Page MenuHomeHEPForge

No OneTemporary

diff --git a/Handlers/StandardXComb.cc b/Handlers/StandardXComb.cc
--- a/Handlers/StandardXComb.cc
+++ b/Handlers/StandardXComb.cc
@@ -1,833 +1,835 @@
// -*- C++ -*-
//
// StandardXComb.cc is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2017 Leif Lonnblad
// Copyright (C) 2009-2017 Simon Platzer
//
// ThePEG is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the StandardXComb class.
//
#include "StandardXComb.h"
#include "StdXCombGroup.h"
#include "ThePEG/Handlers/StandardEventHandler.h"
#include "ThePEG/Handlers/SubProcessHandler.h"
#include "ThePEG/Cuts/Cuts.h"
#include "ThePEG/PDF/PartonExtractor.h"
#include "ThePEG/Utilities/Debug.h"
#include "ThePEG/Utilities/Maths.h"
#include "ThePEG/PDT/ParticleData.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Utilities/SimplePhaseSpace.h"
#include "ThePEG/Utilities/UtilityBase.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/EventRecord/SubProcessGroup.h"
#include "ThePEG/Vectors/LorentzRotation.h"
#include "ThePEG/MatrixElement/MEBase.h"
#include "ThePEG/MatrixElement/ColourLines.h"
#include "ThePEG/Handlers/LuminosityFunction.h"
#include "ThePEG/Handlers/CascadeHandler.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/EventRecord/TmpTransform.h"
#ifdef ThePEG_TEMPLATES_IN_CC_FILE
#include "StandardXComb.tcc"
#endif
using namespace ThePEG;
StandardXComb::StandardXComb()
: XComb(), isMirror(false), theNDim(0),
partonDims(make_pair(0, 0)), theKinematicsGenerated(false),
theLastDiagramIndex(0), theLastPDFWeight(0.0),
theLastCrossSection(ZERO), theLastJacobian(1.0), theLastME2(-1.0), theLastPreweight(1.0),
theLastMECrossSection(ZERO), theLastMEPDFWeight(1.0), theLastMECouplings(1.0),
checkedCuts(false), passedCuts(false), theCutWeight(1.0), theNeedsReshuffling(false) {}
StandardXComb::
StandardXComb(Energy newMaxEnergy, const cPDPair & inc,
tEHPtr newEventHandler, tSubHdlPtr newSubProcessHandler,
tPExtrPtr newExtractor, tCascHdlPtr newCKKW,
const PBPair & newPartonBins, tCutsPtr newCuts,
tMEPtr newME, const DiagramVector & newDiagrams, bool mir,
tStdXCombPtr newHead)
: XComb(newMaxEnergy, inc, newEventHandler,
newExtractor, newCKKW, newPartonBins, newCuts),
theSubProcessHandler(newSubProcessHandler), theME(newME),
theDiagrams(newDiagrams), isMirror(mir), theNDim(0), partonDims(0,0),
theKinematicsGenerated(false), theLastDiagramIndex(0), theLastPDFWeight(0.0),
theLastCrossSection(ZERO), theLastJacobian(0.0), theLastME2(-1.0),
theLastPreweight(1.0), theLastMECrossSection(ZERO),
theLastMEPDFWeight(1.0), theLastMECouplings(1.0), theHead(newHead),
checkedCuts(false), passedCuts(false), theCutWeight(1.0), theNeedsReshuffling(false) {
partonDims = pExtractor()->nDims(partonBins());
if ( matrixElement()->haveX1X2() ) {
partonDims.first = 0;
partonDims.second = 0;
}
theNDim = matrixElement()->nDim() + partonDims.first + partonDims.second;
mePartonData() = lastDiagram()->partons();
checkReshufflingNeeds();
}
StandardXComb::StandardXComb(tMEPtr me, const tPVector & parts,
DiagramIndex indx)
: theME(me), isMirror(false), theNDim(0), partonDims(make_pair(0, 0)),
theKinematicsGenerated(false),
