Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F11221310
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
40 KB
Subscribers
None
View Options
diff --git a/FixedOrderGen/src/PhaseSpacePoint.cc b/FixedOrderGen/src/PhaseSpacePoint.cc
index 17afb92..b339d20 100644
--- a/FixedOrderGen/src/PhaseSpacePoint.cc
+++ b/FixedOrderGen/src/PhaseSpacePoint.cc
@@ -1,945 +1,950 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#include "PhaseSpacePoint.hh"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <iostream>
#include <iterator>
#include <limits>
#include <tuple>
#include <type_traits>
#include <utility>
#include "fastjet/ClusterSequence.hh"
#include "HEJ/Constants.hh"
#include "HEJ/EWConstants.hh"
#include "HEJ/exceptions.hh"
#include "HEJ/kinematics.hh"
#include "HEJ/Particle.hh"
#include "HEJ/PDF.hh"
#include "HEJ/RNG.hh"
#include "HEJ/utility.hh"
#include "JetParameters.hh"
#include "Process.hh"
namespace {
static_assert(
std::numeric_limits<double>::has_quiet_NaN,
"no quiet NaN for double"
);
constexpr double NaN = std::numeric_limits<double>::quiet_NaN();
} // namespace anonymous
namespace HEJFOG {
HEJ::Event::EventData to_EventData(PhaseSpacePoint psp){
//! @TODO Same function already in HEJ
HEJ::Event::EventData result;
result.incoming = std::move(psp).incoming_;
assert(result.incoming.size() == 2);
result.outgoing = std::move(psp).outgoing_;
// technically Event::EventData doesn't have to be sorted,
// but PhaseSpacePoint should be anyway
assert(
std::is_sorted(
begin(result.outgoing), end(result.outgoing),
HEJ::rapidity_less{}
)
);
assert(result.outgoing.size() >= 2);
result.decays = std::move(psp).decays_;
result.parameters.central = {NaN, NaN, psp.weight()};
return result;
}
PhaseSpacePoint::ConstPartonIterator PhaseSpacePoint::begin_partons() const {
return cbegin_partons();
}
PhaseSpacePoint::ConstPartonIterator PhaseSpacePoint::cbegin_partons() const {
return {HEJ::is_parton, cbegin(outgoing()), cend(outgoing())};
}
PhaseSpacePoint::ConstPartonIterator PhaseSpacePoint::end_partons() const {
return cend_partons();
}
PhaseSpacePoint::ConstPartonIterator PhaseSpacePoint::cend_partons() const {
return {HEJ::is_parton, cend(outgoing()), cend(outgoing())};
}
PhaseSpacePoint::ConstReversePartonIterator PhaseSpacePoint::rbegin_partons() const {
return crbegin_partons();
}
PhaseSpacePoint::ConstReversePartonIterator PhaseSpacePoint::crbegin_partons() const {
return std::reverse_iterator<ConstPartonIterator>( cend_partons() );
}
PhaseSpacePoint::ConstReversePartonIterator PhaseSpacePoint::rend_partons() const {
return crend_partons();
}
PhaseSpacePoint::ConstReversePartonIterator PhaseSpacePoint::crend_partons() const {
return std::reverse_iterator<ConstPartonIterator>( cbegin_partons() );
}
PhaseSpacePoint::PartonIterator PhaseSpacePoint::begin_partons() {
return {HEJ::is_parton, begin(outgoing_), end(outgoing_)};
}
PhaseSpacePoint::PartonIterator PhaseSpacePoint::end_partons() {
return {HEJ::is_parton, end(outgoing_), end(outgoing_)};
}
PhaseSpacePoint::ReversePartonIterator PhaseSpacePoint::rbegin_partons() {
return std::reverse_iterator<PartonIterator>( end_partons() );
}
PhaseSpacePoint::ReversePartonIterator PhaseSpacePoint::rend_partons() {
return std::reverse_iterator<PartonIterator>( begin_partons() );
}
namespace {
bool can_swap_to_uno(
HEJ::Particle const & p1, HEJ::Particle const & p2
){
assert(is_parton(p1) && is_parton(p2));
return p1.type != HEJ::pid::gluon
&& p2.type == HEJ::pid::gluon;
}
size_t count_gluons(PhaseSpacePoint::ConstPartonIterator first,
PhaseSpacePoint::ConstPartonIterator last
){
return std::count_if(first, last, [](HEJ::Particle const & p)
{return p.type == HEJ::pid::gluon;});
}
/** assumes FKL configurations between first and last,
* else there can be a quark in a non-extreme position
* e.g. uno configuration gqg would pass
*/
Subleading possible_qqx(
PhaseSpacePoint::ConstPartonIterator first,
PhaseSpacePoint::ConstReversePartonIterator last
){
using namespace subleading;
assert( std::distance( first,last.base() )>2 );
Subleading channels = ALL;
channels.reset(eqqx);
channels.reset(cqqx);
auto const ngluon = count_gluons(first,last.base());
if(ngluon < 2) return channels;
if(first->type==HEJ::pid::gluon || last->type==HEJ::pid::gluon){
channels.set(eqqx);
}
if(std::distance(first,last.base())>=4){
channels.set(cqqx);
}
return channels;
}
bool is_AWZ_proccess(Process const & proc){
return proc.boson && HEJ::is_AWZ_boson(*proc.boson);
}
bool is_up_type(HEJ::Particle const & part){
return is_anyquark(part) && !(std::abs(part.type)%2);
}
bool is_down_type(HEJ::Particle const & part){
return is_anyquark(part) && std::abs(part.type)%2;
}
bool can_couple_to_W(
HEJ::Particle const & part, HEJ::pid::ParticleID const W_id
){
const int W_charge = W_id>0?1:-1;
return std::abs(part.type)<5
&& ( (W_charge*part.type > 0 && is_up_type(part))
|| (W_charge*part.type < 0 && is_down_type(part)) );
}
}
void PhaseSpacePoint::maybe_turn_to_subl(
double chance,
Subleading channels,
Process const & proc,
HEJ::RNG & ran
){
using namespace HEJ;
if(proc.njets <= 2) return;
assert(outgoing_.size() >= 2);
// decide what kind of subleading process is allowed
bool can_be_uno_backward = can_swap_to_uno(
*cbegin_partons(), *(++cbegin_partons()) );
bool can_be_uno_forward = can_swap_to_uno(
