Page MenuHomeHEPForge

No OneTemporary

diff --git a/PDF/HwRemDecayer.cc b/PDF/HwRemDecayer.cc
--- a/PDF/HwRemDecayer.cc
+++ b/PDF/HwRemDecayer.cc
@@ -1,1472 +1,1530 @@
// -*- C++ -*-
//
// HwRemDecayer.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the HwRemDecayer class.
//
#include "HwRemDecayer.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Utilities/UtilityBase.h"
#include "ThePEG/Utilities/SimplePhaseSpace.h"
#include "ThePEG/Utilities/Throw.h"
#include "Herwig/Shower/ShowerHandler.h"
using namespace Herwig;
namespace{
const bool dbg = false;
void reShuffle(Lorentz5Momentum &p1, Lorentz5Momentum &p2, Energy m1, Energy m2){
Lorentz5Momentum ptotal(p1+p2);
ptotal.rescaleMass();
if( ptotal.m() < m1+m2 ) {
if(dbg)
cerr << "Not enough energy to perform reshuffling \n";
throw HwRemDecayer::ExtraSoftScatterVeto();
}
Boost boostv = -ptotal.boostVector();
ptotal.boost(boostv);
p1.boost(boostv);
// set the masses and energies,
p1.setMass(m1);
p1.setE(0.5/ptotal.m()*(ptotal.m2()+sqr(m1)-sqr(m2)));
p1.rescaleRho();
// boost back to the lab
p1.boost(-boostv);
p2.boost(boostv);
// set the masses and energies,
p2.setMass(m2);
p2.setE(0.5/ptotal.m()*(ptotal.m2()+sqr(m2)-sqr(m1)));
p2.rescaleRho();
// boost back to the lab
p2.boost(-boostv);
}
}
void HwRemDecayer::initialize(pair<tRemPPtr, tRemPPtr> rems, tPPair beam, Step & step,
Energy forcedSplitScale) {
// the step
thestep = &step;
// valence content of the hadrons
theContent.first = getHadronContent(beam.first);
theContent.second = getHadronContent(beam.second);
// momentum extracted from the hadrons
theUsed.first = Lorentz5Momentum();
theUsed.second = Lorentz5Momentum();
theMaps.first.clear();
theMaps.second.clear();
theX.first = 0.0;
theX.second = 0.0;
theRems = rems;
_forcedSplitScale = forcedSplitScale;
// check remnants attached to the right hadrons
if( (theRems.first && parent(theRems.first ) != beam.first ) ||
(theRems.second && parent(theRems.second) != beam.second) )
throw Exception() << "Remnant order wrong in "
<< "HwRemDecayer::initialize(...)"
<< Exception::runerror;
return;
}
void HwRemDecayer::split(tPPtr parton, HadronContent & content,
tRemPPtr rem, Lorentz5Momentum & used,
PartnerMap &partners, tcPDFPtr pdf, bool first) {
theBeam = parent(rem);
theBeamData = dynamic_ptr_cast<Ptr<BeamParticleData>::const_pointer>
(theBeam->dataPtr());
double currentx = parton->momentum().rho()/theBeam->momentum().rho();
double check = rem==theRems.first ? theX.first : theX.second;
check += currentx;
if(1.0-check < 1e-3) throw ShowerHandler::ExtraScatterVeto();
bool anti;
Lorentz5Momentum lastp(parton->momentum());
int lastID(parton->id());
Energy oldQ(_forcedSplitScale);
_pdf = pdf;
//do nothing if already valence quark
if(first && content.isValenceQuark(parton)) {
//set the extracted value, because otherwise no RemID could be generated.
