr, maxDtErr, LauDecayTimePdf::SimFitSigBd, nGauss, scale, LauDecayTimePdf::DecayTime , LauDecayTimePdf::Flat );
// dtPdf->doSmearing(kFALSE);
// // dtPdf->setEffiSpline(dtEffSpline, effPars63);
// dtPdf->setEffiHist(&effHist);
// fitModel->setSignalDtPdf( tagCat, dtPdf );
// } else {
// LauDecayTimePdf * dtPdf = new LauDecayTimePdf( "deltaTAvg", "deltaTAvgErr", dtPars, minDt, maxDt, minDtErr, maxDtErr, LauDecayTimePdf::SimFitNormBd, nGauss, scale, LauDecayTimePdf::DecayTime , LauDecayTimePdf::Flat);
// dtPdf->doSmearing(kFALSE);
// // dtPdf->setEffiSpline(dtEffSpline, effPars63);
// dtPdf->setEffiHist(&effHist);
// fitModel->setSignalDtPdf( tagCat, dtPdf );
// }
////}
//// set the number of signal events
//cout<<"nSigEvents = "<<nSigEvents<<endl;
//LauParameter* nSigPar = new LauParameter("signalEvents", nSigEvents, -2.0*nSigEvents, 2.0*nSigEvents, kTRUE);
//fitModel->setNSigEvents(nSigPar);
//// set the number of experiments
//if (command == "fit") {
// fitModel->setNExpts(nExpt, firstExpt);
//} else {
// fitModel->setNExpts(nExptGen, firstExptGen);
//}
//fitModel->useAsymmFitErrors(kFALSE);
////fitModel->useRandomInitFitPars(kTRUE);
//fitModel->useRandomInitFitPars(kFALSE);
//fitModel->doPoissonSmearing(kFALSE);
//fitModel->doEMLFit(kFALSE);
//fitModel->writeLatexTable(kFALSE);
//TString dataFile("");
//TString treeName("fitTree");
//TString rootFileName("");
//TString tableFileName("");
//TString fitToyFileName("");
//TString splotFileName("");
//if (command == "fit") {
// dataFile = "TEST-Dpipi_"+dtype;
// dataFile += "_expts"; dataFile += firstExptGen; dataFile += "-"; dataFile += firstExptGen+nExptGen-1;
- // dataFile += "_CP";
+ // dataFile += "_CP";
// if ( eigenvalue == LauTimeDepFitModel::CPEven ) {
// dataFile += "even";
// } else {
// dataFile += "odd";
// }
// dataFile += ".root";
// rootFileName = "fits/fit"; rootFileName += iFit;
// rootFileName += "_expts"; rootFileName += firstExpt; rootFileName += "-"; rootFileName += firstExpt+nExpt-1;
// rootFileName += ".root";
// tableFileName = "fitResults_"; tableFileName += iFit;
// tableFileName += "_expts"; tableFileName += firstExpt; tableFileName += "-"; tableFileName += firstExpt+nExpt-1;
// fitToyFileName = "fitToyMC_"+dtype; fitToyFileName += iFit;
// fitToyFileName += "_expts"; fitToyFileName += firstExpt; fitToyFileName += "-"; fitToyFileName += firstExpt+nExpt-1;
// fitToyFileName += ".root";
// splotFileName = "splot_"; splotFileName += iFit;
// splotFileName += "_expts"; splotFileName += firstExpt; splotFileName += "-"; splotFileName += firstExpt+nExpt-1;
// splotFileName += ".root";
//} else {
// dataFile = "TEST-Dpipi_"+dtype;
// dataFile += "_expts"; dataFile += firstExptGen; dataFile += "-"; dataFile += firstExptGen+nExptGen-1; dataFile += "_CP";
// if ( eigenvalue == LauTimeDepFitModel::CPEven ) {
// dataFile += "even";
// } else {
// dataFile += "odd";
// }
// dataFile += ".root";
// rootFileName = "dummy.root";
// tableFileName = "genResults";
//}
//// Generate toy from the fitted parameters
//fitModel->compareFitData(1, fitToyFileName);
//// Write out per-event likelihoods and sWeights
////fitModel->writeSPlotData(splotFileName, "splot", kFALSE);
//// Execute the generation/fit
//if ( command == "fit" ){
// fitModel->runSlave( dataFile, treeName, rootFileName, tableFileName, "localhost", port );
//} else {
// fitModel->run( command, dataFile, treeName, rootFileName, tableFileName );
//}
return EXIT_SUCCESS;
}
diff --git a/inc/LauDecayTimePdf.hh b/inc/LauDecayTimePdf.hh
index 1767137..60f138d 100644
--- a/inc/LauDecayTimePdf.hh
+++ b/inc/LauDecayTimePdf.hh
@@ -1,518 +1,552 @@
/*
Copyright 2006 University of Warwick
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/*
Laura++ package authors:
John Back
Paul Harrison
Thomas Latham
*/
/*! \file LauDecayTimePdf.hh
\brief File containing declaration of LauDecayTimePdf class.
*/
/*! \class LauDecayTimePdf
\brief Class for defining the PDFs used in the time-dependent fit model to describe the decay time.
LauDecayTimePdf is a class that provides the PDFs for describing the
time-dependence of the various terms in a particle/antiparticle decay to a
common final state. The various terms have the form of exponentially
decaying trigonometric or hyperbolic functions convolved with a N-Gaussian
resolution function.
*/
#ifndef LAU_DECAYTIME_PDF
#define LAU_DECAYTIME_PDF
#include <vector>
#include <complex>
#include "TString.h"
#include "LauAbsRValue.hh"
#include "LauFitDataTree.hh"
#include "LauComplex.hh"
class TH1;
class Lau1DHistPdf;
class Lau1DCubicSpline;
class LauDecayTimePdf {
public:
//! The functional form of the decay time PDF
enum FuncType {
Hist, //< Hist PDF for fixed background
Delta, //< Delta function - for prompt background
Exp, //< Exponential function - for non-prompt background or charged B's
DeltaExp, //< Delta + Exponential function - for background with prompt and non-prompt parts
ExpTrig, //< Exponential function with Delta m driven mixing - for neutral B_d's
ExpHypTrig, //< Exponential function with both Delta m and Delta Gamma driven mixing - for neutral B_s's
SimFitNormBd, //< Exponential function with Delta m driven mixing - for neutral B_d's for flavour specific normalisation mode
SimFitNormBs, //< Exponential function with Delta m driven mixing - for neutral B_d's for CP signal modes
SimFitSigBd, //< Exponential function with both Delta m and Delta Gamma driven mixing - for neutral B_s's for flavour specific normalisation mode
SimFitSigBs //< Exponential function with both Delta m and Delta Gamma driven mixing - for neutral B_s's for CP signal modes
};
//! State of complex error function calculation
enum State {
Good, //< All OK
Overflow1, //< Overflow in term 1
Overflow2 //< Overflow in term 2
};
//! How is the decay time measured - absolute or difference
enum TimeMeasurementMethod {
DecayTime, //< Absolute measurement of decay time, e.g. LHCb scenario
DecayTimeDiff //< Measurement of the difference of two decay times, e.g. BaBar/Belle(II) scenario
};
//! How is the TD efficiency information going to be given?
enum EfficiencyMethod {
Spline, //< As a cubic spline
Binned, //< As a histogram (TH1D/TH1F)
Flat //< As a flat distribution (constant)
};
//! Constructor
/*!
\param [in] theVarName the name of the decay time variable in the input data
\param [in] theVarErrName the name of the decay time error variable in the input data
\param [in] params the parameters of the PDF
\param [in] minAbscissaVal the minimum value of the abscissa
\param [in] maxAbscissaVal the maximum value of the abscissa
\param [in] minAbscissaErr the minimum value of the abscissa error
\param [in] maxAbscissaErr the maximum value of the abscissa error
\param [in] type the functional form of the PDF
\param [in] nGauss the number of Gaussians in the resolution function
\param [in] scale controls whether the Gaussian parameters are scaled by the per-event error
\param [in] method set the type of the time measurement used in the given experiment
*/
LauDecayTimePdf(const TString& theVarName, const TString& theVarErrName, const std::vector<LauAbsRValue*>& params,
Double_t minAbscissaVal, Double_t maxAbscissaVal,
Double_t minAbscissaErr, Double_t maxAbscissaErr,
const FuncType type, const UInt_t nGauss, const std::vector<Bool_t>& scale, const TimeMeasurementMethod method, const EfficiencyMethod effMethod = EfficiencyMethod::Spline);
//! Constructor
/*!
\param [in] theVarName the name of the decay time variable in the input data
\param [in] theVarErrName the name of the decay time error variable in the input data
\param [in] params the parameters of the PDF
\param [in] minAbscissaVal the minimum value of the abscissa
\param [in] maxAbscissaVal the maximum value of the abscissa
\param [in] minAbscissaErr the minimum value of the abscissa error
\param [in] maxAbscissaErr the maximum value of the abscissa error
\param [in] type the functional form of the PDF
\param [in] nGauss the number of Gaussians in the resolution function
\param [in] scaleMeans controls whether the Gaussian mean parameters are scaled by the per-event error
\param [in] scaleWidths controls whether the Gaussian width parameters are scaled by the per-event error
\param [in] method set the type of the time measurement used in the given experiment
*/
LauDecayTimePdf(const TString& theVarName, const TString& theVarErrName, const std::vector<LauAbsRValue*>& params,
const Double_t minAbscissaVal, const Double_t maxAbscissaVal,
const Double_t minAbscissaErr, const Double_t maxAbscissaErr,
const FuncType type, const UInt_t nGauss, const std::vector<Bool_t>& scaleMeans,
const std::vector<Bool_t>& scaleWidths, const TimeMeasurementMethod method, const EfficiencyMethod effMethod = EfficiencyMethod::Spline);
//! Destructor
virtual ~LauDecayTimePdf();
//! Set the histogram to be used for generation of per-event decay time errors
/*!
If not set will fall back to using Landau distribution
\param [in] hist the histogram of the distribution
*/
void setErrorHisto(const TH1* hist);
//! Set the Histogram PDF in case of fixed background PDF
void setHistoPdf(const TH1* hist);
//! Set efficiency PDF in the form of Spline
/*!
\param [in] spline the efficiency spline function
*/
void setEffiSpline(Lau1DCubicSpline* spline);
//! Set the parameters of the Landau distribution used to generate the per-event decay time errors
/*!
\param [in] mpv the MPV (most probable value) of the distribution
\param [in] sigma the width of the distribution
*/
void setErrorDistTerms(const Double_t mpv, const Double_t sigma) {
errorDistMPV_ = mpv;
errorDistSigma_ = sigma;
}
//! Set the efficiency PDF in the form of a Histogram
/*!
