Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7879073
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
28 KB
Subscribers
None
View Options
diff --git a/Handlers/StdDependentXComb.cc b/Handlers/StdDependentXComb.cc
--- a/Handlers/StdDependentXComb.cc
+++ b/Handlers/StdDependentXComb.cc
@@ -1,164 +1,165 @@
// -*- C++ -*-
//
// StdDependentXComb.cc is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2007 Leif Lonnblad
// Copyright (C) 2009-2010 Simon Platzer
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the StdDependentXComb class.
//
#include "StdDependentXComb.h"
#include "StdXCombGroup.h"
#include "ThePEG/MatrixElement/MEGroup.h"
#include "ThePEG/Cuts/Cuts.h"
#include "ThePEG/Handlers/CascadeHandler.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
using namespace ThePEG;
StdDependentXComb::StdDependentXComb(tStdXCombPtr newHead,
const PBPair & newPartonBins, tMEPtr newME,
const DiagramVector & newDiagrams)
: StandardXComb(newHead->maxEnergy(),newHead->particles(),
newHead->eventHandlerPtr(),
const_ptr_cast<tSubHdlPtr>(newHead->subProcessHandler()),
newHead->pExtractor(),newHead->CKKWHandler(),
newPartonBins,newHead->cuts(),newME,newDiagrams,newHead->mirror(),
newHead), resetIncoming(true) {}
StdDependentXComb::StdDependentXComb()
: StandardXComb(), resetIncoming(true) {}
StdDependentXComb::~StdDependentXComb() { }
tSubProPtr StdDependentXComb::construct() {
// first get the meMomenta in their CMS, as this may
// not be the case
Boost cm = (meMomenta()[0] + meMomenta()[1]).findBoostToCM();
if ( cm.mag2() > Constants::epsilon ) {
for ( vector<Lorentz5Momentum>::iterator m = meMomenta().begin();
m != meMomenta().end(); ++m ) {
*m = m->boost(cm);
}
}
tSubProPtr sub = StandardXComb::construct();
sub->head(head()->subProcess());
sub->groupWeight(lastCrossSection()/head()->lastCrossSection());
return sub;
}
void StdDependentXComb::setProcess() {
meMomenta().resize(mePartonData().size());
}
void StdDependentXComb::setPartonBinInstances(Energy2 scale) {
PBIPair newBins;
Direction<0> dir(true);
newBins.first =
new_ptr(PartonBinInstance(lastPartons().first,partonBins().first,scale));
dir.reverse();
newBins.second =
new_ptr(PartonBinInstance(lastPartons().second,partonBins().second,scale));
resetPartonBinInstances(newBins);
setPartonBinInfo();
lastPartons().first->scale(partonBinInstances().first->scale());
lastPartons().second->scale(partonBinInstances().second->scale());
}
void StdDependentXComb::setIncomingPartons() {
if ( !resetIncoming )
return;
resetIncoming = false;
clean();
createPartonBinInstances();
setPartonBinInfo();
lastParticles(head()->lastParticles());
lastPartons(make_pair(mePartonData()[0]->produceParticle(Lorentz5Momentum()),
mePartonData()[1]->produceParticle(Lorentz5Momentum())));
Lorentz5Momentum pFirst = meMomenta()[0];
Lorentz5Momentum pSecond = meMomenta()[1];
if ( head()->matrixElement()->wantCMS() ) {
Boost toLab = (head()->lastPartons().first->momentum() +
head()->lastPartons().second->momentum()).boostVector();
if ( toLab.mag2() > Constants::epsilon ) {
pFirst.boost(toLab);
pSecond.boost(toLab);
}
}
lastPartons().first->set5Momentum(pFirst);
lastPartons().second->set5Momentum(pSecond);
lastS((lastParticles().first->momentum() +
lastParticles().second->momentum()).m2());
lastSHat((lastPartons().first->momentum() +