content.extract(lastID);
// add the particle to the colour partners
partners.push_back(make_pair(parton, tPPtr()));
//set the sign
anti = parton->hasAntiColour() && parton->id()!=ParticleID::g;
if(rem==theRems.first) theanti.first = anti;
else theanti.second = anti;
// add the x and return
if(rem==theRems.first) theX.first += currentx;
else theX.second += currentx;
return;
}
//or gluon for secondaries
else if(!first && lastID == ParticleID::g) {
partners.push_back(make_pair(parton, tPPtr()));
// add the x and return
if(rem==theRems.first) theX.first += currentx;
else theX.second += currentx;
return;
}
// if a sea quark.antiquark forced splitting to a gluon
// Create the new parton with its momentum and parent/child relationship set
PPtr newSea;
if( !(lastID == ParticleID::g ||
lastID == ParticleID::gamma) ) {
newSea = forceSplit(rem, -lastID, oldQ, currentx, lastp, used,content);
ColinePtr cl = new_ptr(ColourLine());
if(newSea->id() > 0) cl-> addColoured(newSea);
else cl->addAntiColoured(newSea);
// if a secondard scatter finished so return
if(!first || content.isValenceQuark(ParticleID::g) ){
partners.push_back(make_pair(parton, newSea));
// add the x and return
if(rem==theRems.first) theX.first += currentx;
else theX.second += currentx;
if(first) content.extract(ParticleID::g);
return;
}
}
// otherwise evolve back to valence
// final valence splitting
PPtr newValence = forceSplit(rem,
lastID!=ParticleID::gamma ?
ParticleID::g : ParticleID::gamma,
oldQ, currentx , lastp, used, content);
// extract from the hadron to allow remnant to be determined
content.extract(newValence->id());
// case of a gluon going into the hard subprocess
if( lastID == ParticleID::g ) {
partners.push_back(make_pair(parton, tPPtr()));
anti = newValence->hasAntiColour();
if(rem==theRems.first) theanti.first = anti;
else theanti.second = anti;
parton->colourLine(!anti)->addColoured(newValence, anti);
return;
}
else if( lastID == ParticleID::gamma) {
partners.push_back(make_pair(parton, newValence));
anti = newValence->hasAntiColour();
ColinePtr newLine(new_ptr(ColourLine()));
newLine->addColoured(newValence, anti);
if(rem==theRems.first) theanti.first = anti;
else theanti.second = anti;
// add the x and return
if(rem==theRems.first) theX.first += currentx;
else theX.second += currentx;
return;
}
//The valence quark will always be connected to the sea quark with opposite sign
tcPPtr particle;
if(lastID*newValence->id() < 0){
particle = parton;
partners.push_back(make_pair(newSea, tPPtr()));
}
else {
particle = newSea;
partners.push_back(make_pair(parton, tPPtr()));
}
anti = newValence->hasAntiColour();
if(rem==theRems.first) theanti.first = anti;
else theanti.second = anti;
if(particle->colourLine())
particle->colourLine()->addAntiColoured(newValence);
if(particle->antiColourLine())
particle->antiColourLine()->addColoured(newValence);
// add the x and return
if(rem==theRems.first) theX.first += currentx;
else theX.second += currentx;
return;
}
void HwRemDecayer::doSplit(pair<tPPtr, tPPtr> partons,
pair<tcPDFPtr, tcPDFPtr> pdfs,
bool first) {
if(theRems.first) {
ParticleVector children=theRems.first->children();
for(unsigned int ix=0;ix<children.size();++ix) {
if(children[ix]->dataPtr()==theRems.first->dataPtr())
theRems.first = dynamic_ptr_cast<RemPPtr>(children[ix]);
}
}
if(theRems.second) {
ParticleVector children=theRems.second->children();
for(unsigned int ix=0;ix<children.size();++ix) {
if(children[ix]->dataPtr()==theRems.second->dataPtr())
theRems.second = dynamic_ptr_cast<RemPPtr>(children[ix]);
}
}
// forced splitting for first parton
if(isPartonic(partons.first )) {
try {
split(partons.first, theContent.first, theRems.first,
theUsed.first, theMaps.first, pdfs.first, first);
}
catch(ShowerHandler::ExtraScatterVeto) {
throw ShowerHandler::ExtraScatterVeto();
}
}
// forced splitting for second parton
if(isPartonic(partons.second)) {
try {
split(partons.second, theContent.second, theRems.second,
theUsed.second, theMaps.second, pdfs.second, first);
// additional check for the remnants
// if can't do the rescale veto the emission
if(!first&&partons.first->data().coloured()&&
partons.second->data().coloured()) {