theLastDiagramIndex(0), theLastPDFWeight(0.0), theLastCrossSection(ZERO),
theLastME2(-1.0), theLastPreweight(1.0), theLastMECrossSection(ZERO), theLastMEPDFWeight(1.0),
theLastMECouplings(1.0),
checkedCuts(false), passedCuts(false), theCutWeight(1.0), theNeedsReshuffling(false) {
subProcess(new_ptr(SubProcess(make_pair(parts[0], parts[1]),
tCollPtr(), me)));
for ( int i = 0, N = parts.size(); i < N; ++i ) {
subProcess()->addOutgoing(parts[i], false);
theMEPartonData.push_back(parts[i]->dataPtr());
theMEMomenta.push_back(parts[i]->momentum());
}
lastSHat((meMomenta()[0] + meMomenta()[1]).m2());
string tag = me->diagrams()[indx]->getTag();
for ( int i = 0, N = me->diagrams().size(); i < N; ++i )
if ( me->diagrams()[i]->getTag() == tag )
theDiagrams.push_back(me->diagrams()[i]);
checkReshufflingNeeds();
}
StandardXComb::StandardXComb(tStdXCombPtr newHead,
const PBPair & newPartonBins, tMEPtr newME,
const DiagramVector & newDiagrams)
: XComb(newHead->maxEnergy(), newHead->particles(),
newHead->eventHandlerPtr(), newHead->pExtractor(),
newHead->CKKWHandler(), newPartonBins, newHead->cuts()),
theSubProcessHandler(const_ptr_cast<tSubHdlPtr>(newHead->subProcessHandler())),
theME(newME), theDiagrams(newDiagrams), isMirror(newHead->mirror()), theNDim(0),
partonDims(0,0), theKinematicsGenerated(false), theLastDiagramIndex(0), theLastPDFWeight(0.0),
theLastCrossSection(ZERO), theLastJacobian(0.0), theLastME2(-1.0),
theLastPreweight(1.0), theLastMECrossSection(ZERO),
theLastMEPDFWeight(1.0), theLastMECouplings(1.0), theHead(newHead),
checkedCuts(false), passedCuts(false), theCutWeight(1.0), theNeedsReshuffling(false) {
partonDims = pExtractor()->nDims(partonBins());
if ( matrixElement()->haveX1X2() ) {
partonDims.first = 0;
partonDims.second = 0;
}
theNDim = matrixElement()->nDim() + partonDims.first + partonDims.second;
mePartonData() = lastDiagram()->partons();
checkReshufflingNeeds();
/* // wait for C++11
StandardXComb(newHead->maxEnergy(),newHead->particles(),
newHead->eventHandlerPtr(),
const_ptr_cast<tSubHdlPtr>(newHead->subProcessHandler()),
newHead->pExtractor(),newHead->CKKWHandler(),
newPartonBins,newHead->cuts(),newME,newDiagrams,newHead->mirror(),
newHead);
*/
}
StandardXComb::~StandardXComb() {}
void StandardXComb::recreatePartonBinInstances(Energy2 scale) {
PBIPair newBins;
Direction<0> dir(true);
newBins.first =
new_ptr(PartonBinInstance(lastPartons().first,partonBins().first,scale));
dir.reverse();
newBins.second =
new_ptr(PartonBinInstance(lastPartons().second,partonBins().second,scale));
resetPartonBinInstances(newBins);
setPartonBinInfo();
lastPartons().first->scale(partonBinInstances().first->scale());
lastPartons().second->scale(partonBinInstances().second->scale());
}
void StandardXComb::refillPartonBinInstances(const double* r) {
pExtractor()->select(this);
pExtractor()->updatePartonBinInstances(partonBinInstances());
pExtractor()->generateSHat(lastS(), partonBinInstances(),
r, r + nDim() - partonDims.second,true);
}
bool StandardXComb::setIncomingPartons(tStdXCombPtr labHead) {
if ( lastPartons().first )
return true;
// If no labHead was given, we need to search the labhead
