Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F8725503
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
66 KB
Subscribers
None
View Options
diff --git a/include/RHEJ/Constants.hh b/include/RHEJ/Constants.hh
new file mode 100644
index 0000000..5960484
--- /dev/null
+++ b/include/RHEJ/Constants.hh
@@ -0,0 +1,21 @@
+/** \file Constants.hh
+ * \brief Header file defining all global constants used for HEJ
+ */
+#pragma once
+
+namespace RHEJ{
+/// @name QCD parameters
+//@{
+ constexpr int N_C = 3; //!< number of Colors
+ constexpr int C_A = N_C; //!< \f$C_A\f$
+ constexpr double C_F = (N_C*N_C - 1.)/(2.*N_C); //!< \f$C_F\f$
+ constexpr double t_f = 0.5; //!< \f$t_f\f$
+ constexpr int n_f = 5; //!< number light flavors
+ constexpr double beta0 = 11./3.*C_A - 4./3.*t_f*n_f; //!< \f$\beta_0\f$
+//@}
+/// @name Generation Parameters
+//@{
+ constexpr double CLAMBDA = 0.2; //!< Scale for virtual correction, \f$\lambda\f$ cf. eq. (20) in \cite Andersen:2011hs
+ constexpr double CMINPT = CLAMBDA; //!< minimal \f$p_t\f$ of all partons
+//@}
+}
diff --git a/include/RHEJ/PhaseSpacePoint.hh b/include/RHEJ/PhaseSpacePoint.hh
index 906fe9c..4d32587 100644
--- a/include/RHEJ/PhaseSpacePoint.hh
+++ b/include/RHEJ/PhaseSpacePoint.hh
@@ -1,162 +1,157 @@
/** \file PhaseSpacePoint.hh
* \brief Contains the PhaseSpacePoint Class
*/
#pragma once
#include <vector>
#include <CLHEP/Random/Randomize.h>
#include <CLHEP/Random/RanluxEngine.h>
#include "RHEJ/utility.hh"
#include "RHEJ/config.hh"
#include "RHEJ/Event.hh"
#include "RHEJ/Splitter.hh"
namespace RHEJ{
//! A point in resummation phase space
class PhaseSpacePoint{
public:
//! Default PhaseSpacePoint Constructor
PhaseSpacePoint() = default;
//! PhaseSpacePoint Constructor
/**
* @param ev Clustered Jet Event
* @param conf Configuration parameters
*/
PhaseSpacePoint(
Event const & ev,
Config const & conf
);
//! Get Weight Function
/**
* @returns Weight of Event
*/
double weight() const{
return weight_;
}
//! Get Incoming Function
/**
* @returns Incoming Particles
*/
std::array<Sparticle, 2> const & incoming() const{
return incoming_;
}
//! Get Outgoing Function
/**
* @returns Outgoing Particles
*/
std::vector<Sparticle> const & outgoing() const{
return outgoing_;
}
std::unordered_map<int, std::vector<Sparticle>> const & decays() const{
return decays_;
}
- static constexpr double ccut = 0.2; // universal min pt cut
static constexpr int ng_max = 1000; // maximum number of extra gluons
static void reset_ranlux(std::string const & init_file);
static void reset_ranlux(char const * init_file);
private:
std::vector<fastjet::PseudoJet> cluster_jets(
std::vector<fastjet::PseudoJet> const & partons
) const;
bool pass_resummation_cuts(
std::vector<fastjet::PseudoJet> const & jets
) const;
bool pass_extremal_cuts(
fastjet::PseudoJet const & ext_parton,
fastjet::PseudoJet const & jet
) const;
int sample_ng(std::vector<fastjet::PseudoJet> const & Born_jets);
int sample_ng_jets(int ng, std::vector<fastjet::PseudoJet> const & Born_jets);
double probability_in_jet(
std::vector<fastjet::PseudoJet> const & Born_jets
) const;
std::vector<fastjet::PseudoJet> gen_non_jet(
int ng_non_jet,
double ptmin, double ptmax
);
void rescale_rapidities(
std::vector<fastjet::PseudoJet> & partons,
double ymin, double ymax
);
std::vector<fastjet::PseudoJet> reshuffle(
std::vector<fastjet::PseudoJet> const & Born_jets,
fastjet::PseudoJet const & q
);
bool jets_ok(
std::vector<fastjet::PseudoJet> const & Born_jets,
std::vector<fastjet::PseudoJet> const & partons
) const;
void reconstruct_incoming(std::array<Sparticle, 2> const & Born_incoming);
double phase_space_normalisation(
int num_Born_jets,
int num_res_partons
) const;
std::vector<fastjet::PseudoJet> split(
std::vector<fastjet::PseudoJet> const & jets, int ng_jets
);
std::vector<int> distribute_jet_partons(
int ng_jets, std::vector<fastjet::PseudoJet> const & jets
);
std::vector<fastjet::PseudoJet> split(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<int> const & np_in_jet
);
bool split_preserved_jets(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<fastjet::PseudoJet> const & jet_partons
) const;
template<class Particle>
Particle const & most_backward_FKL(
std::vector<Particle> const & partons
) const;
template<class Particle>
Particle const & most_forward_FKL(
std::vector<Particle> const & partons
) const;
template<class Particle>
Particle & most_backward_FKL(std::vector<Particle> & partons) const;
template<class Particle>
Particle & most_forward_FKL(std::vector<Particle> & partons) const;
bool extremal_ok(
std::vector<fastjet::PseudoJet> const & partons
) const;
void copy_AWZH_boson_from(Event const & event);
bool momentum_conserved(double ep) const;
bool unob_, unof_;
double weight_;
- // double extpartonptmin_;
- // double max_ext_soft_pt_fraction_;
- // double jetptmin_;
- // fastjet::JetDefinition jet_def_;
const PhaseSpacePointParameters param;
std::array<Sparticle, 2> incoming_;
std::vector<Sparticle> outgoing_;
//! Particle decays in the format {outgoing index, decay products}
std::unordered_map<int, std::vector<Sparticle>> decays_;
static CLHEP::Ranlux64Engine ran_;
HejSplit splitter_;
};
}
diff --git a/include/RHEJ/config.hh b/include/RHEJ/config.hh
index 0e154f6..6b36c92 100644
--- a/include/RHEJ/config.hh
+++ b/include/RHEJ/config.hh
@@ -1,197 +1,194 @@
/** \file config.hh
* \brief The file which handles the configuration file parameters
*
* Contains the JetParameters Struct and ScaleConfig Struct. Also
* contains the ScaleGenerator Class and the EventTreatment class.
* Config struct is also defined here. The configuration files
* parameters are read and then stored within this objects.
*/
#pragma once
#include <string>
#include <memory>
#include "fastjet/JetDefinition.hh"
#include "yaml-cpp/yaml.h"
#include "RHEJ/event_types.hh"
#include "RHEJ/Event.hh"
#include "RHEJ/HiggsCouplingSettings.hh"
#include "RHEJ/optional.hh"
#include "RHEJ/output_formats.hh"
#include "RHEJ/ScaleFunction.hh"
#include "RHEJ/utility.hh"
namespace RHEJ{
/**! \struct JetParameters config.hh "include/RHEJ/config.hh"
* \brief Contains Jet Definition and Minimum Pt to be a Jet.
*
* Contains the Fastjet definition of a Jet and a threshold (minimum) value for pt
*/
struct JetParameters{
fastjet::JetDefinition def; /**< Jet Definition */
double min_pt; /**< Minimum Jet Pt */
};
/**! \struct ScaleConfig config.hh "include/RHEJ/config.hh"
* \brief Sets up the possible choices for scale variation?
*
* There is a vector which contains the possible scale choices and
* also vector of doubles with the scale factors along with a max
* scale ratio.
