Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F8309776
BSWModel.cc
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
7 KB
Subscribers
None
BSWModel.cc
View Options
/**************************************************
* This file is a part of the Elegent package:
* http://elegent.hepforge.org/
*************************************************/
#include
"interface/BSWModel.h"
#include
"interface/Constants.h"
#include
"interface/Math.h"
using
namespace
std
;
using
namespace
Elegent
;
//----------------------------------------------------------------------------------------------------
void
BSWModel
::
Init
(
BSWModel
::
ModeType
_mode
,
bool
_presampled
)
{
mode
=
_mode
;
presampled
=
_presampled
;
// Eq. (6) in [3]
c
=
0.167
;
cp
=
0.748
;
// Table 1 in [3]
m1
=
0.577
;
m1sq
=
m1
*
m1
;
// 0.333
m2
=
1.719
;
m2sq
=
m2
*
m2
;
// 2.955
f
=
6.971
;
a
=
1.858
;
asq
=
a
*
a
;
// 3.452
// Table 2 in [3], b's given in text of section 3 in [3]
A2
.
Init
(
-
24.269
,
0.
,
0.357
,
1.
,
+
1
);
omega
.
Init
(
-
167.329
,
0.
,
0.323
,
0.795
,
-
1
);
rho
.
Init
(
124.919
,
8.54
,
0.320
,
1.
,
-
1
);
upper_bound_t
=
-
500.
;
precision_t
=
1E-15
;
upper_bound_b
=
50.
;
precision_b
=
1E-12
;
regge_fac
(
1.
,
0.
);
// save value of S0(0)
S00
=
S0
(
0.
);
if
(
presampled
)
BuildSample
(
25001
);
}
//----------------------------------------------------------------------------------------------------
void
BSWModel
::
Print
()
const
{
printf
(
">> BSWModel::Print
\n
"
);
printf
(
"
\t
c=%.3f
\t
c'=%.3f
\t
m1=%.3f
\t
m2=%.3f
\t
f=%.3f
\t
a=%.3f
\n
"
,
c
,
cp
,
m1
,
m2
,
f
,
a
);
printf
(
"
\t
A2: C=%.3f
\t
b=%.3f
\t
alpha=%.3f
\t
aplha'=%.3f
\n
"
,
A2
.
C
,
A2
.
b
,
A2
.
a
,
A2
.
ap
);
printf
(
"
\t
omega: C=%.3f
\t
b=%.3f
\t
alpha=%.3f
\t
aplha'=%.3f
\n
"
,
omega
.
C
,
omega
.
b
,
omega
.
a
,
omega
.
ap
);
printf
(
"
\t
rho: C=%.3f
\t
b=%.3f
\t
alpha=%.3f
\t
aplha'=%.3f
\n
"
,
rho
.
C
,
rho
.
b
,
rho
.
a
,
rho
.
ap
);
printf
(
"
\n
"
);
printf
(
"
\t
presampled = %u
\n
"
,
presampled
);
if
(
presampled
)
printf
(
"
\t\t
sample size = %u, db = %.1E
\n
"
,
data_N
,
data_db
);
printf
(
"
\n
"
);
printf
(
"
\t
integration parameters:
\n
"
);
printf
(
"
\t\t
t: upper bound = %.1E, precision = %.1E
\n
"
,
upper_bound_t
,
precision_t
);
printf
(
"
\t\t
b: upper bound = %.1E, precision = %.1E
\n
"
,
upper_bound_b
,
precision_b
);
}
//----------------------------------------------------------------------------------------------------
string
BSWModel
::
GetModeString
()
const
{
string
ms
=
"unknown/"
;
if
(
mode
==
mPomReg
)
ms
=
"Pom+Reg"
;
if
(
mode
==
mPom
)
ms
=
"Pomeron"
;
if
(
mode
==
mReg
)
ms
=
"Regge"
;
if
(
presampled
)
ms
+=
"presampled"
;
//sprintf(str, "t:%.0f,%.0E b:%.0f,%.0E", upper_bound_t, precision_t, upper_bound_b, precision_b);
return
ms
;
}
//----------------------------------------------------------------------------------------------------
double
BSWModel
::
Ft
(
double
t
)
const
{
double
G
=
1.