if ( !labHead ){
labHead = head();
while ( labHead->head() && labHead->head() != labHead ) {
labHead =labHead->head();
}
}
createPartonBinInstances();
lastParticles(labHead->lastParticles());
setPartonBinInfo();
lastPartons(make_pair(mePartonData()[0]->produceParticle(Lorentz5Momentum()),
mePartonData()[1]->produceParticle(Lorentz5Momentum())));
Lorentz5Momentum pFirst = meMomenta()[0];
Lorentz5Momentum pSecond = meMomenta()[1];
if ( labHead->matrixElement()->wantCMS() ) {
Boost toLab = (labHead->lastPartons().first->momentum() +
labHead->lastPartons().second->momentum()).boostVector();
if ( toLab.mag2() > Constants::epsilon ) {
pFirst.boost(toLab);
pSecond.boost(toLab);
}
}
lastPartons().first->set5Momentum(pFirst);
lastPartons().second->set5Momentum(pSecond);
partonBinInstances().first->parton(lastPartons().first);
partonBinInstances().second->parton(lastPartons().second);
lastS((lastParticles().first->momentum() +
lastParticles().second->momentum()).m2());
lastSHat((lastPartons().first->momentum() +
lastPartons().second->momentum()).m2());
lastP1P2(make_pair(labHead->lastP1(),labHead->lastP2()));
double x1 =
lastPartons().first->momentum().plus()/
lastParticles().first->momentum().plus();
double x2 =
lastPartons().second->momentum().minus()/
lastParticles().second->momentum().minus();
if(x1<=0. || x2 <= 0. ) return false;
lastX1X2(make_pair(x1,x2));
lastY((lastPartons().first->momentum()+
lastPartons().second->momentum()).rapidity());
return true;
}
void StandardXComb::fill(const PPair& newParticles,
const PPair& newPartons,
const vector<Lorentz5Momentum>& newMEMomenta,
const DVector& newLastRandomNumbers) {
lastParticles(newParticles);
lastP1P2(make_pair(0.0, 0.0));
lastS((lastParticles().first->momentum() +
lastParticles().second->momentum()).m2());
lastPartons(newPartons);
lastSHat((lastPartons().first->momentum() +
lastPartons().second->momentum()).m2());
lastX1X2(make_pair(lastPartons().first->momentum().plus()/
lastParticles().first->momentum().plus(),
lastPartons().second->momentum().minus()/
lastParticles().second->momentum().minus()));
lastY((lastPartons().first->momentum() +
lastPartons().second->momentum()).rapidity());
meMomenta().resize(newMEMomenta.size());
copy(newMEMomenta.begin(),newMEMomenta.end(),
meMomenta().begin());
lastRandomNumbers().resize(newLastRandomNumbers.size());
copy(newLastRandomNumbers.begin(),newLastRandomNumbers.end(),
lastRandomNumbers().begin());
}
bool StandardXComb::checkInit() {
Energy summin = ZERO;
for ( int i = 2, N = mePartonData().size(); i < N; ++i ) {
summin += mePartonData()[i]->massMin();
}
return ( summin < min(maxEnergy(), cuts()->mHatMax()) );
}
bool StandardXComb::willPassCuts() {
if ( checkedCuts )
return passedCuts;
checkedCuts = true;
if ( !head() ) {
if ( !cuts()->initSubProcess(lastSHat(), lastY(), mirror()) ) {
passedCuts = false;
theCutWeight = 0.0;
return false;
}
} else {
cuts()->initSubProcess(lastSHat(), lastY(), mirror());
}
// check for exceptional configurations which may happen in NLO
// dijets subtraction with an extremely soft incoming parton giving
// rise to about lightlike CM momentum
