Page MenuHomeHEPForge

No OneTemporary

diff --git a/Shower/Dipole/Utility/ConstituentReshuffler.cc b/Shower/Dipole/Utility/ConstituentReshuffler.cc
--- a/Shower/Dipole/Utility/ConstituentReshuffler.cc
+++ b/Shower/Dipole/Utility/ConstituentReshuffler.cc
@@ -1,619 +1,602 @@
// -*- C++ -*-
//
// ConstituentReshuffler.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ConstituentReshuffler class.
//
#include <config.h>
#include "ConstituentReshuffler.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include <limits>
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "DipolePartonSplitter.h"
#include "Herwig/Utilities/GSLBisection.h"
#include "Herwig/Shower/Dipole/DipoleShowerHandler.h"
#include "Herwig/Shower/ShowerHandler.h"
using namespace Herwig;
ConstituentReshuffler::ConstituentReshuffler()
: HandlerBase() {}
ConstituentReshuffler::~ConstituentReshuffler() {}
IBPtr ConstituentReshuffler::clone() const {
return new_ptr(*this);
}
IBPtr ConstituentReshuffler::fullclone() const {
return new_ptr(*this);
}
double ConstituentReshuffler::ReshuffleEquation::aUnit() {
return 1.;
}
double ConstituentReshuffler::ReshuffleEquation::vUnit() {
return 1.;
}
double ConstituentReshuffler::DecayReshuffleEquation::aUnit() {
return 1.;
}
double ConstituentReshuffler::DecayReshuffleEquation::vUnit() {
return 1.;
}
double ConstituentReshuffler::ReshuffleEquation::operator() (double xi) const {
double r = - w/GeV;
for (PList::iterator p = p_begin; p != p_end; ++p) {
r += sqrt(sqr((**p).dataPtr()->constituentMass()) +
xi*xi*(sqr((**p).momentum().t())-sqr((**p).dataPtr()->mass()))) / GeV;
}
return r;
}
double ConstituentReshuffler::DecayReshuffleEquation::operator() (double xi) const {
double r = - w/GeV;
for (PList::iterator pIt = p_begin; pIt != p_end; ++pIt) {
r += sqrt(sqr((**pIt).dataPtr()->constituentMass()) +
xi*xi*(sqr((**pIt).momentum().t())-sqr((**pIt).dataPtr()->mass()))) / GeV;
}
for (PList::iterator rIt = r_begin; rIt != r_end; ++rIt) {
r += sqrt(sqr((**rIt).momentum().m()) +
xi*xi*(sqr((**rIt).momentum().t())-sqr((**rIt).momentum().m()))) / GeV;
}
return r;
}
void ConstituentReshuffler::reshuffle(PList& out,
PPair& in,
PList& intermediates,
const bool decay,
PList& decayPartons,
PList& decayRecoilers) {
assert(ShowerHandler::currentHandler()->retConstituentMasses());
if ( !decay ) {
if (out.size() == 0)
return;
if (out.size() == 1) {
PPtr recoiler;
PPtr parton = out.front();
if (DipolePartonSplitter::colourConnected(parton,in.first) &&
DipolePartonSplitter::colourConnected(parton,in.second)) {
if (UseRandom::rnd() < .5)
recoiler = in.first;
else
recoiler = in.second;
} else if (DipolePartonSplitter::colourConnected(parton,in.first)) {
recoiler = in.first;
} else if (DipolePartonSplitter::colourConnected(parton,in.second)) {
recoiler = in.second;
} else assert(false);
assert(abs(recoiler->momentum().vect().perp2()/GeV2) < 1e-6);
double sign = recoiler->momentum().z() < 0.*GeV ? -1. : 1.;
Energy2 qperp2 = parton->momentum().perp2();
if (qperp2/GeV2 < Constants::epsilon) {
// no emission off a 2 -> singlet process which
// needed a single forced splitting: should never happen (?)
