Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F11221527
deflate.c
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
62 KB
Subscribers
None
deflate.c
View Options
/* deflate.c -- compress data using the deflation algorithm
* Copyright (C) 1995-2005 Jean-loup Gailly.
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/*
* ALGORITHM
*
* The "deflation" process depends on being able to identify portions
* of the input text which are identical to earlier input (within a
* sliding window trailing behind the input currently being processed).
*
* The most straightforward technique turns out to be the fastest for
* most input files: try all possible matches and select the longest.
* The key feature of this algorithm is that insertions into the string
* dictionary are very simple and thus fast, and deletions are avoided
* completely. Insertions are performed at each input character, whereas
* string matches are performed only when the previous match ends. So it
* is preferable to spend more time in matches to allow very fast string
* insertions and avoid deletions. The matching algorithm for small
* strings is inspired from that of Rabin & Karp. A brute force approach
* is used to find longer strings when a small match has been found.
* A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
* (by Leonid Broukhis).
* A previous version of this file used a more sophisticated algorithm
* (by Fiala and Greene) which is guaranteed to run in linear amortized
* time, but has a larger average cost, uses more memory and is patented.
* However the F&G algorithm may be faster for some highly redundant
* files if the parameter max_chain_length (described below) is too large.
*
* ACKNOWLEDGEMENTS
*
* The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
* I found it in 'freeze' written by Leonid Broukhis.
* Thanks to many people for bug reports and testing.
*
* REFERENCES
*
* Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
* Available in http://www.ietf.org/rfc/rfc1951.txt
*
* A description of the Rabin and Karp algorithm is given in the book
* "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
*
* Fiala,E.R., and Greene,D.H.
* Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
*
*/
/* @(#) $Id: deflate.c 5666 2007-02-06 22:02:28Z mike $ */
#include
"deflate.h"
const
char
deflate_copyright
[]
=
" deflate 1.2.3 Copyright 1995-2005 Jean-loup Gailly "
;
/*
If you use the zlib library in a product, an acknowledgment is welcome
in the documentation of your product. If for some reason you cannot
include such an acknowledgment, I would appreciate that you keep this
copyright string in the executable of your product.
*/
/* ===========================================================================
* Function prototypes.
*/
typedef
enum
{
need_more
,
/* block not completed, need more input or more output */
block_done
,
/* block flush performed */
finish_started
,
/* finish started, need only more output at next deflate */
finish_done
/* finish done, accept no more input or output */
}
block_state
;
typedef
block_state
(
*
compress_func
)
OF
((
deflate_state
*
s
,
int
flush
));
/* Compression function. Returns the block state after the call. */
local
void
fill_window
OF
((
deflate_state
*
s
));
local
block_state
deflate_stored
OF
((
deflate_state
*
s
,
int
flush
));
local
block_state
deflate_fast
OF
((
deflate_state
*
s
,
int
flush
));
#ifndef FASTEST
local
block_state
deflate_slow
OF
((
deflate_state
*
s
,
int
flush
));
#endif
local
void
lm_init
OF
((
deflate_state
*
s
));
local
void
putShortMSB
OF
((
deflate_state
*
s
,
uInt
b
));
local
void
flush_pending
OF
((
z_streamp
strm
));
local
int
read_buf
OF
((
z_streamp
strm
,
Bytef
*
buf
,
unsigned
size
));
#ifndef FASTEST
#ifdef ASMV
void
match_init
OF
((
void
));
/* asm code initialization */
uInt
longest_match
OF
((
deflate_state
*
s
,
IPos
cur_match
));
#else
local
uInt
longest_match
OF
((
deflate_state
*
s
,
IPos
cur_match
));
#endif
#endif
local
uInt
longest_match_fast
OF
((
deflate_state
*
s
,
IPos
cur_match
));
#ifdef DEBUG
local
void
check_match
OF
((
deflate_state
*
s
,
IPos
start
,
IPos
match
,
int
length
));
#endif
/* ===========================================================================
* Local data
*/
#define NIL 0
/* Tail of hash chains */
#ifndef TOO_FAR
# define TOO_FAR 4096
#endif
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
/* Minimum amount of lookahead, except at the end of the input file.
* See deflate.c for comments about the MIN_MATCH+1.
*/
/* Values for max_lazy_match, good_match and max_chain_length, depending on
* the desired pack level (0..9). The values given below have been tuned to
* exclude worst case performance for pathological files. Better values may be
* found for specific files.
*/
typedef
struct
config_s
{
ush
good_length
;
/* reduce lazy search above this match length */
ush
max_lazy
;
/* do not perform lazy search above this match length */
ush
nice_length
;
/* quit search above this match length */
ush
max_chain
;
compress_func
func
;
}
config
;
#ifdef FASTEST
local
const
config
configuration_table
[
2
]
=
{
/* good lazy nice chain */
/* 0 */
{
0
,
0
,
0
,
0
,
deflate_stored
},
/* store only */
/* 1 */
{
4
,
4
,
8
,
4
,
deflate_fast
}};
/* max speed, no lazy matches */
#else
local
const
config
configuration_table
[
10
]
=
{
/* good lazy nice chain */
/* 0 */
{
0
,
0
,
0
,
0
,
deflate_stored
},
/* store only */
/* 1 */
{
4
,
4
,
8
,
4
,
deflate_fast
},
/* max speed, no lazy matches */
/* 2 */
{
4
,
5
,
16
,
8
,
deflate_fast
},
/* 3 */
{
4
,
6
,
32
,
32
,
deflate_fast
},
/* 4 */
{
4
,
4
,
16
,
16
,
deflate_slow
},
/* lazy matches */
/* 5 */
{
8
,
16
,
32
,
32
,
deflate_slow
},
/* 6 */
{
8
,
16
,
128
,
128
,
deflate_slow
},
/* 7 */
{
8
,
32
,
128
,
256
,
deflate_slow
},
/* 8 */
{
32
,
128
,
258
,
1024
,
deflate_slow
},
/* 9 */
{
32
,
258
,
258
,
4096
,
deflate_slow
}};
/* max compression */
#endif
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
* For deflate_fast() (levels <= 3) good is ignored and lazy has a different
* meaning.
*/
#define EQUAL 0
/* result of memcmp for equal strings */
#ifndef NO_DUMMY_DECL
struct
static_tree_desc_s
{
int
dummy
;};
/* for buggy compilers */
#endif
/* ===========================================================================
* Update a hash value with the given input byte
* IN assertion: all calls to to UPDATE_HASH are made with consecutive
* input characters, so that a running hash key can be computed from the
* previous key instead of complete recalculation each time.
*/
#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
/* ===========================================================================
* Insert string str in the dictionary and set match_head to the previous head
* of the hash chain (the most recent string with same hash key). Return
* the previous length of the hash chain.
* If this file is compiled with -DFASTEST, the compression level is forced
* to 1, and no hash chains are maintained.
* IN assertion: all calls to to INSERT_STRING are made with consecutive
* input characters and the first MIN_MATCH bytes of str are valid
* (except for the last MIN_MATCH-1 bytes of the input file).
*/
#ifdef FASTEST
#define INSERT_STRING(s, str, match_head) \
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
match_head = s->head[s->ins_h], \
s->head[s->ins_h] = (Pos)(str))
#else
#define INSERT_STRING(s, str, match_head) \
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
s->head[s->ins_h] = (Pos)(str))
#endif
/* ===========================================================================
* Initialize the hash table (avoiding 64K overflow for 16 bit systems).
* prev[] will be initialized on the fly.
*/
#define CLEAR_HASH(s) \
s->head[s->hash_size-1] = NIL; \
zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
/* ========================================================================= */
int
ZEXPORT
deflateInit_
(
strm
,
level
,
version
,
stream_size
)
z_streamp
strm
;
int
level
;
const
char
*
version
;
int
stream_size
;
{
return
deflateInit2_
(
strm
,
level
,
Z_DEFLATED
,
MAX_WBITS
,
DEF_MEM_LEVEL
,
Z_DEFAULT_STRATEGY
,
version
,
stream_size
);
/* To do: ignore strm->next_in if we use it as window */
}
/* ========================================================================= */
int
ZEXPORT
deflateInit2_
(
strm
,
level
,
method
,
windowBits
,
memLevel
,
strategy
,
version
,
stream_size
)
z_streamp
strm
;
int
level
;
int
method
;
int
windowBits
;
int
memLevel
;
int
strategy
;
const
char
*
version
;
int
stream_size
;
{
deflate_state
*
s
;
int
wrap
=
1
;
static
const
char
my_version
[]
=
ZLIB_VERSION
;
ushf
*
overlay
;
/* We overlay pending_buf and d_buf+l_buf. This works since the average
* output size for (length,distance) codes is <= 24 bits.