Lorentz5Momentum pnew[2]=
{theRems.first->momentum() - theUsed.first - partons.first->momentum(),
theRems.second->momentum() - theUsed.second - partons.second->momentum()};
pnew[0].setMass(getParticleData(theContent.first.RemID())->constituentMass());
pnew[0].rescaleEnergy();
pnew[1].setMass(getParticleData(theContent.second.RemID())->constituentMass());
pnew[1].rescaleEnergy();
for(unsigned int iy=0; iy<theRems.first->children().size(); ++iy)
pnew[0] += theRems.first->children()[iy]->momentum();
for(unsigned int iy=0; iy<theRems.second->children().size(); ++iy)
pnew[1] += theRems.second->children()[iy]->momentum();
Lorentz5Momentum ptotal=
theRems.first ->momentum()-partons.first ->momentum()+
theRems.second->momentum()-partons.second->momentum();
// add x limits
if(ptotal.m() < (pnew[0].m() + pnew[1].m()) ) {
if(partons.second->id() != ParticleID::g){
if(partons.second==theMaps.second.back().first)
theUsed.second -= theMaps.second.back().second->momentum();
else
theUsed.second -= theMaps.second.back().first->momentum();
thestep->removeParticle(theMaps.second.back().first);
thestep->removeParticle(theMaps.second.back().second);
}
theMaps.second.pop_back();
theX.second -= partons.second->momentum().rho()/
parent(theRems.second)->momentum().rho();
throw ShowerHandler::ExtraScatterVeto();
}
}
}
catch(ShowerHandler::ExtraScatterVeto){
if(!partons.first||!partons.second||
!theRems.first||!theRems.second)
throw ShowerHandler::ExtraScatterVeto();
//case of the first forcedSplitting worked fine
theX.first -= partons.first->momentum().rho()/
parent(theRems.first)->momentum().rho();
//case of the first interaction
//throw veto immediately, because event get rejected anyway.
if(first) throw ShowerHandler::ExtraScatterVeto();
//secondary interactions have to end on a gluon, if parton
//was NOT a gluon, the forced splitting particles must be removed
if(partons.first->id() != ParticleID::g) {
if(partons.first==theMaps.first.back().first)
theUsed.first -= theMaps.first.back().second->momentum();
else
theUsed.first -= theMaps.first.back().first->momentum();
thestep->removeParticle(theMaps.first.back().first);
thestep->removeParticle(theMaps.first.back().second);
}
theMaps.first.pop_back();
throw ShowerHandler::ExtraScatterVeto();
}
}
// veto if not enough energy for extraction
if( !first &&(theRems.first ->momentum().e() -
partons.first ->momentum().e() < 1.0e-3*MeV ||
theRems.second->momentum().e() -
partons.second->momentum().e() < 1.0e-3*MeV )) {
if(partons.first->id() != ParticleID::g) {
if(partons.first==theMaps.first.back().first)
theUsed.first -= theMaps.first.back().second->momentum();
else
theUsed.first -= theMaps.first.back().first->momentum();
thestep->removeParticle(theMaps.first.back().first);
thestep->removeParticle(theMaps.first.back().second);
}
theMaps.first.pop_back();
if(partons.second->id() != ParticleID::g) {
if(partons.second==theMaps.second.back().first)
theUsed.second -= theMaps.second.back().second->momentum();
else
theUsed.second -= theMaps.second.back().first->momentum();
thestep->removeParticle(theMaps.second.back().first);
thestep->removeParticle(theMaps.second.back().second);
}
theMaps.second.pop_back();
throw ShowerHandler::ExtraScatterVeto();
}
}
void HwRemDecayer::mergeColour(tPPtr pold, tPPtr pnew, bool anti) const {
ColinePtr clnew, clold;
//save the corresponding colour lines
clold = pold->colourLine(anti);
clnew = pnew->colourLine(!anti);
assert(clold);
// There is already a colour line (not the final diquark)
if(clnew){
if( (clnew->coloured().size() + clnew->antiColoured().size()) > 1 ){
if( (clold->coloured().size() + clold->antiColoured().size()) > 1 ){
//join the colour lines
//I don't use the join method, because potentially only (anti)coloured
//particles belong to one colour line
if(clold!=clnew){//procs are not already connected
while ( !clnew->coloured().empty() ) {
tPPtr p = clnew->coloured()[0];
clnew->removeColoured(p);
clold->addColoured(p);
}
while ( !clnew->antiColoured().empty() ) {
tPPtr p = clnew->antiColoured()[0];
clnew->removeAntiColoured(p);
clold->addAntiColoured(p);
}
}
}else{
//if pold is the only member on it's
//colour line, remove it.