lastPartons().second->momentum()).m2());
lastP1P2(make_pair(0.0, 0.0));
double x1 =
lastPartons().first->momentum().plus()/
lastParticles().first->momentum().plus();
double x2 =
lastPartons().second->momentum().minus()/
lastParticles().second->momentum().minus();
lastX1X2(make_pair(x1,x2));
lastY(log(lastX1()/lastX2())*0.5);
}
CrossSection StdDependentXComb::dSigDR() {
setProcess();
setIncomingPartons();
lastScale(head()->lastScale());
lastAlphaS(head()->lastAlphaS());
lastAlphaEM(head()->lastAlphaEM());
- if ( !willPassCuts() ) {
+ if ( (!willPassCuts() && !matrixElement()->headCuts()) ||
+ !matrixElement()->apply() ) {
subProcess(SubProPtr());
lastCrossSection(ZERO);
return ZERO;
}
lastPDFWeight(head()->lastPDFWeight());
CrossSection xsec = matrixElement()->dSigHatDR() * lastPDFWeight();
subProcess(SubProPtr());
lastCrossSection(xsec);
return xsec;
}
void StdDependentXComb::Init() {}
void StdDependentXComb::persistentOutput(PersistentOStream &) const {
}
void StdDependentXComb::persistentInput(PersistentIStream &, int) {
}
ClassDescription<StdDependentXComb> StdDependentXComb::initStdDependentXComb;
diff --git a/Handlers/StdXCombGroup.cc b/Handlers/StdXCombGroup.cc
--- a/Handlers/StdXCombGroup.cc
+++ b/Handlers/StdXCombGroup.cc
@@ -1,366 +1,362 @@
// -*- C++ -*-
//
// StdXCombGroup.cc is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2007 Leif Lonnblad
// Copyright (C) 2009-2010 Simon Platzer
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the StdXCombGroup class.
//
#include "StdXCombGroup.h"
#include "ThePEG/MatrixElement/MEGroup.h"
#include "ThePEG/Handlers/StandardEventHandler.h"
#include "ThePEG/Handlers/SubProcessHandler.h"
#include "ThePEG/Cuts/Cuts.h"
#include "ThePEG/PDF/PartonExtractor.h"
#include "ThePEG/Utilities/Debug.h"
#include "ThePEG/Utilities/Maths.h"
#include "ThePEG/PDT/ParticleData.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Utilities/SimplePhaseSpace.h"
#include "ThePEG/Utilities/UtilityBase.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/EventRecord/SubProcessGroup.h"
#include "ThePEG/Vectors/LorentzRotation.h"
#include "ThePEG/MatrixElement/MEBase.h"
#include "ThePEG/MatrixElement/ColourLines.h"
#include "ThePEG/Handlers/LuminosityFunction.h"
#include "ThePEG/Handlers/CascadeHandler.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/EventRecord/TmpTransform.h"
using namespace ThePEG;
StdXCombGroup::StdXCombGroup(Energy newMaxEnergy, const cPDPair & inc,
tEHPtr newEventHandler,tSubHdlPtr newSubProcessHandler,
tPExtrPtr newExtractor, tCascHdlPtr newCKKW,
const PBPair & newPartonBins, tCutsPtr newCuts, tMEGroupPtr newME,
const DiagramVector & newDiagrams, bool mir)
: StandardXComb(newMaxEnergy,inc,newEventHandler,newSubProcessHandler,
newExtractor, newCKKW, newPartonBins, newCuts,
newME, newDiagrams, mir),
theMEGroup(newME), theDependent(), theLastHeadCrossSection(ZERO) {}
StdXCombGroup::StdXCombGroup()
: StandardXComb(), theDependent() {}
void StdXCombGroup::build(const PartonPairVec& allPBins) {
for ( MEVector::const_iterator me = theMEGroup->dependent().begin();
me != theMEGroup->dependent().end(); ++me ) {
StdDependentXCombPtr dep =
theMEGroup->makeDependentXComb(this,diagrams().front()->partons(),*me,allPBins);
theDependent.push_back(dep);
}
}
StdXCombGroup::~StdXCombGroup() { }