*crbegin_partons(), *(++crbegin_partons()) );
// Special case: Higgs can not be outside of uno
if(proc.boson && *proc.boson==pid::Higgs){
if(outgoing_.begin()->type == pid::Higgs
|| (++outgoing_.begin())->type==pid::Higgs){
can_be_uno_backward = false;
}
if(outgoing_.rbegin()->type == pid::Higgs
|| (++outgoing_.rbegin())->type==pid::Higgs){
can_be_uno_forward = false;
}
}
if(channels[subleading::uno]){
channels.set(subleading::uno, can_be_uno_backward || can_be_uno_forward);
}
channels &= possible_qqx(cbegin_partons(), crbegin_partons());
bool allow_strange = true;
if(is_AWZ_proccess(proc)) {
if(std::none_of(cbegin_partons(), cend_partons(),
[&proc](Particle const & p){
return can_couple_to_W(p, *proc.boson);})) {
// enforce qqx if A/W/Z can't couple somewhere else
// this is ensured to work through filter_partons in reconstruct_incoming
channels.reset(subleading::uno);
assert(channels.any());
chance = 1.;
// strange not allowed for W
if(std::abs(*proc.boson)== pid::Wp) allow_strange = false;
}
}
std::size_t const nchannels = channels.count();
// no subleading
if(nchannels==0) return;
if(ran.flat() >= chance){
weight_ /= 1 - chance;
return;
}
weight_ /= chance;
// select channel
double const step = 1./nchannels;
weight_*=nchannels;
unsigned selected = subleading::first;
double rnd = nchannels>1?ran.flat():0.;
for(; selected<=subleading::last; ++selected){
assert(rnd>=0);
if(channels[selected]){
if(rnd<step) break;
rnd-=step;
}
}
switch(selected){
case subleading::uno:
return turn_to_uno(can_be_uno_backward, can_be_uno_forward, ran);
case subleading::cqqx:
return turn_to_cqqx(allow_strange, ran);
case subleading::eqqx:
return turn_to_eqqx(allow_strange, ran);
default:
throw std::logic_error{"unreachable"};
}
}
void PhaseSpacePoint::turn_to_uno(
const bool can_be_uno_backward, const bool can_be_uno_forward,
HEJ::RNG & ran
){
if(!can_be_uno_backward && !can_be_uno_forward) return;
if(can_be_uno_backward && can_be_uno_forward){
weight_ *= 2.;
if(ran.flat() < 0.5){
return std::swap(begin_partons()->type, (++begin_partons())->type);
}
return std::swap(rbegin_partons()->type, (++rbegin_partons())->type);
}
if(can_be_uno_backward){
return std::swap(begin_partons()->type, (++begin_partons())->type);
}
assert(can_be_uno_forward);
std::swap(rbegin_partons()->type, (++rbegin_partons())->type);
}
//! select flavour of quark
HEJ::ParticleID PhaseSpacePoint::select_qqx_flavour(
const bool allow_strange, HEJ::RNG & ran
){
const double r1 = 2.*ran.flat()-1.;
const double max_flavour = allow_strange?HEJ::N_F:HEJ::N_F-1;
weight_ *= max_flavour*2;
double const flavour = HEJ::pid::down + std::floor(std::abs(r1)*max_flavour);
return static_cast<HEJ::ParticleID>(flavour*(r1<0.?-1:1));
}
void PhaseSpacePoint::turn_to_cqqx(const bool allow_strange, HEJ::RNG & ran){
// we assume all FKL partons to be gluons
auto first = ++begin_partons();
auto last = ++rbegin_partons();
auto const ng = std::distance(first, last.base());
if(ng < 2)
throw std::logic_error("not enough gluons to create qqx");
auto flavour = select_qqx_flavour(allow_strange, ran);
// select gluon for switch
if(ng!=2){
const double steps = 1./(ng-1);
weight_ /= steps;
for(auto rnd = ran.flat(); rnd>steps; ++first){
rnd-=steps;
}
}
first->type = flavour;
(++first)->type = anti(flavour);
}
void PhaseSpacePoint::turn_to_eqqx(const bool allow_strange, HEJ::RNG & ran){
/// find first and last gluon in FKL chain
auto first = begin_partons();
const bool can_forward = !is_anyquark(*first);
auto last = rbegin_partons();
const bool can_backward = !is_anyquark(*last);
if(std::distance(first, last.base()) < 2)
throw std::logic_error("not enough gluons to create qqx");
auto flavour = select_qqx_flavour(allow_strange, ran);
// select gluon for switch
if(can_forward && !can_backward){
first->type = flavour;
(++first)->type = anti(flavour);
return;
}
if(!can_forward && can_backward){
last->type = flavour;
(++last)->type = anti(flavour);
return;
}
assert(can_forward && can_backward);
weight_*=2.;
if(ran.flat()>0.5){
first->type = flavour;
(++first)->type = anti(flavour);
return;
}
last->type = flavour;
(++last)->type = anti(flavour);
}
template<class ParticleMomenta>
fastjet::PseudoJet PhaseSpacePoint::gen_last_momentum(
ParticleMomenta const & other_momenta,
const double mass_square, const double y
) const {
std::array<double,2> pt{0.,0.};
for (auto const & p: other_momenta) {
pt[0]-= p.px();
pt[1]-= p.py();
}
const double mperp = std::sqrt(pt[0]*pt[0]+pt[1]*pt[1]+mass_square);
const double pz=mperp*std::sinh(y);
const double E=mperp*std::cosh(y);
return {pt[0], pt[1], pz, E};
}
namespace {
//! adds a particle to target (in correct rapidity ordering)
//! @returns positon of insertion
auto insert_particle(std::vector<HEJ::Particle> & target,
HEJ::Particle && particle
){
const auto pos = std::upper_bound(
begin(target),end(target),particle,HEJ::rapidity_less{}
);
target.insert(pos, std::move(particle));
return pos;
}
}
PhaseSpacePoint::PhaseSpacePoint(
Process const & proc,
JetParameters const & jet_param,
HEJ::PDF & pdf, double E_beam,
double const subl_chance,
Subleading subl_channels,
ParticlesDecayMap const & particle_decays,
HEJ::EWConstants const & ew_parameters,
HEJ::RNG & ran
){
assert(proc.njets >= 2);
status_ = Status::good;
weight_ = 1;
// ensure that all setting are consistent
if(subl_chance == 0.)