assert(false);
throw Veto();
}
Energy2 m2 = sqr(parton->dataPtr()->constituentMass());
Energy abs_q = parton->momentum().vect().mag();
Energy qz = parton->momentum().z();
Energy abs_pz = recoiler->momentum().t();
assert(abs_pz > 0.*GeV);
Energy xi_pz = sign*(2.*qperp2*abs_pz + m2*(abs_q + sign*qz))/(2.*qperp2);
Energy x_qz = (2.*qperp2*qz + m2*(qz+sign*abs_q))/(2.*qperp2);
Lorentz5Momentum recoiler_momentum
(0.*GeV,0.*GeV,xi_pz,xi_pz < 0.*GeV ? - xi_pz : xi_pz);
recoiler_momentum.rescaleMass();
Lorentz5Momentum parton_momentum
(parton->momentum().x(),parton->momentum().y(),x_qz,sqrt(m2+qperp2+x_qz*x_qz));
parton_momentum.rescaleMass();
PPtr n_parton = new_ptr(Particle(parton->dataPtr()));
n_parton->set5Momentum(parton_momentum);
DipolePartonSplitter::change(parton,n_parton,false);
out.pop_front();
intermediates.push_back(parton);
out.push_back(n_parton);
PPtr n_recoiler = new_ptr(Particle(recoiler->dataPtr()));
n_recoiler->set5Momentum(recoiler_momentum);
DipolePartonSplitter::change(recoiler,n_recoiler,true);
intermediates.push_back(recoiler);
if (recoiler == in.first) {
in.first = n_recoiler;
}
if (recoiler == in.second) {
in.second = n_recoiler;
}
return;
}
}
Energy zero (0.*GeV);
Lorentz5Momentum Q (zero,zero,zero,zero);
for (PList::iterator p = out.begin();
p != out.end(); ++p) {
Q += (**p).momentum();
}
Boost beta = Q.findBoostToCM();
list<Lorentz5Momentum> mbackup;
bool need_boost = (beta.mag2() > Constants::epsilon);
if (need_boost) {
for (PList::iterator p = out.begin();
p != out.end(); ++p) {
Lorentz5Momentum mom = (**p).momentum();
mbackup.push_back(mom);
(**p).set5Momentum(mom.boost(beta));
}
}
double xi;
// Only partons
if ( decayRecoilers.size()==0 ) {
ReshuffleEquation solve (Q.m(),out.begin(),out.end());
GSLBisection solver(1e-10,1e-8,10000);
try {
xi = solver.value(solve,0.0,1.1);
} catch (GSLBisection::GSLerror) {
throw DipoleShowerHandler::RedoShower();
} catch (GSLBisection::IntervalError) {
throw DipoleShowerHandler::RedoShower();
}
}
// Partons and decaying recoilers
else {
DecayReshuffleEquation solve (Q.m(),decayPartons.begin(),decayPartons.end(),decayRecoilers.begin(),decayRecoilers.end());
GSLBisection solver(1e-10,1e-8,10000);
try {
xi = solver.value(solve,0.0,1.1);
} catch (GSLBisection::GSLerror) {
throw DipoleShowerHandler::RedoShower();
} catch (GSLBisection::IntervalError) {
throw DipoleShowerHandler::RedoShower();
}
}
PList reshuffled;
list<Lorentz5Momentum>::const_iterator backup_it;
if (need_boost)
backup_it = mbackup.begin();
// Reshuffling of non-decaying partons only
if ( decayRecoilers.size()==0 ) {
for (PList::iterator p = out.begin();
p != out.end(); ++p) {
PPtr rp = new_ptr(Particle((**p).dataPtr()));
DipolePartonSplitter::change(*p,rp,false);
Lorentz5Momentum rm;
rm = Lorentz5Momentum (xi*(**p).momentum().x(),
xi*(**p).momentum().y(),
xi*(**p).momentum().z(),
sqrt(sqr((**p).dataPtr()->constituentMass()) +
xi*xi*(sqr((**p).momentum().t())-sqr((**p).dataPtr()->mass()))));
rm.rescaleMass();
if (need_boost) {
(**p).set5Momentum(*backup_it);
++backup_it;
rm.boost(-beta);
}
rp->set5Momentum(rm);
intermediates.push_back(*p);
reshuffled.push_back(rp);
}
}
// For the case of a decay process with non-partonic recoilers
else {
assert ( decay );
for (PList::iterator p = out.begin();
p != out.end(); ++p) {
PPtr rp = new_ptr(Particle((**p).dataPtr()));
DipolePartonSplitter::change(*p,rp,false);
Lorentz5Momentum rm;
// If the particle is a parton and not a recoiler
if ( find( decayRecoilers.begin(), decayRecoilers.end(), *p ) == decayRecoilers.end() ) {
rm = Lorentz5Momentum (xi*(**p).momentum().x(),
xi*(**p).momentum().y(),
xi*(**p).momentum().z(),
sqrt(sqr((**p).dataPtr()->constituentMass()) +
xi*xi*(sqr((**p).momentum().t())-sqr((**p).dataPtr()->mass()))));
}
// Otherwise the parton is a recoiler
// and its invariant mass must be preserved
else {
rm = Lorentz5Momentum (xi*(**p).momentum().x(),
xi*(**p).momentum().y(),
xi*(**p).momentum().z(),
sqrt(sqr((**p).momentum().m()) +
xi*xi*(sqr((**p).momentum().t())-sqr((**p).momentum().m()))));
}
rm.rescaleMass();
if (need_boost) {
(**p).set5Momentum(*backup_it);
++backup_it;
rm.boost(-beta);
}
rp->set5Momentum(rm);
intermediates.push_back(*p);
reshuffled.push_back(rp);
}
}
out.clear();
out.splice(out.end(),reshuffled);
}
void ConstituentReshuffler::hardProcDecayReshuffle(PList& decaying,
PList& eventOutgoing,
PList& eventHard,
PPair& eventIncoming,
PList& eventIntermediates) {
// Note, when this function is called, the particle pointers
// in theDecays/decaying are those prior to the showering.