CrossSection StdXCombGroup::dSigDR(const pair<double,double> ll, int nr, const double * r) {
matrixElement()->flushCaches();
if ( matrixElement()->keepRandomNumbers() ) {
lastRandomNumbers().resize(nDim());
copy(r,r+nDim(),lastRandomNumbers().begin());
}
pExtractor()->select(this);
setPartonBinInfo();
lastP1P2(ll);
lastS(sqr(maxEnergy())/exp(lastP1() + lastP2()));
meMomenta().resize(mePartonData().size());
matrixElement()->setXComb(this);
PPair partons;
if ( !matrixElement()->haveX1X2() ) {
if ( !pExtractor()->generateL(partonBinInstances(),
r, r + nr - partonDims.second) ) {
lastCrossSection(ZERO);
return ZERO;
}
partons = make_pair(partonBinInstances().first->parton(),
partonBinInstances().second->parton());
lastSHat(lastS()/exp(partonBinInstances().first->l() +
partonBinInstances().second->l()));
meMomenta()[0] = partons.first->momentum();
meMomenta()[1] = partons.second->momentum();
} else {
if ( !matrixElement()->generateKinematics(r + partonDims.first) ) {
lastCrossSection(ZERO);
return ZERO;
}
lastSHat((meMomenta()[0]+meMomenta()[1]).m2());
matrixElement()->setKinematics();
lastScale(matrixElement()->scale());
partons.first = mePartonData()[0]->produceParticle(meMomenta()[0]);
partons.second = mePartonData()[1]->produceParticle(meMomenta()[1]);
Direction<0> dir(true);
partonBinInstances().first =
new_ptr(PartonBinInstance(lastParticles().first,partons.first,
partonBins().first,lastScale()));
dir.reverse();
partonBinInstances().second =
new_ptr(PartonBinInstance(lastParticles().second,partons.second,
partonBins().second,lastScale()));
}
lastPartons(partons);
if ( lastSHat() < cuts()->sHatMin() ) {
lastCrossSection(ZERO);
return ZERO;
}
lastY(0.5*(partonBinInstances().second->l() -
partonBinInstances().first->l()));
if ( !cuts()->initSubProcess(lastSHat(), lastY(), mirror()) ) {
lastCrossSection(ZERO);
return ZERO;
}
if ( mirror() ) swap(meMomenta()[0], meMomenta()[1]);
if ( matrixElement()->wantCMS() &&
!matrixElement()->haveX1X2() )
SimplePhaseSpace::CMS(meMomenta()[0], meMomenta()[1], lastSHat());
Energy summ = ZERO;
if ( meMomenta().size() == 3 ) {
if ( !matrixElement()->haveX1X2() )
meMomenta()[2] = Lorentz5Momentum(sqrt(lastSHat()));
} else {
for ( int i = 2, N = meMomenta().size(); i < N; ++i ) {
if ( !matrixElement()->haveX1X2() )
meMomenta()[i] = Lorentz5Momentum(mePartonData()[i]->mass());
summ += mePartonData()[i]->massMin();
}
if ( sqr(summ) >= lastSHat() ) {
lastCrossSection(ZERO);
return ZERO;
}
}
matrixElement()->setXComb(this);
if ( !matrixElement()->haveX1X2() )
lastScale(max(lastSHat()/4.0, cuts()->scaleMin()));
lastSHat(pExtractor()->generateSHat(lastS(), partonBinInstances(),
r, r + nr - partonDims.second,
matrixElement()->haveX1X2()));
if ( !cuts()->sHat(lastSHat()) ) {
lastCrossSection(ZERO);
return ZERO;
}
r += partonDims.first;
lastX1X2(make_pair(lastPartons().first->momentum().plus()/
lastParticles().first->momentum().plus(),
lastPartons().second->momentum().minus()/
lastParticles().second->momentum().minus()));
if ( !cuts()->x1(lastX1()) || !cuts()->x2(lastX2()) ) {
lastCrossSection(ZERO);
return ZERO;
}
lastY((lastPartons().first->momentum() +
lastPartons().second->momentum()).rapidity());
if ( !cuts()->yHat(lastY()) ) {
lastCrossSection(ZERO);
return ZERO;
}
if ( !cuts()->initSubProcess(lastSHat(), lastY(), mirror()) ) {