\param [in] hist the histogram of efficiencies
*/
void setEffiHist(const TH1* hist);
//! Retrieve the name of the error variable
const TString& varName() const {return varName_;}
//! Retrieve the name of the error variable
const TString& varErrName() const {return varErrName_;}
//! Turn on or off the resolution function
void doSmearing(Bool_t smear) {smear_ = smear;}
//! Determine if the resolution function is turned on or off
Bool_t doSmearing() const {return smear_;}
//! Cache information from data
/*!
Will cache, for every event, the abscissa values and, if all parameters are fixed, the PDF value.
\param [in] inputData the data to be used to calculate everything
*/
virtual void cacheInfo(const LauFitDataTree& inputData);
//! Calculate the likelihood (and all associated information) given value of the abscissa
/*!
\param [in] abscissa the value of the abscissa
*/
virtual void calcLikelihoodInfo(Double_t abscissa);
//! Calculate the likelihood (and all associated information) given value of the abscissa and its error
/*!
\param [in] abscissa the value of the abscissa
\param [in] abscissaErr the error on the abscissa
*/
virtual void calcLikelihoodInfo(Double_t abscissa, Double_t abscissaErr);
//! Retrieve the likelihood (and all associated information) given the event number
/*!
\param [in] iEvt the event number
*/
virtual void calcLikelihoodInfo(UInt_t iEvt);
//! Evaluate the complex error fonction
LauComplex ComplexErf(Double_t x, Double_t y);
//! Compute the imaginary error function: Erfi(z) = -I*Erf(iz)
LauComplex Erfi(Double_t x, Double_t y);
//! Compute the complementary complex error function
LauComplex ComplexErfc(Double_t x, Double_t y);
//! Get FuncType from model
FuncType getFuncType() const {return type_;}
//! Get the exponential term
Double_t getExpTerm() const {return expTerm_;}
//! Get the cos(Dm*t) term (multiplied by the exponential)
Double_t getCosTerm() const {return cosTerm_;}
//! Get the sin(Dm*t) term (multiplied by the exponential)
Double_t getSinTerm() const {return sinTerm_;}
//! Get the cosh(DG/2*t) term (multiplied by the exponential)
Double_t getCoshTerm() const {return coshTerm_;}
//! Get the sinh(DG/2*t) term (multiplied by the exponential)
Double_t getSinhTerm() const {return sinhTerm_;}
//! Get the normalisation related to the exponential term only
Double_t getNormTermExp() const {return normTermExp_;}
//! Get the normalisation related to the cos term only
Double_t getNormTermCos() const {return normTermCos_;}
//! Get the normalisation related to the sin term only
Double_t getNormTermSin() const {return normTermSin_;}
//! Get the first term in the normalisation (from integrating the cosh)
Double_t getNormTermCosh() const {return normTermCosh_;}
//! Get the second term in the normalisation (from integrating the sinh)
Double_t getNormTermSinh() const {return normTermSinh_;}
//! Get error probability density from Error distribution
Double_t getErrTerm() const{return errTerm_;}
//! Get efficiency probability density from efficiency distribution
Double_t getEffiTerm() const{return effiTerm_;}
//! Retrieve the parameters of the PDF, e.g. so that they can be loaded into a fit
/*!
\return the parameters of the PDF
*/
const std::vector<LauAbsRValue*>& getParameters() const { return param_; }
//! Retrieve the parameters of the PDF, e.g. so that they can be loaded into a fit
/*!
\return the parameters of the PDF
*/
std::vector<LauAbsRValue*>& getParameters() { return param_; }
//! Update the pulls for all parameters
void updatePulls();
// Calculate the normalisation for the non smeared Hyperbolic terms
Double_t normExpHypTerm(Double_t Abs);
Double_t normExpHypTermDep(Double_t Abs);
// Calculate normalisation for non-smeared cos and sin terms using the
// complex number method
- LauComplex nonSmearedCosSinIntegral(Double_t minAbs, Double_t maxAbs);
+ /*!
+ \param [in] minAbs lower bound for the integral domain
+ \param [in] maxAbs lower bound for the integral domain
+ \return pair of {cosTermIntegral, sinTermInteral}
+ */
+ std::pair<Double_t, Double_t> nonSmearedCosSinIntegral(Double_t minAbs, Double_t maxAbs);
+
+ // Calculate normalisation for decay-time resolution smeared cos and
+ // sin terms using the using the Faddeeva function
+ // (https://arxiv.org/abs/1407.0748)
+ /*!
+ \param [in] minAbs lower bound for the integral domain
+ \param [in] maxAbs lower bound for the integral domain
+ \return pair of {cosTermIntegral, sinTermInteral}
+ */
+ std::pair<Double_t, Double_t> smearedCosSinIntegral(Double_t minAbs, Double_t maxAbs);
+
+ // Calculate normalisation for non-smeared cosh and
+ // sinh terms
+ /*!
+ \param [in] minAbs lower bound for the integral domain
+ \param [in] maxAbs lower bound for the integral domain
+ \return pair of {coshTermIntegral, sinhTermInteral}
+ */
+ std::pair<Double_t, Double_t> nonSmearedCoshSinhIntegral(Double_t minAbs, Double_t maxAbs);
+
+ // Calculate normalisation for decay-time resolution smeared cosh and
+ // sinh terms using the using the Faddeeva function
+ // (https://arxiv.org/abs/1407.0748)
+ /*!
+ \param [in] minAbs lower bound for the integral domain
+ \param [in] maxAbs lower bound for the integral domain
+ \return pair of {coshTermIntegral, sinhTermInteral}
+ */
+ std::pair<Double_t, Double_t> smearedCoshSinhIntegral(Double_t minAbs, Double_t maxAbs);
// Store the normalisation
void calcNorm();
void calcPartialIntegrals(const Double_t minAbs, const Double_t maxAbs, const Double_t weight = 1.0);
//! Generate the value of the error
/*!
If scaling by the error should call this before calling generate
\param [in] forceNew forces generation of a new value
*/
Double_t generateError(const Bool_t forceNew = kFALSE);
//! Generate an event from the PDF - TODO not clear that this is really needed, perhaps for background? commented out for now
/*!
\param [in] kinematics used by some PDFs to determine the DP position, on which they have dependence
*/
//virtual LauFitData generate(const LauKinematics* kinematics);
//! Determine the state of the calculation
State state() const {return state_;}
//! Retrieve the decay time error
Double_t abscissaError() const {return abscissaError_;}
//! Retrieve the decay time minimum value
Double_t minAbscissa() const {return minAbscissa_;}
//! Retrieve the decay time maximum value
Double_t maxAbscissa() const {return maxAbscissa_;}
//! Retrieve the decay time error minimum value
Double_t minAbscissaError() const {return minAbscissaError_;}
//! Retrieve the decay time error maximum value
Double_t maxAbscissaError() const {return maxAbscissaError_;}
virtual void checkPositiveness() {}; // Nothing to check here.
// NB calcNorm and calcPDFHeight only calculate the gaussian information for the (type_ == Delta) case
// TODO - can we delete these?
//! Calculate the normalisation factor of the PDF
//virtual void calcNorm();
//! Calculate the maximum height of the PDF
//virtual void calcPDFHeight( const LauKinematics* kinematics );
//! Get efficiency parameters to float in the fit
std::vector<LauParameter*>& getEffiPars() {return effiPars_;}
//! Update spline Y values when floating the decay time acceptance
/*!
\param [in] params the vector of LauParameters describing the Y values
*/
void updateEffiSpline(std::vector<LauParameter*> params);
protected:
typedef std::map< Int_t, LauParameter> LauTagCatParamMap;
//! Set up the initial state correctly - called by the constructors
void initialise();
//! Calculate the pure physics terms with no resolution function applied
void calcNonSmearedTerms(const Double_t abscissa);
inline void state(State s) {state_ = s;}
//! Calculate exponential auxiliary term for the convolution
void calcTrigExponent(Double_t deltaM, Double_t tau, Double_t x, Double_t sigma, Double_t& reTerm, Double_t& imTerm);
//! Calculate convolution between exponential*sin or cos with a Gaussian
void calcTrigConv(Double_t deltaM, Double_t tau, Double_t x, Double_t sigma, Double_t& reOutTerm, Double_t& imOutTerm, Bool_t trig);
//! Retrieve the number of PDF parameters
/*!
\return the number of PDF parameters
*/
UInt_t nParameters() const {return param_.size();}
//! Retrieve the specified parameter
/*!
\param [in] parName the parameter to retrieve
*/
LauAbsRValue* findParameter(const TString& parName);
//! Retrieve the specified parameter
/*!
\param [in] parName the parameter to retrieve
*/
const LauAbsRValue* findParameter(const TString& parName) const;
private:
//! Copy constructor (not implemented)
LauDecayTimePdf(const LauDecayTimePdf& other);
//! Copy assignment operator (not implemented)
LauDecayTimePdf& operator=(const LauDecayTimePdf& other);
//! Name of the variable
TString varName_;
//! Name of the error variable
TString varErrName_;
//! The parameters of the PDF
std::vector<LauAbsRValue*> param_;
//! Smear with the resolution model or not
Bool_t smear_;
//! The minimum value of the decay time
Double_t minAbscissa_;
//! The maximum value of the decay time
Double_t maxAbscissa_;
//! The minimum value of the decay time error
Double_t minAbscissaError_;
//! The maximum value of the decay time error
Double_t maxAbscissaError_;
//! The current value of the decay time error
Double_t abscissaError_;
//! Flag whether a value for the decay time error has been generated
Bool_t abscissaErrorGenerated_;
//! Value of the MPV of the Landau dist used to generate the Delta t error
Double_t errorDistMPV_;
//! Value of the width of the Landau dist used to generate the Delta t error
Double_t errorDistSigma_;
//! The number of gaussians in the resolution mode;
const UInt_t nGauss_;
// Parameters of the gaussian(s) that accounts for the resolution:
//! mean (offset) of each Gaussian in the resolution function
std::vector<LauAbsRValue*> mean_;
//! spread (sigma) of each Gaussian in the resolution function
std::vector<LauAbsRValue*> sigma_;
//! fraction of each Gaussian in the resolution function
std::vector<LauAbsRValue*> frac_;
// Parameters of the exponential: the mean life (tau) and the frequency of oscillation.
