Page MenuHomeHEPForge

No OneTemporary

diff --git a/Hadronization/ClusterFinder.cc b/Hadronization/ClusterFinder.cc
--- a/Hadronization/ClusterFinder.cc
+++ b/Hadronization/ClusterFinder.cc
@@ -1,325 +1,325 @@
// -*- C++ -*-
//
// ClusterFinder.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2007 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ClusterFinder class.
//
#include "ClusterFinder.h"
#include <ThePEG/Interface/ClassDocumentation.h>
#include <ThePEG/PDT/StandardMatchers.h>
#include <ThePEG/PDT/EnumParticles.h>
#include <ThePEG/Repository/EventGenerator.h>
#include <ThePEG/EventRecord/Collision.h>
#include "CheckId.h"
#include "Herwig++/Utilities/EnumParticles.h"
#include "Cluster.h"
using namespace Herwig;
NoPIOClassDescription<ClusterFinder> ClusterFinder::initClusterFinder;
// Definition of the static class description member.
void ClusterFinder::Init() {
static ClassDocumentation<ClusterFinder> documentation
("This class is responsible of finding clusters.");
}
ClusterVector ClusterFinder::formClusters(const PVector & partons)
{
set<tPPtr> examinedSet; // colour particles already included in a cluster
map<tColinePtr, pair<tPPtr,tPPtr> > quarkQuark; // quark quark
map<tColinePtr, pair<tPPtr,tPPtr> > aQuarkQuark; // anti quark anti quark
ParticleSet inputParticles(partons.begin(),partons.end());
ClusterVector clusters;
// Loop over all current particles.
for(PVector::const_iterator pit=partons.begin();pit!=partons.end();++pit){
// Skip to the next particle if it is not coloured or already examined.
assert(*pit);
assert((*pit)->dataPtr());
if(!(**pit).data().coloured()
|| examinedSet.find(*pit) != examinedSet.end()) {
continue;
}
// We assume that a cluster is made of, at most, 3 constituents although
// in most cases the number will be 2; however, for baryon violating decays
// (for example in Susy model without R parity conservation) we can have 3
// constituents. In the latter case, a quark (antiquark) do not have an
// anticolour (colour) partner as usual, but its colour line either stems
// from a colour source, or ends in a colour sink. In the case of double
// baryon violating decays, but with overall baryon conservation
// ( for instance:
// tilda_u_R -> dbar_1 + dbar_2
// tilda_u_R_star -> d1 + d2
// where tilda_u_R and tilda_u_R_star are colour connected )
// a special treatment is needed, because first we have to process all
// partons in the current step, and then for each left pair of quarks which
// stem from a colour source we have to find the corresponding pair of
// anti-quarks which ends in a colour sink and is connected with the
// above colour source. These special pairs are kept into the maps:
// spec/CluHadConfig.hialQuarkQuarkMap and specialAntiQuarkAntiQuarkMap.
tParticleVector connected(3);
int iElement = 0;
connected[iElement++] = *pit;
bool specialCase = false;
if((*pit)->hasColour()) {
tPPtr partner =
(*pit)->colourLine()->getColouredParticle(partons.begin(),
partons.end(),
true);
if(partner) {
connected[iElement++]= partner;
}
// colour source : baryon-violating process
else {
if((*pit)->colourLine()->sourceNeighbours() != tColinePair()) {
tColinePair sourcePair = (*pit)->colourLine()->sourceNeighbours();
tColinePtr intCL = tColinePtr();
for(int i = 0; i < 2; ++i) {
tColinePtr pLine = i==0 ? sourcePair.first : sourcePair.second;
int saveNumElements = iElement;
for(tPVector::const_iterator cit = pLine->coloured().begin();
cit != pLine->coloured().end(); ++cit ) {
ParticleSet::const_iterator cjt = inputParticles.find(*cit);
if(cjt!=inputParticles.end()) connected[iElement++]= (*cit);
}
if(iElement == saveNumElements) intCL = pLine;
}
if(intCL && iElement == 2) {
specialCase = true;
pair<tPPtr,tPPtr> qp=pair<tPPtr,tPPtr>(connected[0],connected[1]);
quarkQuark.insert(pair<tColinePtr,pair<tPPtr,tPPtr> >(intCL,qp));
}
else if(iElement != 3) {
throw Exception() << "Colour connections fail in the hadronization for "
<< **pit << "in ClusterFinder::formClusters"
<< " for a coloured particle."