*/
if
(
version
==
Z_NULL
||
version
[
0
]
!=
my_version
[
0
]
||
stream_size
!=
sizeof
(
z_stream
))
{
return
Z_VERSION_ERROR
;
}
if
(
strm
==
Z_NULL
)
return
Z_STREAM_ERROR
;
strm
->
msg
=
Z_NULL
;
if
(
strm
->
zalloc
==
(
alloc_func
)
0
)
{
strm
->
zalloc
=
zcalloc
;
strm
->
opaque
=
(
voidpf
)
0
;
}
if
(
strm
->
zfree
==
(
free_func
)
0
)
strm
->
zfree
=
zcfree
;
#ifdef FASTEST
if
(
level
!=
0
)
level
=
1
;
#else
if
(
level
==
Z_DEFAULT_COMPRESSION
)
level
=
6
;
#endif
if
(
windowBits
<
0
)
{
/* suppress zlib wrapper */
wrap
=
0
;
windowBits
=
-
windowBits
;
}
#ifdef GZIP
else
if
(
windowBits
>
15
)
{
wrap
=
2
;
/* write gzip wrapper instead */
windowBits
-=
16
;
}
#endif
if
(
memLevel
<
1
||
memLevel
>
MAX_MEM_LEVEL
||
method
!=
Z_DEFLATED
||
windowBits
<
8
||
windowBits
>
15
||
level
<
0
||
level
>
9
||
strategy
<
0
||
strategy
>
Z_FIXED
)
{
return
Z_STREAM_ERROR
;
}
if
(
windowBits
==
8
)
windowBits
=
9
;
/* until 256-byte window bug fixed */
s
=
(
deflate_state
*
)
ZALLOC
(
strm
,
1
,
sizeof
(
deflate_state
));
if
(
s
==
Z_NULL
)
return
Z_MEM_ERROR
;
strm
->
state
=
(
struct
internal_state
FAR
*
)
s
;
s
->
strm
=
strm
;
s
->
wrap
=
wrap
;
s
->
gzhead
=
Z_NULL
;
s
->
w_bits
=
windowBits
;
s
->
w_size
=
1
<<
s
->
w_bits
;
s
->
w_mask
=
s
->
w_size
-
1
;
s
->
hash_bits
=
memLevel
+
7
;
s
->
hash_size
=
1
<<
s
->
hash_bits
;
s
->
hash_mask
=
s
->
hash_size
-
1
;
s
->
hash_shift
=
((
s
->
hash_bits
+
MIN_MATCH
-
1
)
/
MIN_MATCH
);
s
->
window
=
(
Bytef
*
)
ZALLOC
(
strm
,
s
->
w_size
,
2
*
sizeof
(
Byte
));
s
->
prev
=
(
Posf
*
)
ZALLOC
(
strm
,
s
->
w_size
,
sizeof
(
Pos
));
s
->
head
=
(
Posf
*
)
ZALLOC
(
strm
,
s
->
hash_size
,
sizeof
(
Pos
));
s
->
lit_bufsize
=
1
<<
(
memLevel
+
6
);
/* 16K elements by default */
overlay
=
(
ushf
*
)
ZALLOC
(
strm
,
s
->
lit_bufsize
,
sizeof
(
ush
)
+
2
);
s
->
pending_buf
=
(
uchf
*
)
overlay
;
s
->
pending_buf_size
=
(
ulg
)
s
->
lit_bufsize
*
(
sizeof
(
ush
)
+
2L
);
if
(
s
->
window
==
Z_NULL
||
s
->
prev
==
Z_NULL
||
s
->
head
==
Z_NULL
||
s
->
pending_buf
==
Z_NULL
)
{
s
->
status
=
FINISH_STATE
;
strm
->
msg
=
(
char
*
)
ERR_MSG
(
Z_MEM_ERROR
);
deflateEnd
(
strm
);
return
Z_MEM_ERROR
;
}
s
->
d_buf
=
overlay
+
s
->
lit_bufsize
/
sizeof
(
ush
);
s
->
l_buf
=
s
->
pending_buf
+
(
1
+
sizeof
(
ush
))
*
s
->
lit_bufsize
;
s
->
level
=
level
;
s
->
strategy
=
strategy
;
s
->
method
=
(
Byte
)
method
;
return
deflateReset
(
strm
);
}
/* ========================================================================= */
int
ZEXPORT
deflateSetDictionary
(
strm
,
dictionary
,
dictLength
)
z_streamp
strm
;
const
Bytef
*
dictionary
;
uInt
dictLength
;
{
deflate_state
*
s
;
uInt
length
=
dictLength
;
uInt
n
;
IPos
hash_head
=
0
;
if
(
strm
==
Z_NULL
||
strm
->
state
==
Z_NULL
||
dictionary
==
Z_NULL
||
strm
->
state
->
wrap
==
2
||
(
strm
->
state
->
wrap
==
1
&&
strm
->
state
->
status
!=
INIT_STATE
))
return
Z_STREAM_ERROR
;
s
=
strm
->
state
;
if
(
s
->
wrap
)
strm
->
adler
=
adler32
(
strm
->
adler
,
dictionary
,
dictLength
);
if
(
length
<
MIN_MATCH
)
return
Z_OK
;
if
(
length
>
MAX_DIST
(
s
))
{
length
=
MAX_DIST
(
s
);
dictionary
+=
dictLength
-
length
;
/* use the tail of the dictionary */
}
zmemcpy
(
s
->
window
,
dictionary
,
length
);
s
->
strstart
=
length
;
s
->
block_start
=
(
long
)
length
;
/* Insert all strings in the hash table (except for the last two bytes).
* s->lookahead stays null, so s->ins_h will be recomputed at the next
* call of fill_window.
*/
s
->
ins_h
=
s
->
window
[
0
];
UPDATE_HASH
(
s
,
s
->
ins_h
,
s
->
window
[
1
]);
for
(
n
=
0
;
n
<=
length
-
MIN_MATCH
;
n
++
)
{
INSERT_STRING
(
s
,
n
,
hash_head
);
}
if
(
hash_head
)
hash_head
=
0
;
/* to make compiler happy */
return
Z_OK
;
}
/* ========================================================================= */
int
ZEXPORT
deflateReset
(
strm
)
z_streamp
strm
;
{
deflate_state
*
s
;
if
(
strm
==
Z_NULL
||
strm
->
state
==
Z_NULL
||
strm
->
zalloc
==
(
alloc_func
)
0
||
strm
->
zfree
==
(
free_func
)
0
)
{
return
Z_STREAM_ERROR
;
}
strm
->
total_in
=
strm
->
total_out
=
0
;
strm
->
msg
=
Z_NULL
;
/* use zfree if we ever allocate msg dynamically */
strm
->
data_type
=
Z_UNKNOWN
;
s
=
(
deflate_state
*
)
strm
->
state
;
s
->
pending
=
0
;
s
->
pending_out
=
s
->
pending_buf
;
if
(
s
->
wrap
<
0
)
{
s
->
wrap
=
-
s
->
wrap
;
/* was made negative by deflate(..., Z_FINISH); */
}
s
->
status
=
s
->
wrap
?
INIT_STATE
:
BUSY_STATE
;
strm
->
adler
=
#ifdef GZIP
s
->
wrap
==
2
?
crc32
(
0L
,
Z_NULL
,
0
)
:
#endif
adler32
(
0L
,
Z_NULL
,
0
);
s
->
last_flush
=
Z_NO_FLUSH
;
_tr_init
(
s
);
lm_init
(
s
);
return
Z_OK
;
}
/* ========================================================================= */
int
ZEXPORT
deflateSetHeader
(
strm
,
head
)
z_streamp
strm
;
gz_headerp
head
;
{
if
(
strm
==
Z_NULL
||
strm
->
state
==
Z_NULL
)
return
Z_STREAM_ERROR
;
if
(
strm
->
state
->
wrap
!=
2
)
return
Z_STREAM_ERROR
;
strm
->
state
->
gzhead
=
head
;
return
Z_OK
;
}
/* ========================================================================= */
int
ZEXPORT
deflatePrime
(
strm
,
bits
,
value
)
z_streamp
strm
;
int
bits
;
int
value
;
{
if
(
strm
==
Z_NULL
||
strm
->
state
==
Z_NULL
)
return
Z_STREAM_ERROR
;
strm
->
state
->
bi_valid
=
bits
;
strm
->
state
->
bi_buf
=
(
ush
)(
value
&
((
1
<<
bits
)
-
1
));
return
Z_OK
;
}
/* ========================================================================= */
int
ZEXPORT
deflateParams
(
strm
,
level
,
strategy
)
z_streamp
strm
;
int
level
;
int
strategy
;
{
deflate_state
*
s
;
compress_func
func
;
int
err
=
Z_OK
;
if
(
strm
==
Z_NULL
||
strm
->
state
==
Z_NULL
)
return
Z_STREAM_ERROR
;
s
=
strm
->
state
;
#ifdef FASTEST
if
(
level
!=
0
)
level
=
1
;
#else
if
(
level
==
Z_DEFAULT_COMPRESSION
)
level
=
6
;
#endif
if
(
level
<
0
||
level
>
9
||
strategy
<
0
||
strategy
>
Z_FIXED
)
{
return
Z_STREAM_ERROR
;
}
func
=
configuration_table
[
s
->
level
].
func
;
if
(
func
!=
configuration_table
[
level
].