*/
struct ScaleConfig{
- // std::vector<std::unique_ptr<ScaleFunction>> scales; /**< Vector of possible Scale choices */
std::vector<std::shared_ptr<ScaleFunction>> scales; /**< Vector of possible Scale choices */
std::vector<double> scale_factors; /**< Vector of possible Scale Factors */
double max_scale_ratio; /**< Maximum ratio for the scales */
};
/**! \class ScaleGenerator config.hh "include/RHEJ/config.hh"
* \brief A Class used to generate scales
*
* This class has a clustered event class and scale config struct
* within it.
*/
class ScaleGenerator{
public:
ScaleGenerator() = default;
explicit ScaleGenerator(ScaleConfig && settings):
settings_{std::move(settings)}
{}
Event operator()(Event ev) const;
ScaleConfig const & settings() const;
private:
ScaleConfig settings_;
};
/**! \enum EventTreatment config.hh "include/RHEJ/config.hh"
* \brief Enumeration which deals with how to treat events.
*
* The program will decide on how to treat an event based on
* the value of this enumeration.
*/
enum class EventTreatment{
reweight, /**< Reweigh the event */
keep, /**< Keep the event */
discard, /**< Discard the event */
};
/**
* \brief An ordered Map with EventType keys and mapped values EventTreatment
*
* If called upon with EventTreatMap.at(EventType) it will return the treatment which has
* been specified for that EventType.
*/
using EventTreatMap = std::map<event_type::EventType, EventTreatment>;
/**! \struct Config config.hh "include/RHEJ/config.hh"
* \brief Config Struct for user input parameters.
*
* The struct which handles the input card given by the user.
*
* \internal To add a new option:
* 1. Add a member to the Config struct.
* 2. Inside "src/YAMLreader.cc":
* - Add the option name to the "supported" Node in
* get_supported_options.
* - Initialise the new Config member in to_Config.
* The functions set_from_yaml (for mandatory options) and
* set_from_yaml_if_defined (non-mandatory) may be helpful.
* 3. Add a new entry (with short description) to config.yaml
*/
struct Config {
ScaleGenerator scale_gen; /**< Scale */
JetParameters resummation_jets; /**< Resummation Jets */
JetParameters fixed_order_jets; /**< Fixed-Order Jets */
double min_extparton_pt; /**< Min External Parton Pt*/
double max_ext_soft_pt_fraction; /**< Min External Parton Pt Fraction */
int trials; /**< Number of resummation points to generate per FO */
//! Log Correct from running of \f$\alpha_s$\f On or Off
bool log_correction;
bool unweight; /**< Unweight On or Off */
std::vector<OutputFile> output; /**< Output Files Type */
optional<std::string> RanLux_init; /**< Ranlux File Choice*/
//! Map to decide what to do for differnt EventTypes
EventTreatMap treat;
YAML::Node analysis_parameters; /**< Analysis Parameters */
//! Settings for Effective Higgs-Gluon Coupling
HiggsCouplingSettings Higgs_coupling;
};
class Parameters{
protected:
const Config & config;
public:
explicit Parameters(const Config & conf): config(conf){}
- // explicit Parameters(const Parameters & param):
- // config(param.getConfig()){}
const Config & get_Config() const {return config;}
};
class PhaseSpacePointParameters: public Parameters {
public:
explicit PhaseSpacePointParameters(const Config & conf): Parameters(conf){}
///@{
/// @name getter functions
const JetParameters & jet_parameters() const
{return config.resummation_jets;}
double jet_ptmin() const
{return jet_parameters().min_pt;}
const fastjet::JetDefinition & jet_def() const
{return jet_parameters().def;}
double jet_R() const
{return jet_def().R();}
double min_ext_pt() const
{return config.min_extparton_pt;}
double max_ext_soft_pt_fraction() const
{return config.max_ext_soft_pt_fraction;}
///@}
};
class MartixElementParameters: public Parameters {
public:
explicit MartixElementParameters(const Config & conf):
Parameters(conf){}
///@{
/// @name getter functions
const JetParameters & jet_parameters() const
{return config.resummation_jets;}
double jet_ptmin() const
{return jet_parameters().min_pt;}
const fastjet::JetDefinition & jet_def() const
{return jet_parameters().def;}
bool log_corr() const
{return config.log_correction;}
const HiggsCouplingSettings & Hgg_setting() const
{return config.Higgs_coupling;}
///@}
};
class EventReweighterParameters: public Parameters {
public:
explicit EventReweighterParameters(const Config & conf):
Parameters(conf){}
///@{
/// @name getter functions
const JetParameters & jet_parameters() const
{return config.resummation_jets;}
double jet_ptmin() const
{return jet_parameters().min_pt;}
const fastjet::JetDefinition & jet_def() const
{return jet_parameters().def;}
const EventTreatMap & treat() const
{return config.treat;}
///@}
};
} // namespace RHEJ
diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc
index f5062a8..dd636dd 100644
--- a/src/MatrixElement.cc
+++ b/src/MatrixElement.cc
@@ -1,758 +1,748 @@
#include "RHEJ/MatrixElement.hh"
#include <CLHEP/Random/Randomize.h>
#include <CLHEP/Random/RanluxEngine.h>
+#include "RHEJ/Constants.hh"
#include "RHEJ/currents.hh"
#include "RHEJ/PDG_codes.hh"
#include "RHEJ/uno.hh"
#include "RHEJ/debug.hh"
-
-namespace{
- constexpr int N_C = 3;
- constexpr int C_A = N_C;
- constexpr double C_F = (N_C*N_C - 1.)/(2.*N_C);
- constexpr double t_f = 1./2.;
- constexpr double clambda = 0.2;
- constexpr int n_f = 5;
- constexpr double beta0 = 11./3.*C_A - 4./3.*t_f*n_f;
-}
-
namespace RHEJ{
//cf. last line of eq. (22) in \ref Andersen:2011hs
double MatrixElement::omega0(
double alpha_s, double mur,
fastjet::PseudoJet const & q_j, double lambda
) const {
const double result = - alpha_s*N_C/M_PI*log(q_j.perp2()/(lambda*lambda));
if(! param.log_corr()) return result;
// use alpha_s(sqrt(q_j*lambda)), evolved to mur
return (
1. + alpha_s/(4.*M_PI)*beta0*log(mur*mur/(q_j.perp()*lambda))
)*result;
}
double MatrixElement::virtual_corrections(
double mur,
std::array<Sparticle, 2> const & in,
std::vector<Sparticle> const & out
) const{
fastjet::PseudoJet const & pa = in.front().p;
#ifndef NDEBUG
fastjet::PseudoJet const & pb = in.back().p;
#endif
assert(std::is_sorted(out.begin(), out.end(), rapidity_less{}));
assert(out.size() >= 2);
assert(pa.pz() < pb.pz());
fastjet::PseudoJet q = pa - out[0].p;
size_t first_idx = 0;
size_t last_idx = out.size() - 1;
// if there is a Higgs or unordered gluon outside the extremal partons
// then it is not part of the FKL ladder and does not contribute
// to the virtual corrections
if(out.front().type == pid::Higgs || has_unob_gluon(in, out)){
q -= out[1].p;
++first_idx;
}
if(out.back().type == pid::Higgs || has_unof_gluon(in, out)){
--last_idx;
}
double exponent = 0;
const double alpha_s = alpha_s_(mur);
for(size_t j = first_idx; j < last_idx; ++j){
- exponent += omega0(alpha_s, mur, q, clambda)*(
+ exponent += omega0(alpha_s, mur, q, CLAMBDA)*(
out[j+1].rapidity() - out[j].rapidity()
);
q -= out[j+1].p;
}
assert(
nearby(q, -1*pb)
|| out.back().type == pid::Higgs
|| has_unof_gluon(in, out)
);
return exp(exponent);
}
}
namespace {
//! Lipatov vertex for partons emitted into extremal jets
double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2)
{
CLHEP::HepLorentzVector temptrans=-(qav+qbv);
CLHEP::HepLorentzVector p5=qav-qbv;
CLHEP::HepLorentzVector CL=temptrans+(qav.m2()/p5.dot(p1)+2.*p5.dot(p2)/p1.dot(p2))*p1-p2*(qbv.m2()/p5.dot(p2)+2.*p5.dot(p1)/p1.dot(p2));
#if printoutput
cout << "#Fadin qa : "<<qav<<endl;
cout << "#Fadin qb : "<<qbv<<endl;
cout << "#Fadin p1 : "<<p1<<endl;
cout << "#Fadin p2 : "<<p2<<endl;
cout << "#Fadin p5 : "<<p5<<endl;
cout << "#Fadin Gauge Check : "<< CL.dot(p5)<<endl;
cout << "#Fadin C2L : "<< -CL.dot(CL)<<" "<<-CL.dot(CL)/(qav.m2()*qbv.m2())/(4./p5.perp2())<<endl;
#endif
#if 0
if (-CL.dot(CL)<0.)