subl_channels.reset();
const int nout = proc.njets + (proc.boson?1:0) + proc.boson_decay.size();
outgoing_.reserve(nout);
// generate parton momenta
const bool is_pure_jets = (nout == proc.njets);
auto partons = gen_LO_partons(
proc.njets, is_pure_jets, jet_param, E_beam, ran
);
// pre fill flavour with gluons
for(auto&& p_out: partons) {
outgoing_.emplace_back(HEJ::Particle{HEJ::pid::gluon, std::move(p_out), {}});
}
if(status_ != Status::good) return;
if(proc.boson){ // decay boson
auto const & boson_prop = ew_parameters.prop(*proc.boson) ;
auto boson{ gen_boson(*proc.boson, boson_prop.mass, boson_prop.width, ran) };
const auto pos{insert_particle(outgoing_, std::move(boson))};
const size_t boson_idx = std::distance(begin(outgoing_), pos);
auto const & boson_decay = particle_decays.find(*proc.boson);
if( !proc.boson_decay.empty() ){ // decay given in proc
decays_.emplace(
boson_idx,
decay_boson(outgoing_[boson_idx], proc.boson_decay, ran)
);
} else if( boson_decay != particle_decays.end()
&& !boson_decay->second.empty() ){ // decay given explicitly
decays_.emplace(
boson_idx,
decay_boson(outgoing_[boson_idx], boson_decay->second, ran)
);
}
}
// normalisation of momentum-conserving delta function
weight_ *= std::pow(2*M_PI, 4);
/** @TODO
* uf (jet_param.min_pt) doesn't correspond to our final scale choice.
* The HEJ scale generators currently expect a full event as input,
* so fixing this is not completely trivial
*/
reconstruct_incoming(proc, subl_chance, subl_channels, pdf, E_beam, jet_param.min_pt, ran);
if(status_ != Status::good) return;
// set outgoing states
begin_partons()->type = incoming_[0].type;
rbegin_partons()->type = incoming_[1].type;
maybe_turn_to_subl(subl_chance, subl_channels, proc, ran);
if(proc.boson) couple_boson(*proc.boson, ran);
}
// pt generation, see eq:pt_sampling in developer manual
double PhaseSpacePoint::gen_hard_pt(
const int np , const double ptmin, const double ptmax, const double /* y */,
HEJ::RNG & ran
){
// heuristic parameter for pt sampling, see eq:pt_par in developer manual
const double ptpar = ptmin + np/5.;
const double arctan = std::atan((ptmax - ptmin)/ptpar);
const double xpt = ran.flat();
const double pt = ptmin + ptpar*std::tan(xpt*arctan);
const double cosine = std::cos(xpt*arctan);
weight_ *= pt*ptpar*arctan/(cosine*cosine);
return pt;
}
double PhaseSpacePoint::gen_soft_pt(int np, double max_pt, HEJ::RNG & ran) {
constexpr double ptpar = 4.;
const double r = ran.flat();
const double pt = max_pt + ptpar/np*std::log(r);
weight_ *= pt*ptpar/(np*r);
return pt;
}
double PhaseSpacePoint::gen_parton_pt(
int count, JetParameters const & jet_param, double max_pt, double y,
HEJ::RNG & ran
) {
constexpr double p_small_pt = 0.02;
if(! jet_param.peak_pt) {
return gen_hard_pt(count, jet_param.min_pt, max_pt, y, ran);
}
const double r = ran.flat();
if(r > p_small_pt) {
weight_ /= 1. - p_small_pt;
return gen_hard_pt(count, *jet_param.peak_pt, max_pt, y, ran);
}
weight_ /= p_small_pt;
const double pt = gen_soft_pt(count, *jet_param.peak_pt, ran);
if(pt < jet_param.min_pt) {
weight_=0.0;
status_ = Status::not_enough_jets;
return jet_param.min_pt;
}
return pt;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::gen_LO_partons(
int np, bool is_pure_jets,
JetParameters const & jet_param,
double max_pt,
HEJ::RNG & ran
){
if (np<2) throw std::invalid_argument{"Not enough partons in gen_LO_partons"};
weight_ /= std::pow(16.*std::pow(M_PI,3),np);
weight_ /= std::tgamma(np+1); //remove rapidity ordering
std::vector<fastjet::PseudoJet> partons;
partons.reserve(np);
for(int i = 0; i < np; ++i){
const double y = -jet_param.max_y + 2*jet_param.max_y*ran.flat();
weight_ *= 2*jet_param.max_y;
const bool is_last_parton = i+1 == np;
if(is_pure_jets && is_last_parton) {
constexpr double parton_mass_sq = 0.;
partons.emplace_back(gen_last_momentum(partons, parton_mass_sq, y));
break;
}
const double phi = 2*M_PI*ran.flat();
weight_ *= 2.0*M_PI;
const double pt = gen_parton_pt(np, jet_param, max_pt, y, ran);
if(weight_ == 0.0) return {};
partons.emplace_back(fastjet::PtYPhiM(pt, y, phi));
assert(jet_param.min_pt <= partons[i].pt());
assert(partons[i].pt() <= max_pt+1e-5);
}
// Need to check that at LO, the number of jets = number of partons;