clold->removeColoured(pold, anti);
//and add it to clnew
clnew->addColoured(pold, anti);
}
} else{//pnnew is the only member on it's colour line.
clnew->removeColoured(pnew, !anti);
clold->addColoured(pnew, !anti);
}
} else {//there is no coline at all for pnew
clold->addColoured(pnew, !anti);
}
}
void HwRemDecayer::fixColours(PartnerMap partners, bool anti,
double colourDisrupt) const {
PartnerMap::iterator prev;
tPPtr pnew, pold;
assert(partners.size()>=2);
PartnerMap::iterator it=partners.begin();
while(it != partners.end()) {
//skip the first one to have a partner
if(it==partners.begin()){
it++;
continue;
}
prev = it - 1;
//determine the particles to work with
pold = prev->first;
if(prev->second) {
if(!pold->coloured())
pold = prev->second;
else if(pold->hasAntiColour() != anti)
pold = prev->second;
}
assert(pold);
pnew = it->first;
if(it->second) {
if(it->second->colourLine(!anti)) //look for the opposite colour
pnew = it->second;
}
assert(pnew);
// Implement the disruption of colour connections
if( it != partners.end()-1 ) {//last one is diquark-has to be connected
//has to be inside the if statement, so that the probability is
//correctly counted:
if( UseRandom::rnd() < colourDisrupt ){
if(!it->second){//check, whether we have a gluon
mergeColour(pnew, pnew, anti);
}else{
if(pnew==it->first)//be careful about the order
mergeColour(it->second, it->first, anti);
else
mergeColour(it->first, it->second, anti);
}
it = partners.erase(it);
continue;
}
}
// regular merging
mergeColour(pold, pnew, anti);
//end of loop
it++;
}
return;
}
PPtr HwRemDecayer::forceSplit(const tRemPPtr rem, long child, Energy &lastQ,
double &lastx, Lorentz5Momentum &pf,
Lorentz5Momentum &p,
HadronContent & content) const {
static const double eps=1e-6;
// beam momentum
Lorentz5Momentum beam = theBeam->momentum();
// the last scale is minimum of last value and upper limit
Energy minQ=_range*_kinCutoff*sqrt(lastx)/(1-lastx);
if(minQ>lastQ) lastQ=minQ;
// generate the new value of qtilde
// weighted towards the lower value: dP/dQ = 1/Q -> Q(R) =
// Q0 (Qmax/Q0)^R
Energy q;
unsigned int ntry=0,maxtry=100;
double xExtracted = rem==theRems.first ? theX.first : theX.second;
double zmin= lastx/(1.-xExtracted) ,zmax,yy;
if(1-lastx<eps) throw ShowerHandler::ExtraScatterVeto();
do {
q = minQ*pow(lastQ/minQ,UseRandom::rnd());
yy = 1.+0.5*sqr(_kinCutoff/q);
zmax = yy - sqrt(sqr(yy)-1.);
++ntry;
}
while(zmax<zmin&&ntry<maxtry);
if(ntry==maxtry) throw ShowerHandler::ExtraScatterVeto();
if(zmax-zmin<eps) throw ShowerHandler::ExtraScatterVeto();
// now generate z as in FORTRAN HERWIG
// use y = ln(z/(1-z)) as integration variable
double ymin=log(zmin/(1.-zmin));
double ymax=log(zmax/(1.-zmax));
double dely=ymax-ymin;
unsigned int nz=_nbinmax;
dely/=nz;
yy=ymin+0.5*dely;
vector<int> ids;
if(child==21||child==22) {
ids=content.flav;
for(unsigned int ix=0;ix<ids.size();++ix) ids[ix] *= content.sign;
}
else {
ids.push_back(ParticleID::g);
}
// probabilities of the different types of possible splitting
map<long,pair<double,vector<double> > > partonprob;
double ptotal(0.);
for(unsigned int iflav=0;iflav<ids.size();++iflav) {
// only do each parton once
if(partonprob.find(ids[iflav])!=partonprob.end()) continue;
// particle data object
tcPDPtr in = getParticleData(ids[iflav]);
double psum(0.);
vector<double> prob;
for(unsigned int iz=0;iz<nz;++iz) {
double ez=exp(yy);
double wr=1.+ez;
double zr=wr/ez;
double wz=1./wr;
double zz=wz*ez;
double coup = child!=22 ?