// if (fabs(CL.dot(p5))>fabs(CL.dot(CL))) // not sufficient!
return 0.;
else
#endif
return -CL.dot(CL);
}
//! Lipatov vertex with soft subtraction for partons emitted into extremal jets
double C2Lipatovots(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2)
{
double kperp=(qav-qbv).perp();
- if (kperp>clambda)
+ if (kperp>RHEJ::CLAMBDA)
return C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2());
else {
double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2()));
double temp=Cls-4./(kperp*kperp);
// std::cout <<kperp <<" "<<temp<<" "<<4./(kperp*kperp)<<" "<<(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()))<<std::endl;
return temp;
}
}
//! Lipatov vertex
double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector pim, CLHEP::HepLorentzVector pip,CLHEP::HepLorentzVector pom, CLHEP::HepLorentzVector pop) // B
{
CLHEP::HepLorentzVector temptrans=-(qav+qbv);
CLHEP::HepLorentzVector p5=qav-qbv;
CLHEP::HepLorentzVector CL=temptrans+qav.m2()*(1./p5.dot(pip)*pip+1./p5.dot(pop)*pop)/2.-qbv.m2()*(1./p5.dot(pim)*pim+1./p5.dot(pom)*pom)/2.+(pip*(p5.dot(pim)/pip.dot(pim)+p5.dot(pom)/pip.dot(pom)) + pop*(p5.dot(pim)/pop.dot(pim)+p5.dot(pom)/pop.dot(pom)) - pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim)) - pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.;
return -CL.dot(CL);
}
//! Lipatov vertex with soft subtraction
double C2Lipatovots(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv, CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2)
{
double kperp=(qav-qbv).perp();
- if (kperp>clambda)
+ if (kperp>RHEJ::CLAMBDA)
return C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2());
else {
double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()));
double temp=Cls-4./(kperp*kperp);
return temp;
}
}
/** Matrix element squared for tree-level current-current scattering
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @returns ME Squared for Tree-Level Current-Current Scattering
*/
double ME_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa
){
if (aptype==21&&bptype==21) {
return jM2gg(pn,pb,p1,pa);
} else if (aptype==21&&bptype!=21) {
if (bptype > 0)
return jM2qg(pn,pb,p1,pa);
else
return jM2qbarg(pn,pb,p1,pa);
}
else if (bptype==21&&aptype!=21) { // ----- || -----
if (aptype > 0)
return jM2qg(p1,pa,pn,pb);
else
return jM2qbarg(p1,pa,pn,pb);
}
else { // they are both quark
if (bptype>0) {
if (aptype>0)
return jM2qQ(pn,pb,p1,pa);
else
return jM2qQbar(pn,pb,p1,pa);
}
else {
if (aptype>0)
return jM2qQbar(p1,pa,pn,pb);
else
return jM2qbarQbar(pn,pb,p1,pa);
}
}
throw std::logic_error("unknown particle types");
}
/** \brief Matrix element squared for tree-level current-current scattering with Higgs
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param qH t-channel momentum before Higgs
* @param qHp1 t-channel momentum after Higgs
* @returns ME Squared for Tree-Level Current-Current Scattering with Higgs
*/
double ME_Higgs_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs
CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
double mt, bool include_bottom, double mb
){
if (aptype==21&&bptype==21) // gg initial state
return MH2gg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else if (aptype==21&&bptype!=21) {
if (bptype > 0)
return MH2qg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.;
else
return MH2qbarg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.;
}
else if (bptype==21&&aptype!=21) {
if (aptype > 0)
return MH2qg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.;
else
return MH2qbarg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.;
}
else { // they are both quark
if (bptype>0) {
if (aptype>0)
return MH2qQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
else
return MH2qQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
}
else {
if (aptype>0)
return MH2qQbar(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4.*4./(9.*9.);
else
return MH2qbarQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
}
}
throw std::logic_error("unknown particle types");
}
/** \brief Current matrix element squared with Higgs and unordered forward emission
* @param aptype Particle A PDG ID
* @param bptype Particle B PDG ID
* @param punof Unordered Particle Momentum
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param qH t-channel momentum before Higgs
* @param qHp1 t-channel momentum after Higgs
* @returns ME Squared with Higgs and unordered forward emission
*/
double ME_Higgs_current_unof(
int aptype, int bptype,
CLHEP::HepLorentzVector const & punof,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs
CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
double mt, bool include_bottom, double mb
){
if (aptype==21&&bptype!=21) {
if (bptype > 0)
return jM2unogqHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unogqbarHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
else { // they are both quark
if (bptype>0) {
if (aptype>0)
return jM2unogqHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unogqHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
else {
if (aptype>0)
return jM2unogqbarHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unogqbarHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
}
throw std::logic_error("unknown particle types");
}
/** \brief Current matrix element squared with Higgs and unordered backward emission
* @param aptype Particle A PDG ID
* @param bptype Particle B PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param punob Unordered back Particle Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param qH t-channel momentum before Higgs
* @param qHp1 t-channel momentum after Higgs
* @returns ME Squared with Higgs and unordered backward emission
*/
double ME_Higgs_current_unob(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & punob,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs
CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
double mt, bool include_bottom, double mb
){
if (bptype==21&&aptype!=21) {
if (aptype > 0)
return jM2unobgHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unobgHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
else { // they are both quark
if (aptype>0) {
if (bptype>0)
return jM2unobqHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unobqbarHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
else {
if (bptype>0)
return jM2unobqHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unobqbarHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
}
throw std::logic_error("unknown particle types");
}
CLHEP::HepLorentzVector to_HepLorentzVector(RHEJ::Sparticle const & particle){
return {particle.p.px(), particle.p.py(), particle.p.pz(), particle.p.E()};
}
} // namespace RHEJ
namespace RHEJ{
MatrixElement::MatrixElement(
std::function<double (double)> alpha_s,
Config const & conf
):
alpha_s_{std::move(alpha_s)},
param(conf)
{}
double MatrixElement::operator()(