lastCrossSection(ZERO);
return ZERO;
}
meMomenta()[0] = lastPartons().first->momentum();
meMomenta()[1] = lastPartons().second->momentum();
if ( mirror() ) swap(meMomenta()[0], meMomenta()[1]);
if ( matrixElement()->wantCMS() &&
!matrixElement()->haveX1X2() )
SimplePhaseSpace::CMS(meMomenta()[0], meMomenta()[1], lastSHat());
if ( meMomenta().size() == 3 ) {
if ( !matrixElement()->haveX1X2() )
meMomenta()[2] = Lorentz5Momentum(sqrt(lastSHat()));
} else {
if ( sqr(summ) >= lastSHat() ) {
lastCrossSection(ZERO);
return ZERO;
}
}
matrixElement()->setXComb(this);
if ( !matrixElement()->haveX1X2() ) {
if ( !matrixElement()->generateKinematics(r) ) {
lastCrossSection(ZERO);
return ZERO;
}
}
lastScale(matrixElement()->scale());
if ( !cuts()->scale(lastScale()) ) {
lastCrossSection(ZERO);
return ZERO;
}
pair<bool,bool> evalPDFS =
make_pair(matrixElement()->havePDFWeight1(),
matrixElement()->havePDFWeight2());
if ( mirror() )
swap(evalPDFS.first,evalPDFS.second);
lastPDFWeight(pExtractor()->fullFn(partonBinInstances(), lastScale(),
evalPDFS));
if ( lastPDFWeight() == 0.0 ) {
lastCrossSection(ZERO);
return ZERO;
}
matrixElement()->setKinematics();
CrossSection xsec = matrixElement()->dSigHatDR() * lastPDFWeight();
bool noHeadPass = !willPassCuts() || xsec == ZERO;
if ( noHeadPass )
lastCrossSection(ZERO);
lastAlphaS(matrixElement()->alphaS());
lastAlphaEM(matrixElement()->alphaEM());
subProcess(SubProPtr());
if ( CKKWHandler() && matrixElement()->maxMultCKKW() > 0 &&
matrixElement()->maxMultCKKW() > matrixElement()->minMultCKKW() ) {
newSubProcess(theMEGroup->subProcessGroups());
CKKWHandler()->setXComb(this);
xsec *= CKKWHandler()->reweightCKKW(matrixElement()->minMultCKKW(),
matrixElement()->maxMultCKKW());
}
if ( matrixElement()->reweighted() ) {
newSubProcess(theMEGroup->subProcessGroups());
xsec *= matrixElement()->reWeight() * matrixElement()->preWeight();
}
lastHeadCrossSection(xsec);
CrossSection depxsec = ZERO;
if ( !theMEGroup->mcSumDependent() ) {
for ( StdDepXCVector::const_iterator dep = theDependent.begin();
dep != theDependent.end(); ++dep ) {
if ( !(*dep) )
continue;
if ( !(**dep).matrixElement()->apply() )
continue;
if ( noHeadPass && (**dep).matrixElement()->headCuts() )
continue;
depxsec += (**dep).dSigDR();
}
} else {
if ( !noHeadPass || !theMEGroup->lastDependentXComb()->matrixElement()->headCuts() )
depxsec = theDependent.size()*theMEGroup->lastDependentXComb()->dSigDR();
}
if ( xsec != ZERO ) {
double rw = 1.0 + depxsec/xsec;
xsec *= rw;
} else {
xsec = depxsec;
}
lastCrossSection(xsec);
if ( xsec != ZERO )
theMEGroup->lastEventStatistics();
- if ( !theMEGroup->subProcessGroups() ) {
- lastHeadCrossSection(xsec);
- }
-
return xsec;
}
void StdXCombGroup::newSubProcess(bool) {
// subprocess selection goes here
// if me group returns an associated
// selector
StandardXComb::newSubProcess(theMEGroup->subProcessGroups());
if ( !theMEGroup->subProcessGroups() )
return;
subProcess()->groupWeight(lastHeadCrossSection()/lastCrossSection());
Ptr<SubProcessGroup>::tptr group =
dynamic_ptr_cast<Ptr<SubProcessGroup>::tptr>(subProcess());
assert(group);
for ( StdDepXCVector::iterator dep = theDependent.begin();
dep != theDependent.end(); ++dep ) {
if ( !(*dep) )
continue;
if ( (**dep).lastCrossSection() == ZERO ||
!(**dep).matrixElement()->apply() )
continue;