//! Lifetime parameter
LauAbsRValue* tau_;
//! Mass difference parameter
LauAbsRValue* deltaM_;
//! Width difference parameter
LauAbsRValue* deltaGamma_;
//! Parameter for the fraction of prompt events in DeltaExp
LauAbsRValue* fracPrompt_;
// Which type of Delta t PDF is this?
const FuncType type_;
// Which type of Delta t PDF is this?
const TimeMeasurementMethod method_;
// Which method for eff/dt input are we using?
const EfficiencyMethod effMethod_;
// Scale the mean and sigma by the per-event error on Delta t?
const std::vector<Bool_t> scaleMeans_;
const std::vector<Bool_t> scaleWidths_;
// The values of the Exp, ExpCos and ExpSin terms
// (NB the Delta terms, i.e. just the gaussian, are stored as the PDF value)
//! The exponential term
Double_t expTerm_;
//! The cos(Dm*t) term (multiplied by the exponential)
Double_t cosTerm_;
//! The sin(Dm*t) term (multiplied by the exponential)
Double_t sinTerm_;
//! The cosh(DG/2*t) term (multiplied by the exponential)
Double_t coshTerm_;
//! The sinh(DG/2*t) term (multiplied by the exponential)
Double_t sinhTerm_;
// Normalisation that is used in the amplitude independent of cosh/sinh term
Double_t normTermExp_;
// Normalisation that is used in the amplitude for cos term
Double_t normTermCos_;
// Normalisation that is used in the amplitude for sin term
Double_t normTermSin_;
//! The first term in the normalisation (from integrating the cosh)
Double_t normTermCosh_;
//! The second term in the normalisation (from integrating the sinh)
Double_t normTermSinh_;
//! Error Hist term
Double_t errTerm_;
//! Hist PDF term
Double_t pdfTerm_;
//! Efficiency PDF term
Double_t effiTerm_;
//! The cache of the per-event errors on the decay time
std::vector<Double_t> abscissas_;
//! The cache of the per-event errors on the decay time
std::vector<Double_t> abscissaErrors_;
//! The cache of the exponential terms
std::vector<Double_t> expTerms_;
//! The cache of the exponential * cos(Dm*t) terms
std::vector<Double_t> cosTerms_;
//! The cache of the exponential * sin(Dm*t) terms
std::vector<Double_t> sinTerms_;
//! The cache of the exponential * cosh(DG/2*t) terms
std::vector<Double_t> coshTerms_;
//! The cache of the exponential * sinh(DG/2*t) terms
std::vector<Double_t> sinhTerms_;
//! The cache of the exponential normalisation
std::vector<Double_t> normTermsExp_;
//! The cache of the first term in the normalisation
std::vector<Double_t> normTermsCosh_;
//! The cache of the second term in the normalisation
std::vector<Double_t> normTermsSinh_;
// To be deleted once modified all the code
std::vector<Double_t> expNorms_;
// cache efficiency term
std::vector<Double_t> effiTerms_;
//! The state of the complex error function calculation
State state_;
//! Histogram PDF for abscissa error distribution
Lau1DHistPdf* errHist_;
//! Histogram PDF for abscissa distribution
Lau1DHistPdf* pdfHist_;
//! efficiency PDF in spline
Lau1DCubicSpline* effiFun_;
//! efficiency PDF as Histogram
TH1* effiHist_;
-
+
//! Vector of parameters to float acceptance
std::vector<LauParameter*> effiPars_;
ClassDef(LauDecayTimePdf,0) // Define the Delta t PDF
};
#endif
diff --git a/src/LauDecayTimePdf.cc b/src/LauDecayTimePdf.cc
index 8cc3365..ce28dec 100644
--- a/src/LauDecayTimePdf.cc
+++ b/src/LauDecayTimePdf.cc
@@ -1,1239 +1,1325 @@
/*
Copyright 2006 University of Warwick
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/*
Laura++ package authors:
John Back
Paul Harrison
Thomas Latham
*/
/*! \file LauDecayTimePdf.cc
\brief File containing implementation of LauDecayTimePdf class.
*/
#include <iostream>
#include <vector>
using std::cout;
using std::cerr;
using std::endl;
#include <complex>
using std::complex;
#include "TMath.h"
#include "TRandom.h"
#include "TSystem.h"
#include "TH1.h"
+#include "RooMath.h"
#include "Lau1DCubicSpline.hh"
#include "Lau1DHistPdf.hh"
#include "LauConstants.hh"
#include "LauComplex.hh"
#include "LauDecayTimePdf.hh"
#include "LauFitDataTree.hh"
#include "LauParameter.hh"
#include "LauRandom.hh"
ClassImp(LauDecayTimePdf)
LauDecayTimePdf::LauDecayTimePdf(const TString& theVarName, const TString& theVarErrName, const std::vector<LauAbsRValue*>& params,
Double_t minAbscissaVal, Double_t maxAbscissaVal,
Double_t minAbscissaErr, Double_t maxAbscissaErr,
FuncType type, UInt_t nGauss, const std::vector<Bool_t>& scale, const TimeMeasurementMethod method, const EfficiencyMethod effMethod) :
varName_(theVarName),
varErrName_(theVarErrName),
param_(params),
smear_(kTRUE),
minAbscissa_(minAbscissaVal),
maxAbscissa_(maxAbscissaVal),
minAbscissaError_(minAbscissaErr),
maxAbscissaError_(maxAbscissaErr),
abscissaError_(0.0),
abscissaErrorGenerated_(kFALSE),
errorDistMPV_(0.230), // for signal 0.234, for qqbar 0.286
errorDistSigma_(0.075), // for signal 0.073, for qqbar 0.102
nGauss_(nGauss),
mean_(nGauss_,0),
sigma_(nGauss_,0),
frac_(nGauss_-1,0),
tau_(0),
deltaM_(0),
deltaGamma_(0),
fracPrompt_(0),
type_(type),
method_(method),
effMethod_(effMethod),
scaleMeans_(scale),
scaleWidths_(scale),
expTerm_(0.0),
cosTerm_(0.0),
sinTerm_(0.0),
coshTerm_(0.0),
sinhTerm_(0.0),
normTermExp_(0.0),
normTermCosh_(0.0),
normTermSinh_(0.0),
errTerm_(0.0),
pdfTerm_(0.0),
effiTerm_(0.0),
state_(Good),
errHist_(nullptr),
pdfHist_(nullptr),
effiFun_(nullptr),
effiHist_(nullptr),
effiPars_(0)
{
this->initialise();
// Calculate the integrals of the decay time independent of the t
// TODO - this is almost certainly the wrong place to do this
this->calcNorm();
}
LauDecayTimePdf::LauDecayTimePdf(const TString& theVarName, const TString& theVarErrName, const std::vector<LauAbsRValue*>& params,
Double_t minAbscissaVal, Double_t maxAbscissaVal,
Double_t minAbscissaErr, Double_t maxAbscissaErr,
FuncType type, UInt_t nGauss, const std::vector<Bool_t>& scaleMeans, const std::vector<Bool_t>& scaleWidths, const TimeMeasurementMethod method, const EfficiencyMethod effMethod) :
varName_(theVarName),
varErrName_(theVarErrName),
param_(params),
smear_(kTRUE),
minAbscissa_(minAbscissaVal),
maxAbscissa_(maxAbscissaVal),
minAbscissaError_(minAbscissaErr),
maxAbscissaError_(maxAbscissaErr),
abscissaError_(0.0),
abscissaErrorGenerated_(kFALSE),
errorDistMPV_(0.230), // for signal 0.234, for qqbar 0.286
errorDistSigma_(0.075), // for signal 0.073, for qqbar 0.102
nGauss_(nGauss),
mean_(nGauss_,0),
sigma_(nGauss_,0),
frac_(nGauss_-1,0),
tau_(0),
deltaM_(0),
deltaGamma_(0),
fracPrompt_(0),
type_(type),
method_(method),
effMethod_(effMethod),
scaleMeans_(scaleMeans),
scaleWidths_(scaleWidths),
expTerm_(0.0),
cosTerm_(0.0),
sinTerm_(0.0),
coshTerm_(0.0),
sinhTerm_(0.0),
normTermExp_(0.0),
normTermCosh_(0.0),
normTermSinh_(0.0),
errTerm_(0.0),
pdfTerm_(0.0),
effiTerm_(0.0),
state_(Good),
errHist_(nullptr),
pdfHist_(nullptr),
effiFun_(nullptr),
effiHist_(nullptr),
effiPars_(0)
{
this->initialise();
// Calculate the integrals of the decay time independent of the t
// TODO - this is almost certainly the wrong place to do this
this->calcNorm();
}
LauDecayTimePdf::~LauDecayTimePdf()
{
// Destructor
delete errHist_; errHist_ = nullptr;
delete pdfHist_; pdfHist_ = nullptr;
delete effiFun_; effiFun_ = nullptr;
delete effiHist_; effiHist_ = nullptr;
for( auto& par : effiPars_ ){ delete par; par = nullptr; }
effiPars_.clear();
}
void LauDecayTimePdf::initialise()
{
// The parameters are:
// - the mean and the sigma (bias and spread in resolution) of the gaussian(s)
// - the mean lifetime, denoted tau, of the exponential decay
// - the frequency of oscillation, denoted Delta m, of the cosine and sine terms
// - the decay width difference, denoted Delta Gamma, of the hyperbolic cosine and sine terms
//
// The next two arguments specify the range in which the PDF is defined,
// and the PDF will be normalised w.r.t. these limits.