fastjet::ClusterSequence cs(partons, jet_param.def);
auto cluster_jets=cs.inclusive_jets(jet_param.min_pt);
if (cluster_jets.size()!=unsigned(np)){
weight_=0.0;
status_ = Status::not_enough_jets;
return {};
}
std::sort(begin(partons), end(partons), HEJ::rapidity_less{});
return partons;
}
HEJ::Particle PhaseSpacePoint::gen_boson(
HEJ::ParticleID bosonid, double mass, double width,
HEJ::RNG & ran
){
// Usual phase space measure
weight_ /= 16.*std::pow(M_PI, 3);
// Generate a y Gaussian distributed around 0
/// @TODO check magic numbers for different boson Higgs
/// @TODO better sampling for W
const double stddev_y = 1.6;
const double y = random_normal(stddev_y, ran);
const double r1 = ran.flat();
const double s_boson = mass*(
mass + width*std::tan(M_PI/2.*r1 + (r1-1.)*std::atan(mass/width))
);
// off-shell s_boson sampling, compensates for Breit-Wigner
/// @TODO use a flag instead
if(std::abs(bosonid) == HEJ::pid::Wp){
weight_/=M_PI*M_PI*16.; //Corrects B-W factors, see git issue 132
weight_*= mass*width*( M_PI+2.*std::atan(mass/width) )
/ ( 1. + std::cos( M_PI*r1 + 2.*(r1-1.)*std::atan(mass/width) ) );
}
auto p = gen_last_momentum(outgoing_, s_boson, y);
return HEJ::Particle{bosonid, std::move(p), {}};
}
namespace {
/// partons are ordered: even = anti, 0 = gluon
HEJ::ParticleID index_to_pid(size_t i){
if(!i) return HEJ::pid::gluon;
return static_cast<HEJ::ParticleID>( i%2 ? (i+1)/2 : -i/2 );
}
/// partons are ordered: even = anti, 0 = gluon
size_t pid_to_index(HEJ::ParticleID id){
if(id==HEJ::pid::gluon) return 0;
return id>0 ? id*2-1 : std::abs(id)*2;
}
using part_mask = std::bitset<11>; //!< Selection mask for partons
part_mask init_allowed(HEJ::ParticleID const id){
if(std::abs(id) == HEJ::pid::proton)
return ~0;
part_mask out{0};
if(HEJ::is_parton(id))
out[pid_to_index(id)] = 1;
return out;
}
/// decides which "index" (see index_to_pid) are allowed for process
part_mask allowed_quarks(HEJ::ParticleID const boson){
if(std::abs(boson) != HEJ::pid::Wp){
return ~1; // not a gluon
}
// special case W:
// Wp: anti-down or up-type quark, no b/t
// Wm: down or anti-up-type quark, no b/t
return boson>0?0b00011001100
:0b00100110010;
}
}
- std::array<std::bitset<11>,2> PhaseSpacePoint::incoming_AWZ(
+ std::array<part_mask,2> PhaseSpacePoint::incoming_AWZ(
Process const & proc, Subleading const subl_channels,
- std::array<std::bitset<11>,2> allowed_partons,
+ std::array<part_mask,2> allowed_partons,
HEJ::RNG & ran
){
assert(proc.boson);
auto couple_parton = allowed_quarks(*proc.boson);
- if(
- // coupling possible through input
- allowed_partons[0] != (couple_parton&allowed_partons[0])
- && allowed_partons[1] != (couple_parton&allowed_partons[1])
- // qqx not possible
- && (proc.njets < 4
- || (!subl_channels[subleading::eqqx]
- && !subl_channels[subleading::cqqx])
- )
- )
- {
- // eqqx only possible if one incoming is a gluon
- if(proc.njets >= 3 && subl_channels[subleading::eqqx]){
- couple_parton.set(pid_to_index(HEJ::ParticleID::gluon));
+ if( // coupling possible through input
+ allowed_partons[0] == (couple_parton&allowed_partons[0])
+ || allowed_partons[1] == (couple_parton&allowed_partons[1])
+ // cqqx possible
+ || (proc.njets >= 4 && subl_channels[subleading::cqqx])
+ ){
+ return allowed_partons;
+ }
+ // eqqx only possible if one incoming is a gluon
+ if(proc.njets >= 3 && subl_channels[subleading::eqqx]){
+ couple_parton.set(pid_to_index(HEJ::ParticleID::gluon));
+ }
+ // only first can couple
+ if( (allowed_partons[0]&couple_parton).any()
+ &&(allowed_partons[1]&couple_parton).none()
+ ){
+ return {allowed_partons[0]&couple_parton, allowed_partons[1]};
+ }
+ // only second can couple
+ if( (allowed_partons[0]&couple_parton).none()
+ && (allowed_partons[1]&couple_parton).any()
+ ){
+ return {allowed_partons[0], allowed_partons[1]&couple_parton};
+ }
+ // both can couple
+ if( (allowed_partons[0]&couple_parton).any()
+ && (allowed_partons[1]&couple_parton).any()
+ ){
+ double rnd = ran.flat();
+ weight_*=3.;
+ if(rnd<1./3.){
+ return {
+ allowed_partons[0] & couple_parton,
+ allowed_partons[1] & ~couple_parton
+ };
}
- if( (allowed_partons[0]&couple_parton).any()
- &&(allowed_partons[1]&couple_parton).none()
- ){