_alphaS ->value(sqr(max(wz*q,_kinCutoff))) :
_alphaEM->value(sqr(max(wz*q,_kinCutoff)));
double az=wz*zz*coup;
// g -> q qbar
if(ids[iflav]==ParticleID::g) {
// calculate splitting function
// SP as q is always less than forcedSplitScale, the pdf scale is fixed
// pdfval = _pdf->xfx(theBeamData,in,sqr(q),lastx*zr);
double pdfval=_pdf->xfx(theBeamData,in,sqr(_forcedSplitScale),lastx*zr);
if(pdfval>0.) psum += pdfval*az*0.5*(sqr(zz)+sqr(wz));
}
// q -> q g
else {
// calculate splitting function
// SP as q is always less than forcedSplitScale, the pdf scale is fixed
// pdfval = _pdf->xfx(theBeamData,in,sqr(q),lastx*zr);
double pdfval=_pdf->xfx(theBeamData,in,sqr(_forcedSplitScale),lastx*zr);
if(pdfval>0.) psum += pdfval*az*4./3.*(1.+sqr(wz))*zr;
}
if(psum>0.) prob.push_back(psum);
yy+=dely;
}
if(psum>0.) partonprob[ids[iflav]] = make_pair(psum,prob);
ptotal+=psum;
}
// select the flavour
if(ptotal==0.) throw ShowerHandler::ExtraScatterVeto();
ptotal *= UseRandom::rnd();
map<long,pair<double,vector<double> > >::const_iterator pit;
for(pit=partonprob.begin();pit!=partonprob.end();++pit) {
if(pit->second.first>=ptotal) break;
else ptotal -= pit->second.first;
}
if(pit==partonprob.end())
throw Exception() << "Can't select parton for forced backward evolution in "
<< "HwRemDecayer::forceSplit" << Exception::eventerror;
// select z
unsigned int iz=0;
for(;iz<pit->second.second.size();++iz) {
if(pit->second.second[iz]>ptotal) break;
}
if(iz==pit->second.second.size()) --iz;
double ey=exp(ymin+dely*(float(iz+1)-UseRandom::rnd()));
double z=ey/(1.+ey);
Energy2 pt2=sqr((1.-z)*q)- z*sqr(_kinCutoff);
// create the particle
if(pit->first!=ParticleID::g) child=pit->first;
PPtr parton = getParticleData(child)->produceParticle();
Energy2 emittedm2 = sqr(parton->dataPtr()->constituentMass());
// Now boost pcm and pf to z only frame
Lorentz5Momentum p_ref = Lorentz5Momentum(ZERO, beam.vect());
Lorentz5Momentum n_ref = Lorentz5Momentum(ZERO, -beam.vect());
// generate phi and compute pt of branching
double phi = Constants::twopi*UseRandom::rnd();
Energy pt=sqrt(pt2);
Lorentz5Momentum qt = LorentzMomentum(pt*cos(phi), pt*sin(phi), ZERO, ZERO);
Axis axis(p_ref.vect().unit());
if(axis.perp2()>0.) {
LorentzRotation rot;
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
rot.setRotate(acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
qt.transform(rot);
}
// compute alpha for previous particle
Energy2 p_dot_n = p_ref*n_ref;
double lastalpha = pf*n_ref/p_dot_n;
Lorentz5Momentum qtout=qt;
Energy2 qtout2=-qt*qt;
double alphaout=(1.-z)/z*lastalpha;
double betaout=0.5*(emittedm2+qtout2)/alphaout/p_dot_n;
Lorentz5Momentum k=alphaout*p_ref+betaout*n_ref+qtout;
k.rescaleMass();
parton->set5Momentum(k);
pf+=k;
lastQ=q;
lastx/=z;
p += parton->momentum();
thestep->addDecayProduct(rem,parton,false);
return parton;
}
void HwRemDecayer::setRemMasses() const {
// get the masses of the remnants
Energy mrem[2];
Lorentz5Momentum ptotal,pnew[2];
vector<tRemPPtr> theprocessed;
theprocessed.push_back(theRems.first);
theprocessed.push_back(theRems.second);
// one remnant in e.g. DIS
if(!theprocessed[0]||!theprocessed[1]) {