func
&&
strm
->
total_in
!=
0
)
{
/* Flush the last buffer: */
err
=
deflate
(
strm
,
Z_PARTIAL_FLUSH
);
}
if
(
s
->
level
!=
level
)
{
s
->
level
=
level
;
s
->
max_lazy_match
=
configuration_table
[
level
].
max_lazy
;
s
->
good_match
=
configuration_table
[
level
].
good_length
;
s
->
nice_match
=
configuration_table
[
level
].
nice_length
;
s
->
max_chain_length
=
configuration_table
[
level
].
max_chain
;
}
s
->
strategy
=
strategy
;
return
err
;
}
/* ========================================================================= */
int
ZEXPORT
deflateTune
(
strm
,
good_length
,
max_lazy
,
nice_length
,
max_chain
)
z_streamp
strm
;
int
good_length
;
int
max_lazy
;
int
nice_length
;
int
max_chain
;
{
deflate_state
*
s
;
if
(
strm
==
Z_NULL
||
strm
->
state
==
Z_NULL
)
return
Z_STREAM_ERROR
;
s
=
strm
->
state
;
s
->
good_match
=
good_length
;
s
->
max_lazy_match
=
max_lazy
;
s
->
nice_match
=
nice_length
;
s
->
max_chain_length
=
max_chain
;
return
Z_OK
;
}
/* =========================================================================
* For the default windowBits of 15 and memLevel of 8, this function returns
* a close to exact, as well as small, upper bound on the compressed size.
* They are coded as constants here for a reason--if the #define's are
* changed, then this function needs to be changed as well. The return
* value for 15 and 8 only works for those exact settings.
*
* For any setting other than those defaults for windowBits and memLevel,
* the value returned is a conservative worst case for the maximum expansion
* resulting from using fixed blocks instead of stored blocks, which deflate
* can emit on compressed data for some combinations of the parameters.
*
* This function could be more sophisticated to provide closer upper bounds
* for every combination of windowBits and memLevel, as well as wrap.
* But even the conservative upper bound of about 14% expansion does not
* seem onerous for output buffer allocation.
*/
uLong
ZEXPORT
deflateBound
(
strm
,
sourceLen
)
z_streamp
strm
;
uLong
sourceLen
;
{
deflate_state
*
s
;
uLong
destLen
;
/* conservative upper bound */
destLen
=
sourceLen
+
((
sourceLen
+
7
)
>>
3
)
+
((
sourceLen
+
63
)
>>
6
)
+
11
;
/* if can't get parameters, return conservative bound */
if
(
strm
==
Z_NULL
||
strm
->
state
==
Z_NULL
)
return
destLen
;
/* if not default parameters, return conservative bound */
s
=
strm
->
state
;
if
(
s
->
w_bits
!=
15
||
s
->
hash_bits
!=
8
+
7
)
return
destLen
;
/* default settings: return tight bound for that case */
return
compressBound
(
sourceLen
);
}
/* =========================================================================
* Put a short in the pending buffer. The 16-bit value is put in MSB order.
* IN assertion: the stream state is correct and there is enough room in
* pending_buf.
*/
local
void
putShortMSB
(
s
,
b
)
deflate_state
*
s
;
uInt
b
;
{
put_byte
(
s
,
(
Byte
)(
b
>>
8
));
put_byte
(
s
,
(
Byte
)(
b
&
0xff
));
}
/* =========================================================================
* Flush as much pending output as possible. All deflate() output goes
* through this function so some applications may wish to modify it
* to avoid allocating a large strm->next_out buffer and copying into it.
* (See also read_buf()).
*/
local
void
flush_pending
(
strm
)
z_streamp
strm
;
{
unsigned
len
=
strm
->
state
->
pending
;
if
(
len
>
strm
->
avail_out
)
len
=
strm
->
avail_out
;
if
(
len
==
0
)
return
;
zmemcpy
(
strm
->
next_out
,
strm
->
state
->
pending_out
,
len
);
strm
->
next_out
+=
len
;
strm
->
state
->
pending_out
+=
len
;
strm
->
total_out
+=
len
;
strm
->
avail_out
-=
len
;
strm
->
state
->
pending
-=
len
;
if
(
strm
->
state
->
pending
==
0
)
{
strm
->
state
->
pending_out
=
strm
->
state
->
pending_buf
;
}
}
/* ========================================================================= */
int
ZEXPORT
deflate
(
strm
,
flush
)
z_streamp
strm
;
int
flush
;
{
int
old_flush
;
/* value of flush param for previous deflate call */
deflate_state
*
s
;
if
(
strm
==
Z_NULL
||
strm
->
state
==
Z_NULL
||
flush
>
Z_FINISH
||
flush
<
0
)
{
return
Z_STREAM_ERROR
;
}
s
=
strm
->
state
;
if
(
strm
->
next_out
==
Z_NULL
||
(
strm
->
next_in
==
Z_NULL
&&
strm
->
avail_in
!=
0
)
||
(
s
->
status
==
FINISH_STATE
&&
flush
!=
Z_FINISH
))
{
ERR_RETURN
(
strm
,
Z_STREAM_ERROR
);
}
if
(
strm
->
avail_out
==
0
)
ERR_RETURN
(
strm
,
Z_BUF_ERROR
);
s
->
strm
=
strm
;
/* just in case */
old_flush
=
s
->
last_flush
;
s
->
last_flush
=
flush
;
/* Write the header */
if
(
s
->
status
==
INIT_STATE
)
{
#ifdef GZIP
if
(
s
->
wrap
==
2
)
{
strm
->
adler
=
crc32
(
0L
,
Z_NULL
,
0
);
put_byte
(
s
,
31
);
put_byte
(
s
,
139
);
put_byte
(
s
,
8
);
if
(
s
->
gzhead
==
NULL
)
{
put_byte
(
s
,
0
);
put_byte
(
s
,
0
);
put_byte
(
s
,
0
);
put_byte
(
s
,
0
);
put_byte
(
s
,
0
);
put_byte
(
s
,
s
->
level
==
9
?
2
:
(
s
->
strategy
>=
Z_HUFFMAN_ONLY
||
s
->
level
<
2
?
4
:
0
));
put_byte
(
s
,
OS_CODE
);
s
->
status
=
BUSY_STATE
;
}
else
{
put_byte
(
s
,
(
s
->
gzhead
->
text
?
1
:
0
)
+
(
s
->
gzhead
->
hcrc
?
2
:
0
)
+
(
s
->
gzhead
->
extra
==
Z_NULL
?
0
:
4
)
+
(
s
->
gzhead
->
name
==
Z_NULL
?
0
:
8
)
+
(
s
->
gzhead
->
comment
==
Z_NULL
?
0
:
16
)
);
put_byte
(
s
,
(
Byte
)(
s
->
gzhead
->
time
&
0xff
));
put_byte
(
s
,
(
Byte
)((
s
->
gzhead
->
time
>>
8
)
&
0xff
));
put_byte
(
s
,
(
Byte
)((
s
->
gzhead
->
time
>>
16
)
&
0xff
));
put_byte
(
s
,
(
Byte
)((
s
->
gzhead
->
time
>>
24
)
&
0xff
));
put_byte
(
s
,
s
->
level
==
9
?
2
:
(
s
->
strategy
>=
Z_HUFFMAN_ONLY
||
s
->
level
<
2
?
