Page MenuHomeHEPForge

MPIHandler.h
No OneTemporary

MPIHandler.h

// -*- C++ -*-
//
// MPIHandler.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_MPIHandler_H
#define HERWIG_MPIHandler_H
//
// This is the declaration of the MPIHandler class.
//
#include "ThePEG/Interface/Interfaced.h"
#include "ThePEG/Handlers/StandardEventHandler.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "Herwig++/PDT/StandardMatchers.h"
#include "Herwig++/Utilities/GSLBisection.h"
//#include "Herwig++/Utilities/GSLMultiRoot.h"
#include "Herwig++/Utilities/GSLIntegrator.h"
#include "Herwig++/Shower/UEBase.h"
#include <cassert>
#include "ProcessHandler.h"
#include "MPIHandler.fh"
namespace Herwig {
using namespace ThePEG;
/** \ingroup UnderlyingEvent
* \class MPIHandler
* This class is responsible for generating additional
* semi hard partonic interactions.
*
* \author Manuel B\"ahr
*
* @see \ref MPIHandlerInterfaces "The interfaces"
* defined for MPIHandler.
* @see ProcessHandler
* @see ShowerHandler
* @see HwRemDecayer
*/
class MPIHandler: public UEBase {
/**
* Maximum number of scatters
*/
static const unsigned int maxScatters_ = 99;
/**
* Class for the integration is a friend to access private members
*/
friend struct Eikonalization;
friend struct TotalXSecBisection;
friend struct slopeAndTotalXSec;
friend struct slopeInt;
friend struct slopeBisection;
public:
/** A vector of <code>SubProcessHandler</code>s. */
typedef vector<SubHdlPtr> SubHandlerList;
/** A vector of <code>Cut</code>s. */
typedef vector<CutsPtr> CutsList;
/** A vector of <code>ProcessHandler</code>s. */
typedef vector<ProHdlPtr> ProcessHandlerList;
/** A vector of cross sections. */
typedef vector<CrossSection> XSVector;
/** A pair of multiplicities: hard, soft. */
typedef pair<unsigned int, unsigned int> MPair;
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
MPIHandler(): softMult_(0), identicalToUE_(-1),
PtOfQCDProc_(-1.0*GeV), Ptmin_(-1.0*GeV),
hardXSec_(0*millibarn), softXSec_(0*millibarn),
totalXSecExp_(0*millibarn),
softMu2_(ZERO), beta_(100.0/GeV2),
algorithm_(2), numSubProcs_(0),
colourDisrupt_(0.0), softInt_(true), twoComp_(true),
DLmode_(2), avgNhard_(0.0), avgNsoft_(0.0),
energyExtrapolation_(2), EEparamA_(0.6*GeV),
EEparamB_(37.5*GeV), refScale_(7000.*GeV),
pT0_(3.11*GeV), b_(0.21) {}
/**
* The destructor.
*/
virtual ~MPIHandler(){}
//@}
public:
/** @name Methods for the MPI generation. */
//@{
/*
* @return true if for this beam setup MPI can be generated
*/
virtual bool beamOK() const;
/**
* Return true or false depending on whether soft interactions are enabled.
*/
virtual bool softInt() const {return softInt_;}
/**
* Get the soft multiplicity from the pretabulated multiplicity
* distribution. Generated in multiplicity in the first place.
* @return the number of extra soft events in this collision
*/
virtual unsigned int softMultiplicity() const {return softMult_;}
/**
* Sample from the pretabulated multiplicity distribution.
* @return the number of extra events in this collision
*/
virtual unsigned int multiplicity(unsigned int sel=0);
/**
* Select a StandardXComb according to it's weight
* @return that StandardXComb Object
* @param sel is the subprocess that should be returned,
* if more than one is specified.
*/
virtual tStdXCombPtr generate(unsigned int sel=0);
//@}
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
/**
* Initialize this Multiple Interaction handler and all related objects needed to
* generate additional events.
*/
virtual void initialize();
/**
* Finalize this Multiple Interaction handler and all related objects needed to
* generate additional events.
*/
virtual void finalize();
/**
* Write out accumulated statistics about integrated cross sections.
*/
void statistics() const;
/**
* The level of statistics. Controlls the amount of statistics
* written out after each run to the <code>EventGenerator</code>s
* <code>.out</code> file. Simply the EventHandler method is called here.