double mur,
std::array<Sparticle, 2> const & incoming,
std::vector<Sparticle> const & outgoing,
bool check_momenta
) const {
return tree(
mur,
incoming, outgoing,
check_momenta
)*virtual_corrections(
mur,
incoming, outgoing
);
}
double MatrixElement::tree_kin(
std::array<Sparticle, 2> const & incoming,
std::vector<Sparticle> const & outgoing,
bool check_momenta
) const {
assert(
std::is_sorted(
incoming.begin(), incoming.end(),
[](Sparticle o1, Sparticle o2){return o1.p.pz()<o2.p.pz();}
)
);
assert(std::is_sorted(outgoing.begin(), outgoing.end(), rapidity_less{}));
auto AWZH_boson = std::find_if(
begin(outgoing), end(outgoing),
[](Sparticle const & p){return is_AWZH_boson(p);}
);
if(AWZH_boson == end(outgoing)){
return tree_kin_jets(incoming, outgoing, check_momenta);
}
switch(AWZH_boson->type){
case pid::Higgs: {
static constexpr double mH = 125.;
const double alpha_s_mH = alpha_s_(mH);
return alpha_s_mH*alpha_s_mH/(256.*pow(M_PI, 5))*tree_kin_Higgs(
incoming, outgoing, check_momenta
);
}
// TODO
case pid::Wp:
case pid::Wm:
case pid::photon:
case pid::Z:
default:
throw std::logic_error("Emission of boson of unsupported type");
}
}
namespace{
constexpr int extremal_jet_idx = 1;
constexpr int no_extremal_jet_idx = 0;
bool treat_as_extremal(Sparticle const & parton){
return parton.p.user_index() == extremal_jet_idx;
}
template<class InputIterator>
double FKL_ladder_weight(
InputIterator begin_gluon, InputIterator end_gluon,
CLHEP::HepLorentzVector const & q0,
CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn
){
double wt = 1;
auto qi = q0;
for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){
assert(gluon_it->type == pid::gluon);
const auto g = to_HepLorentzVector(*gluon_it);
const auto qip1 = qi - g;
if(treat_as_extremal(*gluon_it)){
wt *= C2Lipatovots(qip1, qi, pa, pb)*C_A;
} else{
wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn)*C_A;
}
qi = qip1;
}
return wt;
}
} // namespace anonymous
std::vector<Sparticle> MatrixElement::tag_extremal_jet_partons(
std::array<Sparticle, 2> const & incoming,
std::vector<Sparticle> out_partons, bool check_momenta
) const{
if(!check_momenta){
for(auto & parton: out_partons){
parton.p.set_user_index(no_extremal_jet_idx);
}
return out_partons;
}
fastjet::ClusterSequence cs(to_PseudoJet(out_partons), param.jet_def());
const auto jets = sorted_by_rapidity(cs.inclusive_jets(param.jet_ptmin()));
assert(jets.size() >= 2);
auto most_backward = begin(jets);
auto most_forward = end(jets) - 1;
// skip jets caused by unordered emission
if(has_unob_gluon(incoming, out_partons)){
assert(jets.size() >= 3);
++most_backward;
}
else if(has_unof_gluon(incoming, out_partons)){
assert(jets.size() >= 3);
--most_forward;
}
const auto extremal_jet_indices = cs.particle_jet_indices(
{*most_backward, *most_forward}
);
assert(extremal_jet_indices.size() == out_partons.size());
for(size_t i = 0; i < out_partons.size(); ++i){
assert(RHEJ::is_parton(out_partons[i]));
const int idx = (extremal_jet_indices[i]>=0)?
extremal_jet_idx:
no_extremal_jet_idx;
out_partons[i].p.set_user_index(idx);
}
return out_partons;
}
double MatrixElement::tree_kin_jets(
std::array<Sparticle, 2> const & incoming,
std::vector<Sparticle> partons,
bool check_momenta
) const {
partons = tag_extremal_jet_partons(incoming, partons, check_momenta);
if(has_unob_gluon(incoming, partons) || has_unof_gluon(incoming, partons)){
throw std::logic_error("unordered emission not implemented for pure jets");
}
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
const auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
return ME_current(
incoming[0].type, incoming[1].type,
pn, pb, p1, pa
)/(4*(N_C*N_C - 1))*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
pa - p1, pa, pb, p1, pn
);
}
double MatrixElement::tree_kin_Higgs(
std::array<Sparticle, 2> const & incoming,
std::vector<Sparticle> const & outgoing,
bool check_momenta
) const {
if(has_uno_gluon(incoming, outgoing)){
return tree_kin_Higgs_between(incoming, outgoing, check_momenta);
}
if(outgoing.front().type == pid::Higgs){
return tree_kin_Higgs_first(incoming, outgoing, check_momenta);
}
if(outgoing.back().type == pid::Higgs){
return tree_kin_Higgs_last(incoming, outgoing, check_momenta);
}
return tree_kin_Higgs_between(incoming, outgoing, check_momenta);
}
double MatrixElement::MH2_forwardH(
RHEJ::ParticleID id,
CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in,
CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in,
CLHEP::HepLorentzVector pH,
double t1, double t2
) const{
ignore(p2out, p2in);
const double shat = p1in.invariantMass2(p2in);
assert(RHEJ::is_parton(id));
if(id != RHEJ::pid::gluon){
return 9./2.*shat*shat*C2qHqm(p1in,p1out,pH)/(t1*t2);
}
// gluon case
#ifdef RHEJ_BUILD_WITH_QCDLOOP
if(!param.Hgg_setting().use_impact_factors){
return C_A/C_F*1./(16*M_PI*M_PI)*t1/t2*MH2gq_outsideH(
p1out, p1in, p2out, p2in, pH,
param.Hgg_setting().mt, param.Hgg_setting().include_bottom,
param.Hgg_setting().mb
);
}
#endif
return 9./2.*shat*shat*(
C2gHgp(p1in,p1out,pH) + C2gHgm(p1in,p1out,pH)
)/(t1*t2);
}
double MatrixElement::tree_kin_Higgs_first(
std::array<Sparticle, 2> const & incoming,
std::vector<Sparticle> const & outgoing,
bool check_momenta
) const {
assert(outgoing.front().type == pid::Higgs);
const auto pH = to_HepLorentzVector(outgoing.front());
const auto partons = tag_extremal_jet_partons(
incoming,
std::vector<Sparticle>(begin(outgoing) + 1, end(outgoing)),
check_momenta
);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
const auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
const auto q0 = pa - p1 - pH;
const double t1 = q0.m2();
const double t2 = (pn - pb).m2();
double wt = MH2_forwardH(
incoming[0].type, p1, pa, pn, pb, pH,
t1, t2
)*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
q0, pa, pb, p1, pn
);
for(auto const & inc: incoming){
if(inc.type != pid::gluon) wt *= C_F/C_A;
}
return wt;
}
double MatrixElement::tree_kin_Higgs_last(
std::array<Sparticle, 2> const & incoming,
std::vector<Sparticle> const & outgoing,
bool check_momenta
) const {
assert(outgoing.back().type == pid::Higgs);
const auto pH = to_HepLorentzVector(outgoing.back());
const auto partons = tag_extremal_jet_partons(
incoming,
std::vector<Sparticle>(begin(outgoing), end(outgoing) - 1),
check_momenta
);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
auto q0 = pa - p1;
const double t1 = q0.m2();
const double t2 = (pn + pH - pb).m2();
double wt = MH2_forwardH(
incoming[1].type, pn, pb, p1, pa, pH,
t2, t1
)*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
q0, pa, pb, p1, pn
);
for(auto const & inc: incoming){
if(inc.type != pid::gluon) wt *= C_F/C_A;
}
return wt;
}
double MatrixElement::tree_kin_Higgs_between(
std::array<Sparticle, 2> const & incoming,
std::vector<Sparticle> const & outgoing,
bool check_momenta
) const {
const auto the_Higgs = std::find_if(
begin(outgoing), end(outgoing),