- allowed_partons[0]&=couple_parton;
- } else if( (allowed_partons[0]&couple_parton).none()
- && (allowed_partons[1]&couple_parton).any()
- ){
- allowed_partons[1]&=couple_parton;
- } else if( (allowed_partons[0]&couple_parton).any()
- && (allowed_partons[1]&couple_parton).any()
- ){
- double rnd = ran.flat();
- weight_*=3.;
- if(rnd<1./3.){
- allowed_partons[0] &= couple_parton;
- allowed_partons[1] &= ~couple_parton;
- } else if(rnd<2./3.){
- allowed_partons[0] &= ~couple_parton;
- allowed_partons[1] &= couple_parton;
- } else {
- allowed_partons[0] &= couple_parton;
- allowed_partons[1] &= couple_parton;
- }
- } else {
- throw std::invalid_argument{"Incoming state not allowed."};
+ if(rnd<2./3.){
+ return {
+ allowed_partons[0] & ~couple_parton,
+ allowed_partons[1] & couple_parton
+ };
}
+ return {
+ allowed_partons[0] & couple_parton,
+ allowed_partons[1] & couple_parton
+ };
}
- return allowed_partons;
+ throw std::invalid_argument{"Incoming state not allowed."};
}
- std::array<std::bitset<11>,2> PhaseSpacePoint::incoming_eqqx(
- std::array<std::bitset<11>,2> allowed_partons, HEJ::RNG & ran
+ std::array<part_mask,2> PhaseSpacePoint::incoming_eqqx(
+ std::array<part_mask,2> allowed_partons, HEJ::RNG & ran
){
auto const gluon_idx = pid_to_index(HEJ::pid::gluon);
auto & first_beam = allowed_partons[0];
auto & second_beam = allowed_partons[1];
if(first_beam[gluon_idx] && !second_beam[gluon_idx]){
first_beam.reset();
first_beam.set(gluon_idx);
return allowed_partons;
}
if(!first_beam[gluon_idx] && second_beam[gluon_idx]) {
second_beam.reset();
second_beam.set(gluon_idx);
return allowed_partons;
}
if(first_beam[gluon_idx] && second_beam[gluon_idx]) {
// both beams can be gluons
// if one can't be a quark everything is good
auto first_quarks = first_beam;
first_quarks.reset(gluon_idx);
auto second_quarks = second_beam;
second_quarks.reset(gluon_idx);
if(first_quarks.none() || second_quarks.none()){
return allowed_partons;
}
// else choose one to be a gluon
double rnd = ran.flat();
weight_*=3.;
if(rnd<1./3.){
allowed_partons[0].reset();
allowed_partons[0].set(gluon_idx);
allowed_partons[1].reset(gluon_idx);
} else if(rnd<2./3.){
allowed_partons[1].reset();
allowed_partons[1].set(gluon_idx);
allowed_partons[0].reset(gluon_idx);
} else {
allowed_partons[0].reset();
allowed_partons[0].set(gluon_idx);
allowed_partons[1].reset();
allowed_partons[1].set(gluon_idx);
}
return allowed_partons;
}
throw std::invalid_argument{
"Incoming state not allowed for pure extremal qqx."};
}
- std::array<std::bitset<11>,2> PhaseSpacePoint::incoming_uno(
- std::array<std::bitset<11>,2> allowed_partons, HEJ::RNG & ran
+ std::array<part_mask,2> PhaseSpacePoint::incoming_uno(
+ std::array<part_mask,2> allowed_partons, HEJ::RNG & ran
){
auto const gluon_idx = pid_to_index(HEJ::pid::gluon);
auto & first_beam = allowed_partons[0];
auto first_quarks = first_beam;
first_quarks.reset(gluon_idx);
auto & second_beam = allowed_partons[1];
auto second_quarks = second_beam;
second_quarks.reset(gluon_idx);
if(first_quarks.any() && second_quarks.none()){
first_beam.reset(gluon_idx);
return allowed_partons;
}
if(first_quarks.none() && second_quarks.any()) {
second_beam.reset(gluon_idx);
return allowed_partons;
}
if(first_quarks.any() && second_quarks.any()) {
// both beams can be quarks
// if one can't be gluon everything is good
if(!first_beam[gluon_idx] || !second_beam[gluon_idx]){
return allowed_partons;
}
// else choose one to be a quark
double rnd = ran.flat();
weight_*=3.;
if(rnd<1./3.){
allowed_partons[0].reset(gluon_idx);
allowed_partons[1].reset();
allowed_partons[1].set(gluon_idx);
} else if(rnd<2./3.){
allowed_partons[1].reset(gluon_idx);
allowed_partons[0].reset();
allowed_partons[0].set(gluon_idx);
} else {
allowed_partons[0].reset(gluon_idx);
allowed_partons[1].reset(gluon_idx);
}
return allowed_partons;
}
throw std::invalid_argument{
"Incoming state not allowed for pure unordered."};
}
/**
* @brief Returns list of all allowed initial states partons
*
* checks which partons are allowed as initial state:
* 1. only allow what is given in the Runcard (p -> all)
* 2. A/W/Z require something to couple to
* a) no qqx => no incoming gluon
* b) 2j => no incoming gluon