*/
int statLevel() const {return eventHandler()->statLevel();}
/**
* Return the hard cross section above ptmin
*/
CrossSection hardXSec() const { return hardXSec_; }
/**
* Return the soft cross section below ptmin
*/
CrossSection softXSec() const { return softXSec_; }
/**
* Return the inelastic cross section
*/
CrossSection inelasticXSec() const { return inelXSec_; }
/** @name Simple access functions. */
//@{
/**
* Return the ThePEG::EventHandler assigned to this handler.
* This methods shadows ThePEG::StepHandler::eventHandler(), because
* it is not virtual in ThePEG::StepHandler. This is ok, because this
* method would give a null-pointer at some stages, whereas this method
* gives access to the explicitely copied pointer (in initialize())
* to the ThePEG::EventHandler.
*/
tEHPtr eventHandler() const {return theHandler;}
/**
* Return the current handler
*/
static const MPIHandler * currentHandler() {
return currentHandler_;
}
/**
* Return theAlgorithm.
*/
virtual int Algorithm() const {return algorithm_;}
/**
* Return the ptmin parameter of the model
*/
virtual Energy Ptmin() const {
if(Ptmin_ > ZERO)
return Ptmin_;
else
throw Exception() << "MPIHandler::Ptmin called without initialize before"
<< Exception::runerror;
}
/**
* Return the slope of the soft pt spectrum as calculated.
*/
virtual InvEnergy2 beta() const {
if(beta_ != 100.0/GeV2)
return beta_;
else
throw Exception() << "MPIHandler::beta called without initialization"
<< Exception::runerror;
}
/**
* Return the pt Cutoff of the Interaction that is identical to the UE
* one.
*/
virtual Energy PtForVeto() const {return PtOfQCDProc_;}
/**
* Return the number of additional "hard" processes ( = multiple
* parton scattering)
*/
virtual unsigned int additionalHardProcs() const {return numSubProcs_-1;}
/**
* Return the fraction of colour disrupted connections to the
* suprocesses.
*/
virtual double colourDisrupt() const {return colourDisrupt_;}
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
private:
/**
* Access the list of sub-process handlers.
*/
const SubHandlerList & subProcesses()
const {return theSubProcesses;}
/**
* Access the list of sub-process handlers.
*/
SubHandlerList & subProcesses() {return theSubProcesses;}
/**
* Access the list of cuts.
*/
const CutsList & cuts() const {return theCuts;}
/**
* Access the list of cuts.
*/
CutsList & cuts() {return theCuts;}
/**
* Access the list of sub-process handlers.
*/
const ProcessHandlerList & processHandlers()
const {return theProcessHandlers;}
/**
* Access the list of sub-process handlers.
*/
ProcessHandlerList & processHandlers() {return theProcessHandlers;}
/**
* Method to calculate the individual probabilities for N scatters in the event.
* @param UEXSecs is(are) the inclusiv cross section(s) for the UE process(es).
*/
void Probs(XSVector UEXSecs);
/**
* Debug method to check the individual probabilities.
* @param filename is the file the output gets written to
*/
void MultDistribution(string filename) const;
/**
* Return the value of the Overlap function A(b) for a given impact
* parameter \a b.
* @param b impact parameter
* @param mu2 = inv hadron radius squared. 0 will use the value of
* invRadius_
* @return inverse area.
*/
InvArea OverlapFunction(Length b, Energy2 mu2=ZERO) const;
/**
* Method to calculate the poisson probability for expectation value
* \f$<n> = A(b)\sigma\f$, and multiplicity N.
*/
double poisson(Length b, CrossSection sigma,
unsigned int N, Energy2 mu2=ZERO) const;
/**
* Return n!
*/
double factorial (unsigned int n) const;
/**
* Returns the total cross section for the current CMenergy. The
* decision which parametrization will be used is steered by a
* external parameter of this class.
*/
CrossSection totalXSecExp() const;
/**
* Difference of the calculated total cross section and the
* experimental one from totalXSecExp.
* @param softXSec = the soft cross section that is used
* @param softMu2 = the soft radius, if 0 the hard radius will be used
*/
CrossSection totalXSecDiff(CrossSection softXSec,
Energy2 softMu2=ZERO) const;
/**
* Difference of the calculated elastic slope and the
* experimental one from slopeExp.
* @param softXSec = the soft cross section that is used
* @param softMu2 = the soft radius, if 0 the hard radius will be used
*/
InvEnergy2 slopeDiff(CrossSection softXSec,
Energy2 softMu2=ZERO) const;
/**
* Returns the value of the elastic slope for the current CMenergy.