tRemPPtr rem = theprocessed[0] ? theprocessed[0] : theprocessed[1];
Lorentz5Momentum deltap(rem->momentum());
// find the diquark and momentum we still need in the energy
tPPtr diquark;
vector<PPtr> progenitors;
for(unsigned int ix=0;ix<rem->children().size();++ix) {
if(!DiquarkMatcher::Check(rem->children()[ix]->data())) {
progenitors.push_back(rem->children()[ix]);
deltap -= rem->children()[ix]->momentum();
}
else
diquark = rem->children()[ix];
}
// now find the total momentum of the hadronic final-state to
// reshuffle against
// find the hadron for this remnant
tPPtr hadron=rem;
do hadron=hadron->parents()[0];
while(!hadron->parents().empty());
// find incoming parton to hard process from this hadron
tPPtr hardin =
generator()->currentEvent()->primaryCollision()->incoming().first==hadron ?
generator()->currentEvent()->primarySubProcess()->incoming().first :
generator()->currentEvent()->primarySubProcess()->incoming().second;
tPPtr parent=hardin;
vector<PPtr> tempprog;
// find the outgoing particles emitted from the backward shower
do {
assert(!parent->parents().empty());
tPPtr newparent=parent->parents()[0];
if(newparent==hadron) break;
for(unsigned int ix=0;ix<newparent->children().size();++ix) {
if(newparent->children()[ix]!=parent)
findChildren(newparent->children()[ix],tempprog);
}
parent=newparent;
}
while(parent!=hadron);
// add to list of potential particles to reshuffle against in right order
for(unsigned int ix=tempprog.size();ix>0;--ix) progenitors.push_back(tempprog[ix-1]);
// final-state particles which are colour connected
tColinePair lines = make_pair(hardin->colourLine(),hardin->antiColourLine());
vector<PPtr> others;
for(ParticleVector::const_iterator
cit = generator()->currentEvent()->primarySubProcess()->outgoing().begin();
cit!= generator()->currentEvent()->primarySubProcess()->outgoing().end();++cit) {
// colour connected
if(lines.first&&lines.first==(**cit).colourLine()) {
findChildren(*cit,progenitors);
continue;
}
// anticolour connected
if(lines.second&&lines.second==(**cit).antiColourLine()) {
findChildren(*cit,progenitors);
continue;
}
// not connected
for(unsigned int ix=0;ix<(**cit).children().size();++ix)
others.push_back((**cit).children()[ix]);
}
// work out how much of the system needed for rescaling
unsigned int iloc=0;
Lorentz5Momentum psystem,ptotal;
do {
psystem+=progenitors[iloc]->momentum();
ptotal = psystem + deltap;
ptotal.rescaleMass();
psystem.rescaleMass();
++iloc;
if(ptotal.mass() > psystem.mass() + diquark->mass() &&
psystem.mass()>1*MeV && DISRemnantOpt_<2 && ptotal.e() > 0.*GeV ) break;
}
while(iloc<progenitors.size());
if(ptotal.mass() > psystem.mass() + diquark->mass()) --iloc;
if(iloc==progenitors.size()) {
// try touching the lepton in dis as a last restort
for(unsigned int ix=0;ix<others.size();++ix) {
progenitors.push_back(others[ix]);
psystem+=progenitors[iloc]->momentum();
ptotal = psystem + deltap;
ptotal.rescaleMass();
psystem.rescaleMass();
++iloc;
}
--iloc;
if(ptotal.mass() > psystem.mass() + diquark->mass()) {
if(DISRemnantOpt_==0||DISRemnantOpt_==2)
Throw<Exception>() << "Warning had to adjust the momentum of the"
<< " non-colour connected"