if ( (meMomenta()[0]+meMomenta()[1]).m2() <= ZERO ) {
passedCuts = false;
return false;
}
tcPDVector outdata(mePartonData().begin()+2,mePartonData().end());
vector<LorentzMomentum> outmomenta(meMomenta().begin()+2,meMomenta().end());
Boost tocm = (meMomenta()[0]+meMomenta()[1]).findBoostToCM();
if ( tocm.mag2() > Constants::epsilon ) {
for ( vector<LorentzMomentum>::iterator p = outmomenta.begin();
p != outmomenta.end(); ++p ) {
p->boost(tocm);
}
}
for ( vector<LorentzMomentum>::iterator p = outmomenta.begin();
p != outmomenta.end(); ++p )
if ( !std::isfinite(double(p->x()/GeV)) || !std::isfinite(double(p->y()/GeV)) ||
!std::isfinite(double(p->z()/GeV)) || !std::isfinite(double(p->t()/GeV)) )
throw Exception()
<< "Event momenta contain an invalid entry: " << (*p)/GeV
<< Exception::runerror;
if ( !cuts()->passCuts(outdata,outmomenta,mePartonData()[0],mePartonData()[1]) ) {
theCutWeight = cuts()->cutWeight();
passedCuts = false;
return false;
}
theCutWeight = cuts()->cutWeight();
passedCuts = true;
return true;
}
void StandardXComb::clean() {
XComb::clean();
theLastPDFWeight = 0.0;
theLastCrossSection = ZERO;
theLastJacobian = 0.0;
theLastME2 = 0.0;
theLastPreweight = 1.0;
theLastMECrossSection = ZERO;
theLastMEPDFWeight = 0.0;
theLastMECouplings = 0.0;
theProjectors.clear();
theProjector = StdXCombPtr();
theKinematicsGenerated = false;
checkedCuts = false;
passedCuts = false;
theCutWeight = 1.0;
theExternalDiagram = tcDiagPtr();
matrixElement()->flushCaches();
}
CrossSection StandardXComb::dSigDR(const double * r) {
matrixElement()->setXComb(this);
if ( !matrixElement()->apply() ) {
subProcess(SubProPtr());
lastCrossSection(ZERO);
return ZERO;
}
meMomenta().resize(mePartonData().size());
if ( !matrixElement()->generateKinematics(r) ) {
subProcess(SubProPtr());
lastCrossSection(ZERO);
return ZERO;
}
setIncomingPartons();
lastScale(matrixElement()->scale());
lastAlphaS(matrixElement()->alphaS());
lastAlphaEM(matrixElement()->alphaEM());
partonBinInstances().first->scale(lastScale());
partonBinInstances().second->scale(lastScale());
if ( (!willPassCuts() &&
!matrixElement()->headCuts() &&
!matrixElement()->ignoreCuts()) ||
!matrixElement()->apply() ) {
subProcess(SubProPtr());
lastCrossSection(ZERO);
return ZERO;
}
lastPDFWeight(head()->lastPDFWeight());
matrixElement()->setKinematics();
CrossSection xsec = matrixElement()->dSigHatDR() * lastPDFWeight();
xsec *= cutWeight();
subProcess(SubProPtr());
lastCrossSection(xsec);
return xsec;
}
CrossSection StandardXComb::
dSigDR(const pair<double,double> ll, int nr, const double * r) {
if ( matrixElement()->keepRandomNumbers() ) {
lastRandomNumbers().resize(nDim());
copy(r,r+nDim(),lastRandomNumbers().begin());
}
pExtractor()->select(this);
setPartonBinInfo();
lastP1P2(ll);
lastS(sqr(maxEnergy())/exp(lastP1() + lastP2()));
meMomenta().resize(mePartonData().size());
matrixElement()->setXComb(this);
PPair partons;
if ( !matrixElement()->haveX1X2() ) {
if ( !pExtractor()->generateL(partonBinInstances(),
r, r + nr - partonDims.second) ) {
lastCrossSection(ZERO);
return ZERO;
}
partons = make_pair(partonBinInstances().first->parton(),
partonBinInstances().second->parton());