4
:
0
));
put_byte
(
s
,
s
->
gzhead
->
os
&
0xff
);
if
(
s
->
gzhead
->
extra
!=
NULL
)
{
put_byte
(
s
,
s
->
gzhead
->
extra_len
&
0xff
);
put_byte
(
s
,
(
s
->
gzhead
->
extra_len
>>
8
)
&
0xff
);
}
if
(
s
->
gzhead
->
hcrc
)
strm
->
adler
=
crc32
(
strm
->
adler
,
s
->
pending_buf
,
s
->
pending
);
s
->
gzindex
=
0
;
s
->
status
=
EXTRA_STATE
;
}
}
else
#endif
{
uInt
header
=
(
Z_DEFLATED
+
((
s
->
w_bits
-
8
)
<<
4
))
<<
8
;
uInt
level_flags
;
if
(
s
->
strategy
>=
Z_HUFFMAN_ONLY
||
s
->
level
<
2
)
level_flags
=
0
;
else
if
(
s
->
level
<
6
)
level_flags
=
1
;
else
if
(
s
->
level
==
6
)
level_flags
=
2
;
else
level_flags
=
3
;
header
|=
(
level_flags
<<
6
);
if
(
s
->
strstart
!=
0
)
header
|=
PRESET_DICT
;
header
+=
31
-
(
header
%
31
);
s
->
status
=
BUSY_STATE
;
putShortMSB
(
s
,
header
);
/* Save the adler32 of the preset dictionary: */
if
(
s
->
strstart
!=
0
)
{
putShortMSB
(
s
,
(
uInt
)(
strm
->
adler
>>
16
));
putShortMSB
(
s
,
(
uInt
)(
strm
->
adler
&
0xffff
));
}
strm
->
adler
=
adler32
(
0L
,
Z_NULL
,
0
);
}
}
#ifdef GZIP
if
(
s
->
status
==
EXTRA_STATE
)
{
if
(
s
->
gzhead
->
extra
!=
NULL
)
{
uInt
beg
=
s
->
pending
;
/* start of bytes to update crc */
while
(
s
->
gzindex
<
(
s
->
gzhead
->
extra_len
&
0xffff
))
{
if
(
s
->
pending
==
s
->
pending_buf_size
)
{
if
(
s
->
gzhead
->
hcrc
&&
s
->
pending
>
beg
)
strm
->
adler
=
crc32
(
strm
->
adler
,
s
->
pending_buf
+
beg
,
s
->
pending
-
beg
);
flush_pending
(
strm
);
beg
=
s
->
pending
;
if
(
s
->
pending
==
s
->
pending_buf_size
)
break
;
}
put_byte
(
s
,
s
->
gzhead
->
extra
[
s
->
gzindex
]);
s
->
gzindex
++
;
}
if
(
s
->
gzhead
->
hcrc
&&
s
->
pending
>
beg
)
strm
->
adler
=
crc32
(
strm
->
adler
,
s
->
pending_buf
+
beg
,
s
->
pending
-
beg
);
if
(
s
->
gzindex
==
s
->
gzhead
->
extra_len
)
{
s
->
gzindex
=
0
;
s
->
status
=
NAME_STATE
;
}
}
else
s
->
status
=
NAME_STATE
;
}
if
(
s
->
status
==
NAME_STATE
)
{
if
(
s
->
gzhead
->
name
!=
NULL
)
{
uInt
beg
=
s
->
pending
;
/* start of bytes to update crc */
int
val
;
do
{
if
(
s
->
pending
==
s
->
pending_buf_size
)
{
if
(
s
->
gzhead
->
hcrc
&&
s
->
pending
>
beg
)
strm
->
adler
=
crc32
(
strm
->
adler
,
s
->
pending_buf
+
beg
,
s
->
pending
-
beg
);
flush_pending
(
strm
);
beg
=
s
->
pending
;
if
(
s
->
pending
==
s
->
pending_buf_size
)
{
val
=
1
;
break
;
}
}
val
=
s
->
gzhead
->
name
[
s
->
gzindex
++
];
put_byte
(
s
,
val
);
}
while
(
val
!=
0
);
if
(
s
->
gzhead
->
hcrc
&&
s
->
pending
>
beg
)
strm
->
adler
=
crc32
(
strm
->
adler
,
s
->
pending_buf
+
beg
,
s
->
pending
-
beg
);
if
(
val
==
0
)
{
s
->
gzindex
=
0
;
s
->
status
=
COMMENT_STATE
;
}
}
else
s
->
status
=
COMMENT_STATE
;
}
if
(
s
->
status
==
COMMENT_STATE
)
{
if
(
s
->
gzhead
->
comment
!=
NULL
)
{
uInt
beg
=
s
->
pending
;
/* start of bytes to update crc */
int
val
;
do
{
if
(
s
->
pending
==
s
->
pending_buf_size
)
{
if
(
s
->
gzhead
->
hcrc
&&
s
->
pending
>
beg
)
strm
->
adler
=
crc32
(
strm
->
adler
,
s
->
pending_buf
+
beg
,
s
->
pending
-
beg
);
flush_pending
(
strm
);
beg
=
s
->
pending
;
if
(
s
->
pending
==
s
->
pending_buf_size
)
{
val
=
1
;
break
;
}
}
val
=
s
->
gzhead
->
comment
[
s
->
gzindex
++
];
put_byte
(
s
,
val
);
}
while
(
val
!=
0
);
if
(
s
->
gzhead
->
hcrc
&&
s
->
pending
>
beg
)
strm
->
adler
=
crc32
(
strm
->
adler
,
s
->
pending_buf
+
beg
,
s
->
pending
-
beg
);
if
(
val
==
0
)
s
->
status
=
HCRC_STATE
;
}
else
s
->
status
=
HCRC_STATE
;
}
if
(
s
->
status
==
HCRC_STATE
)
{
if
(
s
->
gzhead
->
hcrc
)
{
if
(
s
->
pending
+
2
>
s
->
pending_buf_size
)
flush_pending
(
strm
);
if
(
s
->
pending
+
2
<=
s
->
pending_buf_size
)
{
put_byte
(
s
,
(
Byte
)(
strm
->
adler
&
0xff
));
put_byte
(
s
,
(
Byte
)((
strm
->
adler
>>
8
)
&
0xff
));
strm
->
adler
=
crc32
(
0L
,
Z_NULL
,
0
);
s
->
status
=
BUSY_STATE
;
}
}
else
s
->
status
=
BUSY_STATE
;
}
#endif
/* Flush as much pending output as possible */
if
(
s
->
pending
!=
0
)
{
flush_pending
(
strm
);
if
(
strm
->
avail_out
==
0
)
{
/* Since avail_out is 0, deflate will be called again with
* more output space, but possibly with both pending and
* avail_in equal to zero. There won't be anything to do,
* but this is not an error situation so make sure we
* return OK instead of BUF_ERROR at next call of deflate:
*/
s
->
last_flush
=
-
1
;
return
Z_OK
;
}
/* Make sure there is something to do and avoid duplicate consecutive
* flushes. For repeated and useless calls with Z_FINISH, we keep
* returning Z_STREAM_END instead of Z_BUF_ERROR.
*/
}
else
if
(
strm
->
avail_in
==
0
&&
flush
<=
old_flush
&&
flush
!=
Z_FINISH
)
{
ERR_RETURN
(
strm
,
Z_BUF_ERROR
);
}
/* User must not provide more input after the first FINISH: */
if
(
s
->
status
==
FINISH_STATE
&&
strm
->
avail_in
!=
0
)
{
ERR_RETURN
(
strm
,
Z_BUF_ERROR
);
}
/* Start a new block or continue the current one.
*/
if
(
strm
->
avail_in
!=
0
||
s
->
lookahead
!=
0
||
(
flush
!=
Z_NO_FLUSH
&&
s
->
status
!=
FINISH_STATE
))
{
block_state
bstate
;
bstate
=
(
*
(
configuration_table
[
s
->
level
].
func
))(
s
,
flush
);
if
(
bstate
==
finish_started
||
bstate
==
finish_done
)
{
s
->
status
=
FINISH_STATE
;
}
if
(
bstate
==
need_more
||
bstate
==
finish_started
)
{
if
(
strm
->
avail_out
==
0
)
{
s
->
last_flush
=
-
1
;
/* avoid BUF_ERROR next call, see above */
}
return
Z_OK
;
/* If flush != Z_NO_FLUSH && avail_out == 0, the next call
* of deflate should use the same flush parameter to make sure
* that the flush is complete. So we don't have to output an
* empty block here, this will be done at next call. This also
* ensures that for a very small output buffer, we emit at most
* one empty block.
*/
}
if
(
bstate
==
block_done
)
{
if
(
flush
==
Z_PARTIAL_FLUSH
)
{
_tr_align
(
s
);
}
else
{
/* FULL_FLUSH or SYNC_FLUSH */
_tr_stored_block
(
s
,
(
char
*
)
0
,
0L
,
0
);
/* For a full flush, this empty block will be recognized
* as a special marker by inflate_sync().
*/
if
(
flush
==
Z_FULL_FLUSH
)
{
CLEAR_HASH
(
s
);
/* forget history */
}
}
flush_pending
(
strm
);
if
(
strm
->
avail_out
==
0
)
{
s
->
last_flush
=
-
1
;
/* avoid BUF_ERROR at next call, see above */
return
Z_OK
;
}
}
}
Assert
(
strm
->
avail_out
>
0
,
"bug2"
);
if
(
flush
!=
Z_FINISH
)
return
Z_OK
;
if
(
s
->
wrap
<=
0
)
return
Z_STREAM_END
;
/* Write the trailer */
#ifdef GZIP
if
(
s
->
wrap
==
2
)
{
put_byte
(
s
,
(
Byte
)(
strm
->
adler
&
0xff
));
put_byte
(
s
,
(
Byte
)((
strm
->
adler
>>
8
)
&
0xff
));
put_byte
(
s
,
(
Byte
)((
strm
->
adler
>>
16
)
&
0xff
));
put_byte
(
s
,
(
Byte
)((
strm
->
adler
>>
24
)
&
0xff
));
put_byte
(
s
,
(
Byte
)(
strm
->
total_in
&
0xff
));
put_byte
(
s
,
(
Byte
)((
strm
->
total_in
>>
8
)
&
0xff
));
put_byte
(
s
,
(
Byte
)((
strm
->
total_in
>>
16
)
&
0xff
));
put_byte
(
s
,
(
Byte
)((
strm
->
total_in
>>
24
)
&
0xff
));
}
else
#endif
{
putShortMSB
(
s
,
(
uInt
)(
strm
->
adler
>>
16
));
putShortMSB
(
s
,
(
uInt
)(
strm
->
adler
&
0xffff
));
}
flush_pending
(
strm
);
/* If avail_out is zero, the application will call deflate again
* to flush the rest.