//
// The final three arguments define the type of Delta t PDF (Delta, Exp, ExpTrig or ExpHypTrig ), the number of gaussians
// and whether or not the gaussian parameters should be scaled by the per-event errors on Delta t
// First check whether the scale vector is nGauss in size
if (nGauss_ != scaleMeans_.size() || nGauss_ != scaleWidths_.size()) {
cerr<<"ERROR in LauDecayTimePdf::initialise : scale vector size not the same as nGauss."<<endl;
gSystem->Exit(EXIT_FAILURE);
}
if (type_ == Hist){
if (this->nParameters() != 0){
cerr<<"ERROR in LauDecayTimePdf::initialise : Hist PDF should have 0 parameters"<<endl;
gSystem->Exit(EXIT_FAILURE);
}
}else{
TString meanName("mean_");
TString sigmaName("sigma_");
TString fracName("frac_");
Bool_t foundParams(kTRUE);
for (UInt_t i(0); i<nGauss_; ++i) {
TString tempName(meanName); tempName += i;
TString tempName2(sigmaName); tempName2 += i;
TString tempName3(fracName); tempName3 += i;
mean_[i] = this->findParameter(tempName);
foundParams &= (mean_[i] != 0);
sigma_[i] = this->findParameter(tempName2);
foundParams &= (sigma_[i] != 0);
if (i!=0) {
frac_[i-1] = this->findParameter(tempName3);
foundParams &= (frac_[i-1] != 0);
}
}
if (type_ == Delta) {
if ((this->nParameters() != (3*nGauss_-1)) || (!foundParams)) {
cerr<<"ERROR in LauDecayTimePdf::initialise : Delta type PDF requires:"<<endl;
cerr<<" - 2 parameters per Gaussian (i): \"mean_i\" and \"sigma_i\""<<endl;
cerr<<" - nGauss-1 fractions: \"frac_i\", where i!=0"<<endl;
gSystem->Exit(EXIT_FAILURE);
}
} else if (type_ == Exp) {
tau_ = this->findParameter("tau");
foundParams &= (tau_ != 0);
if ((this->nParameters() != (3*nGauss_-1+1)) || (!foundParams)) {
cerr<<"ERROR in LauDecayTimePdf::initialise : Exp type PDF requires:"<<endl;
cerr<<" - 2 parameters per Gaussian (i): \"mean_i\" and \"sigma_i\""<<endl;
cerr<<" - nGauss-1 fractions: \"frac_i\", where i!=0"<<endl;
cerr<<" - the lifetime of the exponential decay: \"tau\"."<<endl;
gSystem->Exit(EXIT_FAILURE);
}
} else if (type_ == ExpTrig) {
tau_ = this->findParameter("tau");
deltaM_ = this->findParameter("deltaM");
foundParams &= (tau_ != 0);
foundParams &= (deltaM_ != 0);
if ((this->nParameters() != (3*nGauss_-1+2)) || (!foundParams)) {
cerr<<"ERROR in LauDecayTimePdf::initialise : ExpTrig type PDF requires:"<<endl;
cerr<<" - 2 parameters per Gaussian (i): \"mean_i\" and \"sigma_i\""<<endl;
cerr<<" - nGauss-1 fractions: \"frac_i\", where i!=0"<<endl;
cerr<<" - the lifetime of the exponential decay: \"tau\""<<endl;
cerr<<" - the oscillation frequency: \"deltaM\"."<<endl;
gSystem->Exit(EXIT_FAILURE);
}
} else if (type_ == ExpHypTrig) {
tau_ = this->findParameter("tau");
deltaM_ = this->findParameter("deltaM");
deltaGamma_ = this->findParameter("deltaGamma");
foundParams &= (tau_ != 0);
foundParams &= (deltaM_ != 0);
foundParams &= (deltaGamma_ != 0);
if ((this->nParameters() != (3*nGauss_-1+3)) || (!foundParams)) {
cerr<<"ERROR in LauDecayTimePdf::initialise : ExpHypTrig type PDF requires:"<<endl;
cerr<<" - 2 parameters per Gaussian (i): \"mean_i\" and \"sigma_i\""<<endl;
cerr<<" - nGauss-1 fractions: \"frac_i\", where i!=0"<<endl;
cerr<<" - the lifetime of the exponential decay: \"tau\""<<endl;
cerr<<" - the oscillation frequency: \"deltaM\"."<<endl;
cerr<<" - the width difference: \"deltaGamma\"."<<endl;
gSystem->Exit(EXIT_FAILURE);
}
} else if (type_ == DeltaExp) {
tau_ = this->findParameter("tau");
fracPrompt_ = this->findParameter("frac_prompt");
foundParams &= (tau_ != 0);
foundParams &= (fracPrompt_ != 0);
if ((this->nParameters() != (3*nGauss_-1+2)) || (!foundParams)) {
cerr<<"ERROR in LauDecayTimePdf::initialise : DeltaExp type PDF requires:"<<endl;
cerr<<" - 2 parameters per Gaussian (i): \"mean_i\" and \"sigma_i\""<<endl;
cerr<<" - nGauss-1 fractions: \"frac_i\", where i!=0"<<endl;
cerr<<" - the lifetime of the exponential decay: \"tau\""<<endl;
cerr<<" - the fraction of the prompt part: \"frac_prompt\"."<<endl;
gSystem->Exit(EXIT_FAILURE);
}
} else if (type_ == SimFitNormBd) {
tau_ = this->findParameter("tau");
deltaM_ = this->findParameter("deltaM");
foundParams &= (tau_ != 0);
foundParams &= (deltaM_ != 0);
if ((this->nParameters() != (3*nGauss_-1+2)) || (!foundParams)) {
cerr<<"ERROR in LauDecayTimePdf::initialise : SimFitNormBd type PDF requires:"<<endl;
cerr<<" - 2 parameters per Gaussian (i): \"mean_i\" and \"sigma_i\""<<endl;
cerr<<" - nGauss-1 fractions: \"frac_i\", where i!=0"<<endl;
cerr<<" - the lifetime of the exponential decay: \"tau\""<<endl;
cerr<<" - the oscillation frequency: \"deltaM\"."<<endl;
gSystem->Exit(EXIT_FAILURE);
}
} else if (type_ == SimFitSigBd) {
tau_ = this->findParameter("tau");
deltaM_ = this->findParameter("deltaM");
foundParams &= (tau_ != 0);
foundParams &= (deltaM_ != 0);
if ((this->nParameters() != (3*nGauss_-1+2)) || (!foundParams)) {
cerr<<"ERROR in LauDecayTimePdf::initialise : SimFitSigBd type PDF requires:"<<endl;
cerr<<" - 2 parameters per Gaussian (i): \"mean_i\" and \"sigma_i\""<<endl;
cerr<<" - nGauss-1 fractions: \"frac_i\", where i!=0"<<endl;
cerr<<" - the lifetime of the exponential decay: \"tau\""<<endl;
cerr<<" - the oscillation frequency: \"deltaM\"."<<endl;
gSystem->Exit(EXIT_FAILURE);
}
} else if (type_ == SimFitNormBs) {
tau_ = this->findParameter("tau");
deltaM_ = this->findParameter("deltaM");
deltaGamma_ = this->findParameter("deltaGamma");
foundParams &= (tau_ != 0);
foundParams &= (deltaM_ != 0);
foundParams &= (deltaGamma_ != 0);
if ((this->nParameters() != (3*nGauss_-1+3)) || (!foundParams)) {
cerr<<"ERROR in LauDecayTimePdf::initialise : SimFitNormBs type PDF requires:"<<endl;
cerr<<" - 2 parameters per Gaussian (i): \"mean_i\" and \"sigma_i\""<<endl;
cerr<<" - nGauss-1 fractions: \"frac_i\", where i!=0"<<endl;
cerr<<" - the lifetime of the exponential decay: \"tau\""<<endl;
cerr<<" - the oscillation frequency: \"deltaM\"."<<endl;
cerr<<" - the width difference: \"deltaGamma\"."<<endl;
gSystem->Exit(EXIT_FAILURE);
}
} else if (type_ == SimFitSigBs) {
tau_ = this->findParameter("tau");
deltaM_ = this->findParameter("deltaM");
deltaGamma_ = this->findParameter("deltaGamma");
foundParams &= (tau_ != 0);
foundParams &= (deltaM_ != 0);
foundParams &= (deltaGamma_ != 0);
if ((this->nParameters() != (3*nGauss_-1+3)) || (!foundParams)) {
cerr<<"ERROR in LauDecayTimePdf::initialise : SimFitSigBs type PDF requires:"<<endl;
cerr<<" - 2 parameters per Gaussian (i): \"mean_i\" and \"sigma_i\""<<endl;
cerr<<" - nGauss-1 fractions: \"frac_i\", where i!=0"<<endl;
cerr<<" - the lifetime of the exponential decay: \"tau\""<<endl;
cerr<<" - the oscillation frequency: \"deltaM\"."<<endl;
cerr<<" - the width difference: \"deltaGamma\"."<<endl;
gSystem->Exit(EXIT_FAILURE);
}
}
}
// Cache the normalisation factor
//this->calcNorm();
}
void LauDecayTimePdf::cacheInfo(const LauFitDataTree& inputData)
{
Bool_t hasBranch = inputData.haveBranch(this->varName());
if (!hasBranch) {
cerr<<"ERROR in LauDecayTimePdf::cacheInfo : Input data does not contain variable \""<<this->varName()<<"\"."<<endl;
return;
}
hasBranch = inputData.haveBranch(this->varErrName());
if (!hasBranch) {
cerr<<"ERROR in LauDecayTimePdf::cacheInfo : Input data does not contain variable \""<<this->varErrName()<<"\"."<<endl;
return;
}
// Pass the data to the decay-time error PDF for caching
if ( errHist_ ) {
errHist_->cacheInfo(inputData);
}
if (type_ == Hist){
// Pass the data to the decay-time PDF for caching
if ( pdfHist_ ) {
pdfHist_->cacheInfo(inputData);
}
}else{
// determine whether we are caching our PDF value
//TODO
//Bool_t doCaching( this->nFixedParameters() == this->nParameters() );
//this->cachePDF( doCaching );
// clear the vectors and reserve enough space
const UInt_t nEvents = inputData.nEvents();
abscissas_.clear(); abscissas_.reserve(nEvents);
abscissaErrors_.clear(); abscissaErrors_.reserve(nEvents);
expTerms_.clear(); expTerms_.reserve(nEvents);
cosTerms_.clear(); cosTerms_.reserve(nEvents);
sinTerms_.clear(); sinTerms_.reserve(nEvents);
coshTerms_.clear(); coshTerms_.reserve(nEvents);
sinhTerms_.clear(); sinhTerms_.reserve(nEvents);
normTermsExp_.clear(); normTermsExp_.reserve(nEvents);
normTermsCosh_.clear(); normTermsCosh_.reserve(nEvents);
normTermsSinh_.clear(); normTermsSinh_.reserve(nEvents);
effiTerms_.clear(); effiTerms_.reserve(nEvents);
for (UInt_t iEvt = 0; iEvt < nEvents; iEvt++) {
const LauFitData& dataValues = inputData.getData(iEvt);
LauFitData::const_iterator iter = dataValues.find(this->varName());
const Double_t abscissa = iter->second;
if (abscissa > this->maxAbscissa() || abscissa < this->minAbscissa()) {
cerr<<"ERROR in LauDecayTimePdf::cacheInfo : Given value of the decay time: "<<abscissa<<
" outside allowed range: ["<<this->minAbscissa()<<","<<this->maxAbscissa()<<"]."<<endl;
gSystem->Exit(EXIT_FAILURE);
}
abscissas_.push_back( abscissa );
iter = dataValues.find(this->varErrName());
Double_t abscissaErr = iter->second;
if (abscissaErr > this->maxAbscissaError() || abscissaErr < this->minAbscissaError()) {
cerr<<"ERROR in LauDecayTimePdf::cacheInfo : Given value of the decay-time error: "<<abscissaErr<<
" outside allowed range: ["<<this->minAbscissaError()<<","<<this->maxAbscissaError()<<"]."<<endl;
gSystem->Exit(EXIT_FAILURE);
}
abscissaErrors_.push_back(abscissaErr);
this->calcLikelihoodInfo(abscissa, abscissaErr);
expTerms_.push_back(expTerm_);
cosTerms_.push_back(cosTerm_);
sinTerms_.push_back(sinTerm_);
coshTerms_.push_back(coshTerm_);
sinhTerms_.push_back(sinhTerm_);
normTermsExp_.push_back(normTermExp_);
normTermsCosh_.push_back(normTermCosh_);
normTermsSinh_.push_back(normTermSinh_);
effiTerms_.push_back(effiTerm_);
}
}
}
void LauDecayTimePdf::calcLikelihoodInfo(UInt_t iEvt)
{
if (type_ == Hist){
if ( pdfHist_ ) {
pdfHist_->calcLikelihoodInfo(iEvt);
pdfTerm_ = pdfHist_->getLikelihood();
} else {
pdfTerm_ = 1.0;
}
}else{
expTerm_ = expTerms_[iEvt];
cosTerm_ = cosTerms_[iEvt];
sinTerm_ = sinTerms_[iEvt];
coshTerm_ = coshTerms_[iEvt];
sinhTerm_ = sinhTerms_[iEvt];
normTermExp_ = normTermsExp_[iEvt];
normTermCosh_ = normTermsCosh_[iEvt];
normTermSinh_ = normTermsSinh_[iEvt];
}
if ( errHist_ ) {
errHist_->calcLikelihoodInfo(iEvt);
errTerm_ = errHist_->getLikelihood();
} else {
errTerm_ = 1.0;
}
const Double_t abscissa = abscissas_[iEvt];
//Parameters will change in some cases update things!