lastSHat(lastS()/exp(partonBinInstances().first->l() +
partonBinInstances().second->l()));
meMomenta()[0] = partons.first->momentum();
meMomenta()[1] = partons.second->momentum();
} else {
if ( !matrixElement()->generateKinematics(r + partonDims.first) ) {
lastCrossSection(ZERO);
return ZERO;
}
lastSHat((meMomenta()[0]+meMomenta()[1]).m2());
matrixElement()->setKinematics();
lastScale(matrixElement()->scale());
partons.first = mePartonData()[0]->produceParticle(meMomenta()[0]);
partons.second = mePartonData()[1]->produceParticle(meMomenta()[1]);
Direction<0> dir(true);
partonBinInstances().first =
new_ptr(PartonBinInstance(lastParticles().first,partons.first,
partonBins().first,lastScale()));
dir.reverse();
partonBinInstances().second =
new_ptr(PartonBinInstance(lastParticles().second,partons.second,
partonBins().second,lastScale()));
}
lastPartons(partons);
if ( lastSHat() < cuts()->sHatMin() ) {
lastCrossSection(ZERO);
return ZERO;
}
lastY(0.5*(partonBinInstances().second->l() -
partonBinInstances().first->l()));
if ( !cuts()->initSubProcess(lastSHat(), lastY(), mirror()) ) {
lastCrossSection(ZERO);
return ZERO;
}
if ( mirror() ) swap(meMomenta()[0], meMomenta()[1]);
if ( matrixElement()->wantCMS() &&
!matrixElement()->haveX1X2() )
SimplePhaseSpace::CMS(meMomenta()[0], meMomenta()[1], lastSHat());
Energy summ = ZERO;
if ( meMomenta().size() == 3 ) {
if ( !matrixElement()->haveX1X2() )
meMomenta()[2] = Lorentz5Momentum(sqrt(lastSHat()));
} else {
for ( int i = 2, N = meMomenta().size(); i < N; ++i ) {
if ( !matrixElement()->haveX1X2() )
meMomenta()[i] = Lorentz5Momentum(mePartonData()[i]->mass());
summ += mePartonData()[i]->massMin();
}
if ( sqr(summ) >= lastSHat() ) {
lastCrossSection(ZERO);
return ZERO;
}
}
if ( !matrixElement()->haveX1X2() )
lastScale(max(lastSHat()/4.0, cuts()->scaleMin()));
lastSHat(pExtractor()->generateSHat(lastS(), partonBinInstances(),
r, r + nr - partonDims.second,
matrixElement()->haveX1X2()));
if ( !cuts()->sHat(lastSHat()) ) {
lastCrossSection(ZERO);
return ZERO;
}
r += partonDims.first;
lastX1X2(make_pair(lastPartons().first->momentum().plus()/
lastParticles().first->momentum().plus(),
lastPartons().second->momentum().minus()/
lastParticles().second->momentum().minus()));
if ( !cuts()->x1(lastX1()) || !cuts()->x2(lastX2()) ) {
lastCrossSection(ZERO);
return ZERO;
}
lastY((lastPartons().first->momentum() +
lastPartons().second->momentum()).rapidity());
if ( !cuts()->yHat(lastY()) ) {
lastCrossSection(ZERO);
return ZERO;
}
if ( !cuts()->initSubProcess(lastSHat(), lastY(), mirror()) ) {
lastCrossSection(ZERO);
return ZERO;
}
meMomenta()[0] = lastPartons().first->momentum();
meMomenta()[1] = lastPartons().second->momentum();
if ( mirror() ) swap(meMomenta()[0], meMomenta()[1]);
if ( matrixElement()->wantCMS() &&
!matrixElement()->haveX1X2() )
SimplePhaseSpace::CMS(meMomenta()[0], meMomenta()[1], lastSHat());
if ( meMomenta().size() == 3 ) {
if ( !matrixElement()->haveX1X2() )
meMomenta()[2] = Lorentz5Momentum(sqrt(lastSHat()));
} else {
if ( sqr(summ) >= lastSHat() ) {
lastCrossSection(ZERO);
return ZERO;
}
}
if ( !matrixElement()->haveX1X2() ) {