/
(
1.
-
t
/
m1sq
)
/
(
1.
-
t
/
m2sq
);
return
f
*
G
*
G
*
(
asq
+
t
)
/
(
asq
-
t
);
}
//----------------------------------------------------------------------------------------------------
TComplex
BSWModel
::
Rt
(
Trajectory
tr
,
double
t
)
const
{
/// s0 = 1 GeV^2
double
alpha
=
tr
.
a
+
tr
.
ap
*
t
;
return
tr
.
C
*
exp
(
tr
.
b
*
t
+
cnts
->
ln_s
*
alpha
)
*
(
1.
+
tr
.
sig
*
TComplex
::
Exp
(
-
i
*
cnts
->
pi
*
alpha
));
}
//----------------------------------------------------------------------------------------------------
TComplex
BSWModel
::
R0t
(
double
t
)
const
{
return
Rt
(
A2
,
t
)
+
Rt
(
omega
,
t
)
+
Rt
(
rho
,
t
);
}
//----------------------------------------------------------------------------------------------------
TComplex
BSWModel
::
S0
(
double
t
)
const
{
// the s term
TComplex
term_s
=
pow
(
cnts
->
s
,
c
)
/
pow
(
cnts
->
ln_s
,
cp
);
// the u term
double
u
=
4.
*
cnts
->
proton_mass
*
cnts
->
proton_mass
-
cnts
->
s
-
t
;
TComplex
Lnu
=
TComplex
(
log
(
fabs
(
u
)),
-
cnts
->
pi
);
// ambiguity in the article: which sign in +-pi?
double
Lnu_rho2
=
Lnu
.
Rho2
();
double
Lnu_theta
=
atan2
(
Lnu
.
Im
(),
Lnu
.
Re
());
// atan2 results in (-pi, +pi)
TComplex
LnLnu
=
TComplex
(
0.5
*
log
(
Lnu_rho2
),
Lnu_theta
);
TComplex
term_u
=
TComplex
::
Exp
(
c
*
Lnu
)
/
TComplex
::
Exp
(
cp
*
LnLnu
);
#ifdef DEBUG
printf
(
">> BSWModel::S0
\n
"
);
printf
(
"
\t
s=%E, u=%E
\n
"
,
cnts
->
s
,
u
);
printf
(
"
\t
Ln u=%E +i%E
\n
"
,
Lnu
.
Re
(),
Lnu
.
Im
());
printf
(
"
\t
Ln Ln u=%E +i%E
\n
"
,
LnLnu
.
Re
(),
LnLnu
.
Im
());
printf
(
"
\t
term_s: %E + i%E
\n
"
,
term_s
.
Re
(),
term_s
.
Im
());
printf
(
"
\t
term_u: %E + i%E
\n
"
,
term_u
.
Re
(),
term_u
.
Im
());
#endif
return
term_s
+
term_u
;
}
//----------------------------------------------------------------------------------------------------
TComplex
BSWModel
::
Omega0t
(
double
t
)
const
{
// S00 = S0(0) instead of S0(t) is used here, valid for high s only !!
switch
(
mode
)
{
case
mPomReg
:
return
S00
*
Ft
(
t
)
+
R0t
(
t
)
/
cnts
->
s
/
regge_fac
;
case
mPom
:
return
S00
*
Ft
(
t
);
case
mReg
:
return
R0t
(
t
);
}
return
TComplex
(
0
,
0
);
}
//----------------------------------------------------------------------------------------------------
TComplex
BSWModel
::
Omega0t_J0
(
double
*
t
,
double
*
b
,
const
void
*
obj
)
{
return
((
BSWModel
*
)
obj
)
->
Omega0t
(
t
[
0
])
*
TMath
::
BesselJ0
(
b
[
0
]
*
sqrt
(
-
t
[
0
]));
}
//----------------------------------------------------------------------------------------------------
TComplex
BSWModel
::
Omega0b
(
double
b
)
const
{
// the 1/2 factor is consequence of dt integration (instead of q dq)
return
0.5
*
CmplxInt
(
this
,
Omega0t_J0
,
upper_bound_t
,
0.