[](Sparticle const & s){ return s.type == pid::Higgs; }
);
assert(the_Higgs != end(outgoing));
const auto pH = to_HepLorentzVector(*the_Higgs);
std::vector<Sparticle> partons(begin(outgoing), the_Higgs);
partons.insert(end(partons), the_Higgs + 1, end(outgoing));
partons = tag_extremal_jet_partons(incoming, partons, check_momenta);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
auto p1 = to_HepLorentzVector(
partons[has_unob_gluon(incoming, outgoing)?1:0]
);
auto pn = to_HepLorentzVector(
partons[partons.size() - (has_unof_gluon(incoming, outgoing)?2:1)]
);
auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing));
assert(
(first_after_Higgs == end(partons) && has_unob_gluon(incoming, outgoing))
|| first_after_Higgs->rapidity() >= the_Higgs->rapidity()
);
assert(
(first_after_Higgs == begin(partons) && has_unof_gluon(incoming, outgoing))
|| (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity()
);
// always treat the Higgs as if it were in between the extremal FKL partons
if(first_after_Higgs == begin(partons)) ++first_after_Higgs;
else if(first_after_Higgs == end(partons)) --first_after_Higgs;
// t-channel momentum before Higgs
auto qH = pa;
for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){
qH -= to_HepLorentzVector(*parton_it);
}
auto q0 = pa - p1;
auto begin_ladder = begin(partons) + 1;
auto end_ladder = end(partons) - 1;
double current_factor;
if(has_unob_gluon(incoming, outgoing)){
current_factor = 9./2.*ME_Higgs_current_unob(
incoming[0].type, incoming[1].type,
pn, pb, to_HepLorentzVector(partons.front()), p1, pa, qH, qH - pH,
param.Hgg_setting().mt, param.Hgg_setting().include_bottom, param.Hgg_setting().mb
);
const auto p_unob = to_HepLorentzVector(partons.front());
q0 -= p_unob;
p1 += p_unob;
++begin_ladder;
}
else if(has_unof_gluon(incoming, outgoing)){
current_factor = 9./2.*ME_Higgs_current_unof(
incoming[0].type, incoming[1].type,
to_HepLorentzVector(partons.back()), pn, pb, p1, pa, qH, qH - pH,
param.Hgg_setting().mt, param.Hgg_setting().include_bottom, param.Hgg_setting().mb
);
pn += to_HepLorentzVector(partons.back());
--end_ladder;
}
else{
current_factor = ME_Higgs_current(
incoming[0].type, incoming[1].type,
pn, pb, p1, pa, qH, qH - pH,
param.Hgg_setting().mt, param.Hgg_setting().include_bottom, param.Hgg_setting().mb
);
}
const double ladder_factor = FKL_ladder_weight(
begin_ladder, first_after_Higgs,
q0, pa, pb, p1, pn
)*FKL_ladder_weight(
first_after_Higgs, end_ladder,
qH - pH, pa, pb, p1, pn
);
return current_factor*9./8.*ladder_factor;
}
double MatrixElement::tree_param_partons(
double alpha_s, double mur,
std::vector<Sparticle> const & partons
) const{
const double gs2 = 4.*M_PI*alpha_s;
double wt = std::pow(gs2, partons.size());
if(param.log_corr()){
// use alpha_s(q_perp), evolved to mur
assert(partons.size() >= 2);
for(size_t i = 1; i < partons.size()-1; ++i){
wt *= 1 + alpha_s/(2*M_PI)*beta0*log(mur/partons[i].p.perp());
}
}
return wt;
}
double MatrixElement::tree_param(
double mur,
std::array<Sparticle, 2> const & incoming,
std::vector<Sparticle> const & outgoing
) const{
const double alpha_s = alpha_s_(mur);
if(has_unob_gluon(incoming, outgoing)){
return 4*M_PI*alpha_s*tree_param_partons(
alpha_s, mur, filter_partons({begin(outgoing) + 1, end(outgoing)})
);
}
if(has_unof_gluon(incoming, outgoing)){
return 4*M_PI*alpha_s*tree_param_partons(
alpha_s, mur, filter_partons({begin(outgoing), end(outgoing) - 1})
);
}
return tree_param_partons(alpha_s, mur, filter_partons(outgoing));
}
double MatrixElement::tree(
double mur,
std::array<Sparticle, 2> const & incoming,
std::vector<Sparticle> const & outgoing,
bool check_momenta
) const {
return tree_param(mur, incoming, outgoing)*tree_kin(
incoming, outgoing, check_momenta
);
}
} // namespace RHEJ
diff --git a/src/PhaseSpacePoint.cc b/src/PhaseSpacePoint.cc
index 2be3323..1ecd7c3 100644
--- a/src/PhaseSpacePoint.cc
+++ b/src/PhaseSpacePoint.cc
@@ -1,580 +1,581 @@
#include "RHEJ/PhaseSpacePoint.hh"
#include <random>
+#include "RHEJ/Constants.hh"
#include "RHEJ/resummation_jet_momenta.hh"
#include "RHEJ/Jacobian.hh"
#include "RHEJ/RNGWrapper.hh"
#include "RHEJ/uno.hh"
#include "RHEJ/debug.hh"
#include "RHEJ/kinematics.hh"
namespace RHEJ{
namespace{
//generate Ranlux64Engine with fixed, predefined state
/*
* some (all?) of the Ranlux64Engine constructors leave fields
* uninitialised, invoking undefined behaviour. This can be
* circumvented by restoring the state from a file
*/
CLHEP::Ranlux64Engine gen_Ranlux64Engine(){
static const std::string state =
"9876\n"
"0.91280703978419097666\n"
"0.41606065829518357191\n"
"0.99156342622341142601\n"
"0.030922955274050423213\n"
"0.16206278421638486975\n"
"0.76151768001958330956\n"
"0.43765760066092695979\n"
"0.42904698253748563275\n"
"0.11476317525663759511\n"
"0.026620053590963976831\n"
"0.65953715764414511114\n"
"0.30136722624439826745\n"
"3.5527136788005009294e-15 4\n"
"1 202\n";
const std::string file = std::tmpnam(nullptr);
{
std::ofstream out{file};
out << state;
}
CLHEP::Ranlux64Engine result;
result.restoreStatus(file.c_str());
return result;
}
}
CLHEP::Ranlux64Engine PhaseSpacePoint::ran_{gen_Ranlux64Engine()};
void PhaseSpacePoint::reset_ranlux(std::string const & init_file){
reset_ranlux(init_file.c_str());
}
void PhaseSpacePoint::reset_ranlux(char const * init_file){
ran_.restoreStatus(init_file);
}
namespace {
constexpr int max_jet_user_idx = PhaseSpacePoint::ng_max;
bool is_nonjet_parton(fastjet::PseudoJet const & parton){
assert(parton.user_index() != -1);
return parton.user_index() > max_jet_user_idx;
}
bool is_jet_parton(fastjet::PseudoJet const & parton){
assert(parton.user_index() != -1);
return parton.user_index() <= max_jet_user_idx;
}
// user indices for partons with extremal rapidity
constexpr int unob_idx = -5;
constexpr int unof_idx = -4;
constexpr int backward_FKL_idx = -3;
constexpr int forward_FKL_idx = -2;
}
namespace{
double estimate_ng_mean(std::vector<fastjet::PseudoJet> const & Born_jets){
const double delta_y =
Born_jets.back().rapidity() - Born_jets.front().rapidity();
assert(delta_y > 0);
// Formula derived from fit in reversed HEJ intro paper
return 0.975052*delta_y;
}
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::cluster_jets(
std::vector<fastjet::PseudoJet> const & partons
) const{
fastjet::ClusterSequence cs(partons, param.jet_def());
return cs.inclusive_jets(param.jet_ptmin());
}
bool PhaseSpacePoint::pass_resummation_cuts(
std::vector<fastjet::PseudoJet> const & jets
) const{
return cluster_jets(jets).size() == jets.size();
}
int PhaseSpacePoint::sample_ng(std::vector<fastjet::PseudoJet> const & Born_jets){
const double ng_mean = estimate_ng_mean(Born_jets);
std::poisson_distribution<int> dist(ng_mean);
RNGWrapper<CLHEP::Ranlux64Engine> rng{ran_};
const int ng = dist(rng);
assert(ng >= 0);
assert(ng < ng_max);
weight_ *= std::tgamma(ng + 1)*std::exp(ng_mean)*std::pow(ng_mean, -ng);