if ( !matrixElement()->generateKinematics(r) ) {
lastCrossSection(ZERO);
return ZERO;
}
}
lastScale(matrixElement()->scale());
if ( !cuts()->scale(lastScale()) ) {
lastCrossSection(ZERO);
return ZERO;
}
// get information on cuts; we don't take this into account here for
// reasons of backward compatibility but this will change eventually
willPassCuts();
pair<bool,bool> evalPDFS =
make_pair(matrixElement()->havePDFWeight1(),
matrixElement()->havePDFWeight2());
if ( mirror() )
swap(evalPDFS.first,evalPDFS.second);
lastPDFWeight(pExtractor()->fullFn(partonBinInstances(), lastScale(),
evalPDFS));
if ( lastPDFWeight() == 0.0 ) {
lastCrossSection(ZERO);
return ZERO;
}
matrixElement()->setKinematics();
CrossSection xsec = matrixElement()->dSigHatDR() * lastPDFWeight();
if ( xsec == ZERO ) {
lastCrossSection(ZERO);
return ZERO;
}
const bool isCKKW=CKKWHandler() && matrixElement()->maxMultCKKW() > 0 &&
matrixElement()->maxMultCKKW() > matrixElement()->minMultCKKW();
if(!isCKKW)
xsec *= cutWeight();
lastAlphaS (matrixElement()->orderInAlphaS () >0 ?
matrixElement()->alphaS() : -1.);
lastAlphaEM(matrixElement()->orderInAlphaEW() >0 ?
matrixElement()->alphaEM() : -1.);
matrixElement()->fillProjectors();
if ( !projectors().empty() ) {
lastProjector(projectors().select(UseRandom::rnd()));
}
subProcess(SubProPtr());
if ( isCKKW ) {
newSubProcess();
CKKWHandler()->setXComb(this);
xsec *= CKKWHandler()->reweightCKKW(matrixElement()->minMultCKKW(),
matrixElement()->maxMultCKKW());
}
if ( matrixElement()->reweighted() ) {
newSubProcess();
xsec *= matrixElement()->reWeight() * matrixElement()->preWeight();
}
lastCrossSection(xsec);
return xsec;
}
map<string,double> StandardXComb::generateOptionalWeights() {
matrixElement()->setXComb(this);
return matrixElement()->generateOptionalWeights();
}
void StandardXComb::newSubProcess(bool group) {
if ( subProcess() ) return;
if ( head() && matrixElement()->wantCMS() ) {
// first get the meMomenta in their CMS, as this may
// not be the case
Boost cm = (meMomenta()[0] + meMomenta()[1]).findBoostToCM();
if ( cm.mag2() > Constants::epsilon ) {
for ( vector<Lorentz5Momentum>::iterator m = meMomenta().begin();
m != meMomenta().end(); ++m ) {
*m = m->boost(cm);
}
}
}
if ( !lastProjector() ) {
if ( !group )
subProcess(new_ptr(SubProcess(lastPartons(), tCollPtr(), matrixElement())));
else
subProcess(new_ptr(SubProcessGroup(lastPartons(), tCollPtr(), matrixElement())));
if ( !theExternalDiagram )
lastDiagramIndex(matrixElement()->diagram(diagrams()));
const ColourLines & cl = matrixElement()->selectColourGeometry(lastDiagram());
Lorentz5Momentum p1 = lastPartons().first->momentum();
Lorentz5Momentum p2 = lastPartons().second->momentum();
tPPair inc = lastPartons();
if ( mirror() ) swap(inc.first, inc.second);
if ( matrixElement()->wantCMS() &&
!matrixElement()->haveX1X2() ) {
LorentzRotation r = Utilities::boostToCM(inc);
lastDiagram()->construct(subProcess(), *this, cl);
subProcess()->transform(r.inverse());
lastPartons().first->set5Momentum(p1);
lastPartons().second->set5Momentum(p2);
} else {
lastDiagram()->construct(subProcess(), *this, cl);
}
lastPartons().first ->scale(partonBinInstances().first ->scale());