* The decision which parametrization will be used is steered by a
* external parameter of this class.
*/
InvEnergy2 slopeExp() const;
/**
* Calculate the minimal transverse momentum from the extrapolation
*/
void overrideUECuts();
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static ClassDescription<MPIHandler> initMPIHandler;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
MPIHandler & operator=(const MPIHandler &);
/**
* A pointer to the EventHandler that calls us. Has to be saved, because the
* method eventHandler() inherited from ThePEG::StepHandler returns a null-pointer
* sometimes. Leif changed that in r1053 so that a valid pointer is present, when
* calling doinitrun().
*/
tEHPtr theHandler;
/**
* The list of <code>SubProcessHandler</code>s.
*/
SubHandlerList theSubProcesses;
/**
* The kinematical cuts used for this collision handler.
*/
CutsList theCuts;
/**
* List of ProcessHandler used to sample different processes independently
*/
ProcessHandlerList theProcessHandlers;
/**
* A ThePEG::Selector where the individual Probabilities P_N are stored
* and the actual Multiplicities can be selected.
*/
Selector<MPair> theMultiplicities;
/**
* Variable to store the soft multiplicity generated for a event. This
* has to be stored as it is generated at the time of the hard
* additional interactions but used later on.
*/
unsigned int softMult_;
/**
* Variable to store the multiplicity of the second hard process
*/
vector<int> additionalMultiplicities_;
/**
* Variable to store the information, which process is identical to
* the UE one (QCD dijets).
* 0 means "real" hard one
* n>0 means the nth additional hard scatter
* -1 means no one!
*/
int identicalToUE_;
/**
* Variable to store the minimal pt of the process that is identical
* to the UE one. This only has to be set, if it can't be determined
* automatically (i.e. when reading QCD LesHouches files in).
*/
Energy PtOfQCDProc_;
/**
* Variable to store the parameter ptmin
*/
Energy Ptmin_;
/**
* Variable to store the hard cross section above ptmin
*/
CrossSection hardXSec_;
/**
* Variable to store the final soft cross section below ptmin
*/
CrossSection softXSec_;
/**
* Variable to store the inelastic cross section
*/
CrossSection inelXSec_;
/**
* Variable to store the total pp cross section (assuming rho=0!) as
* measured at LHC. If this variable is set, this value is used in the
* subsequent run instead of any of the Donnachie-Landshoff
* parametrizations.
*/
CrossSection totalXSecExp_;
/**
* Variable to store the soft radius, that is calculated during
* initialization for the two-component model.
*/
Energy2 softMu2_;
/**
* slope to the non-perturbative pt spectrum: \f$d\sigma/dp_T^2 = A \exp
* (- beta p_T^2)\f$. Its value is determined durint initialization.
*/
InvEnergy2 beta_;
/**
* Switch to be set from outside to determine the algorithm used for
* UE activity.
*/
int algorithm_;
/**
* Inverse hadron Radius squared \f$ (\mu^2) \f$. Used inside the overlap function.
*/
Energy2 invRadius_;
/**
* Member variable to store the actual number of separate SubProcesses
*/
unsigned int numSubProcs_;
/**
* Variable to store the relative number of colour disrupted
* connections to additional subprocesses. This variable is used in
* Herwig::HwRemDecayer but store here, to have access to all
* parameters through one Object.
*/
double colourDisrupt_;
/**
* Flag to store whether soft interactions, i.e. pt < ptmin should be
* simulated.
*/
bool softInt_;
/**
* Flag to steer wheather the soft part has a different radius, that
* will be dynamically fixed.
*/
bool twoComp_;
/**
* Switch to determine which Donnachie & Landshoff parametrization
* should be used.
*/
unsigned int DLmode_;
/**
* Variable to store the average hard multiplicity.
*/
double avgNhard_;
/**
* Variable to store the average soft multiplicity.
*/
double avgNsoft_;
/**
* The current handler
*/
static MPIHandler * currentHandler_;
/**
* Flag to store whether to calculate the minimal UE pt according to an
* extrapolation formula or whether to use MPIHandler:Cuts[0]:OneCuts[0]:MinKT
*/
unsigned int energyExtrapolation_;
/**
* Parameters for the energy extrapolation formula
*/
Energy EEparamA_;
Energy EEparamB_;
Energy refScale_;
Energy pT0_;
double b_;
protected:
/** @cond EXCEPTIONCLASSES */
/**
* Exception class used by the MultipleInteractionHandler, when something
* during initialization went wrong.