return ng;
}
void PhaseSpacePoint::copy_AWZH_boson_from(Event const & event){
auto const & from = event.outgoing();
const auto AWZH_boson = std::find_if(
begin(from), end(from),
[](Sparticle const & p){ return is_AWZH_boson(p); }
);
if(AWZH_boson == end(from)) return;
auto insertion_point = std::lower_bound(
begin(outgoing_), end(outgoing_), *AWZH_boson, rapidity_less{}
);
outgoing_.insert(insertion_point, *AWZH_boson);
// copy decay products
const int idx = std::distance(begin(from), AWZH_boson);
const auto decay_it = event.decays().find(idx);
if(decay_it != end(event.decays())){
const int new_idx = std::distance(begin(outgoing_), insertion_point);
assert(outgoing_[new_idx].type == AWZH_boson->type);
decays_.emplace(new_idx, decay_it->second);
}
assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{}));
}
PhaseSpacePoint::PhaseSpacePoint(Event const & ev, Config const & conf):
unob_{has_unob_gluon(ev.incoming(), ev.outgoing())},
unof_{!unob_ && has_unof_gluon(ev.incoming(), ev.outgoing())},
param(conf),
splitter_{param.jet_R(), param.jet_def(), param.jet_ptmin(), ran_}
{
weight_ = 1;
const auto Born_jets = sorted_by_rapidity(ev.jets());
const int ng = sample_ng(Born_jets);
weight_ /= std::tgamma(ng + 1);
const int ng_jets = sample_ng_jets(ng, Born_jets);
std::vector<fastjet::PseudoJet> out_partons = gen_non_jet(
- ng - ng_jets, ccut, param.jet_ptmin()
+ ng - ng_jets, CMINPT, param.jet_ptmin()
);
{
const auto qperp = std::accumulate(
begin(out_partons), end(out_partons),
fastjet::PseudoJet{}
);
const auto jets = reshuffle(Born_jets, qperp);
if(weight_ == 0.) return;
if(! pass_resummation_cuts(jets)){
weight_ = 0.;
return;
}
std::vector<fastjet::PseudoJet> jet_partons = split(jets, ng_jets);
if(weight_ == 0.) return;
rescale_rapidities(
out_partons,
most_backward_FKL(jet_partons).rapidity(),
most_forward_FKL(jet_partons).rapidity()
);
if(! cluster_jets(out_partons).empty()){
weight_ = 0.;
return;
}
std::sort(begin(out_partons), end(out_partons), rapidity_less{});
assert(
std::is_sorted(begin(jet_partons), end(jet_partons), rapidity_less{})
);
const auto first_jet_parton = out_partons.insert(
end(out_partons), begin(jet_partons), end(jet_partons)
);
std::inplace_merge(
begin(out_partons), first_jet_parton, end(out_partons), rapidity_less{}
);
}
if(! jets_ok(Born_jets, out_partons)){
weight_ = 0.;
return;
}
weight_ *= phase_space_normalisation(Born_jets.size(), out_partons.size());
outgoing_.reserve(out_partons.size() + 1); // one slot for possible A, W, Z, H
for(auto & p: out_partons){
outgoing_.emplace_back(Sparticle{pid::gluon, std::move(p)});
}
most_backward_FKL(outgoing_).type = ev.incoming().front().type;
most_forward_FKL(outgoing_).type = ev.incoming().back().type;
copy_AWZH_boson_from(ev);
assert(!outgoing_.empty());
reconstruct_incoming(ev.incoming());
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::gen_non_jet(
int count, double ptmin, double ptmax
){
// heuristic parameters for pt sampling
const double ptpar = 1.3 + count/5.;
const double temp1 = atan((ptmax - ptmin)/ptpar);
std::vector<fastjet::PseudoJet> partons(count);
for(size_t i = 0; i < (size_t) count; ++i){
const double r1 = ran_.flat();
const double pt = ptmin + ptpar*tan(r1*temp1);
const double temp2 = cos(r1*temp1);
const double phi = 2*M_PI*ran_.flat();
weight_ *= 2.0*M_PI*pt*ptpar*temp1/(temp2*temp2);
// we don't know the allowed rapidity span yet,
// set a random value to be rescaled later on
const double y = ran_.flat();
partons[i].reset_PtYPhiM(pt, y, phi);
// Set user index higher than any jet-parton index
// in order to assert that these are not inside jets
partons[i].set_user_index(i + 1 + RHEJ::PhaseSpacePoint::ng_max);
assert(ptmin-1e-5 <= partons[i].pt() && partons[i].pt() <= ptmax+1e-5);
}
assert(std::all_of(partons.cbegin(), partons.cend(), is_nonjet_parton));
return partons;
}
void PhaseSpacePoint::rescale_rapidities(
std::vector<fastjet::PseudoJet> & partons,
double ymin, double ymax
){
constexpr double ep = 1e-7;
for(auto & parton: partons){
assert(0 <= parton.rapidity() && parton.rapidity() <= 1);
const double dy = ymax - ymin - 2*ep;
const double y = ymin + ep + dy*parton.rapidity();
parton.reset_momentum_PtYPhiM(parton.pt(), y, parton.phi());
weight_ *= dy;
assert(ymin <= parton.rapidity() && parton.rapidity() <= ymax);
}
}
namespace {
template<typename T, typename... Rest>
auto min(T const & a, T const & b, Rest&&... r) {
using std::min;
return min(a, min(b, std::forward<Rest>(r)...));
}
}
double PhaseSpacePoint::probability_in_jet(
std::vector<fastjet::PseudoJet> const & Born_jets
) const{
assert(std::is_sorted(begin(Born_jets), end(Born_jets), rapidity_less{}));
assert(Born_jets.size() >= 2);
const double dy =
Born_jets.back().rapidity() - Born_jets.front().rapidity();
const double R = param.jet_R();
const int njets = Born_jets.size();
const double p_J_y_large = (njets-1)*R*R/(2.*dy);
const double p_J_y0 = njets*R/M_PI;
return min(p_J_y_large, p_J_y0, 1.);
}
int PhaseSpacePoint::sample_ng_jets(
int ng, std::vector<fastjet::PseudoJet> const & Born_jets
){
RNGWrapper<CLHEP::Ranlux64Engine> rng{ran_};
const double p_J = probability_in_jet(Born_jets);
std::binomial_distribution<> bin_dist(ng, p_J);
const int ng_J = bin_dist(rng);
weight_ *= std::pow(p_J, -ng_J)*std::pow(1 - p_J, ng_J - ng);
return ng_J;
}
std::vector<fastjet::PseudoJet>
PhaseSpacePoint::reshuffle(
std::vector<fastjet::PseudoJet> const & Born_jets,
fastjet::PseudoJet const & q
){
if(q == fastjet::PseudoJet{0, 0, 0, 0}) return Born_jets;
std::vector<fastjet::PseudoJet> jets = resummation_jet_momenta(Born_jets, q);
if(jets.empty()){
weight_ = 0;
return {};
}
// transform delta functions to integration over resummation momenta
weight_ /= Jacobian(jets, q);
return jets;
}
std::vector<int> PhaseSpacePoint::distribute_jet_partons(
int ng_jets, std::vector<fastjet::PseudoJet> const & jets
){
size_t first_valid_jet = 0;
size_t num_valid_jets = jets.size();
const double R_eff = 5./3.*param.jet_R();
// if there is an unordered jet too far away from the FKL jets
// then extra gluon constituents of the unordered jet would
// violate the FKL rapidity ordering
if(unob_ && jets[0].delta_R(jets[1]) > R_eff){
++first_valid_jet;
--num_valid_jets;
}
else if(unof_ && jets[jets.size()-1].delta_R(jets[jets.size()-2]) > R_eff){
--num_valid_jets;
}
std::vector<int> np(jets.size(), 1);
for(int i = 0; i < ng_jets; ++i){
++np[first_valid_jet + ran_.flat() * num_valid_jets];
}
weight_ *= std::pow(num_valid_jets, ng_jets);
return np;
}
#ifndef NDEBUG
namespace{
bool tagged_FKL_backward(
std::vector<fastjet::PseudoJet> const & jet_partons
){
return std::find_if(
begin(jet_partons), end(jet_partons),
[](fastjet::PseudoJet const & p){
return p.user_index() == backward_FKL_idx;
}
) != end(jet_partons);
}
bool tagged_FKL_forward(
std::vector<fastjet::PseudoJet> const & jet_partons
){