lastPartons().second->scale(partonBinInstances().second->scale());
for ( int i = 0, N = subProcess()->outgoing().size(); i < N; ++i )
subProcess()->outgoing()[i]->scale(lastScale());
// construct the spin information for the interaction
matrixElement()->constructVertex(subProcess(),&cl);
// set veto scales
matrixElement()->setVetoScales(subProcess());
} else {
lastProjector()->newSubProcess();
subProcess(lastProjector()->subProcess());
lastPartons(lastProjector()->lastPartons());
+ lastPartons().first ->scale(partonBinInstances().first ->scale());
+ lastPartons().second->scale(partonBinInstances().second->scale());
lastSHat((lastPartons().first->momentum() +
lastPartons().second->momentum()).m2());
lastX1X2(make_pair(lastPartons().first->momentum().plus()/
lastParticles().first->momentum().plus(),
lastPartons().second->momentum().minus()/
lastParticles().second->momentum().minus()));
lastY(log(lastX1()/lastX2())*0.5);
lastCentralScale(lastProjector()->lastCentralScale());
lastShowerScale(lastProjector()->lastShowerScale());
partonBinInstances().first->parton(lastPartons().first);
partonBinInstances().second->parton(lastPartons().second);
if ( !matrixElement()->keepRandomNumbers() )
throw Exception() << "Matrix element needs to request random number storage "
<< "for creating projected subprocesses."
<< Exception::runerror;
const double * r = &lastRandomNumbers()[0];
pExtractor()->generateSHat(lastS(), partonBinInstances(),
r, r + nDim() - partonDims.second,true);
pExtractor()->updatePartonBinInstances(partonBinInstances());
}
}
void StandardXComb::checkReshufflingNeeds() {
theNeedsReshuffling = false;
if ( eventHandler().cascadeHandler() ) {
if ( eventHandler().cascadeHandler()->isReshuffling() )
return;
}
for ( cPDVector::const_iterator p = mePartonData().begin() + 2;
p != mePartonData().end(); ++p ) {
theNeedsReshuffling |= ( (**p).mass() != (**p).hardProcessMass() );
}
}
double StandardXComb::reshuffleEquation(double k,
const vector<pair<Energy2,Energy2> >& coeffs,
Energy2 Q2) const {
double res = 0.;
for ( vector<pair<Energy2,Energy2> >::const_iterator c = coeffs.begin();
c != coeffs.end(); ++c ) {
double x = sqr(k)*c->first/Q2+c->second/Q2;
if ( x < 0.0 )
throw Veto();
res += sqrt(x);
}
return res - 1.;
}
double StandardXComb::solveReshuffleEquation(const vector<pair<Energy2,Energy2> >& coeffs,
Energy2 Q2) const {
// shamelessly adapted from Herwig++'s QTildeReconstructor
// in principle we could have included the exact solution for two
// outgoing particles, but for this to be simple we would require
// boosting to the CM so the gain is questionable
double k1 = 0.,k2 = 1.,k = 0.;
if ( reshuffleEquation(k1,coeffs,Q2) < 0.0 ) {
while ( reshuffleEquation(k2, coeffs, Q2) < 0.0 ) {
k1 = k2;
k2 *= 2;
}
while ( abs( (k1 - k2)/(k1 + k2) ) > 1.e-10 ) {
if( reshuffleEquation(k2,coeffs,Q2) == 0.0 ) {
return k2;
} else {
k = (k1+k2)/2.;
if ( reshuffleEquation(k,coeffs,Q2) > 0.0 ) {
k2 = k;
} else {
k1 = k;
}
}
}
return k1;
}
throw Veto();
return 1.;
}
void StandardXComb::reshuffle(vector<Lorentz5Momentum>& pout) const {
Lorentz5Momentum Q(ZERO,ZERO,ZERO,ZERO);