if (type_ == SimFitNormBd || type_ == SimFitSigBd || type_ == SimFitNormBs || type_ == SimFitSigBs){
const Double_t abscissaErr = abscissaErrors_[iEvt];
this->calcLikelihoodInfo(abscissa,abscissaErr);
}
switch( effMethod_ ) /* < If you're going to add an effMethod, extend this switch*/
{
case EfficiencyMethod::Spline :
if ( effiFun_ ) {
this->updateEffiSpline(effiPars_);
effiTerm_ = effiFun_->evaluate(abscissa); //EDITED XXX
if (effiTerm_>1.0){effiTerm_=1.0;}
if (effiTerm_<0.0){effiTerm_=0.0;}
} else {
effiTerm_ = 1.0;
}
break;
default :
effiTerm_ = effiTerms_[iEvt];
break;
}
// TODO need a check in here that none of the floating parameter values have changed
// If they have, then we need to recalculate all or some of the terms
/*
if ( parsChanged ) {
const Double_t abscissa = abscissas_[iEvt][0];
const Double_t abscissaErr = abscissaErrors_[iEvt];
this->calcLikelihoodInfo(abscissa, abscissaErr);
}
*/
}
void LauDecayTimePdf::calcLikelihoodInfo(Double_t abscissa)
{
// Check whether any of the gaussians should be scaled - if any of them should we need the per-event error
Bool_t scale(kFALSE);
for (std::vector<Bool_t>::const_iterator iter = scaleMeans_.begin(); iter != scaleMeans_.end(); ++iter) {
scale |= (*iter);
}
for (std::vector<Bool_t>::const_iterator iter = scaleWidths_.begin(); iter != scaleWidths_.end(); ++iter) {
scale |= (*iter);
}
if (scale) {
cerr<<"ERROR in LauDecayTimePdf::calcLikelihoodInfo : Per-event error on Delta t not provided, cannot calculate anything."<<endl;
return;
} else {
this->calcLikelihoodInfo(abscissa, 0.0);
}
}
void LauDecayTimePdf::calcLikelihoodInfo(Double_t abscissa, Double_t abscissaErr)
{
if (abscissa > this->maxAbscissa() || abscissa < this->minAbscissa()) {
cerr<<"ERROR in LauDecayTimePdf::calcLikelihoodInfo : Given value of the decay time: "<<abscissa<<
" outside allowed range: ["<<this->minAbscissa()<<","<<this->maxAbscissa()<<"]."<<endl;
gSystem->Exit(EXIT_FAILURE);
}
if (abscissaErr > this->maxAbscissaError() || abscissaErr < this->minAbscissaError()) {
cerr<<"ERROR in LauDecayTimePdf::calcLikelihoodInfo : Given value of Delta t error: "<<abscissaErr<<
" outside allowed range: ["<<this->minAbscissaError()<<","<<this->maxAbscissaError()<<"]."<<endl;
gSystem->Exit(EXIT_FAILURE);
}
switch( effMethod_ )
{
case EfficiencyMethod::Spline : effiTerm_ = effiFun_ ? effiFun_ -> evaluate(abscissa) : 1.0 ; break;
case EfficiencyMethod::Binned : effiTerm_ = effiHist_ ? effiHist_-> GetBinContent(effiHist_-> FindFixBin(abscissa)) : 1.0 ; break;
case EfficiencyMethod::Flat : effiTerm_ = 1.0 ; break;
// default : cerr << "Warning: EFFICIENCY INPUT METHOD NOT SET" << endl; effiTerms_.push_back( 1.0 );
}
// Initialise the various terms to zero
if (type_ == Hist){
if ( pdfHist_ ) {
pdfHist_->calcLikelihoodInfo(abscissa);
pdfTerm_ = pdfHist_->getLikelihood();
} else {
pdfTerm_ = 1.0;
}
}else{
// Reset the state to Good
this->state(Good);
// If we're not using the resolution function calculate the simple terms and return
if (!this->doSmearing()) {
this->calcNonSmearedTerms(abscissa);
return;
}
//TODO how much to be added below for SimFitNormBd/SimFitNormBs/SimFitSigBd/SimFitSigBs
// Get all the up to date parameter values
std::vector<Double_t> frac(nGauss_);
std::vector<Double_t> mean(nGauss_);
std::vector<Double_t> sigma(nGauss_);
Double_t tau(0.0);
Double_t deltaM(0.0);
Double_t fracPrompt(0.0);
Double_t Delta_gamma(0.0);
frac[0] = 1.0;
for (UInt_t i(0); i<nGauss_; ++i) {
mean[i] = mean_[i]->value();
sigma[i] = sigma_[i]->value();
if (i != 0) {
frac[i] = frac_[i-1]->value();
frac[0] -= frac[i];
}
}
if (type_ != Delta) {
tau = tau_->value();
if (type_ == ExpTrig) {
deltaM = deltaM_->value();
}
if (type_ == DeltaExp) {
fracPrompt = fracPrompt_->value();
}
if (type_ == ExpHypTrig){
deltaM = deltaM_->value();
Delta_gamma = deltaGamma_->value();
}
}
// Scale the gaussian parameters by the per-event error on Delta t (if appropriate)
for (UInt_t i(0); i<nGauss_; ++i) {
if (scaleMeans_[i]) {
mean[i] *= abscissaErr;
}
if (scaleWidths_[i]) {
sigma[i] *= abscissaErr;
}
}
// Calculate term needed by every type
std::vector<Double_t> x(nGauss_);
const Double_t xMax = this->maxAbscissa();
const Double_t xMin = this->minAbscissa();
for (UInt_t i(0); i<nGauss_; ++i) {
x[i] = abscissa - mean[i];
}
// TODO, what to do with this
Double_t value(0.0);
if (type_ == Delta || type_ == DeltaExp) {
// Calculate the gaussian function(s)
for (UInt_t i(0); i<nGauss_; ++i) {
if (TMath::Abs(sigma[i]) > 1e-10) {
Double_t exponent(0.0);
Double_t norm(0.0);
Double_t scale = LauConstants::root2*sigma[i];
Double_t scale2 = LauConstants::rootPiBy2*sigma[i];
exponent = -0.5*x[i]*x[i]/(sigma[i]*sigma[i]);
norm = scale2*(TMath::Erf((xMax - mean[i])/scale)
- TMath::Erf((xMin - mean[i])/scale));
value += frac[i]*TMath::Exp(exponent)/norm;
}
}
}
if (type_ != Delta) {
std::vector<Double_t> expTerms(nGauss_);
std::vector<Double_t> cosTerms(nGauss_);
std::vector<Double_t> sinTerms(nGauss_);
std::vector<Double_t> coshTerms(nGauss_);
std::vector<Double_t> sinhTerms(nGauss_);
std::vector<Double_t> expTermsNorm(nGauss_);
// TODO - TEL changed this name to make it compile - please check!
std::vector<Double_t> SinhTermsNorm(nGauss_);
// Calculate values of the PDF convoluated with each Gaussian for a given value of the abscsissa
for (UInt_t i(0); i<nGauss_; ++i) {
// Typical case (1): B0/B0bar
if (type_ == ExpTrig) {
// LHCb convention, i.e. convolution evaluate between 0 and inf
if (method_ == DecayTime) {
// Exponential term
Double_t termExponent = (pow(sigma[i], 2) - 2.0 * tau * x[i])/(2.0 * pow(tau, 2));
Double_t termErfc = (pow(sigma[i], 2) - tau * x[i])/(LauConstants::root2 * tau * sigma[i]);
expTerms[i] = (1.0/2.0) * TMath::Exp(termExponent) * TMath::Erfc(termErfc);
Double_t exponentTermRe, exponentTermIm;
this->calcTrigExponent(deltaM, tau, x[i], sigma[i], exponentTermRe, exponentTermIm);
// Elements related to the trigonometric function, i.e. convolution of Exp*Sin or Cos with Gauss
Double_t sinTrigTermRe, sinTrigTermIm, cosTrigTermRe, cosTrigTermIm;
this->calcTrigConv(deltaM, tau, x[i], sigma[i], sinTrigTermRe, sinTrigTermIm, kFALSE);
this->calcTrigConv(deltaM, tau, x[i], sigma[i], cosTrigTermRe, cosTrigTermIm, kTRUE);
// Combining elements of the full pdf
LauComplex zExp(exponentTermRe, exponentTermIm);
LauComplex zTrigSin(sinTrigTermRe, sinTrigTermIm);
LauComplex zTrigCos(cosTrigTermRe, cosTrigTermIm);
LauComplex sinConv = zExp * zTrigSin;
LauComplex cosConv = zExp * zTrigCos;
sinConv.scale(1.0/4.0);
cosConv.scale(1.0/4.0);
// Cosine*Exp and Sine*Exp terms
cosTerms[i] = cosConv.re();
sinTerms[i] = sinConv.im();
// Normalisation
Double_t umax = xMax - mean[i];
Double_t umin = xMin - mean[i];
expTermsNorm[i] = (1.0/2.0) * tau * (-1.0 + TMath::Erf(umax/(LauConstants::root2 * sigma[i])) + TMath::Erfc(umin/(LauConstants::root2 * sigma[i])) +
TMath::Exp((pow(sigma[i], 2) - 2.0 * tau * (xMax + xMin - mean[i]))/(2.0 * pow(tau, 2))) *
(TMath::Exp(xMax/tau) * TMath::Erfc((pow(sigma[i], 2) - xMin)/(LauConstants::root2 * tau))) +
(TMath::Exp(xMin/tau) * TMath::Erfc((pow(sigma[i], 2) - xMax)/(LauConstants::root2 * tau))));
} else {
}
}
// Typical case (2): B0s/B0sbar
if (type_ == ExpHypTrig) {
// LHCb convention
if (method_ == DecayTime) {
// Convolution of Exp*cosh (Exp*sinh) with a gaussian
//Double_t OverallExpFactor = 0.25*TMath::Exp(-(x[i]-mean[i])*(x[i]-mean[i])/(2*sigma[i]*sigma[i]));
//Double_t ExpFirstTerm = TMath::Exp((2*(x[i]-mean[i])*tau+sigma[i]*sigma[i]*(-2+Delta_gamma*tau))*(2*(x[i]-mean[i])*tau+sigma[i]*sigma[i]*(-2+Delta_gamma*tau))/(8*sigma[i]*sigma[i]*tau*tau));
//Double_t ExpSecondTerm = TMath::Exp((2*(-x[i]+mean[i])*tau+sigma[i]*sigma[i]*(2+Delta_gamma*tau))*(2*(-x[i]+mean[i])*tau+sigma[i]*sigma[i]*(2+Delta_gamma*tau))/(8*sigma[i]*sigma[i]*tau*tau));
//Double_t ErfFirstTerm = TMath::Erf((2*(x[i]-mean[i])*tau+sigma[i]*sigma[i]*(-2+Delta_gamma*tau))/(2*TMath::Sqrt(2)*sigma[i]*tau));
//Double_t ErfSecondTerm = TMath::Erf((2*(-x[i]+mean[i])*tau+sigma[i]*sigma[i]*(2+Delta_gamma*tau))/(2*TMath::Sqrt(2)*sigma[i]*tau));
//Double_t sinhConv = OverallExpFactor*(ExpFirstTerm*(1+ErfFirstTerm) + ExpSecondTerm*(-1+ErfSecondTerm));
//Double_t coshConv = OverallExpFactor*(ExpFirstTerm*(1+ErfFirstTerm) - ExpSecondTerm*(-1+ErfSecondTerm));
//cosTerms[i] = sinhConv;
// sinTerms[i] = coshConv;
//TODO: check this formula and try to simplify it!