*/
if
(
s
->
wrap
>
0
)
s
->
wrap
=
-
s
->
wrap
;
/* write the trailer only once! */
return
s
->
pending
!=
0
?
Z_OK
:
Z_STREAM_END
;
}
/* ========================================================================= */
int
ZEXPORT
deflateEnd
(
strm
)
z_streamp
strm
;
{
int
status
;
if
(
strm
==
Z_NULL
||
strm
->
state
==
Z_NULL
)
return
Z_STREAM_ERROR
;
status
=
strm
->
state
->
status
;
if
(
status
!=
INIT_STATE
&&
status
!=
EXTRA_STATE
&&
status
!=
NAME_STATE
&&
status
!=
COMMENT_STATE
&&
status
!=
HCRC_STATE
&&
status
!=
BUSY_STATE
&&
status
!=
FINISH_STATE
)
{
return
Z_STREAM_ERROR
;
}
/* Deallocate in reverse order of allocations: */
TRY_FREE
(
strm
,
strm
->
state
->
pending_buf
);
TRY_FREE
(
strm
,
strm
->
state
->
head
);
TRY_FREE
(
strm
,
strm
->
state
->
prev
);
TRY_FREE
(
strm
,
strm
->
state
->
window
);
ZFREE
(
strm
,
strm
->
state
);
strm
->
state
=
Z_NULL
;
return
status
==
BUSY_STATE
?
Z_DATA_ERROR
:
Z_OK
;
}
/* =========================================================================
* Copy the source state to the destination state.
* To simplify the source, this is not supported for 16-bit MSDOS (which
* doesn't have enough memory anyway to duplicate compression states).
*/
int
ZEXPORT
deflateCopy
(
dest
,
source
)
z_streamp
dest
;
z_streamp
source
;
{
#ifdef MAXSEG_64K
return
Z_STREAM_ERROR
;
#else
deflate_state
*
ds
;
deflate_state
*
ss
;
ushf
*
overlay
;
if
(
source
==
Z_NULL
||
dest
==
Z_NULL
||
source
->
state
==
Z_NULL
)
{
return
Z_STREAM_ERROR
;
}
ss
=
source
->
state
;
zmemcpy
(
dest
,
source
,
sizeof
(
z_stream
));
ds
=
(
deflate_state
*
)
ZALLOC
(
dest
,
1
,
sizeof
(
deflate_state
));
if
(
ds
==
Z_NULL
)
return
Z_MEM_ERROR
;
dest
->
state
=
(
struct
internal_state
FAR
*
)
ds
;
zmemcpy
(
ds
,
ss
,
sizeof
(
deflate_state
));
ds
->
strm
=
dest
;
ds
->
window
=
(
Bytef
*
)
ZALLOC
(
dest
,
ds
->
w_size
,
2
*
sizeof
(
Byte
));
ds
->
prev
=
(
Posf
*
)
ZALLOC
(
dest
,
ds
->
w_size
,
sizeof
(
Pos
));
ds
->
head
=
(
Posf
*
)
ZALLOC
(
dest
,
ds
->
hash_size
,
sizeof
(
Pos
));
overlay
=
(
ushf
*
)
ZALLOC
(
dest
,
ds
->
lit_bufsize
,
sizeof
(
ush
)
+
2
);
ds
->
pending_buf
=
(
uchf
*
)
overlay
;
if
(
ds
->
window
==
Z_NULL
||
ds
->
prev
==
Z_NULL
||
ds
->
head
==
Z_NULL
||
ds
->
pending_buf
==
Z_NULL
)
{
deflateEnd
(
dest
);
return
Z_MEM_ERROR
;
}
/* following zmemcpy do not work for 16-bit MSDOS */
zmemcpy
(
ds
->
window
,
ss
->
window
,
ds
->
w_size
*
2
*
sizeof
(
Byte
));
zmemcpy
(
ds
->
prev
,
ss
->
prev
,
ds
->
w_size
*
sizeof
(
Pos
));
zmemcpy
(
ds
->
head
,
ss
->
head
,
ds
->
hash_size
*
sizeof
(
Pos
));
zmemcpy
(
ds
->
pending_buf
,
ss
->
pending_buf
,
(
uInt
)
ds
->
pending_buf_size
);
ds
->
pending_out
=
ds
->
pending_buf
+
(
ss
->
pending_out
-
ss
->
pending_buf
);
ds
->
d_buf
=
overlay
+
ds
->
lit_bufsize
/
sizeof
(
ush
);
ds
->
l_buf
=
ds
->
pending_buf
+
(
1
+
sizeof
(
ush
))
*
ds
->
lit_bufsize
;
ds
->
l_desc
.
dyn_tree
=
ds
->
dyn_ltree
;
ds
->
d_desc
.
dyn_tree
=
ds
->
dyn_dtree
;
ds
->
bl_desc
.
dyn_tree
=
ds
->
bl_tree
;
return
Z_OK
;
#endif
/* MAXSEG_64K */
}
/* ===========================================================================
* Read a new buffer from the current input stream, update the adler32
* and total number of bytes read. All deflate() input goes through
* this function so some applications may wish to modify it to avoid
* allocating a large strm->next_in buffer and copying from it.
* (See also flush_pending()).
*/
local
int
read_buf
(
strm
,
buf
,
size
)
z_streamp
strm
;
Bytef
*
buf
;
unsigned
size
;
{
unsigned
len
=
strm
->
avail_in
;
if
(
len
>
size
)
len
=
size
;
if
(
len
==
0
)
return
0
;
strm
->
avail_in
-=
len
;
if
(
strm
->
state
->
wrap
==
1
)
{
strm
->
adler
=
adler32
(
strm
->
adler
,
strm
->
next_in
,
len
);
}
#ifdef GZIP
else
if
(
strm
->
state
->
wrap
==
2
)
{
strm
->
adler
=
crc32
(
strm
->
adler
,
strm
->
next_in
,
len
);
}
#endif
zmemcpy
(
buf
,
strm
->
next_in
,
len
);
strm
->
next_in
+=
len
;
strm
->
total_in
+=
len
;
return
(
int
)
len
;
}
/* ===========================================================================
* Initialize the "longest match" routines for a new zlib stream
*/
local
void
lm_init
(
s
)
deflate_state
*
s
;
{
s
->
window_size
=
(
ulg
)
2L
*
s
->
w_size
;
CLEAR_HASH
(
s
);
/* Set the default configuration parameters:
*/
s
->
max_lazy_match
=
configuration_table
[
s
->
level
].
max_lazy
;
s
->
good_match
=
configuration_table
[
s
->
level
].
good_length
;
s
->
nice_match
=
configuration_table
[
s
->
level
].
nice_length
;
s
->
max_chain_length
=
configuration_table
[
s
->
level
].
max_chain
;
s
->
strstart
=
0
;
s
->
block_start
=
0L
;
s
->
lookahead
=
0
;
s
->
match_length
=
s
->
prev_length
=
MIN_MATCH
-
1
;
s
->
match_available
=
0
;
s
->
ins_h
=
0
;
#ifndef FASTEST
#ifdef ASMV
match_init
();
/* initialize the asm code */
#endif
#endif
}
#ifndef FASTEST
/* ===========================================================================
* Set match_start to the longest match starting at the given string and
* return its length. Matches shorter or equal to prev_length are discarded,
* in which case the result is equal to prev_length and match_start is
* garbage.
* IN assertions: cur_match is the head of the hash chain for the current
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
* OUT assertion: the match length is not greater than s->lookahead.
*/
#ifndef ASMV
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
* match.S. The code will be functionally equivalent.
*/
local
uInt
longest_match
(
s
,
cur_match
)
deflate_state
*
s
;
IPos
cur_match
;
/* current match */
{
unsigned
chain_length
=
s
->
max_chain_length
;
/* max hash chain length */
register
Bytef
*
scan
=
s
->
window
+
s
->
strstart
;
/* current string */
register
Bytef
*
match
;
/* matched string */
register
int
len
;
/* length of current match */
int
best_len
=
s
->
prev_length
;
/* best match length so far */
int
nice_match
=
s
->
nice_match
;
/* stop if match long enough */
IPos
limit
=
s
->
strstart
>
(
IPos
)
MAX_DIST
(
s
)
?
s
->
strstart
-
(
IPos
)
MAX_DIST
(
s
)
:
NIL
;
/* Stop when cur_match becomes <= limit. To simplify the code,
* we prevent matches with the string of window index 0.
*/
Posf
*
prev
=
s
->
prev
;
uInt
wmask
=
s
->
w_mask
;
#ifdef UNALIGNED_OK
/* Compare two bytes at a time. Note: this is not always beneficial.
* Try with and without -DUNALIGNED_OK to check.