// Here we find the newest pointers in the outgoing.
// The update of the PPtrs in theDecays is done in DipoleShowerHandler::constituentReshuffle()
// as this needs to be done if ConstituentReshuffling is switched off.
//Make sure the shower should return constituent masses:
assert(ShowerHandler::currentHandler()->retConstituentMasses());
// Find the outgoing decaying particles
PList recoilers;
for ( PList::iterator decIt = decaying.begin(); decIt != decaying.end(); ++decIt) {
// First find the particles in the intermediates
PList::iterator pos = find(eventIntermediates.begin(),eventIntermediates.end(), *decIt);
// Colourless particle or coloured particle that did not radiate.
if(pos==eventIntermediates.end()) {
// Check that this is not a particle from a subsequent decay.
// e.g. the W from a top decay from an LHE file.
if ( find( eventHard.begin(), eventHard.end(), *decIt ) == eventHard.end() &&
find( eventOutgoing.begin(), eventOutgoing.end(), *decIt ) == eventOutgoing.end() )
continue;
else
recoilers.push_back( *decIt );
}
// Coloured decaying particle that radiated
else {
PPtr unstable = *pos;
while(!unstable->children().empty()) {
unstable = unstable->children()[0];
}
assert( find( eventOutgoing.begin(),eventOutgoing.end(), unstable ) != eventOutgoing.end() );
recoilers.push_back( unstable );
}
}
// Make a list of partons
PList partons;
for ( PList::iterator outPos = eventOutgoing.begin(); outPos != eventOutgoing.end(); ++outPos ) {
if ( find (recoilers.begin(), recoilers.end(), *outPos ) == recoilers.end() ) {
partons.push_back( *outPos );
}
}
// If no outgoing partons, do nothing
if ( partons.size() == 0 ){
return;
}
// Otherwise reshuffling needs to be done.
// If there is only one parton, attempt to reshuffle with
// the incoming to be consistent with the reshuffle for a
// hard process with no decays.
else if ( partons.size() == 1 && ( DipolePartonSplitter::colourConnected(partons.front(),eventIncoming.first) ||
DipolePartonSplitter::colourConnected(partons.front(),eventIncoming.second) ) ) {
// Erase the parton from the event outgoing
eventOutgoing.erase( find( eventOutgoing.begin(), eventOutgoing.end(), partons.front() ) );
// Perform the reshuffle, this update the intermediates and the incoming
reshuffle(partons, eventIncoming, eventIntermediates);
// Update the outgoing
eventOutgoing.push_back(partons.front());
return;
}
// If reshuffling amongst the incoming is not possible
// or if we have multiple outgoing partons.
else {
// Create a complete list of the outgoing from the process
PList out;
// Make an empty list for storing the new intermediates
PList intermediates;
// Empty in particles pair
PPair in;
// A single parton which cannot be reshuffled
// with the incoming.