double OverallExpTerm_max = (1/(2*(-4 + Delta_gamma*Delta_gamma*tau*tau)))*tau*TMath::Exp(-0.5*Delta_gamma*(xMax + mean[i]) - xMax/tau);
double ErfTerm_max = -2*Delta_gamma*tau*TMath::Exp(0.5*Delta_gamma*(xMax+mean[i])+xMax/tau)*TMath::Erf((xMax-mean[i])/(TMath::Sqrt(2)*sigma[i]));
double ExpFirstTerm_max = TMath::Exp(xMax*Delta_gamma+(sigma[i]*sigma[i]*(-2 + Delta_gamma*tau)*(-2 + Delta_gamma*tau))/(8*tau*tau));
double ErfcFirstTerm_max = TMath::Erfc((2*(-xMax + mean[i])*tau + sigma[i]*sigma[i]*(2 - Delta_gamma*tau))/(2*TMath::Sqrt(2)*sigma[i]*tau));
double ExpSecondTerm_max = TMath::Exp(Delta_gamma*mean[i] + (sigma[i]*sigma[i]*(2 + Delta_gamma*tau)*(2 + Delta_gamma*tau))/(8*tau*tau));
double ErfcSecondTerm_max = TMath::Erfc((2*(-xMax + mean[i])*tau + sigma[i]*sigma[i]*(2 + Delta_gamma*tau))/(2*TMath::Sqrt(2)*sigma[i]*tau));
double MaxVal= OverallExpTerm_max*(ErfTerm_max + TMath::Exp(mean[i]/tau)*(ExpFirstTerm_max*(2+Delta_gamma*tau)* ErfcFirstTerm_max + ExpSecondTerm_max*(-2+Delta_gamma*tau)* ErfcSecondTerm_max));
double OverallExpTerm_min = (1/(2*(-4 + Delta_gamma*Delta_gamma*tau*tau)))*tau*TMath::Exp(-0.5*Delta_gamma*(xMin + mean[i]) - xMin/tau);
double ErfTerm_min = -2*Delta_gamma*tau*TMath::Exp(0.5*Delta_gamma*(xMin+mean[i])+xMin/tau)*TMath::Erf((xMin-mean[i])/(TMath::Sqrt(2)*sigma[i]));
double ExpFirstTerm_min = TMath::Exp(xMin*Delta_gamma+(sigma[i]*sigma[i]*(-2 + Delta_gamma*tau)*(-2 + Delta_gamma*tau))/(8*tau*tau));
double ErfcFirstTerm_min = TMath::Erfc((2*(-xMin + mean[i])*tau + sigma[i]*sigma[i]*(2 - Delta_gamma*tau))/(2*TMath::Sqrt(2)*sigma[i]*tau));
// TODO - TEL added this (currently identical to ExpSecondTerm_max) to get this to compile - please check!!
double ExpSecondTerm_min = TMath::Exp(Delta_gamma*mean[i] + (sigma[i]*sigma[i]*(2 + Delta_gamma*tau)*(2 + Delta_gamma*tau))/(8*tau*tau));
double ErfcSecondTerm_min = TMath::Erfc((2*(-xMin + mean[i])*tau + sigma[i]*sigma[i]*(2 + Delta_gamma*tau))/(2*TMath::Sqrt(2)*sigma[i]*tau));
double minVal= OverallExpTerm_min*(ErfTerm_min + TMath::Exp(mean[i]/tau)*(ExpFirstTerm_min*(2+Delta_gamma*tau)* ErfcFirstTerm_min + ExpSecondTerm_min*(-2+Delta_gamma*tau)* ErfcSecondTerm_min));
SinhTermsNorm[i] = MaxVal - minVal;
} else {
}
}
}
for (UInt_t i(0); i<nGauss_; ++i) {
expTerm_ += frac[i]*expTerms[i];
cosTerm_ += frac[i]*cosTerms[i];
sinTerm_ += frac[i]*sinTerms[i];
coshTerm_ += frac[i]*coshTerms[i];
sinhTerm_ += frac[i]*sinhTerms[i];
normTermExp_ += frac[i]*expTermsNorm[i];
//normTermSinh_ += frac[i]*SinhTermsNorm[i];
}
if (type_ == DeltaExp) {
value *= fracPrompt;
value += (1.0-fracPrompt)*expTerm_;
} else {
value = expTerm_;
}
}
}
if ( errHist_ ) {
errHist_->calcLikelihoodInfo(abscissaErr);
errTerm_ = errHist_->getLikelihood();
} else {
errTerm_ = 1.0;
}
}
void LauDecayTimePdf::calcTrigExponent(Double_t deltaM, Double_t tau, Double_t x, Double_t sigma, Double_t& reTerm, Double_t& imTerm)
{
Double_t exponentTerm = TMath::Exp(-(2.0 * tau * x + pow(sigma, 2) * (pow(deltaM, 2) * pow(tau, 2) - 1.0))/(2.0 * pow(tau,2)));
reTerm = exponentTerm * TMath::Cos(deltaM * (x - pow(sigma,2)/tau));
imTerm = - exponentTerm * TMath::Sin(deltaM * (x - pow(sigma,2)/tau));
}
void LauDecayTimePdf::calcTrigConv(Double_t deltaM, Double_t tau, Double_t x, Double_t sigma, Double_t& reOutTerm, Double_t& imOutTerm, Bool_t trig)
{
Double_t reExpTerm, imExpTerm;
LauComplex zExp;
LauComplex zTrig1;
LauComplex zTrig2;
// Calculation for the sine or cosine term
if (!trig) {
reExpTerm = TMath::Sin(2.0 * deltaM * (x + pow(sigma,2)/tau));
imExpTerm = 2.0 * TMath::Sin(pow(deltaM * (x + pow(sigma,2)/tau), 2));
} else {
reExpTerm = TMath::Cos(2.0 * deltaM * (x + pow(sigma,2)/tau));
imExpTerm = TMath::Sin(2.0 * deltaM * (x + pow(sigma,2)/tau));
}
// Exponential term in front of Erfc/Erfi terms
zExp.setRealPart(reExpTerm);
zExp.setImagPart(imExpTerm);
// Nominal Erfc term (common to both sine and cosine expressions
zTrig1.setRealPart(-(tau * x - pow(sigma,2))/(LauConstants::root2 * tau * sigma));
zTrig1.setImagPart(-(deltaM * sigma)/ LauConstants::root2);
// Second term for sine (Erfi) or cosine (Erfc) - notice the re-im swap and sign change
zTrig2.setRealPart(-zTrig1.im());
zTrig2.setImagPart(-zTrig1.re());
// Calculation of Erfc and Erfi (if necessary)
LauComplex term1 = ComplexErfc(zTrig1.re(), zTrig1.im());
LauComplex term2;
if (!trig) {
term2 = Erfi(zTrig2.re(), zTrig2.im());
} else {
term2 = ComplexErfc(zTrig2.re(), zTrig2.im());
}
// Multiplying all elemnets of the convolution
LauComplex output = zExp * term1 + term2;
reOutTerm = output.re();
imOutTerm = output.im();
}
LauComplex LauDecayTimePdf::ComplexErf(Double_t x, Double_t y)
{
// Evaluate Erf(x + iy) using an infinite series approximation
// From Abramowitz & Stegun (http://people.math.sfu.ca/~cbm/aands/page_299.htm)
if (x==0){
// cout << "WARNING: Set x value to 1e-100 to avoid division by 0." << endl;
x = 1e-100;
}
int n = 20; // this cotrols the number of iterations of the sum
LauComplex ErfTerm(TMath::Erf(x),0.);
LauComplex CosSineTerm(1-cos(2*x*y), sin(2*x*y));
CosSineTerm.rescale(TMath::Exp(-x*x)/(2*TMath::Pi()*x));
LauComplex firstPart = ErfTerm + CosSineTerm;
LauComplex SumTerm(0,0);
for (int k = 1; k<=n; k++){
Double_t f_k = 2*x*(1 - cos(2*x*y)*cosh(k*y)) + k*sin(2*x*y)*sinh(k*y);
Double_t g_k = 2*x*sin(2*x*y)*cosh(k*y) + k*cos(2*x*y)*sinh(k*y);
LauComplex fgTerm(f_k, g_k);
fgTerm.rescale(TMath::Exp(-0.25*k*k)/(k*k + 4*x*x));
SumTerm += fgTerm;
}
SumTerm.rescale((2/TMath::Pi())*TMath::Exp(-x*x));
LauComplex result = firstPart + SumTerm;
return result;
}
LauComplex LauDecayTimePdf::Erfi(Double_t x, Double_t y)
{
// Erfi(z) = -I*Erf(I*z) where z = x + iy
double x_prime = -y;
double y_prime = x;
LauComplex a = ComplexErf(x_prime, y_prime);
LauComplex result(a.im(), -a.re());
return result;
}
LauComplex LauDecayTimePdf::ComplexErfc(Double_t x, Double_t y)
{
// Erfc(z) = 1 - Erf(z) (z = x + iy)
LauComplex one(1., 0.);
LauComplex result = one - ComplexErf(x,y);
return result;
}
void LauDecayTimePdf::calcNonSmearedTerms(Double_t abscissa)
{
if (type_ == Hist ){
cerr << "It is a histogrammed PDF" << endl;
return;
}
if (type_ == Delta) {
return;
}
Double_t tau = tau_->value();
Double_t deltaM = deltaM_->value();
// Calculate the terms related to cosine and sine not normalised
if (type_ == ExpTrig) {
if (method_ == DecayTime) {
expTerm_ = TMath::Exp(-abscissa/tau)/(2.0*tau);
}
if (method_ == DecayTimeDiff) {
expTerm_ = TMath::Exp(-TMath::Abs(abscissa)/tau)/(2.0*tau);
}
cosTerm_ = TMath::Cos(deltaM*abscissa)*expTerm_;
sinTerm_ = TMath::Sin(deltaM*abscissa)*expTerm_;
coshTerm_ = expTerm_;
sinhTerm_ = 0.0;
}
// Calculate the terms related to cosine not normalised
if (type_ == SimFitNormBd || type_ == SimFitNormBs) {
if (method_ == DecayTime) {
expTerm_ = TMath::Exp(-abscissa/tau)/(2.0*tau);
}
if (method_ == DecayTimeDiff) {
expTerm_ = TMath::Exp(-TMath::Abs(abscissa)/tau)/(2.0*tau);
}
cosTerm_ = TMath::Cos(deltaM*abscissa)*expTerm_;
sinTerm_ = 0.0;
coshTerm_ = expTerm_;
sinhTerm_ = 0.0;
if (type_ == SimFitNormBs){
Double_t deltaGamma = deltaGamma_->value();
coshTerm_ *= TMath::CosH(deltaGamma*abscissa/2.0);
}
}
// Calculate the terms related to cosine and sine not normalised