*/
register
Bytef
*
strend
=
s
->
window
+
s
->
strstart
+
MAX_MATCH
-
1
;
register
ush
scan_start
=
*
(
ushf
*
)
scan
;
register
ush
scan_end
=
*
(
ushf
*
)(
scan
+
best_len
-
1
);
#else
register
Bytef
*
strend
=
s
->
window
+
s
->
strstart
+
MAX_MATCH
;
register
Byte
scan_end1
=
scan
[
best_len
-
1
];
register
Byte
scan_end
=
scan
[
best_len
];
#endif
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
* It is easy to get rid of this optimization if necessary.
*/
Assert
(
s
->
hash_bits
>=
8
&&
MAX_MATCH
==
258
,
"Code too clever"
);
/* Do not waste too much time if we already have a good match: */
if
(
s
->
prev_length
>=
s
->
good_match
)
{
chain_length
>>=
2
;
}
/* Do not look for matches beyond the end of the input. This is necessary
* to make deflate deterministic.
*/
if
((
uInt
)
nice_match
>
s
->
lookahead
)
nice_match
=
s
->
lookahead
;
Assert
((
ulg
)
s
->
strstart
<=
s
->
window_size
-
MIN_LOOKAHEAD
,
"need lookahead"
);
do
{
Assert
(
cur_match
<
s
->
strstart
,
"no future"
);
match
=
s
->
window
+
cur_match
;
/* Skip to next match if the match length cannot increase
* or if the match length is less than 2. Note that the checks below
* for insufficient lookahead only occur occasionally for performance
* reasons. Therefore uninitialized memory will be accessed, and
* conditional jumps will be made that depend on those values.
* However the length of the match is limited to the lookahead, so
* the output of deflate is not affected by the uninitialized values.
*/
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
/* This code assumes sizeof(unsigned short) == 2. Do not use
* UNALIGNED_OK if your compiler uses a different size.
*/
if
(
*
(
ushf
*
)(
match
+
best_len
-
1
)
!=
scan_end
||
*
(
ushf
*
)
match
!=
scan_start
)
continue
;
/* It is not necessary to compare scan[2] and match[2] since they are
* always equal when the other bytes match, given that the hash keys
* are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
* strstart+3, +5, ... up to strstart+257. We check for insufficient
* lookahead only every 4th comparison; the 128th check will be made
* at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
* necessary to put more guard bytes at the end of the window, or
* to check more often for insufficient lookahead.
*/
Assert
(
scan
[
2
]
==
match
[
2
],
"scan[2]?"
);
scan
++
,
match
++
;
do
{
}
while
(
*
(
ushf
*
)(
scan
+=
2
)
==
*
(
ushf
*
)(
match
+=
2
)
&&
*
(
ushf
*
)(
scan
+=
2
)
==
*
(
ushf
*
)(
match
+=
2
)
&&
*
(
ushf
*
)(
scan
+=
2
)
==
*
(
ushf
*
)(
match
+=
2
)
&&
*
(
ushf
*
)(
scan
+=
2
)
==
*
(
ushf
*
)(
match
+=
2
)
&&
scan
<
strend
);
/* The funny "do {}" generates better code on most compilers */
/* Here, scan <= window+strstart+257 */
Assert
(
scan
<=
s
->
window
+
(
unsigned
)(
s
->
window_size
-
1
),
"wild scan"
);
if
(
*
scan
==
*
match
)
scan
++
;
len
=
(
MAX_MATCH
-
1
)
-
(
int
)(
strend
-
scan
);
scan
=
strend
-
(
MAX_MATCH
-
1
);
#else
/* UNALIGNED_OK */
if
(
match
[
best_len
]
!=
scan_end
||
match
[
best_len
-
1
]
!=
scan_end1
||
*
match
!=
*
scan
||
*++
match
!=
scan
[
1
])
continue
;
/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.)
* It is not necessary to compare scan[2] and match[2] since they
* are always equal when the other bytes match, given that
* the hash keys are equal and that HASH_BITS >= 8.
*/
scan
+=
2
,
match
++
;
Assert
(
*
scan
==
*
match
,
"match[2]?"
);
/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258.
*/
do
{
}
while
(
*++
scan
==
*++
match
&&
*++
scan
==
*++
match
&&
*++
scan
==
*++
match
&&
*++
scan
==
*++
match
&&
*++
scan
==
*++
match
&&
*++
scan
==
*++
match
&&
*++
scan
==
*++
match
&&
*++
scan
==
*++
match
&&
scan
<
strend
);
Assert
(
scan
<=
s
->
window
+
(
unsigned
)(
s
->
window_size
-
1
),
"wild scan"
);
len
=
MAX_MATCH
-
(
int
)(
strend
-
scan
);
scan
=
strend
-
MAX_MATCH
;
#endif
/* UNALIGNED_OK */
if
(
len
>
best_len
)
{
s
->
match_start
=
cur_match
;
best_len
=
len
;
if
(
len
>=
nice_match
)
break
;
#ifdef UNALIGNED_OK
scan_end
=
*
(
ushf
*
)(
scan
+
best_len
-
1
);
#else
scan_end1
=
scan
[
best_len
-
1
];
scan_end
=
scan
[
best_len
];
#endif
}
}
while
((
cur_match
=
prev
[
cur_match
&
wmask
])
>
limit
&&
--
chain_length
!=
0
);
if
((
uInt
)
best_len
<=
s
->
lookahead
)
return
(
uInt
)
best_len
;
return
s
->
lookahead
;
}
#endif
/* ASMV */
#endif
/* FASTEST */
/* ---------------------------------------------------------------------------
* Optimized version for level == 1 or strategy == Z_RLE only
*/
local
uInt
longest_match_fast
(
s
,
cur_match
)
deflate_state
*
s
;
IPos
cur_match
;
/* current match */
{
register
Bytef
*
scan
=
s
->
window
+
s
->
strstart
;
/* current string */
register
Bytef
*
match
;
/* matched string */
register
int
len
;
/* length of current match */
register
Bytef
*
strend
=
s
->
window
+
s
->
strstart
+
MAX_MATCH
;
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
* It is easy to get rid of this optimization if necessary.
*/
Assert
(
s
->
hash_bits
>=
8
&&
MAX_MATCH
==
258
,
"Code too clever"
);
Assert
((
ulg
)
s
->
strstart
<=
s
->
window_size
-
MIN_LOOKAHEAD
,
"need lookahead"
);
Assert
(
cur_match
<
s
->
strstart
,
"no future"
);
match
=
s
->
window
+
cur_match
;
/* Return failure if the match length is less than 2:
*/
if
(
match
[
0
]
!=
scan
[
0
]
||
match
[
1
]
!=
scan
[
1
])
return
MIN_MATCH
-
1
;
/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.)
* It is not necessary to compare scan[2] and match[2] since they
* are always equal when the other bytes match, given that
* the hash keys are equal and that HASH_BITS >= 8.
*/
scan
+=
2
,
match
+=
2
;
Assert
(
*
scan
==
*
match
,
"match[2]?"
);
/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258.
*/
do
{
}
while
(
*++
scan
==
*++
match
&&
*++
scan
==
*++
match
&&
*++
scan
==
*++
match
&&
*++
scan
==
*++
match
&&
*++
scan
==
*++
match
&&
*++
scan
==
*++
match
&&
*++
scan
==
*++
match
&&
*++
scan
==
*++
match
&&
scan
<
strend
);
Assert
(
scan
<=
s
->
window
+
(
unsigned
)(
s
->
window_size
-
1
),
"wild scan"
);
len
=
MAX_MATCH
-
(
int
)(
strend
-
scan
);
if
(
len
<
MIN_MATCH
)
return
MIN_MATCH
-
1
;
s
->
match_start
=
cur_match
;
return
(
uInt
)
len
<=
s
->
lookahead
?
(
uInt
)
len
:
s
->
lookahead
;
}
#ifdef DEBUG
/* ===========================================================================
* Check that the match at match_start is indeed a match.
*/
local
void
check_match
(
s
,
start
,
match
,
length
)
deflate_state
*
s
;
IPos
start
,
match
;
int
length
;
{
/* check that the match is indeed a match */
if
(
zmemcmp
(
s
->
window
+
match
,
s
->
window
+
start
,
length
)
!=
EQUAL
)
{
fprintf
(
stderr
,
" start %u, match %u, length %d
\n
"
,
start
,
match
,
length
);
do
{
fprintf
(
stderr
,
"%c%c"
,
s
->
window
[
match
++
],
s
->
window
[
start
++
]);
}
while
(
--
length
!=
0
);
z_error
(
"invalid match"
);
}
if
(
z_verbose
>
1
)
{
fprintf
(
stderr
,
"
\\
[%d,%d]"
,
start
-
match
,
length
);
do
{
putc
(
s
->
window
[
start
++
],
stderr
);
}
while
(
--
length
!=
0
);
}
}
#else
# define check_match(s, start, match, length)
#endif
/* DEBUG */
/* ===========================================================================
* Fill the window when the lookahead becomes insufficient.
* Updates strstart and lookahead.
*
* IN assertion: lookahead < MIN_LOOKAHEAD
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
* At least one byte has been read, or avail_in == 0; reads are
* performed for at least two bytes (required for the zip translate_eol
* option -- not supported here).