// the most forward FKL parton is most likely near the end of jet_partons;
// start search from there
return std::find_if(
jet_partons.rbegin(), jet_partons.rend(),
[](fastjet::PseudoJet const & p){
return p.user_index() == forward_FKL_idx;
}
) != jet_partons.rend();
}
bool tagged_FKL_extremal(
std::vector<fastjet::PseudoJet> const & jet_partons
){
return tagged_FKL_backward(jet_partons) && tagged_FKL_forward(jet_partons);
}
} // namespace anonymous
#endif
std::vector<fastjet::PseudoJet> PhaseSpacePoint::split(
std::vector<fastjet::PseudoJet> const & jets,
int ng_jets
){
return split(jets, distribute_jet_partons(ng_jets, jets));
}
bool PhaseSpacePoint::pass_extremal_cuts(
fastjet::PseudoJet const & ext_parton,
fastjet::PseudoJet const & jet
) const{
if(ext_parton.pt() < param.min_ext_pt()) return false;
return (ext_parton - jet).pt()/jet.pt() < param.max_ext_soft_pt_fraction();
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::split(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<int> const & np
){
assert(! jets.empty());
assert(jets.size() == np.size());
assert(pass_resummation_cuts(jets));
const size_t most_backward_FKL_idx = 0 + unob_;
const size_t most_forward_FKL_idx = jets.size() - 1 - unof_;
std::vector<fastjet::PseudoJet> jet_partons;
// randomly distribute jet gluons among jets
for(size_t i = 0; i < jets.size(); ++i){
weight_ *= splitter_.Split(jets[i], np[i]);
if(weight_ == 0) return {};
assert(
std::all_of(
begin(splitter_.get_jcons()), end(splitter_.get_jcons()),
is_jet_parton
)
);
const auto first_new_parton = jet_partons.insert(
end(jet_partons),
begin(splitter_.get_jcons()), end(splitter_.get_jcons())
);
// mark uno and extremal FKL emissions here so we can check
// their position once all emissions are generated
auto extremal = end(jet_partons);
if((unob_ && i == 0) || i == most_backward_FKL_idx){
// unordered or FKL backward emission
extremal = std::min_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(
(i == most_backward_FKL_idx)?backward_FKL_idx:unob_idx
);
}
else if((unof_ && i == jets.size() - 1) || i == most_forward_FKL_idx){
// unordered or FKL forward emission
extremal = std::max_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(
(i == most_forward_FKL_idx)?forward_FKL_idx:unof_idx
);
}
if(
extremal != end(jet_partons)
&& !pass_extremal_cuts(*extremal, jets[i])
){
weight_ = 0;
return {};
}
}
assert(tagged_FKL_extremal(jet_partons));
std::sort(begin(jet_partons), end(jet_partons), rapidity_less{});
if(
!extremal_ok(jet_partons)
|| !split_preserved_jets(jets, jet_partons)
){
weight_ = 0.;
return {};
}
return jet_partons;
}
bool PhaseSpacePoint::extremal_ok(
std::vector<fastjet::PseudoJet> const & partons
) const{
assert(std::is_sorted(begin(partons), end(partons), rapidity_less{}));
if(unob_ && partons.front().user_index() != unob_idx) return false;
if(unof_ && partons.back().user_index() != unof_idx) return false;
return
most_backward_FKL(partons).user_index() == backward_FKL_idx
&& most_forward_FKL(partons).user_index() == forward_FKL_idx;
}
bool PhaseSpacePoint::split_preserved_jets(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<fastjet::PseudoJet> const & jet_partons
) const{
assert(std::is_sorted(begin(jets), end(jets), rapidity_less{}));
const auto split_jets = sorted_by_rapidity(cluster_jets(jet_partons));
// this can happen if two overlapping jets
// are both split into more than one parton
if(split_jets.size() != jets.size()) return false;
for(size_t i = 0; i < split_jets.size(); ++i){
// this can happen if there are two overlapping jets
// and a parton is assigned to the "wrong" jet
if(!nearby_ep(jets[i].rapidity(), split_jets[i].rapidity(), 1e-2)){
return false;
}
}
return true;
}
template<class Particle>
Particle const & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> const & partons
) const{
return partons[0 + unob_];
}
template<class Particle>
Particle const & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> const & partons
) const{
const size_t idx = partons.size() - 1 - unof_;
assert(idx < partons.size());
return partons[idx];
}
template<class Particle>
Particle & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> & partons
) const{
return partons[0 + unob_];
}
template<class Particle>
Particle & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> & partons
) const{
const size_t idx = partons.size() - 1 - unof_;
assert(idx < partons.size());
return partons[idx];
}
namespace{
bool contains_idx(
fastjet::PseudoJet const & jet, fastjet::PseudoJet const & parton
){
auto const & constituents = jet.constituents();
const int idx = parton.user_index();
return std::find_if(
begin(constituents), end(constituents),
[idx](fastjet::PseudoJet const & con){return con.user_index() == idx;}
) != end(constituents);
}
}
/**
* final jet test:
* - number of jets must match Born kinematics
* - no partons designated as nonjet may end up inside jets
* - all other outgoing partons *must* end up inside jets
* - the extremal (in rapidity) partons must be inside the extremal jets
* - rapidities must be the same (by construction)
*/
bool PhaseSpacePoint::jets_ok(
std::vector<fastjet::PseudoJet> const & Born_jets,
std::vector<fastjet::PseudoJet> const & partons
) const{
fastjet::ClusterSequence cs(partons, param.jet_def());
const auto jets = sorted_by_rapidity(cs.inclusive_jets(param.jet_ptmin()));
if(jets.size() != Born_jets.size()) return false;
int in_jet = 0;
for(size_t i = 0; i < jets.size(); ++i){
assert(jets[i].has_constituents());
for(auto && parton: jets[i].constituents()){
if(is_nonjet_parton(parton)) return false;
}
in_jet += jets[i].constituents().size();
}
const int expect_in_jet = std::count_if(
partons.cbegin(), partons.cend(), is_jet_parton
);
if(in_jet != expect_in_jet) return false;
// note that PseudoJet::contains does not work here
if(! (
contains_idx(most_backward_FKL(jets), most_backward_FKL(partons))
&& contains_idx(most_forward_FKL(jets), most_forward_FKL(partons))
)) return false;
if(unob_ && !contains_idx(jets.front(), partons.front())) return false;
if(unof_ && !contains_idx(jets.back(), partons.back())) return false;
for(size_t i = 0; i < jets.size(); ++i){
assert(nearby_ep(jets[i].rapidity(), Born_jets[i].rapidity(), 1e-2));
}
return true;
}
namespace{
}
void PhaseSpacePoint::reconstruct_incoming(
std::array<Sparticle, 2> const & Born_incoming
){
std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_);
for(size_t i = 0; i < incoming_.size(); ++i){
incoming_[i].type = Born_incoming[i].type;
}
assert(momentum_conserved(1e-7));
}
double PhaseSpacePoint::phase_space_normalisation(
int num_Born_jets, int num_out_partons
) const{
return pow(16*pow(M_PI,3), num_Born_jets - num_out_partons);
}
bool PhaseSpacePoint::momentum_conserved(double ep) const{
fastjet::PseudoJet diff;
for(auto const & in: incoming()) diff += in.p;
for(auto const & out: outgoing()) diff -= out.p;