tSubProPtr ds;
try {
ds = (**dep).construct();
} catch(Veto&) {
continue;
}
if ( ds )
group->add(ds);
}
}
tSubProPtr StdXCombGroup::construct() {
if ( !theMEGroup->subProcessGroups() )
return StandardXComb::construct();
matrixElement()->setXComb(this);
setPartonBinInfo();
matrixElement()->setKinematics();
newSubProcess(true);
TmpTransform<tSubProPtr>
tmp(subProcess(), Utilities::getBoostToCM(subProcess()->incoming()));
if ( !cuts()->passCuts(*subProcess()) ) {
subProcess()->groupWeight(0.0);
}
return subProcess();
}
void StdXCombGroup::Init() {}
void StdXCombGroup::persistentOutput(PersistentOStream & os) const {
os << theDependent << theMEGroup << ounit(theLastHeadCrossSection,nanobarn);
}
void StdXCombGroup::persistentInput(PersistentIStream & is, int) {
is >> theDependent >> theMEGroup >> iunit(theLastHeadCrossSection,nanobarn);
}
ClassDescription<StdXCombGroup> StdXCombGroup::initStdXCombGroup;
diff --git a/Handlers/StdXCombGroup.h b/Handlers/StdXCombGroup.h
--- a/Handlers/StdXCombGroup.h
+++ b/Handlers/StdXCombGroup.h
@@ -1,187 +1,187 @@
// -*- C++ -*-
//
// StdXCombGroup.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2007 Leif Lonnblad
// Copyright (C) 2009-2010 Simon Platzer
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_StdXCombGroup_H
#define ThePEG_StdXCombGroup_H
// This is the declaration of the StdXCombGroup class.
#include "StandardXComb.h"
#include "StdDependentXComb.h"
#include "StdXCombGroup.fh"
#include "ThePEG/MatrixElement/MEGroup.fh"
namespace ThePEG {
/**
* The StdXCombGroup class represents a 'head' XComb object
* in association with a group of dependent XComb objects.
*
* @see StdDependendXComb
* @see MEGroup
*/
class StdXCombGroup: public StandardXComb {
/** MEBase needs to be a friend. */
friend class MEBase;
public:
/** @name Standard constructors and destructors. */
//@{
/**
* Standard constructor.
*/
StdXCombGroup(Energy newMaxEnergy, const cPDPair & inc,
tEHPtr newEventHandler,tSubHdlPtr newSubProcessHandler,
tPExtrPtr newExtractor, tCascHdlPtr newCKKW,
const PBPair & newPartonBins, tCutsPtr newCuts, tMEGroupPtr newME,
const DiagramVector & newDiagrams, bool mir);
/**
* Default constructor.
*/
StdXCombGroup();
/**
* Destructor.
*/
virtual ~StdXCombGroup();
public:
/**
* Generate a phase space point from a vector \a r of \a nr numbers
* in the interval ]0,1[ and return the corresponding differential
* cross section.
*/
virtual CrossSection dSigDR(const pair<double,double> ll, int nr, const double * r);
/**
+ * Return the cross section calculated from the head matrix element
+ */
+ CrossSection lastHeadCrossSection() const { return theLastHeadCrossSection; }
+
+ /**
* Visit the dependent XComb objects
*/
const StdDepXCVector& dependent() const { return theDependent; }
/**
* Return the matrix element group steered by this
* XComb group.
*/
tcMEGroupPtr meGroup() const { return theMEGroup; }
/**
* Initialize this XComb group
*/
void build(const PartonPairVec& allPBins);
/**
* Construct a sub-process object from the information available.
*/
virtual tSubProPtr construct();
protected:
/**
* Construct the corresponding SubProcess object if it hasn't been
* done before.
*/
virtual void newSubProcess(bool);
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* Standard Init function used to initialize the interface.