<< " Failed to find particles from a source"
<< Exception::runerror;
}
}
else {
throw Exception() << "Colour connections fail in the hadronization for "
<< **pit << "in ClusterFinder::formClusters for"
<< " a coloured particle"
<< Exception::runerror;
}
}
}
if((*pit)->hasAntiColour()) {
tPPtr partner =
(*pit)->antiColourLine()->getColouredParticle(partons.begin(),
partons.end(),
false);
if(partner) {
connected[iElement++]=partner;
}
// colour sink : baryon-violating process
else {
if((*pit)->antiColourLine()->sinkNeighbours() != tColinePair()) {
tColinePair sinkPair = (*pit)->antiColourLine()->sinkNeighbours();
tColinePtr intCL = tColinePtr();
for(int i = 0; i < 2; ++i) {
tColinePtr pLine = i==0 ? sinkPair.first : sinkPair.second;
int saveNumElements = iElement;
for(tPVector::const_iterator cit = pLine->antiColoured().begin();
cit != pLine->antiColoured().end(); ++cit ) {
ParticleSet::const_iterator cjt = inputParticles.find(*cit);
if(cjt!=inputParticles.end()) connected[iElement++]= (*cit);
}
if(iElement == saveNumElements) intCL = pLine;
}
if(intCL && iElement == 2) {
specialCase = true;
pair<tPPtr,tPPtr> aqp=pair<tPPtr,tPPtr>(connected[0],connected[1]);
aQuarkQuark.insert(pair<tColinePtr,pair<tPPtr,tPPtr> >(intCL,aqp));
}
else if( iElement !=3) {
throw Exception() << "Colour connections fail in the hadronization for "
<< **pit << "in ClusterFinder::formClusters for"
<< " an anti-coloured particle."
<< " Failed to find particles from a sink"
<< Exception::runerror;
}
}
else {
throw Exception() << "Colour connections fail in the hadronization for "
<< **pit << "in ClusterFinder::formClusters for"
<< " an anti-coloured particle"
<< Exception::runerror;
}
}
}
if(!specialCase) {
// Tag the components of the found cluster as already examined.
for (int i=0; i<iElement; ++i) examinedSet.insert(connected[i]);
// Create the cluster object with the colour connected particles
ClusterPtr cluPtr = new_ptr(Cluster(connected[0],connected[1],
connected[2]));
// add to the step
connected[0]->addChild(cluPtr);
connected[1]->addChild(cluPtr);
if(connected[2]) connected[2]->addChild(cluPtr);
clusters.push_back(cluPtr);
// Check if any of the components is a beam remnant, and if this
// is the case then inform the cluster.
// this will only work for baryon collisions
for (int i=0; i<iElement; ++i) {
if(!connected[i]->parents().empty()&&
connected[i]->parents()[0]->id()==ExtraParticleID::Remnant&&
DiquarkMatcher::Check(connected[i]->id()))
cluPtr->isBeamCluster(connected[i]);
}
}
}
// Treat now the special cases, if any. The idea is to find for each pair
// of quarks coming from a common colour source the corresponding pair of
// antiquarks coming from a common colour sink, connected to the above
// colour source via the same colour line. Then, randomly couple one of
// the two quarks with one of the two antiquarks, and do the same with the
// quark and antiquark left.
for(map<tColinePtr, pair<tPPtr,tPPtr> >::const_iterator
cit = quarkQuark.begin(); cit != quarkQuark.end(); ++cit ) {
tColinePtr coline = cit->first;
pair<tPPtr,tPPtr> quarkPair = cit->second;
if(aQuarkQuark.find( coline ) != aQuarkQuark.end()) {
pair<tPPtr,tPPtr> antiQuarkPair = aQuarkQuark.find(coline)->second;
ClusterPtr cluPtr1, cluPtr2;
if ( UseRandom::rndbool() ) {
cluPtr1 = new_ptr(Cluster(quarkPair.first , antiQuarkPair.first));
cluPtr2 = new_ptr(Cluster(quarkPair.second , antiQuarkPair.second));
quarkPair.first->addChild(cluPtr1);
antiQuarkPair.first->addChild(cluPtr1);
quarkPair.second->addChild(cluPtr2);
antiQuarkPair.second->addChild(cluPtr2);
} else {
cluPtr1 = new_ptr(Cluster(quarkPair.first , antiQuarkPair.second));
cluPtr2 = new_ptr(Cluster(quarkPair.second , antiQuarkPair.first));
quarkPair.second->addChild(cluPtr2);
antiQuarkPair.first->addChild(cluPtr2);
quarkPair.first->addChild(cluPtr1);
antiQuarkPair.second->addChild(cluPtr1);
}
clusters.push_back(cluPtr1);
clusters.push_back(cluPtr2);
}
else {
throw Exception() << "ClusterFinder::formClusters : "
<< "***Skip event: unable to match pairs in "