return nearby_ep(diff, fastjet::PseudoJet{}, ep);
}
}
diff --git a/src/Splitter.cc b/src/Splitter.cc
index 512bfca..0be5546 100644
--- a/src/Splitter.cc
+++ b/src/Splitter.cc
@@ -1,210 +1,211 @@
/**
* Name: splitter.cc
* Author: Tuomas Hapola
*
* double Sample2jetPartons(int * np);
* bool Split(fastjet::PseudoJet j2split, int ncons);
* bool DistributeQperp(fastjet::PseudoJet qperp, int np, double miny, double maxy);
* void PrintConstituentInfo(std::vector<fastjet::PseudoJet> jets);
*
*/
#include <numeric>
+#include "RHEJ/Constants.hh"
#include "RHEJ/Splitter.hh"
#include "RHEJ/PhaseSpacePoint.hh"
namespace{
- constexpr double ccut=0.2; // min parton pt
+ constexpr double ccut=RHEJ::CMINPT; // min parton pt
template<class Iterator>
bool same_pt_and_rapidity(
Iterator begin, Iterator end,
fastjet::PseudoJet const & jet
){
static constexpr double ep = 1e-2;
const fastjet::PseudoJet reconstructed_jet = std::accumulate(
begin, end, fastjet::PseudoJet{}
);
return
(std::abs(reconstructed_jet.pt() - jet.pt()) < ep)
&& (std::abs(reconstructed_jet.rapidity() - jet.rapidity()) < ep)
;
}
bool all_in_one_jet(
std::vector<fastjet::PseudoJet> const & partons,
fastjet::JetDefinition jet_def, double min_jet_pt
){
fastjet::ClusterSequence ev(partons, jet_def);
const std::vector<fastjet::PseudoJet> testjet = ev.inclusive_jets(min_jet_pt);
return testjet.size() == 1u
&& testjet[0].constituents().size() == partons.size();
}
}
double HejSplit::Split(fastjet::PseudoJet const & j2split, int ncons){
assert(ncons >= 1);
double swt = 1.;
jcons.clear();
jcons.reserve(ncons);
if(ncons == 1){
jcons.emplace_back(j2split);
jcons.back().set_user_index(0);
return swt;
}
if(ncons == 2){
return Split2(j2split);
}
const double R_max = R_factor*rp;
assert(R_max < M_PI);
double pt_remaining = j2split.pt();
const double phi_jet = j2split.phi();
const double y_jet = j2split.rapidity();
for(int i = 0; i < ncons - 1; ++i){
/**
* Generate rapidity and azimuthal angle with a distance
* R = sqrt(delta_y^2 + delta_phi^2) < R_max
* from the jet centre
*/
const double R = R_max*ran.flat();
const double theta = 2*M_PI*ran.flat();
const double delta_phi = R*cos(theta);
const double delta_y = R*sin(theta);
/**
* Generate pt such that the total contribution of all partons
* along the jet pt axis does not exceed the jet pt
*/
const double pt_max = pt_remaining/cos(delta_phi);
assert(pt_max > 0);
if(pt_max < ccut) return false; // no pt remaining for this parton
const double pt = (pt_max - ccut)*ran.flat() + ccut;
pt_remaining -= pt*cos(delta_phi);
jcons.emplace_back(
pt*cos(phi_jet + delta_phi), pt*sin(phi_jet + delta_phi),
pt*sinh(y_jet + delta_y), pt*cosh(y_jet + delta_y)
);
jcons.back().set_user_index(i);
swt *= 2*M_PI*R*R_max*pt*(pt_max - ccut);
}
const fastjet::PseudoJet p_total = std::accumulate(
jcons.begin(), jcons.end(), fastjet::PseudoJet{}
);
// Calculate the pt of the last parton
const double last_px = j2split.px() - p_total.px();
const double last_py = j2split.py() - p_total.py();
const double last_pt = sqrt(last_px*last_px + last_py*last_py);
if(last_pt < ccut) return 0.;
// Calculate the rapidity of the last parton using the requirement that the
// new jet must have the same rapidity as the LO jet.
const double exp_2y_jet = (j2split.e() + j2split.pz())/(j2split.e() - j2split.pz());
const double bb = (p_total.e()+p_total.pz()) - exp_2y_jet*(p_total.e()-p_total.pz());
const double lasty = log((-bb+sqrt(bb*bb+4.*exp_2y_jet*last_pt*last_pt))/(2.*last_pt));
jcons.emplace_back(
last_px, last_py, last_pt*sinh(lasty), last_pt*cosh(lasty)
);
jcons.back().set_user_index(ncons-1);
assert(same_pt_and_rapidity(begin(jcons), end(jcons), j2split));
// Test that the last parton is not too far away from the jet centre.
if (jcons.back().delta_R(j2split) > R_max) return 0.;
if(! all_in_one_jet(jcons, jet_def, jetptmin)) return 0.;
return swt;
}
//! sample y-phi distance to jet pt axis for a jet splitting into two partons
/**
* @param wt Multiplied by the weight of the sampling point
* @returns The distance in units of the jet radius
*/
double HejSplit::sample_distance_2p(double & wt){
static constexpr double x_small = 0.1;
static constexpr double p_small = 0.4;
const double pR = ran.flat();
if(pR < p_small){
wt *= x_small/p_small;
return x_small/p_small*pR;
}
wt *= (1-x_small)/(1-p_small);
return (1-x_small)/(1-p_small)*(pR-p_small) + x_small;
}
// split jet into two partons
double HejSplit::Split2(fastjet::PseudoJet const & j2split){
static constexpr size_t ncons = 2;
jcons.resize(ncons);
std::array<double, ncons> R, phi, y, pt;
double wt = 1;
const double theta = 2*M_PI*ran.flat(); // angle in y-phi plane
// empiric observation: we are always within the jet radius
R[0] = sample_distance_2p(wt)*rp;
R[1] = -sample_distance_2p(wt)*rp;
for(size_t i = 0; i <= 1; ++i){
phi[i] = j2split.phi() + R[i]*cos(theta);
y[i] = j2split.rapidity() + R[i]*sin(theta);
}
for(size_t i = 0; i <= 1; ++i){
pt[i] = (j2split.py() - tan(phi[1-i])*j2split.px())/
(sin(phi[i]) - tan(phi[1-i])*cos(phi[i]));
if(pt[i] < ccut) return 0.;
jcons[i].reset_PtYPhiM(pt[i], y[i], phi[i]);
jcons[i].set_user_index(i);
}
assert(same_pt_and_rapidity(begin(jcons), end(jcons), j2split));
if(! all_in_one_jet(jcons, jet_def, jetptmin)) return 0.;
wt *= 2*M_PI*pt[0]*R[0]*rp*rp;
// from transformation of delta(R[1] - ...) to delta(pt[0] - ...)
const double dphi0 = phi[0] - j2split.phi();
const double ptJ = j2split.pt();
const double jacobian = cos(theta)*pt[1]*pt[1]/(ptJ*sin(dphi0));
return jacobian*wt;
}
void HejSplit::PrintConstituentInfo(std::vector<fastjet::PseudoJet> jets){
// tell the user what was done
// - the description of the algorithm used
// - extract the inclusive jets with pt > 5 GeV
// show the output as
// {index, rap, phi, pt, number of constituents}
//----------------------------------------------------------
std::cout << "Ran " << (jet_def).description() << std::endl << std::endl;
// label the columns
printf("%5s %15s %15s %15s %15s\n","jet #", "rapidity", "phi", "pt", "n constituents");
printf(" indices of constituents\n\n");
//njj[jets.size()] += 1;
// print out the details for each jet
for (unsigned int i = 0; i < jets.size(); i++) {
// get the constituents of the jet
std::vector<fastjet::PseudoJet> constituents = jets[i].constituents();
//nco[jets.size()] += int(constituents.size());
//if (int(constituents.size())>maxco)
//maxco = int(constituents.size());
printf("%5u %15.8f %15.8f %15.8f %8u\n",
i, jets[i].rap(), jets[i].phi(),
jets[i].perp(), (unsigned int) constituents.size());
printf(" ");
for (unsigned int j=0; j<constituents.size(); j++){
printf("%4u ", constituents[j].user_index());
if (j%10==9) printf("\n ");
}
printf("\n\n");
}
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Jan 21, 1:47 AM (1 d, 14 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4243528
Default Alt Text
(66 KB)
Attached To
rHEJ HEJ
Event Timeline
Log In to Comment