*/
static void Init();
protected:
/**
* Set the cross section calculated from the head matrix element
*/
void lastHeadCrossSection(CrossSection xs) { theLastHeadCrossSection = xs; }
- /**
- * Return the cross section calculated from the head matrix element
- */
- CrossSection lastHeadCrossSection() const { return theLastHeadCrossSection; }
-
private:
/**
* The MEGroup object
*/
MEGroupPtr theMEGroup;
/**
* The dependent XComb objects
*/
StdDepXCVector theDependent;
/**
* The cross section calculated from the head matrix element
*/
CrossSection theLastHeadCrossSection;
private:
/**
* Describe a concrete class with persistent data.
*/
static ClassDescription<StdXCombGroup> initStdXCombGroup;
/**
* Private and non-existent assignment operator.
*/
StdXCombGroup & operator=(const StdXCombGroup &);
};
/** @cond TRAITSPECIALIZATIONS */
/**
* This template specialization informs ThePEG about the base class of
* StdXCombGroup.
*/
template <>
struct BaseClassTrait<StdXCombGroup,1> {
/** Typedef of the base class of StdXCombGroup. */
typedef StandardXComb NthBase;
};
/**
* This template specialization informs ThePEG about the name of the
* StdXCombGroup class.
*/
template <>
struct ClassTraits<StdXCombGroup>:
public ClassTraitsBase<StdXCombGroup> {
/** Return the class name. */
static string className() { return "ThePEG::StdXCombGroup"; }
};
/** @endcond */
}
#endif /* ThePEG_StdXCombGroup_H */
diff --git a/MatrixElement/ColourLines.cc b/MatrixElement/ColourLines.cc
--- a/MatrixElement/ColourLines.cc
+++ b/MatrixElement/ColourLines.cc
@@ -1,138 +1,143 @@
// -*- C++ -*-
//
// ColourLines.cc is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ColourLines class.
//
#include "ColourLines.h"
#include "ColourLines.xh"
#include "ThePEG/EventRecord/ColourLine.h"
#include "ThePEG/EventRecord/MultiColour.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Utilities/StringUtils.h"
using namespace ThePEG;
ColourLines::ColourLines(string s) {
+ reset(s);
+}
+
+void ColourLines::reset(string s) {
+ theLines.clear();
while ( true ) {
string line = StringUtils::car(s, ",");
line = StringUtils::stripws(line);
Line l;
while (line!="") {
string loc = StringUtils::car(line);
string first = StringUtils::car(loc,":");
string second = StringUtils::cdr(loc,":");
if(second!="") {
int i;
istringstream is(first);
is >> i;
int j;
istringstream is2(second);
is2 >> j;
l.push_back(make_pair(i,j));
}
else {
int i;
istringstream is(first);
is >> i;
l.push_back(make_pair(i,0));
}
line = StringUtils::cdr(line);
};
if ( l.empty() ) return;
theLines.push_back(l);
s = StringUtils::cdr(s, ",");
}
}
void ColourLines::connect(const tPVector & partons) const {
VertexVector sinks;
VertexVector sources;
long np = partons.size();
// Create each line and connect the specified partons to them. Save
// all lines coming from a source or ending in a sink.
for ( LineVector::size_type il = 0; il < theLines.size(); ++il ) {
const Line & line = theLines[il];
ColinePtr cline = new_ptr(ColourLine());
for ( Line::size_type i = 0; i < line.size(); ++i ) {
if ( line[i].first > np ) {
// this is a colour source.
int is = line[i].first - np;
sources.resize(is);
sources[is - 1].push_back(cline);
} else if ( -line[i].first > np ) {
// this is a colour sink.
int is = -line[i].first - np;
sources.resize(is);
sources[is - 1].push_back(cline);
} else if ( line[i].first > 0 ) {
// This is a coloured particle.
if ( !partons[line[i].first - 1]->hasColour() )
throw ColourGeometryException(partons, line);
if(line[i].second==0) {
cline->addColoured(partons[line[i].first - 1]);
}
else {
Ptr<MultiColour>::pointer colour =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(partons[line[i].first - 1]->colourInfo());
assert(colour);
colour->colourLine(cline,line[i].second);
}
} else {
if ( !partons[-line[i].first - 1]->hasAntiColour() )
throw ColourGeometryException(partons, line);
if(line[i].second==0) {
cline->addAntiColoured(partons[-line[i].first - 1]);
}
else {
Ptr<MultiColour>::pointer colour =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(partons[-line[i].first - 1]->colourInfo());
assert(colour);
colour->antiColourLine(cline,line[i].second);
}
}
}
}
// Now connect up all lines steming from sources.