<< "Baryon-violating processes***"
<< Exception::eventerror;
}
}
return clusters;
}
void ClusterFinder::reduceToTwoComponents(ClusterVector & clusters)
{
// In order to preserve all of the information, we do not modify the
// directly the 3-component clusters, but instead we define new clusters,
// which are related to the original ones by a child-parent relationship,
// by considering two randomly chosen components as a diquark (or anti-diquark).
// These new clusters are first added to the vector vecNewRedefinedCluPtr,
// and at the end, when all input clusters have been examined, the elements of
// this vector will be copied in collecCluPtr (the reason is that it is not
// allowed to modify a STL container while iterating over it).
vector<tClusterPtr> redefinedClusters;
tParticleVector vec(3);
for(ClusterVector::iterator cluIter = clusters.begin() ;
cluIter != clusters.end() ; ++cluIter) {
if ( ! (*cluIter)->isAvailable()
|| (*cluIter)->numComponents() != 3 ) continue;
for(int i = 0; i<(*cluIter)->numComponents(); i++)
vec[i] = (*cluIter)->particle(i);
// Randomly selects two components to be considered as a (anti)diquark
// and place them as the second and third element of vec.
int choice = UseRandom::rnd3(1.0, 1.0, 1.0);
switch (choice) {
case 0:
break;
case 1:
swap(vec[0],vec[1]);
break;
case 2:
swap(vec[0],vec[2]);
break;
}
tcPDPtr temp1 = vec[1]->dataPtr();
tcPDPtr temp2 = vec[2]->dataPtr();
tcPDPtr dataDiquark = CheckId::makeDiquark(temp1,temp2);
// Create the new cluster (with two components) and assign to it the same
// momentum and position of the original (with three components) one.
// Furthermore, assign to the diquark component a momentum given by the
// sum of the two original components from which has been formed; for the
// position, we are assuming, very simply, that the diquark position is
// the average positions of the two original components.
// Notice that the mass (5-th component of the 5-momentum) of the diquark
// is set by hand to the constituent mass of the diquark (which is equal
// to the sum of the constituent masses of the two quarks which form the
// diquark) because the sum of 5-component vectors do add only the "normal"
// 4-components, not the 5-th one. After that, the 5-momentum of the diquark
// is in an inconsistent state, because the mass (5-th component) is not
// equal to the invariant mass obtained from the 4-momemtum. This is not
// unique to this kind of component (all perturbative components are in
// a similar situation), but it is not harmful.
PPtr diquark = dataDiquark->produceParticle();
vec[1]->addChild(diquark);
vec[2]->addChild(diquark);
ClusterPtr nclus = new_ptr(Cluster(vec[0],diquark));
- vec[0]->addChild(nclus);
- diquark->addChild(nclus);
+ //vec[0]->addChild(nclus);
+ //diquark->addChild(nclus);
(*cluIter)->addChild(nclus);
nclus->set5Momentum((*cluIter)->momentum());
nclus->setVertex((*cluIter)->vertex());
for(int i = 0; i<nclus->numComponents(); i++) {
if(nclus->particle(i)->id() == dataDiquark->id()) {
nclus->particle(i)->set5Momentum(Lorentz5Momentum(vec[1]->momentum()
+ vec[2]->momentum(), dataDiquark->constituentMass()));
nclus->particle(i)->setVertex(0.5*(vec[1]->vertex()
+ vec[2]->vertex()));
}
}
// Set the parent/children relationship between the original cluster
// (the one with three components) with the new one (the one with two components)
// and add the latter to the vector of new redefined clusters.
//(*cluIter)->addChild(nclus);
redefinedClusters.push_back(nclus);
}
// Add to collecCluPtr all of the redefined new clusters (indeed the
// pointers to them are added) contained in vecNewRedefinedCluPtr.
/// \todo why do we keep the original of the redefined clusters?
for (tClusterVector::const_iterator it = redefinedClusters.begin();
it != redefinedClusters.end(); ++it) {
clusters.push_back(*it);
}
}

File Metadata

Mime Type
text/x-diff
Expires
Sat, Dec 21, 4:03 PM (1 d, 21 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023375
Default Alt Text
(13 KB)

Event Timeline