<< " final-state, e.g. the scattered lepton in DIS"
<< Exception::warning;
else
throw Exception() << "Can't set remnant momentum without adjusting "
<< "the momentum of the"
<< " non-colour connected"
<< " final-state, e.g. the scattered lepton in DIS"
<< " vetoing event"
<< Exception::eventerror;
}
else {
throw Exception() << "Can't put the remnant on-shell in HwRemDecayer::setRemMasses()"
<< Exception::eventerror;
}
}
psystem.rescaleMass();
LorentzRotation R = Utilities::getBoostToCM(make_pair(psystem, deltap));
Energy pz = SimplePhaseSpace::getMagnitude(sqr(ptotal.mass()),
psystem.mass(), diquark->mass());
LorentzRotation Rs(-(R*psystem).boostVector());
Rs.boost(0.0, 0.0, pz/sqrt(sqr(pz) + sqr(psystem.mass())));
Rs = Rs*R;
// put remnant on shell
deltap.transform(R);
deltap.setMass(diquark->mass());
deltap.setE(sqrt(sqr(diquark->mass())+sqr(pz)));
deltap.rescaleRho();
R.invert();
deltap.transform(R);
Rs = R*Rs;
// apply transformation to required particles to absorb recoil
for(unsigned int ix=0;ix<=iloc;++ix) {
progenitors[ix]->deepTransform(Rs);
}
diquark->set5Momentum(deltap);
}
// two remnants
else {
for(unsigned int ix=0;ix<2;++ix) {
if(!theprocessed[ix]) continue;
pnew[ix]=Lorentz5Momentum();
for(unsigned int iy=0;iy<theprocessed[ix]->children().size();++iy) {
pnew[ix]+=theprocessed[ix]->children()[iy]->momentum();
}
mrem[ix]=sqrt(pnew[ix].m2());
}
// now find the remnant remnant cmf frame
Lorentz5Momentum prem[2]={theprocessed[0]->momentum(),
theprocessed[1]->momentum()};
ptotal=prem[0]+prem[1];
ptotal.rescaleMass();
// boost momenta to this frame
if(ptotal.m()< (pnew[0].m()+pnew[1].m()))
throw Exception() << "Not enough energy in both remnants in "
<< "HwRemDecayer::setRemMasses() "
<< Exception::eventerror;
Boost boostv(-ptotal.boostVector());
ptotal.boost(boostv);
for(unsigned int ix=0;ix<2;++ix) {
prem[ix].boost(boostv);
// set the masses and energies,
prem[ix].setMass(mrem[ix]);
prem[ix].setE(0.5/ptotal.m()*(sqr(ptotal.m())+sqr(mrem[ix])-sqr(mrem[1-ix])));
prem[ix].rescaleRho();
// boost back to the lab
prem[ix].boost(-boostv);
// set the momenta of the remnants
theprocessed[ix]->set5Momentum(prem[ix]);
}
// boost the decay products
Lorentz5Momentum ptemp;
for(unsigned int ix=0;ix<2;++ix) {
Boost btorest(-pnew[ix].boostVector());
Boost bfmrest( prem[ix].boostVector());
for(unsigned int iy=0;iy<theprocessed[ix]->children().size();++iy) {
ptemp=theprocessed[ix]->children()[iy]->momentum();
ptemp.boost(btorest);
ptemp.boost(bfmrest);
theprocessed[ix]->children()[iy]->set5Momentum(ptemp);
}
}
}
}
void HwRemDecayer::initSoftInteractions(Energy ptmin, InvEnergy2 beta){
ptmin_ = ptmin;
beta_ = beta;
}
Energy HwRemDecayer::softPt() const {
Energy2 pt2(ZERO);
double xmin(0.0), xmax(1.0), x(0);
if(beta_ == ZERO){
return UseRandom::rnd(0.0,(double)(ptmin_/GeV))*GeV;
}
if(beta_ < ZERO){
xmin = 1.0;
xmax = exp( -beta_*sqr(ptmin_) );
}else{
xmin = exp( -beta_*sqr(ptmin_) );
xmax = 1.0;
}
x = UseRandom::rnd(xmin, xmax);
pt2 = 1.0/beta_ * log(1/x);
if( pt2 < ZERO || pt2 > sqr(ptmin_) )
throw Exception() << "HwRemDecayer::softPt generation of pt "
<< "outside allowed range [0," << ptmin_/GeV << "]."