*/
local
void
fill_window
(
s
)
deflate_state
*
s
;
{
register
unsigned
n
,
m
;
register
Posf
*
p
;
unsigned
more
;
/* Amount of free space at the end of the window. */
uInt
wsize
=
s
->
w_size
;
do
{
more
=
(
unsigned
)(
s
->
window_size
-
(
ulg
)
s
->
lookahead
-
(
ulg
)
s
->
strstart
);
/* Deal with !@#$% 64K limit: */
if
(
sizeof
(
int
)
<=
2
)
{
if
(
more
==
0
&&
s
->
strstart
==
0
&&
s
->
lookahead
==
0
)
{
more
=
wsize
;
}
else
if
(
more
==
(
unsigned
)(
-
1
))
{
/* Very unlikely, but possible on 16 bit machine if
* strstart == 0 && lookahead == 1 (input done a byte at time)
*/
more
--
;
}
}
/* If the window is almost full and there is insufficient lookahead,
* move the upper half to the lower one to make room in the upper half.
*/
if
(
s
->
strstart
>=
wsize
+
MAX_DIST
(
s
))
{
zmemcpy
(
s
->
window
,
s
->
window
+
wsize
,
(
unsigned
)
wsize
);
s
->
match_start
-=
wsize
;
s
->
strstart
-=
wsize
;
/* we now have strstart >= MAX_DIST */
s
->
block_start
-=
(
long
)
wsize
;
/* Slide the hash table (could be avoided with 32 bit values
at the expense of memory usage). We slide even when level == 0
to keep the hash table consistent if we switch back to level > 0
later. (Using level 0 permanently is not an optimal usage of
zlib, so we don't care about this pathological case.)
*/
/* %%% avoid this when Z_RLE */
n
=
s
->
hash_size
;
p
=
&
s
->
head
[
n
];
do
{
m
=
*--
p
;
*
p
=
(
Pos
)(
m
>=
wsize
?
m
-
wsize
:
NIL
);
}
while
(
--
n
);
n
=
wsize
;
#ifndef FASTEST
p
=
&
s
->
prev
[
n
];
do
{
m
=
*--
p
;
*
p
=
(
Pos
)(
m
>=
wsize
?
m
-
wsize
:
NIL
);
/* If n is not on any hash chain, prev[n] is garbage but
* its value will never be used.
*/
}
while
(
--
n
);
#endif
more
+=
wsize
;
}
if
(
s
->
strm
->
avail_in
==
0
)
return
;
/* If there was no sliding:
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
* more == window_size - lookahead - strstart
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
* => more >= window_size - 2*WSIZE + 2
* In the BIG_MEM or MMAP case (not yet supported),
* window_size == input_size + MIN_LOOKAHEAD &&
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
* Otherwise, window_size == 2*WSIZE so more >= 2.
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
*/
Assert
(
more
>=
2
,
"more < 2"
);
n
=
read_buf
(
s
->
strm
,
s
->
window
+
s
->
strstart
+
s
->
lookahead
,
more
);
s
->
lookahead
+=
n
;
/* Initialize the hash value now that we have some input: */
if
(
s
->
lookahead
>=
MIN_MATCH
)
{
s
->
ins_h
=
s
->
window
[
s
->
strstart
];
UPDATE_HASH
(
s
,
s
->
ins_h
,
s
->
window
[
s
->
strstart
+
1
]);
#if MIN_MATCH != 3
Call
UPDATE_HASH
()
MIN_MATCH
-
3
more
times
#endif
}
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
* but this is not important since only literal bytes will be emitted.
*/
}
while
(
s
->
lookahead
<
MIN_LOOKAHEAD
&&
s
->
strm
->
avail_in
!=
0
);
}
/* ===========================================================================
* Flush the current block, with given end-of-file flag.
* IN assertion: strstart is set to the end of the current match.
*/
#define FLUSH_BLOCK_ONLY(s, eof) { \
_tr_flush_block(s, (s->block_start >= 0L ? \
(charf *)&s->window[(unsigned)s->block_start] : \
(charf *)Z_NULL), \
(ulg)((long)s->strstart - s->block_start), \
(eof)); \
s->block_start = s->strstart; \
flush_pending(s->strm); \
Tracev((stderr,"[FLUSH]")); \
}
/* Same but force premature exit if necessary. */
#define FLUSH_BLOCK(s, eof) { \
FLUSH_BLOCK_ONLY(s, eof); \
if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
}
/* ===========================================================================
* Copy without compression as much as possible from the input stream, return
* the current block state.
* This function does not insert new strings in the dictionary since
* uncompressible data is probably not useful. This function is used
* only for the level=0 compression option.
* NOTE: this function should be optimized to avoid extra copying from
* window to pending_buf.
*/
local
block_state
deflate_stored
(
s
,
flush
)
deflate_state
*
s
;
int
flush
;
{
/* Stored blocks are limited to 0xffff bytes, pending_buf is limited
* to pending_buf_size, and each stored block has a 5 byte header:
*/
ulg
max_block_size
=
0xffff
;
ulg
max_start
;
if
(
max_block_size
>
s
->
pending_buf_size
-
5
)
{
max_block_size
=
s
->
pending_buf_size
-
5
;
}
/* Copy as much as possible from input to output: */
for
(;;)
{
/* Fill the window as much as possible: */
if
(
s
->
lookahead
<=
1
)
{
Assert
(
s
->
strstart
<
s
->
w_size
+
MAX_DIST
(
s
)
||
s
->
block_start
>=
(
long
)
s
->
w_size
,
"slide too late"
);
fill_window
(
s
);
if
(
s
->
lookahead
==
0
&&
flush
==
Z_NO_FLUSH
)
return
need_more
;
if
(
s
->
lookahead
==
0
)
break
;
/* flush the current block */
}
Assert
(
s
->
block_start
>=
0L
,
"block gone"
);
s
->
strstart
+=
s
->
lookahead
;
s
->
lookahead
=
0
;
/* Emit a stored block if pending_buf will be full: */
max_start
=
s
->
block_start
+
max_block_size
;
if
(
s
->
strstart
==
0
||
(
ulg
)
s
->
strstart
>=
max_start
)
{
/* strstart == 0 is possible when wraparound on 16-bit machine */
s
->
lookahead
=
(
uInt
)(
s
->
strstart
-
max_start
);
s
->
strstart
=
(
uInt
)
max_start
;
FLUSH_BLOCK
(
s
,
0
);
}
/* Flush if we may have to slide, otherwise block_start may become
* negative and the data will be gone:
*/
if
(
s
->
strstart
-
(
uInt
)
s
->
block_start
>=
MAX_DIST
(
s
))
{
FLUSH_BLOCK
(
s
,
0
);
}
}
FLUSH_BLOCK
(
s
,
flush
==
Z_FINISH
);
return
flush
==
Z_FINISH
?
finish_done
:
block_done
;
}
/* ===========================================================================
* Compress as much as possible from the input stream, return the current
* block state.
* This function does not perform lazy evaluation of matches and inserts
* new strings in the dictionary only for unmatched strings or for short
* matches. It is used only for the fast compression options.
*/
local
block_state
deflate_fast
(
s
,
flush
)
deflate_state
*
s
;
int
flush
;
{
IPos
hash_head
=
NIL
;
/* head of the hash chain */
int
bflush
;
/* set if current block must be flushed */
for
(;;)
{
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
if
(
s
->
lookahead
<
MIN_LOOKAHEAD
)
{
fill_window
(
s
);
if
(
s
->
lookahead
<
MIN_LOOKAHEAD
&&
flush
==
Z_NO_FLUSH
)
{
return
need_more
;
}
if
(
s
->
lookahead
==
0
)
break
;
/* flush the current block */
}
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
if
(
s
->
lookahead
>=
MIN_MATCH
)
{
INSERT_STRING
(
s
,
s
->
strstart
,
hash_head
);
}
/* Find the longest match, discarding those <= prev_length.
* At this point we have always match_length < MIN_MATCH
*/
if
(
hash_head
!=
NIL
&&
s
->
strstart
-
hash_head
<=
MAX_DIST
(
s
))
{
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
#ifdef FASTEST
if
((
s
->
strategy
!=
Z_HUFFMAN_ONLY
&&
s
->
strategy
!=
Z_RLE
)
||
(
s
->
strategy
==
Z_RLE
&&
s
->
strstart
-
hash_head
==
1
))
{
s
->
match_length
=
longest_match_fast
(
s
,
hash_head
);
}
#else
if
(
s
->
strategy
!=
Z_HUFFMAN_ONLY
&&
s
->
strategy
!=
Z_RLE
)
{
s
->
match_length
=
longest_match
(
s
,
hash_head
);
}
else
if
(
s
->
strategy
==
Z_RLE
&&
s
->
strstart
-
hash_head
==
1
)
{
s
->
match_length
=
longest_match_fast
(
s
,
hash_head
);
}
#endif
/* longest_match() or longest_match_fast() sets match_start */
}
if
(
s
->
match_length
>=
MIN_MATCH
)
{
check_match
(
s
,
s
->
strstart
,
s
->
match_start
,
s
->
match_length
);
_tr_tally_dist
(
s
,
s
->
strstart
-
s
->
match_start
,
s
->
match_length
-
MIN_MATCH
,
bflush
);
s
->
lookahead
-=
s
->
match_length
;
/* Insert new strings in the hash table only if the match length
* is not too large. This saves time but degrades compression.