* \todo understand!!!
*/
class InitError: public Exception {};
/** @endcond */
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of MPIHandler. */
template <>
struct BaseClassTrait<Herwig::MPIHandler,1> {
/** Typedef of the first base class of MPIHandler. */
typedef Interfaced NthBase;
};
/** This template specialization informs ThePEG about the name of
* the MPIHandler class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::MPIHandler>
: public ClassTraitsBase<Herwig::MPIHandler> {
/** Return a platform-independent class name */
static string className() { return "Herwig::MPIHandler"; }
/** Return the name(s) of the shared library (or libraries) be loaded to get
* access to the MPIHandler class and any other class on which it depends
* (except the base class). */
static string library() { return "SimpleKTCut.so HwMPI.so"; }
};
/** @endcond */
}
namespace Herwig {
/**
* A struct for the 2D root finding that is necessary to determine the
* soft cross section and the soft radius that is needed to describe
* the total cross section correctly.
* NOT IN USE CURRENTLY
*/
struct slopeAndTotalXSec : public GSLHelper<CrossSection, CrossSection> {
public:
/**
* Constructor
*/
slopeAndTotalXSec(tcMPIHPtr handler): handler_(handler) {}
/** second argument type */
typedef Energy2 ArgType2;
/** second value type */
typedef InvEnergy2 ValType2;
/** first element of the vector like function to find root for
* @param softXSec soft cross-section
* @param softMu2 \f$\mu^2\f$
*/
CrossSection f1(ArgType softXSec, ArgType2 softMu2) const {
return handler_->totalXSecDiff(softXSec, softMu2);
}
/** second element of the vector like function to find root for
* @param softXSec soft cross-section
* @param softMu2 \f$\mu^2\f$
*/
InvEnergy2 f2(ArgType softXSec, ArgType2 softMu2) const {
return handler_->slopeDiff(softXSec, softMu2);
}
/** provide the actual units of use */
virtual ValType vUnit() const {return 1.0*millibarn;}
/** otherwise rounding errors may get significant */
virtual ArgType aUnit() const {return 1.0*millibarn;}
/** provide the actual units of use */
ValType2 vUnit2() const {return 1.0/GeV2;}
/** otherwise rounding errors may get significant */
ArgType2 aUnit2() const {return GeV2;}
private:
/**
* Pointer to the handler
*/
tcMPIHPtr handler_;
};
/**
* A struct for the root finding that is necessary to determine the
* slope of the soft pt spectrum to match the soft cross section
*/
struct betaBisection : public GSLHelper<Energy2, InvEnergy2>{
public:
/**
* Constructor.
* @param soft = soft cross section, i.e. the integral of the soft
* pt spectrum f(u=p_T^2) = dsig exp(-beta*u/u_min)
* @param dsig = dsigma_hard/dp_T^2 at the p_T cutoff
* @param ptmin = p_T cutoff
*/
betaBisection(CrossSection soft, DiffXSec dsig, Energy ptmin)
: softXSec_(soft), dsig_(dsig), ptmin_(ptmin) {}
/**
* Operator that is used inside the GSLBisection class
*/
virtual Energy2 operator ()(InvEnergy2 beta) const
{
if( fabs(beta*GeV2) < 1.E-4 )
beta = (beta > ZERO) ? 1.E-4/GeV2 : -1.E-4/GeV2;
return (exp(beta*sqr(ptmin_)) - 1.0)/beta - softXSec_/dsig_;
}
/** provide the actual units of use */
virtual ValType vUnit() const {return 1.0*GeV2;}
/** provide the actual units of use */
virtual ArgType aUnit() const {return 1.0/GeV2;}
private:
/** soft cross section */
CrossSection softXSec_;
/** dsigma/dp_T^2 at ptmin */
DiffXSec dsig_;
/** pt cutoff */
Energy ptmin_;
};
/**
* A struct for the root finding that is necessary to determine the
* soft cross section and soft mu2 that are needed to describe the
* total cross section AND elastic slope correctly.
*/
struct slopeBisection : public GSLHelper<InvEnergy2, Energy2> {
public:
/** Constructor */
slopeBisection(tcMPIHPtr handler) : handler_(handler) {}
/**
* Return the difference of the calculated elastic slope to the
* experimental one for a given value of the soft mu2. During that,
* the soft cross section get fixed.