if ( partons.size() == 1 ) {
// Populate the out for the reshuffling
out.insert(out.end(),partons.begin(),partons.end());
out.insert(out.end(),recoilers.begin(),recoilers.end());
assert( out.size() > 1 );
// Perform the reshuffle with the temporary particle lists
reshuffle(out, in, intermediates, true, partons, recoilers);
}
// If there is more than one parton, reshuffle only
// amongst the partons
else {
assert(partons.size() > 1);
// Populate the out for the reshuffling
out.insert(out.end(),partons.begin(),partons.end());
assert( out.size() > 1 );
// Perform the reshuffle with the temporary particle lists
reshuffle(out, in, intermediates, true);
}
// Update the dipole event record
updateEvent(intermediates, eventIntermediates, out, eventOutgoing, eventHard );
return;
}
}
void ConstituentReshuffler::decayReshuffle(PerturbativeProcessPtr& decayProc,
PList& eventOutgoing,
PList& eventHard,
PList& eventIntermediates ) {
// Separate particles into those to be assigned constituent masses
// i.e. non-decaying coloured partons
// and those which must only absorb recoil
// i.e. non-coloured and decaying particles
PList partons;
PList recoilers;
-
//Make sure the shower should return constituent masses:
assert(ShowerHandler::currentHandler()->retConstituentMasses());
// Populate the particle lists from the outgoing of the decay process
for( unsigned int ix = 0; ix<decayProc->outgoing().size(); ++ix) {
// Identify recoilers
if ( !decayProc->outgoing()[ix].first->coloured() ||
ShowerHandler::currentHandler()->decaysInShower(decayProc->outgoing()[ix].first->id() ) )
recoilers.push_back(decayProc->outgoing()[ix].first);
else
partons.push_back(decayProc->outgoing()[ix].first);
}
// If there are no outgoing partons, then no reshuffling
// needs to be done
if ( partons.size() == 0 )
return;
// Reshuffling needs to be done:
else {
// Create a complete list of the outgoing from the process
PList out;
// Make an empty list for storing the new intermediates
PList intermediates;
- // Empty in particles pair
+ // Empty incoming particles pair
PPair in;
- // If there is only one parton, the momentum must be
- // reshuffled amongst it and the recoilers
- if ( partons.size() == 1 ) {
- assert ( recoilers.size() >= 1);
-
- // Populate the out for the reshuffling
- out.insert(out.end(),partons.begin(),partons.end());
- out.insert(out.end(),recoilers.begin(),recoilers.end());
- assert( out.size() > 1 );
-
- // Perform the reshuffle with the temporary particle lists
- reshuffle(out, in, intermediates, true, partons, recoilers);
- }
-
-
- // If there is more than one outgoing particle that
- // needs to be assigned its constituent mass
- // then simply reshuffle only these particles
- else {
- assert(partons.size() > 1);
+ // SW - 15/06/2018, 31/01/2019 - Always include 'recoilers' in
+ // reshuffling, regardless of the number of partons to be put on their
+ // constituent mass shell. This is because reshuffling between 2 partons
+ // frequently leads to a redoShower exception. This treatment is
+ // consistent with the AO shower
// Populate the out for the reshuffling
out.insert(out.end(),partons.begin(),partons.end());
+ out.insert(out.end(),recoilers.begin(),recoilers.end());
assert( out.size() > 1 );
// Perform the reshuffle with the temporary particle lists
- reshuffle(out, in, intermediates, true);
- }
-
+ reshuffle(out, in, intermediates, true, partons, recoilers);
// Update the dipole event record and the decay process
updateEvent(intermediates, eventIntermediates, out, eventOutgoing, eventHard, decayProc );
return;
}
}
void ConstituentReshuffler::updateEvent( PList& intermediates,
PList& eventIntermediates,
PList& out,
PList& eventOutgoing,
PList& eventHard,
PerturbativeProcessPtr decayProc ) {
// Loop over the new intermediates following the reshuffling
for (PList::iterator p = intermediates.begin();
p != intermediates.end(); ++p) {
// Update the event record intermediates
eventIntermediates.push_back(*p);
// Identify the reshuffled particle
assert( (*p)->children().size()==1 );
PPtr reshuffled = (*p)->children()[0];
assert( find(out.begin(), out.end(), reshuffled) != out.end() );
// Update the event record outgoing
PList::iterator posOut = find(eventOutgoing.begin(), eventOutgoing.end(), *p);
if ( posOut != eventOutgoing.end() ) {
eventOutgoing.erase(posOut);
eventOutgoing.push_back(reshuffled);
}
else {
PList::iterator posHard = find(eventHard.begin(), eventHard.end(), *p);
assert( posHard != eventHard.end() );
eventHard.erase(posHard);
eventHard.push_back(reshuffled);
}
// Replace the particle in the the decay process outgoing
if ( decayProc ) {
vector<pair<PPtr,PerturbativeProcessPtr> >::iterator decayOutIt = decayProc->outgoing().end();
for ( decayOutIt = decayProc->outgoing().begin();
decayOutIt!= decayProc->outgoing().end(); ++decayOutIt ) {
if ( decayOutIt->first == *p ){
break;
}
}
assert( decayOutIt != decayProc->outgoing().end() );
decayOutIt->first = reshuffled;
}
}
}
// If needed, insert default implementations of virtual function defined
// in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
void ConstituentReshuffler::persistentOutput(PersistentOStream &) const {
}
void ConstituentReshuffler::persistentInput(PersistentIStream &, int) {
}
ClassDescription<ConstituentReshuffler> ConstituentReshuffler::initConstituentReshuffler;
// Definition of the static class description member.
void ConstituentReshuffler::Init() {
static ClassDocumentation<ConstituentReshuffler> documentation
("The ConstituentReshuffler class implements reshuffling "
"of partons on their nominal mass shell to their constituent "
"mass shells.");
}

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 8:11 PM (1 d, 7 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805982
Default Alt Text
(18 KB)

Event Timeline