for ( vector<Lorentz5Momentum>::const_iterator p = pout.begin();
p != pout.end(); ++p )
Q += *p;
if ( Q.m2() <= ZERO )
throw Veto();
LorentzVector<double> Qhat = Q/sqrt(Q.m2());
vector<Energy> pQhat;
vector<pair<Energy2,Energy2> > coeffs;
vector<Lorentz5Momentum>::const_iterator p = pout.begin();
cPDVector::const_iterator pd = mePartonData().begin() + 2;
for ( ; p != pout.end(); ++p, ++pd ) {
pQhat.push_back((*p)*Qhat);
coeffs.push_back(make_pair(sqr(pQhat.back())-sqr((**pd).hardProcessMass()),
sqr((**pd).mass())));
}
double k = solveReshuffleEquation(coeffs,Q.m2());
vector<Lorentz5Momentum>::iterator px = pout.begin();
vector<Energy>::const_iterator pQ = pQhat.begin();
vector<pair<Energy2,Energy2> >::const_iterator coeff = coeffs.begin();
for ( ; px != pout.end(); ++px, ++pQ, ++coeff ) {
*px = k*((*px) - (*pQ) * Qhat) + sqrt(sqr(k)*coeff->first + coeff->second)*Qhat;
px->rescaleMass();
}
}
tSubProPtr StandardXComb::construct() {
matrixElement()->setXComb(this);
if ( !head() ) {
if ( !cuts()->initSubProcess(lastSHat(), lastY()) ) throw Veto();
} else {
cuts()->initSubProcess(lastSHat(), lastY());
}
if ( head() )
if ( !matrixElement()->apply() )
return tSubProPtr();
setPartonBinInfo();
matrixElement()->setKinematics();
newSubProcess();
TmpTransform<tSubProPtr>
tmp(subProcess(), Utilities::getBoostToCM(subProcess()->incoming()));
if ( !cuts()->passCuts(*subProcess()) ) throw Veto();
if ( head() ) {
subProcess()->head(head()->subProcess());
if(lastCrossSection()!=ZERO&&head()->lastCrossSection()!=ZERO)
subProcess()->groupWeight(lastCrossSection()/head()->lastCrossSection());
else
subProcess()->groupWeight(0.);
}
return subProcess();
}
void StandardXComb::Init() {}
void StandardXComb::persistentOutput(PersistentOStream & os) const {
os << theSubProcessHandler << theME << theStats
<< theDiagrams << isMirror << theNDim << partonDims
<< theLastDiagramIndex << theExternalDiagram
<< theMEInfo << theLastRandomNumbers << theMEPartonData
<< theLastPDFWeight << ounit(theLastCrossSection,nanobarn) << theLastJacobian
<< theLastME2 << theLastPreweight
<< ounit(theLastMECrossSection,nanobarn) << theLastMEPDFWeight << theLastMECouplings
<< theHead << theProjectors << theProjector << theKinematicsGenerated
<< checkedCuts << passedCuts << theCutWeight << theNeedsReshuffling;
}
void StandardXComb::persistentInput(PersistentIStream & is, int) {
is >> theSubProcessHandler >> theME >> theStats
>> theDiagrams >> isMirror >> theNDim >> partonDims
>> theLastDiagramIndex >> theExternalDiagram
>> theMEInfo >> theLastRandomNumbers >> theMEPartonData
>> theLastPDFWeight >> iunit(theLastCrossSection,nanobarn) >> theLastJacobian
>> theLastME2 >> theLastPreweight
>> iunit(theLastMECrossSection,nanobarn) >> theLastMEPDFWeight >> theLastMECouplings
>> theHead >> theProjectors >> theProjector >> theKinematicsGenerated
>> checkedCuts >> passedCuts >> theCutWeight >> theNeedsReshuffling;
}
ClassDescription<StandardXComb> StandardXComb::initStandardXComb;

File Metadata

Mime Type
text/x-diff
Expires
Sat, Dec 21, 3:12 PM (1 d, 6 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023244
Default Alt Text
(27 KB)

Event Timeline