*/
InvEnergy2 operator ()(Energy2 arg) const;
/** Return the soft cross section that has been calculated */
CrossSection softXSec() const {return softXSec_;}
private:
/** const pointer to the MPIHandler to give access to member functions.*/
tcMPIHPtr handler_;
/** soft cross section that is determined on the fly.*/
mutable CrossSection softXSec_;
};
/**
* A struct for the root finding that is necessary to determine the
* soft cross section that is needed to describe the total cross
* section correctly.
*/
struct TotalXSecBisection : public GSLHelper<CrossSection, CrossSection> {
public:
/**
* Constructor
* @param handler The handler
* @param softMu2 \f$\mu^2\f$
*/
TotalXSecBisection(tcMPIHPtr handler, Energy2 softMu2=ZERO):
handler_(handler), softMu2_(softMu2) {}
/**
* operator to return the cross section
* @param argument input cross section
*/
CrossSection operator ()(CrossSection argument) const {
return handler_->totalXSecDiff(argument, softMu2_);
}
/** provide the actual units of use */
virtual ValType vUnit() const {return 1.0*millibarn;}
/** otherwise rounding errors may get significant */
virtual ArgType aUnit() const {return 1.0*millibarn;}
private:
/**
* The handler
*/
tcMPIHPtr handler_;
/**
* \f$\mu^2\f$
*/
Energy2 softMu2_;
};
/**
* Typedef for derivative of the length
*/
typedef QTY<1,-2,0>::Type LengthDiff;
/**
* A struct for the integrand for the slope
*/
struct slopeInt : public GSLHelper<LengthDiff, Length>{
public:
/** Constructor
* @param handler The handler
* @param hard The hard cross section
* @param soft The soft cross section
* @param softMu2 \f$\mu^2\f$
*/
slopeInt(tcMPIHPtr handler, CrossSection hard,
CrossSection soft=0*millibarn, Energy2 softMu2=ZERO)
: handler_(handler), hardXSec_(hard),
softXSec_(soft), softMu2_(softMu2) {}
/**
* Operator to return the answer
* @param arg The argument
*/
ValType operator ()(ArgType arg) const;
private:
/**
* Pointer to the Handler that calls this integrand
*/
tcMPIHPtr handler_;
/**
* The hard cross section to be eikonalized
*/
CrossSection hardXSec_;
/**
* The soft cross section to be eikonalized. Default is zero
*/
CrossSection softXSec_;
/**
* The inv radius^2 of the soft interactions.
*/
Energy2 softMu2_;
};
/**
* A struct for the eikonalization of the inclusive cross section.
*/
struct Eikonalization : public GSLHelper<Length, Length>{
/**
* The constructor
* @param handler is the pointer to the MPIHandler to get access to
* MPIHandler::OverlapFunction and member variables of the MPIHandler.
* @param option is a flag, whether the inelastic or the total
* @param handler The handler
* @param hard The hard cross section
* @param soft The soft cross section
* @param softMu2 \f$\mu^2\f$
* cross section should be returned (-2 or -1). For option = N > 0 the integrand
* is N*(A(b)*sigma)^N/N! exp(-A(b)*sigma) this is the P_N*sigma where
* P_N is the Probability of having exactly N interaction (including the hard one)
* This is equation 14 from "Jimmy4: Multiparton Interactions in HERWIG for the LHC"
*/
Eikonalization(tcMPIHPtr handler, int option, CrossSection hard,
CrossSection soft=0*millibarn, Energy2 softMu2=ZERO)
: theHandler(handler), theoption(option), hardXSec_(hard),
softXSec_(soft), softMu2_(softMu2) {}
/**
* Get the function value
*/
Length operator ()(Length argument) const;
private:
/**
* Pointer to the Handler that calls this integrand
*/
tcMPIHPtr theHandler;
/**
* A flag to switch between the calculation of total and inelastic cross section
* or calculations for the individual probabilities. See the constructor
*/
int theoption;
/**
* The hard cross section to be eikonalized
*/
CrossSection hardXSec_;
/**
* The soft cross section to be eikonalized. Default is zero
*/
CrossSection softXSec_;
/**
* The inv radius^2 of the soft interactions.
*/
Energy2 softMu2_;
};
}
#ifndef ThePEG_TEMPLATES_IN_CC_FILE
// #include "MPIHandler.tcc"
#endif
#endif /* HERWIG_MPIHandler_H */

File Metadata

Mime Type
text/x-c++
Expires
Mon, Jan 20, 9:43 PM (1 d, 4 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4179365
Default Alt Text
MPIHandler.h (23 KB)

Event Timeline