if (type_ == SimFitSigBd || type_ == SimFitSigBs) {
if (method_ == DecayTime) {
expTerm_ = TMath::Exp(-abscissa/tau)/(2.0*tau);
}
if (method_ == DecayTimeDiff) {
expTerm_ = TMath::Exp(-TMath::Abs(abscissa)/tau)/(2.0*tau);
}
cosTerm_ = TMath::Cos(deltaM*abscissa)*expTerm_;
sinTerm_ = TMath::Sin(deltaM*abscissa)*expTerm_;
coshTerm_ = expTerm_;
sinhTerm_ = 0.0;
if (type_ == SimFitNormBs){
Double_t deltaGamma = deltaGamma_->value();
coshTerm_ *= TMath::CosH(deltaGamma*abscissa/2.0);
sinhTerm_ = TMath::SinH(deltaGamma*abscissa/2.0)*expTerm_;
}
}
// Calculate the terms related to cosine, sine, cosh and sinh not normalised (no decayTimeDiff implemented)
if (type_ == ExpHypTrig) {
Double_t deltaGamma = deltaGamma_->value();
expTerm_ = TMath::Exp(-abscissa/tau)/(2.0*tau);
cosTerm_ = TMath::Cos(deltaM*abscissa)*expTerm_;
sinTerm_ = TMath::Sin(deltaM*abscissa)*expTerm_;
coshTerm_ = TMath::CosH(deltaGamma*abscissa/2.0)*expTerm_;
sinhTerm_ = TMath::SinH(deltaGamma*abscissa/2.0)*expTerm_;
}
}
Double_t LauDecayTimePdf::normExpHypTerm(Double_t Abs)
{
Double_t tau = tau_->value();
Double_t deltaGamma = deltaGamma_->value();
Double_t y = tau*deltaGamma/2;
Double_t nonTrigTerm = -(TMath::Exp(-Abs/tau))/(1 - y*y);
Double_t cosHTerm = TMath::CosH(deltaGamma*Abs/2);
Double_t sinHTerm = TMath::SinH(deltaGamma*Abs/2);
Double_t normTerm = nonTrigTerm*(cosHTerm + y*sinHTerm);
return normTerm;
}
Double_t LauDecayTimePdf::normExpHypTermDep(Double_t Abs)
{
Double_t tau = tau_->value();
Double_t deltaGamma = deltaGamma_->value();
Double_t y = tau*deltaGamma/2;
Double_t nonTrigTerm = -(TMath::Exp(-Abs/tau))/(1 - y*y);
Double_t cosHTerm = TMath::CosH(deltaGamma*Abs/2);
Double_t sinHTerm = TMath::SinH(deltaGamma*Abs/2);
Double_t normTerm = nonTrigTerm*(sinHTerm + y*cosHTerm);
return normTerm;
}
-LauComplex LauDecayTimePdf::nonSmearedCosSinIntegral(Double_t minAbs, Double_t maxAbs)
+std::pair<Double_t, Double_t> LauDecayTimePdf::nonSmearedCosSinIntegral(Double_t minAbs, Double_t maxAbs)
{
- // From 1407.0748, not clear whether complex is faster in this case
+ // From 1407.0748, not clear whether complex is faster in this case
- Double_t gamma = 1. / this->tau_->value();
+ Double_t gamma = 1. / this->tau_->value();
- LauComplex denom = LauComplex(gamma, -this->deltaM_->value());
- LauComplex exponent = LauComplex(-gamma, this->deltaM_->value());
+ LauComplex denom = LauComplex(gamma, -this->deltaM_->value());
+ LauComplex exponent = LauComplex(-gamma, this->deltaM_->value());
- LauComplex num0 = -exponent.scale(minAbs).exp();
- LauComplex num1 = -exponent.scale(maxAbs).exp();
+ LauComplex num0 = -exponent.scale(minAbs).exp();
+ LauComplex num1 = -exponent.scale(maxAbs).exp();
- return (num1 - num0) / denom;
+ LauComplex integral = (num1 - num0) / denom;
+
+ return {integral.re(), integral.im()};
+}
+
+std::pair<Double_t, Double_t> LauDecayTimePdf::smearedCosSinIntegral(Double_t minAbs, Double_t maxAbs)
+{
+ Double_t sigma = 10.; // Placeholder
+ Double_t mu = 0.; // Placeholder
+
+ Double_t gamma = 1. / this->tau_->value();
+
+ Double_t x1 = (maxAbs - mu) / (TMath::Sqrt(2.) * sigma);
+ Double_t x0 = (minAbs - mu) / (TMath::Sqrt(2.) * sigma);
+
+ std::complex z = std::complex(gamma * sigma / TMath::Sqrt(2.), -this->deltaM_->value() * sigma / TMath::Sqrt(2.));
+
+ std::complex arg1 = (z - x1);
+ std::complex arg0 = (z - x0);
+
+ std::complex integral = RooMath::erf(x1) - TMath::Exp(-(x1 * x1)) * RooMath::faddeeva(arg1);
+ integral -= RooMath::erf(x0) - TMath::Exp(-(x0 * x0)) * RooMath::faddeeva(arg0);
+ integral *= (sigma / (2. * TMath::Sqrt(2.) * z));
+
+ Double_t cos_integral = integral.real();
+ Double_t sin_integral = integral.imag();
+
+ return {cos_integral, sin_integral};
+}
+
+std::pair<Double_t, Double_t> LauDecayTimePdf::nonSmearedCoshSinhIntegral(Double_t minAbs, Double_t maxAbs)
+{
+
+ // Use exponential formualtion rather than cosh, sinh.
+ // Fewer terms (reused for each), but not guaranteed to be faster.
+
+ Double_t gamma = 1. / this->tau_->value();
+
+ Double_t gammaH = gamma - 0.5 * deltaGamma_->value();
+ Double_t gammaL = gamma - 0.5 * deltaGamma_->value();
+
+ Double_t nL1 = -TMath::Exp(-gammaL * maxAbs) / gammaL;
+ Double_t nH1 = -TMath::Exp(-gammaH * maxAbs) / gammaH;
+ Double_t nL0 = -TMath::Exp(-gammaL * minAbs) / gammaL;
+ Double_t nH0 = -TMath::Exp(-gammaH * minAbs) / gammaH;
+
+ Double_t cosh_integral = 0.5 * ( (nH1 + nL1) - (nH0 + nL0) );
+ Double_t sinh_integral = 0.5 * ( (nH1 - nL1) - (nH0 - nL0) );
+
+ return {cosh_integral, sinh_integral};
+}
+
+std::pair<Double_t, Double_t> LauDecayTimePdf::smearedCoshSinhIntegral(Double_t minAbs, Double_t maxAbs)
+{
+ Double_t sigma = 10.; // Placeholder
+ Double_t mu = 0.; // Placeholder
+
+ Double_t gamma = 1. / this->tau_->value();
+
+ Double_t x1 = (maxAbs - mu) / (TMath::Sqrt(2.) * sigma);
+ Double_t x0 = (minAbs - mu) / (TMath::Sqrt(2.) * sigma);
+
+ Double_t z_H = ((gamma - deltaGamma_->value() / 2.) * sigma) / TMath::Sqrt(2);
+
+ std::complex arg1_H(0., z_H - x1);
+ std::complex arg0_H(0., z_H - x0);
+
+ std::complex integral_H = RooMath::erf(x1) - TMath::Exp(-(x1 * x1)) * RooMath::faddeeva(arg1_H);
+ integral_H -= RooMath::erf(x0) - TMath::Exp(-(x0 * x0)) * RooMath::faddeeva(arg0_H);
+ integral_H *= (sigma / (2. * TMath::Sqrt(2.) * z_H));
+
+ // Same for light (L)
+
+ Double_t z_L = ((gamma + deltaGamma_->value() / 2.) * sigma) / TMath::Sqrt(2);
+
+ std::complex arg1_L(0., z_L - x1);
+ std::complex arg0_L(0., z_L - x0);
+
+ std::complex integral_L = RooMath::erf(x1) - TMath::Exp(-(x1 * x1)) * RooMath::faddeeva(arg1_L);
+ integral_L -= RooMath::erf(x0) - TMath::Exp(-(x0 * x0)) * RooMath::faddeeva(arg0_L);
+ integral_L *= (sigma / (2. * TMath::Sqrt(2.) * z_L));
+
+ std::complex cosh_integral = 0.5 * (integral_H + integral_L);
+ std::complex sinh_integral = 0.5 * (integral_H - integral_L);
+
+ return {cosh_integral.real(), sinh_integral.real()};
}
void LauDecayTimePdf::calcNorm()
{
// first reset integrals to zero
normTermExp_ = 0.0;
normTermCos_ = 0.0;
normTermSin_ = 0.0;
normTermCosh_ = 0.0;
normTermSinh_ = 0.0;
switch ( effMethod_ ) {
case EfficiencyMethod::Flat :
// No efficiency variation
// Simply calculate integrals over full range
this->calcPartialIntegrals( minAbscissa_, maxAbscissa_ );
break;
case EfficiencyMethod::Binned :
// Efficiency varies as piecewise constant
// Total integral is sum of integrals in each bin, each weighted by efficiency in that bin
for ( Int_t bin{1}; bin <= effiHist_->GetNbinsX(); ++bin ) {
const Double_t loEdge {effiHist_->GetBinLowEdge(bin)};
const Double_t hiEdge {loEdge + effiHist_->GetBinWidth(bin)};
const Double_t effVal {effiHist_->GetBinContent(bin)};
this->calcPartialIntegrals( loEdge, hiEdge, effVal );
}
break;
case EfficiencyMethod::Spline :
// Efficiency varies as piecewise polynomial
// TODO - to be worked out what to do here
std::cerr << "WARNING in LauDecayTimePdf::calcNorm : normalisation integrals for spline acceptance not yet implemented - effect of acceptance will be neglected!" << std::endl;
this->calcPartialIntegrals( minAbscissa_, maxAbscissa_ );
break;
}
// TODO - should we check here that all terms we expect to use are now non-zero?