for ( VertexVector::size_type i = 0; i < sources.size(); ++i ) {
if ( sources[i].empty() ) continue;
if ( sources[i].size() != 3 ) throw ColourGeometryException(partons,
vector<pair<int,int> >() );
sources[i][0]->setSourceNeighbours(sources[i][1], sources[i][2]);
}
// Now connect up all lines ending in sinks.
for ( VertexVector::size_type i = 0; i < sinks.size(); ++i ) {
if ( sinks[i].empty() ) continue;
if ( sinks[i].size() != 3 ) throw ColourGeometryException(partons,
vector<pair<int,int> >());
sinks[i][0]->setSinkNeighbours(sinks[i][1], sinks[i][2]);
}
}
ColourGeometryException::
ColourGeometryException(const tPVector & p, const vector<pair<int,int> > & c) {
if ( c.empty() )
theMessage << "The number of colour lines steming from one colour source "
<< "or ending in one colour sink was not equal to three.\n";
else {
theMessage << "Cannot connect the following partons:\n";
for ( unsigned i = 0; i < p.size(); ++i )
theMessage << " " << p[i]->PDGName();
theMessage << "\n to the following colour line:\n";
for ( unsigned i = 0; i < c.size(); ++i ) theMessage << " (" << c[i].first << ","
<< c[i].second << ") ";
theMessage << endl;
}
severity(maybeabort);
}
diff --git a/MatrixElement/ColourLines.h b/MatrixElement/ColourLines.h
--- a/MatrixElement/ColourLines.h
+++ b/MatrixElement/ColourLines.h
@@ -1,78 +1,89 @@
// -*- C++ -*-
//
// ColourLines.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_ColourLines_H
#define ThePEG_ColourLines_H
// This is the declaration of the ColourLines class.
#include "ThePEG/Config/ThePEG.h"
namespace ThePEG {
/**
* The ColourLines class defines the colour flow in a SubProcess. It
* defines a number of colour lines and specifies which particles are
* connected to them.
*
*/
class ColourLines: public Base {
public:
/** A single colour line */
typedef vector<pair<int,int> > Line;
/** A vector of colour lines. */
typedef vector<Line> LineVector;
/** A vector of <code>ColourLine</code>. */
typedef vector<ColinePtr> Vertex;
/** A vector of vertices. */
typedef vector<Vertex> VertexVector;
public:
/** @name Standard constructors and destructors. */
//@{
/**
* Default constructor.
*/
ColourLines() {}
/**
* The standard constructor. The string \a s should contain a
* comma-separated sequence of integers. Each sequence of numbers
* indicates a colour line and the integer represents a parton
* connected to it. If the integer is negative, it means that the
* line is the corresponding partons anti-colour. Note that the
* partons are numbered from 1: The first spacelike particle is 1, the second
* is 2 and the internal time-like and outgoing are numbered after all
* the spacelike particles.
*/
ColourLines(string s);
//@}
+ /**
+ * Reset this ColourLines object. The string \a s should contain a
+ * comma-separated sequence of integers. Each sequence of numbers
+ * indicates a colour line and the integer represents a parton
+ * connected to it. If the integer is negative, it means that the
+ * line is the corresponding partons anti-colour. Note that the
+ * partons are numbered from 1: The first incoming is 1, the second
+ * is 2 and the internal and outgoing are numbered 3 and upwards.
+ */
+ void reset(string s);
+
public:
/**
* Create the corresponding <code>ColourLine</code>s and connect the
* given \a partons. The partons are assumed to be in the same order
* as the numbers specified in the constructor.
*/
void connect(const tPVector & partons) const;
private:
/**
* The vector of colour lines.
*/
LineVector theLines;
};
}
#endif /* ThePEG_ColourLines_H */
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 7:27 PM (1 d, 10 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805827
Default Alt Text
(28 KB)
Attached To
rTHEPEGHG thepeghg
Event Timeline
Log In to Comment