* c) >3j => can couple OR is gluon => 2 gluons become qqx later
* 3. pure eqqx requires at least one gluon
* 4. pure uno requires at least one quark
*/
std::array<part_mask,2> PhaseSpacePoint::allowed_incoming(
Process const & proc,
double const subl_chance, Subleading const subl_channels,
HEJ::RNG & ran
){
// all possible incoming states
std::array<part_mask,2> allowed_partons{
init_allowed(proc.incoming[0]),
init_allowed(proc.incoming[1])
};
// special case A/W/Z
if(proc.boson && is_AWZ_proccess(proc)){
allowed_partons = incoming_AWZ(proc, subl_channels, allowed_partons, ran);
}
// special case: pure subleading
if(subl_chance!=1.){
return allowed_partons;
}
auto other_channels = subl_channels;
// pure eqqx
other_channels.reset(subleading::eqqx);
if(other_channels.none()){
return incoming_eqqx(allowed_partons, ran);
}
other_channels = subl_channels;
// pure uno
other_channels.reset(subleading::uno);
if(other_channels.none()){
return incoming_uno(allowed_partons, ran);
}
return allowed_partons;
}
void PhaseSpacePoint::reconstruct_incoming(
Process const & proc,
double const subl_chance, Subleading const subl_channels,
HEJ::PDF & pdf, double E_beam,
double uf,
HEJ::RNG & ran
){
std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_);
// calculate xa, xb
const double sqrts=2*E_beam;
const double xa=(incoming_[0].E()-incoming_[0].pz())/sqrts;
const double xb=(incoming_[1].E()+incoming_[1].pz())/sqrts;
// abort if phase space point is outside of collider energy reach
if (xa>1. || xb>1.){
weight_=0;
status_ = Status::too_much_energy;
return;
}
auto const & ids = proc.incoming;
std::array<part_mask,2> allowed_partons
= allowed_incoming(proc, subl_chance, subl_channels, ran);
for(size_t i = 0; i < 2; ++i){
if(ids[i] == HEJ::pid::proton || ids[i] == HEJ::pid::p_bar){
// pick ids according to pdfs
incoming_[i].type =
generate_incoming_id(i, i?xb:xa, uf, pdf, allowed_partons[i], ran);
} else {
assert(allowed_partons[i][pid_to_index(ids[i])]);
incoming_[i].type = ids[i];
}
}
assert(momentum_conserved(1e-7));
}
HEJ::ParticleID PhaseSpacePoint::generate_incoming_id(
size_t const beam_idx, double const x, double const uf,
HEJ::PDF & pdf, part_mask allowed_partons, HEJ::RNG & ran
){
std::array<double,11> pdf_wt;
pdf_wt[0] = allowed_partons[0]?
std::fabs(pdf.pdfpt(beam_idx,x,uf,HEJ::pid::gluon)):0.;
double pdftot = pdf_wt[0];
for(size_t i = 1; i < pdf_wt.size(); ++i){
pdf_wt[i] = allowed_partons[i]?
4./9.*std::fabs(pdf.pdfpt(beam_idx,x,uf,index_to_pid(i))):0;
pdftot += pdf_wt[i];
}
const double r1 = pdftot * ran.flat();
double sum = 0;
for(size_t i=0; i < pdf_wt.size(); ++i){
if (r1 < (sum+=pdf_wt[i])){
weight_*= pdftot/pdf_wt[i];
return index_to_pid(i);
}
}
std::cerr << "Error in choosing incoming parton: "<<x<<" "<<uf<<" "
<<sum<<" "<<pdftot<<" "<<r1<<std::endl;
throw std::logic_error{"Failed to choose parton flavour"};
}
void PhaseSpacePoint::couple_boson(
HEJ::ParticleID const boson, HEJ::RNG & ran
){
if(std::abs(boson) != HEJ::pid::Wp) return; // only matters for W
/// @TODO this could be use to sanity check gamma and Z
// find all possible quarks
std::vector<PartonIterator> allowed_parts;
for(auto part_it=begin_partons(); part_it!=end_partons(); ++part_it){
// Wp -> up OR anti-down, Wm -> anti-up OR down, no bottom
if ( can_couple_to_W(*part_it, boson) )
allowed_parts.push_back(part_it);
}
if(allowed_parts.size() == 0){
throw std::logic_error{"Found no parton for coupling with boson"};
}
// select one and flip it
size_t idx = 0;
if(allowed_parts.size() > 1){
/// @TODO more efficient sampling
/// old code: probability[i] = exp(parton[i].y - W.y)
idx = std::floor(ran.flat()*allowed_parts.size());
weight_ *= allowed_parts.size();
}
const int W_charge = boson>0?1:-1;
allowed_parts[idx]->type =
static_cast<HEJ::ParticleID>( allowed_parts[idx]->type - W_charge );
}
double PhaseSpacePoint::random_normal( double stddev, HEJ::RNG & ran ){
const double r1 = ran.flat();
const double r2 = ran.flat();
const double lninvr1 = -std::log(r1);
const double result = stddev*std::sqrt(2.*lninvr1)*std::cos(2.*M_PI*r2);
weight_ *= exp(result*result/(2*stddev*stddev))*std::sqrt(2.*M_PI)*stddev;
return result;
}
bool PhaseSpacePoint::momentum_conserved(double ep) const{