}
void LauDecayTimePdf::calcPartialIntegrals(const Double_t minAbs, const Double_t maxAbs, const Double_t weight)
{
const Double_t tau = tau_->value();
const Double_t Gamma = 1.0 / tau;
// TODO - this is all neglecting resolution at the moment
// Normalisation factor for B0 decays
if (type_ == ExpTrig || type_ == SimFitNormBd || type_ == SimFitSigBd ) {
if (method_ == DecayTime) {
normTermExp_ += weight * tau * ( TMath::Exp(-minAbs*Gamma) - TMath::Exp(-maxAbs*Gamma) );
- LauComplex cosSinIntegral = this->nonSmearedCosSinIntegral(minAbs, maxAbs);
- normTermCos_ += weight * cosSinIntegral.re();
- normTermSin_ += weight * cosSinIntegral.im();
+ auto [cosIntegral, sinIntegral] = this->nonSmearedCosSinIntegral(minAbs, maxAbs);
+ normTermCos_ += weight * cosIntegral;
+ normTermSin_ += weight * sinIntegral;
} else if (method_ == DecayTimeDiff) {
normTermExp_ += weight * tau * (2.0 - TMath::Exp(-maxAbs*Gamma) - TMath::Exp(-minAbs*Gamma));
// TODO - the other terms
}
}
// Do more business here, with RooFit libs turned on:
// std::complex c(0.1, 0.1);
// RooMath::faddeeva(c);
// Normalisation factor for Bs decays
// TODO HACKATHON - to be replaced
if (type_ == ExpHypTrig) {
normTermCosh_ += weight * ( normExpHypTerm(maxAbs) - normExpHypTerm(minAbs) );
normTermSinh_ += weight * ( normExpHypTermDep( maxAbs) - normExpHypTermDep( minAbs) );
}
}
Double_t LauDecayTimePdf::generateError(Bool_t forceNew)
{
if (errHist_ && (forceNew || !abscissaErrorGenerated_)) {
LauFitData errData = errHist_->generate(0);
abscissaError_ = errData.find(this->varErrName())->second;
abscissaErrorGenerated_ = kTRUE;
} else {
while (forceNew || !abscissaErrorGenerated_) {
abscissaError_ = LauRandom::randomFun()->Landau(errorDistMPV_,errorDistSigma_);
if (abscissaError_ < maxAbscissaError_ && abscissaError_ > minAbscissaError_) {
abscissaErrorGenerated_ = kTRUE;
forceNew = kFALSE;
}
}
}
return abscissaError_;
}
/*
LauFitData LauDecayTimePdf::generate(const LauKinematics* kinematics)
{
// generateError SHOULD have been called before this
// function but will call it here just to make sure
// (has ns effect if has already been called)
abscissaError_ = this->generateError();
// If the PDF is scaled by the per-event error then need to update the PDF height for each event
Bool_t scale(kFALSE);
for (std::vector<Bool_t>::const_iterator iter = scaleMeans_.begin(); iter != scaleMeans_.end(); ++iter) {
scale |= (*iter);
}
for (std::vector<Bool_t>::const_iterator iter = scaleWidths_.begin(); iter != scaleWidths_.end(); ++iter) {
scale |= (*iter);
}
if (scale || (!this->heightUpToDate() && !this->cachePDF())) {
this->calcPDFHeight(kinematics);
this->heightUpToDate(kTRUE);
}
// Generate the value of the abscissa.
Bool_t gotAbscissa(kFALSE);
Double_t genVal(0.0);
Double_t genPDFVal(0.0);
LauFitData genAbscissa;
const Double_t xMin = this->minAbscissa();
const Double_t xMax = this->maxAbscissa();
const Double_t xRange = xMax - xMin;
while (!gotAbscissa) {
genVal = LauRandom::randomFun()->Rndm()*xRange + xMin;
this->calcLikelihoodInfo(genVal, abscissaError_);
genPDFVal = this->getUnNormLikelihood();
if (LauRandom::randomFun()->Rndm() <= genPDFVal/this->getMaxHeight()) {gotAbscissa = kTRUE;}
if (genPDFVal > this->getMaxHeight()) {
cerr<<"Warning in LauDecayTimePdf::generate()."
<<" genPDFVal = "<<genPDFVal<<" is larger than the specified PDF height "
<<this->getMaxHeight()<<" for the abscissa = "<<genVal<<". Need to reset height to be larger than "
<<genPDFVal<<" by using the setMaxHeight(Double_t) function"
<<" and re-run the Monte Carlo generation!"<<endl;
}
}
genAbscissa[this->varName()] = genVal;
// mark that we need a new error to be generated next time
abscissaErrorGenerated_ = kFALSE;
return genAbscissa;
}
*/
void LauDecayTimePdf::setErrorHisto(const TH1* hist)
{
if ( errHist_ != 0 ) {
cerr<<"WARNING in LauDecayTimePdf::setErrorHisto : Error histogram already set, not doing it again."<<endl;
return;
}
errHist_ = new Lau1DHistPdf(this->varErrName(), hist, this->minAbscissaError(), this->maxAbscissaError());
}
void LauDecayTimePdf::setHistoPdf(const TH1* hist)
{
if ( pdfHist_ != 0 ) {
cerr<<"WARNING in LauDecayTimePdf::setHistoPdf : PDF histogram already set, not doing it again."<<endl;
return;
}
pdfHist_ = new Lau1DHistPdf(this->varName(), hist, this->minAbscissa(), this->maxAbscissa());
}
void LauDecayTimePdf::setEffiHist(const TH1* hist)
{
if ( effiHist_ != nullptr ) {
std::cerr << "WARNING in LauDecayTimePdf::setEffiHist : efficiency histogram already set, not doing it again." << std::endl;
return;
}
if ( hist == nullptr ) {
std::cerr << "WARNING in LauDecayTimePdf::setEffiHist : supplied efficiency histogram pointer is null." << std::endl;
return;
}
// Check boundaries of histogram align with our abscissa's range
const Double_t axisMin {hist->GetXaxis()->GetXmin()};
const Double_t axisMax {hist->GetXaxis()->GetXmax()};
if ( TMath::Abs(minAbscissa_ - axisMin)>1e-6 || TMath::Abs(maxAbscissa_ - axisMax)>1e-6 ) {
std::cerr << "WARNING in LauDecayTimePdf::setEffiHist : mismatch in range between supplied histogram and abscissa\n"
<< " : histogram range: " << axisMin << " - " << axisMax << "\n"
<< " : abscissa range: " << minAbscissa_ << " - " << maxAbscissa_ << "\n"
<< " : Disregarding this histogram." << std::endl;
return;
}
effiHist_ = dynamic_cast<TH1*>( hist->Clone() );
}
void LauDecayTimePdf::setEffiSpline(Lau1DCubicSpline* spline)
{
if ( effiFun_ != 0 ) {
cerr<<"WARNING in LauDecayTimePdf::setEffiPdf : efficiency function already set, not doing it again."<<endl;
return;
}
effiFun_ = spline;
std::vector<Double_t> effis = effiFun_->getYValues();
effiPars_.resize( effis.size() );
size_t index = 0;
for( Double_t& effi : effis )
{
effiPars_[ index ] = new LauParameter( Form( "%s_Knot_%lu", varName_.Data() ,index ), effi, 0.0, 1.0, kTRUE );
++index;
}
}
LauAbsRValue* LauDecayTimePdf::findParameter(const TString& parName)
{
for ( std::vector<LauAbsRValue*>::iterator iter = param_.begin(); iter != param_.end(); ++iter ) {
if ((*iter)->name().Contains(parName)) {
return (*iter);
}
}
std::cerr << "ERROR in LauDecayTimePdf::findParameter : Parameter \"" << parName << "\" not found." << std::endl;
return 0;
}
const LauAbsRValue* LauDecayTimePdf::findParameter(const TString& parName) const
{
for ( std::vector<LauAbsRValue*>::const_iterator iter = param_.begin(); iter != param_.end(); ++iter ) {
if ((*iter)->name().Contains(parName)) {
return (*iter);
}
}
std::cerr << "ERROR in LauDecayTimePdf::findParameter : Parameter \"" << parName << "\" not found." << std::endl;
return 0;
}
void LauDecayTimePdf::updatePulls()
{
for ( std::vector<LauAbsRValue*>::iterator iter = param_.begin(); iter != param_.end(); ++iter ) {
std::vector<LauParameter*> params = (*iter)->getPars();
for (std::vector<LauParameter*>::iterator params_iter = params.begin(); params_iter != params.end(); ++params_iter ) {
if (!(*iter)->fixed()) {
(*params_iter)->updatePull();
}
}
}
}
void LauDecayTimePdf::updateEffiSpline(std::vector<LauParameter*> effiPars)
{
if (effiPars.size() != effiFun_->getnKnots()){
cerr<<"ERROR in LauDecayTimePdf::updateEffiSpline : number of efficiency parameters is not equal to the number of spline knots."<<endl;
gSystem->Exit(EXIT_FAILURE);
}
effiFun_->updateYValues(effiPars);
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 4:49 PM (1 d, 12 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805239
Default Alt Text
(103 KB)
Attached To
rLAURA laura
Event Timeline
Log In to Comment