,
&
b
,
precision_t
);
}
//----------------------------------------------------------------------------------------------------
TComplex
BSWModel
::
prf0
(
double
b
)
const
{
return
1.
-
TComplex
::
Exp
(
-
Omega0b
(
b
)
);
}
//----------------------------------------------------------------------------------------------------
TComplex
BSWModel
::
Prf
(
double
b
)
const
{
return
prf0
(
b
/
cnts
->
hbarc
)
*
i
/
2.
;
}
//----------------------------------------------------------------------------------------------------
TComplex
BSWModel
::
prf0_J0
(
double
*
b
,
double
*
q
,
const
void
*
obj
)
{
BSWModel
*
m
=
(
BSWModel
*
)
obj
;
if
(
m
->
presampled
)
return
m
->
SampleEval
(
b
[
0
])
*
b
[
0
]
*
TMath
::
BesselJ0
(
b
[
0
]
*
q
[
0
]);
else
return
m
->
prf0
(
b
[
0
])
*
b
[
0
]
*
TMath
::
BesselJ0
(
b
[
0
]
*
q
[
0
]);
}
//----------------------------------------------------------------------------------------------------
TComplex
BSWModel
::
Amp
(
double
t
)
const
{
double
q
=
sqrt
(
-
t
);
return
i
*
cnts
->
p_cms
*
cnts
->
sqrt_s
*
CmplxInt
(
this
,
prf0_J0
,
0.
,
upper_bound_b
,
&
q
,
precision_b
);
}
//----------------------------------------------------------------------------------------------------
void
BSWModel
::
BuildSample
(
unsigned
int
samples
)
{
printf
(
">> BSWModel::BuildSample > Building %u samples...
\n
"
,
samples
);
data_re
.
clear
();
data_re
.
reserve
(
samples
);
data_im
.
clear
();
data_im
.
reserve
(
samples
);
#ifdef DEBUG
data_b
.
clear
();
data_b
.
reserve
(
samples
);
#endif
double
db
=
upper_bound_b
/
(
samples
-
1
);
data_db
=
db
;
data_N
=
samples
;
double
b
=
0.
;
for
(
unsigned
int
i
=
0
;
i
<
samples
;
i
++
,
b
+=
db
)
{
TComplex
v
=
prf0
(
b
);
#ifdef DEBUG
//printf("v=%.5f: re=%E, im=%E\n", b, v.Re(), v.Im());
data_b
.
push_back
(
b
);
#endif
data_re
.
push_back
(
v
.
Re
());
data_im
.
push_back
(
v
.
Im
());
}
}
//----------------------------------------------------------------------------------------------------
TComplex
BSWModel
::
SampleEval
(
double
b
)
{
unsigned
int
idx
=
(
int
)(
b
/
data_db
);
if
(
idx
+
1
>
data_N
-
1
)
return
TComplex
(
0
,
0
);
double
f
=
b
/
data_db
-
idx
;
return
TComplex
(
(
data_re
[
idx
+
1
]
-
data_re
[
idx
])
*
f
+
data_re
[
idx
],
(
data_im
[
idx
+
1
]
-
data_im
[
idx
])
*
f
+
data_im
[
idx
]
);
}
File Metadata
Details
Attached
Mime Type
text/x-c
Expires
Sat, Dec 21, 4:30 PM (22 h, 7 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023450
Default Alt Text
BSWModel.cc (7 KB)
Attached To
rELEGENTSVN elegentsvn
Event Timeline
Log In to Comment