fastjet::PseudoJet diff;
for(auto const & in: incoming()) diff += in.p;
for(auto const & out: outgoing()) diff -= out.p;
return HEJ::nearby_ep(diff, fastjet::PseudoJet{}, ep);
}
Decay PhaseSpacePoint::select_decay_channel(
std::vector<Decay> const & decays,
HEJ::RNG & ran
){
double br_total = 0.;
for(auto const & decay: decays) br_total += decay.branching_ratio;
// adjust weight
// this is given by (channel branching ratio)/(chance to pick channel)
// where (chance to pick channel) =
// (channel branching ratio)/(total branching ratio)
weight_ *= br_total;
if(decays.size()==1) return decays.front();
const double r1 = br_total*ran.flat();
double br_sum = 0.;
for(auto const & decay: decays){
br_sum += decay.branching_ratio;
if(r1 < br_sum) return decay;
}
throw std::logic_error{"unreachable"};
}
std::vector<HEJ::Particle> PhaseSpacePoint::decay_boson(
HEJ::Particle const & parent,
std::vector<Decay> const & decays,
HEJ::RNG & ran
){
const auto channel = select_decay_channel(decays, ran);
return decay_boson(parent, channel.products, ran);
}
std::vector<HEJ::Particle> PhaseSpacePoint::decay_boson(
HEJ::Particle const & parent,
std::vector<HEJ::ParticleID> const & decays,
HEJ::RNG & ran
){
if(decays.size() != 2){
throw HEJ::not_implemented{
"only decays into two particles are implemented"
};
}
std::vector<HEJ::Particle> decay_products(decays.size());
for(size_t i = 0; i < decays.size(); ++i){
decay_products[i].type = decays[i];
}
// choose polar and azimuth angle in parent rest frame
const double E = parent.m()/2;
const double theta = 2.*M_PI*ran.flat();
const double cos_phi = 2.*ran.flat()-1.; // Jacobian Factors for W in line 418
const double sin_phi = std::sqrt(1. - cos_phi*cos_phi); // Know 0 < phi < pi
const double px = E*std::cos(theta)*sin_phi;
const double py = E*std::sin(theta)*sin_phi;
const double pz = E*cos_phi;
decay_products[0].p.reset(px, py, pz, E);
decay_products[1].p.reset(-px, -py, -pz, E);
for(auto & particle: decay_products) particle.p.boost(parent.p);
return decay_products;
}
}
diff --git a/FixedOrderGen/t/CMakeLists.txt b/FixedOrderGen/t/CMakeLists.txt
index 0cc08e5..ef2d76f 100644
--- a/FixedOrderGen/t/CMakeLists.txt
+++ b/FixedOrderGen/t/CMakeLists.txt
@@ -1,200 +1,205 @@
set(tst_dir "${CMAKE_CURRENT_SOURCE_DIR}")
set(runcard_dir ${tst_dir}/runcards)
function(add_long_test)
set(options NONE)
set(oneValueArgs NAME)
set(multiValueArgs COMMAND)
cmake_parse_arguments(TEST "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(
NAME ${TEST_NAME}_short
COMMAND ${TEST_COMMAND} short
)
if(TEST_ALL)
add_test(
NAME ${TEST_NAME}
COMMAND ${TEST_COMMAND}
)
endif()
endfunction()
foreach(tst W_reconstruct_enu W_2j_classify W_nj_classify)
add_executable(test_${tst} ${tst_dir}/${tst}.cc)
target_link_libraries(test_${tst} hejfog_lib)
add_test(NAME ${tst}
COMMAND test_${tst}
WORKING_DIRECTORY ${runcard_dir}
)
endforeach()
# this only tests if the runcard actually works, not if the result is correct
add_test(
NAME main_2j
COMMAND HEJFOG ${runcard_dir}/2j.yml
)
add_test(
NAME main_h2j
COMMAND HEJFOG ${runcard_dir}/h2j.yml
)
add_test(
NAME main_h2j_decay
COMMAND HEJFOG ${runcard_dir}/h2j_decay.yml
)
add_test(
NAME peakpt
COMMAND HEJFOG ${runcard_dir}/2j_peak.yml
)
+# special case where coupling not trivial
+add_test(
+ NAME main_W4j_uno+eqqx
+ COMMAND HEJFOG ${runcard_dir}/Wp4j_uno+eqqx.yml
+)
# check that uno emission doesn't change FKL xs
add_executable(FKL_uno FKL_uno.cc)
target_link_libraries(FKL_uno hejfog_lib)
add_test(
NAME FKL_uno
# calculated with HEJ revision 9570e3809613272ac4b8bf3236279ba23cf64d20
COMMAND FKL_uno ${runcard_dir}/h3j_uno.yml 0.0243548 0.000119862
)
# xs tests
add_executable(xs_gen xs_gen.cc)
target_link_libraries(xs_gen hejfog_lib)
## Higgs
add_test(
NAME xs_hqQ
# calculated with Sherpa see #132
COMMAND xs_gen ${runcard_dir}/hqQ.yml 1.612e-02 1.26303e-04
)
add_test(
NAME xs_h2j
# calculated with HEJ revision 9570e3809613272ac4b8bf3236279ba23cf64d20
COMMAND xs_gen ${runcard_dir}/h2j.yml 2.04928 0.00956022
)
add_test(
NAME xs_h3j
# calculated with HEJ revision bd4388fe55cbc3f5a7b6139096456c551294aa31
COMMAND xs_gen ${runcard_dir}/h3j.yml 1.07807 0.0132409
)
add_long_test(
NAME xs_h3j_uno