*/
#ifndef FASTEST
if
(
s
->
match_length
<=
s
->
max_insert_length
&&
s
->
lookahead
>=
MIN_MATCH
)
{
s
->
match_length
--
;
/* string at strstart already in table */
do
{
s
->
strstart
++
;
INSERT_STRING
(
s
,
s
->
strstart
,
hash_head
);
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead.
*/
}
while
(
--
s
->
match_length
!=
0
);
s
->
strstart
++
;
}
else
#endif
{
s
->
strstart
+=
s
->
match_length
;
s
->
match_length
=
0
;
s
->
ins_h
=
s
->
window
[
s
->
strstart
];
UPDATE_HASH
(
s
,
s
->
ins_h
,
s
->
window
[
s
->
strstart
+
1
]);
#if MIN_MATCH != 3
Call
UPDATE_HASH
()
MIN_MATCH
-
3
more
times
#endif
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
* matter since it will be recomputed at next deflate call.
*/
}
}
else
{
/* No match, output a literal byte */
Tracevv
((
stderr
,
"%c"
,
s
->
window
[
s
->
strstart
]));
_tr_tally_lit
(
s
,
s
->
window
[
s
->
strstart
],
bflush
);
s
->
lookahead
--
;
s
->
strstart
++
;
}
if
(
bflush
)
FLUSH_BLOCK
(
s
,
0
);
}
FLUSH_BLOCK
(
s
,
flush
==
Z_FINISH
);
return
flush
==
Z_FINISH
?
finish_done
:
block_done
;
}
#ifndef FASTEST
/* ===========================================================================
* Same as above, but achieves better compression. We use a lazy
* evaluation for matches: a match is finally adopted only if there is
* no better match at the next window position.
*/
local
block_state
deflate_slow
(
s
,
flush
)
deflate_state
*
s
;
int
flush
;
{
IPos
hash_head
=
NIL
;
/* head of hash chain */
int
bflush
;
/* set if current block must be flushed */
/* Process the input block. */
for
(;;)
{
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
if
(
s
->
lookahead
<
MIN_LOOKAHEAD
)
{
fill_window
(
s
);
if
(
s
->
lookahead
<
MIN_LOOKAHEAD
&&
flush
==
Z_NO_FLUSH
)
{
return
need_more
;
}
if
(
s
->
lookahead
==
0
)
break
;
/* flush the current block */
}
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
if
(
s
->
lookahead
>=
MIN_MATCH
)
{
INSERT_STRING
(
s
,
s
->
strstart
,
hash_head
);
}
/* Find the longest match, discarding those <= prev_length.
*/
s
->
prev_length
=
s
->
match_length
,
s
->
prev_match
=
s
->
match_start
;
s
->
match_length
=
MIN_MATCH
-
1
;
if
(
hash_head
!=
NIL
&&
s
->
prev_length
<
s
->
max_lazy_match
&&
s
->
strstart
-
hash_head
<=
MAX_DIST
(
s
))
{
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
if
(
s
->
strategy
!=
Z_HUFFMAN_ONLY
&&
s
->
strategy
!=
Z_RLE
)
{
s
->
match_length
=
longest_match
(
s
,
hash_head
);
}
else
if
(
s
->
strategy
==
Z_RLE
&&
s
->
strstart
-
hash_head
==
1
)
{
s
->
match_length
=
longest_match_fast
(
s
,
hash_head
);
}
/* longest_match() or longest_match_fast() sets match_start */
if
(
s
->
match_length
<=
5
&&
(
s
->
strategy
==
Z_FILTERED
#if TOO_FAR <= 32767
||
(
s
->
match_length
==
MIN_MATCH
&&
s
->
strstart
-
s
->
match_start
>
TOO_FAR
)
#endif
))
{
/* If prev_match is also MIN_MATCH, match_start is garbage
* but we will ignore the current match anyway.
*/
s
->
match_length
=
MIN_MATCH
-
1
;
}
}
/* If there was a match at the previous step and the current
* match is not better, output the previous match:
*/
if
(
s
->
prev_length
>=
MIN_MATCH
&&
s
->
match_length
<=
s
->
prev_length
)
{
uInt
max_insert
=
s
->
strstart
+
s
->
lookahead
-
MIN_MATCH
;
/* Do not insert strings in hash table beyond this. */
check_match
(
s
,
s
->
strstart
-
1
,
s
->
prev_match
,
s
->
prev_length
);
_tr_tally_dist
(
s
,
s
->
strstart
-
1
-
s
->
prev_match
,
s
->
prev_length
-
MIN_MATCH
,
bflush
);
/* Insert in hash table all strings up to the end of the match.
* strstart-1 and strstart are already inserted. If there is not
* enough lookahead, the last two strings are not inserted in
* the hash table.
*/
s
->
lookahead
-=
s
->
prev_length
-
1
;
s
->
prev_length
-=
2
;
do
{
if
(
++
s
->
strstart
<=
max_insert
)
{
INSERT_STRING
(
s
,
s
->
strstart
,
hash_head
);
}
}
while
(
--
s
->
prev_length
!=
0
);
s
->
match_available
=
0
;
s
->
match_length
=
MIN_MATCH
-
1
;
s
->
strstart
++
;
if
(
bflush
)
FLUSH_BLOCK
(
s
,
0
);
}
else
if
(
s
->
match_available
)
{
/* If there was no match at the previous position, output a
* single literal. If there was a match but the current match
* is longer, truncate the previous match to a single literal.
*/
Tracevv
((
stderr
,
"%c"
,
s
->
window
[
s
->
strstart
-
1
]));
_tr_tally_lit
(
s
,
s
->
window
[
s
->
strstart
-
1
],
bflush
);
if
(
bflush
)
{
FLUSH_BLOCK_ONLY
(
s
,
0
);
}
s
->
strstart
++
;
s
->
lookahead
--
;
if
(
s
->
strm
->
avail_out
==
0
)
return
need_more
;
}
else
{
/* There is no previous match to compare with, wait for
* the next step to decide.
*/
s
->
match_available
=
1
;
s
->
strstart
++
;
s
->
lookahead
--
;
}
}
Assert
(
flush
!=
Z_NO_FLUSH
,
"no flush?"
);
if
(
s
->
match_available
)
{
Tracevv
((
stderr
,
"%c"
,
s
->
window
[
s
->
strstart
-
1
]));
_tr_tally_lit
(
s
,
s
->
window
[
s
->
strstart
-
1
],
bflush
);
s
->
match_available
=
0
;
}
FLUSH_BLOCK
(
s
,
flush
==
Z_FINISH
);
return
flush
==
Z_FINISH
?
finish_done
:
block_done
;
}
#endif
/* FASTEST */
#if 0
/* ===========================================================================
* For Z_RLE, simply look for runs of bytes, generate matches only of distance
* one. Do not maintain a hash table. (It will be regenerated if this run of
* deflate switches away from Z_RLE.)
*/
local block_state deflate_rle(s, flush)
deflate_state *s;
int flush;
{
int bflush; /* set if current block must be flushed */
uInt run; /* length of run */
uInt max; /* maximum length of run */
uInt prev; /* byte at distance one to match */
Bytef *scan; /* scan for end of run */
for (;;) {
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the longest encodable run.
*/
if (s->lookahead < MAX_MATCH) {
fill_window(s);
if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) {
return need_more;
}
if (s->lookahead == 0) break; /* flush the current block */
}
/* See how many times the previous byte repeats */
run = 0;
if (s->strstart > 0) { /* if there is a previous byte, that is */
max = s->lookahead < MAX_MATCH ? s->lookahead : MAX_MATCH;
scan = s->window + s->strstart - 1;
prev = *scan++;
do {
if (*scan++ != prev)
break;
} while (++run < max);
}
/* Emit match if have run of MIN_MATCH or longer, else emit literal */
if (run >= MIN_MATCH) {
check_match(s, s->strstart, s->strstart - 1, run);
_tr_tally_dist(s, 1, run - MIN_MATCH, bflush);
s->lookahead -= run;
s->strstart += run;
} else {
/* No match, output a literal byte */
Tracevv((stderr,"%c", s->window[s->strstart]));
_tr_tally_lit (s, s->window[s->strstart], bflush);
s->lookahead--;
s->strstart++;
}
if (bflush) FLUSH_BLOCK(s, 0);
}
FLUSH_BLOCK(s, flush == Z_FINISH);
return flush == Z_FINISH ? finish_done : block_done;
}
#endif
File Metadata
Details
Attached
Mime Type
text/x-c
Expires
Wed, May 14, 10:31 AM (1 d, 11 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5111173
Default Alt Text
deflate.c (62 KB)
Attached To
rFROGSVN frogsvn
Event Timeline
Log In to Comment