# calculated with HEJ revision 9570e3809613272ac4b8bf3236279ba23cf64d20
COMMAND xs_gen ${runcard_dir}/h3j_uno.yml 0.00347538 3.85875e-05
)
add_test(
NAME xs_h5j
# calculated with HEJ revision dbde2ffbb3b383ae6709b2424d8f0f9d5658270b
COMMAND xs_gen ${runcard_dir}/h5j.yml 0.0112504 0.000199633
)
add_test(
NAME xs_h2j_decay
# calculated with HEJ revision 9570e3809613272ac4b8bf3236279ba23cf64d20
COMMAND xs_gen ${runcard_dir}/h2j_decay.yml 0.00466994 2.20995e-05
)
## pure jets
add_test(
NAME xs_qQ
# calculated with Sherpa see #132
COMMAND xs_gen ${runcard_dir}/qQ.yml 7.354e+05 1.905e+03
)
add_test(
NAME xs_2j
# calculated with "combined" HEJ svn r3480
COMMAND xs_gen ${runcard_dir}/2j.yml 86.42031848e06 590570
)
add_test(
NAME xs_3j_uno
# calculated with HEJ revision 9401196fba75b5d16bc33f2a309175fecaca00f1
COMMAND xs_gen ${runcard_dir}/3j_uno.yml 900 14.3131
)
add_test(
NAME xs_3j_qqx
# calculated with HEJ revision 9401196fba75b5d16bc33f2a309175fecaca00f1
COMMAND xs_gen ${runcard_dir}/3j_qqx.yml 62040 1005
)
add_test(
NAME xs_4j_qqx
# calculated with HEJ revision 9401196fba75b5d16bc33f2a309175fecaca00f1
COMMAND xs_gen ${runcard_dir}/4j_qqx.yml 28936 550
)
add_test(
NAME xs_4j
# calculated with HEJ revision 13207b5f67a5f40a2141aa7ee515b022bd4efb65
COMMAND xs_gen ${runcard_dir}/4j.yml 915072 15402.4
)
## W
add_test(
NAME xs_WqQ
# calculated with Sherpa see #132
COMMAND xs_gen ${runcard_dir}/WpqQ.yml 3.086e+00 4.511e-02
)
add_test(
NAME xs_W2j
# calculated with HEJ revision 449f2f6b597020e9c9e35699568edc05c827fc11+1
COMMAND xs_gen ${runcard_dir}/Wm2j.yml 4.177443e+02 7.446928e+00
)
add_long_test(
NAME xs_W3j_eqqx
# calculated with HEJ revision 449f2f6b597020e9c9e35699568edc05c827fc11+1
COMMAND xs_gen ${runcard_dir}/Wp3j_qqx.yml 8.710751e+00 1.245725e-01
)
add_long_test(
NAME xs_W3j_uno
# calculated with HEJ revision 449f2f6b597020e9c9e35699568edc05c827fc11+1
COMMAND xs_gen ${runcard_dir}/Wp3j_uno.yml 3.000955e-01 5.831799e-03
)
add_long_test(
NAME xs_W4j_qqx
# calculated with HEJ revision be065dc9a21e5965ce57583f6c0a3d953664b82b
COMMAND xs_gen ${runcard_dir}/Wp4j_qqx.yml 9.274718e-02 4.875742e-03
)
# Test that sum of partons == proton
add_executable(PSP_channel PSP_channel.cc)
target_link_libraries(PSP_channel hejfog_lib)
# pure jets
add_test(
NAME channel_2j
COMMAND PSP_channel ${runcard_dir}/2j.yml
)
add_test(
NAME channel_3j_qqx
COMMAND PSP_channel ${runcard_dir}/3j_qqx.yml
)
add_test(
NAME channel_3j_uno
COMMAND PSP_channel ${runcard_dir}/3j_uno.yml
)
add_long_test(
NAME channel_4j_qqx
COMMAND PSP_channel ${runcard_dir}/4j_qqx.yml
)
# W+jets
# pure jets
add_test(
NAME channel_W2j
COMMAND PSP_channel ${runcard_dir}/Wm2j.yml
)
add_test(
NAME channel_W3j_uno
COMMAND PSP_channel ${runcard_dir}/Wp3j_uno.yml
)
add_test(
NAME channel_W3j_eqqx
COMMAND PSP_channel ${runcard_dir}/Wp3j_qqx.yml
)
add_long_test(
NAME channel_W4j_qqx
COMMAND PSP_channel ${runcard_dir}/Wp4j_qqx.yml
)
# Test that each subleading channel is generated consistently
add_executable(PSP_subl PSP_subl.cc)
target_link_libraries(PSP_subl hejfog_lib)
add_long_test(
NAME subl_5j
COMMAND PSP_subl ${runcard_dir}/5j.yml
)
add_long_test(
NAME subl_h5j
COMMAND PSP_subl ${runcard_dir}/h5j.yml
)
add_long_test(
NAME subl_W5j
COMMAND PSP_subl ${runcard_dir}/Wm5j.yml
)
diff --git a/FixedOrderGen/t/runcards/Wp4j_uno+eqqx.yml b/FixedOrderGen/t/runcards/Wp4j_uno+eqqx.yml
new file mode 100644
index 0000000..fc223db
--- /dev/null
+++ b/FixedOrderGen/t/runcards/Wp4j_uno+eqqx.yml
@@ -0,0 +1,42 @@
+events: 10000
+
+jets:
+ min pt: 40
+ R: 0.4
+ algorithm: antikt
+ max rapidity: 6
+
+beam:
+ energy: 6000
+ particles: [p, p]
+
+pdf: 11000
+
+# code should enforce coupling at proton leg
+process: d p => W+ 4j
+
+subleading fraction: 1.
+subleading channels:
+ - eqqx
+ - uno
+
+scales: 125
+
+particle properties:
+ Higgs:
+ mass: 125
+ width: 0
+ W:
+ mass: 80.385
+ width: 2.085
+ Z:
+ mass: 91.187
+ width: 2.495
+
+decays:
+ Wp: {into: [e+, nu_e], branching ratio: 1}
+
+random generator:
+ name: mixmax
+
+vev: 246.2196508
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Wed, May 14, 10:15 AM (1 d, 16 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5111071
Default Alt Text
(40 KB)
Attached To
rHEJ HEJ
Event Timeline
Log In to Comment