<< Exception::runerror;
return sqrt(pt2);
}
void HwRemDecayer::softKinematics(Lorentz5Momentum &r1, Lorentz5Momentum &r2,
Lorentz5Momentum &g1, Lorentz5Momentum &g2) const {
g1 = Lorentz5Momentum();
g2 = Lorentz5Momentum();
//All necessary variables for the two soft gluons
Energy pt(softPt()), pz(ZERO);
Energy2 pz2(ZERO);
double phi(UseRandom::rnd(2.*Constants::pi));
double x_g1(0.0), x_g2(0.0);
//Get the external momenta
tcPPair beam(generator()->currentEventHandler()->currentCollision()->incoming());
Lorentz5Momentum P1(beam.first->momentum()), P2(beam.second->momentum());
if(dbg){
cerr << "new event --------------------\n"
<< *(beam.first) << *(softRems_.first)
<< "-------------------\n"
<< *(beam.second) << *(softRems_.second) << endl;
}
//Get x_g1 and x_g2
//first limits
double xmin = sqr(ptmin_)/4.0/(P1+P2).m2();
double x1max = (r1.e()+abs(r1.z()))/(P1.e() + abs(P1.z()));
double x2max = (r2.e()+abs(r2.z()))/(P2.e() + abs(P2.z()));
//modified
if(!multiPeriph_){
//now generate according to 1/x
x_g1 = xmin * exp(UseRandom::rnd(log(x1max/xmin)));
x_g2 = xmin * exp(UseRandom::rnd(log(x2max/xmin)));
}else{
- double x1, x2;
- do{
- x1 = UseRandom::rndGauss(0.1,0.5);
- x2 = UseRandom::rndGauss(0.1,0.5);
- }while(x1>=1.0||x2>=1.0);
- x_g1 = x1max*x1;
- x_g2 = x2max*x2;
+ if(valOfN_==0) return;
+ double x1;
+ double param = (1/(2*valOfN_-1))*initTotRap_;
+ do{
+ // need 1-x instead of x to get the proper final momenta
+ x1 = UseRandom::rndGauss(0.05, 1 - (exp(param)-1)/exp(param));
+ }while(x1>=1.0);
+ //x1 = 1 - (exp(param)-1)/exp(param);
+ x_g1 = x1max*x1;
+ x_g2 = x2max*x1;
+
+ //double x1, x2;
+ //do{
+ // x1 = UseRandom::rndGauss(0.05,0.5);
+ // //x2 = UseRandom::rndGauss(0.05,0.5);
+ // //x2 = x1;
+ ////}while(x1>=1.0||x2>=1.0);
+ //}while(x1>=1.0);
+ //x1=1-x1;
+ //x2=x1;
+ //x_g1 = x1max*x1;
+ //x_g2 = x2max*x2;
+ //cout<<"x1: "<<x1<<" x2: "<<x2<<endl;
}
if(dbg)
cerr << x1max << " " << x_g1 << endl << x2max << " " << x_g2 << endl;
Lorentz5Momentum ig1, ig2, cmf;
ig1 = x_g1*P1;
ig2 = x_g2*P2;
//new
//parton mass
Energy mp;
if(quarkPair_){
mp = getParticleData(ParticleID::u)->constituentMass();
}else{
mp = mg_;
}
ig1.setMass(mp);
ig2.setMass(mp);
ig1.rescaleEnergy();
ig2.rescaleEnergy();
cmf = ig1 + ig2;
//boost vector from cmf to lab
Boost boostv(cmf.boostVector());
//outgoing gluons in cmf
g1.setMass(mp);
g2.setMass(mp);
g1.setX(pt*cos(phi));
g2.setX(-pt*cos(phi));
g1.setY(pt*sin(phi));
g2.setY(-pt*sin(phi));
pz2 = cmf.m2()/4 - sqr(mp) - sqr(pt);
if(pz2/GeV2 < 0.0){
if(dbg)
cerr << "EXCEPTION not enough energy...." << endl;
throw ExtraSoftScatterVeto();
}
//modified
if(!multiPeriph_){
if(UseRandom::rndbool())
pz = sqrt(pz2);
else
pz = -sqrt(pz2);
}else{
pz = pz2/GeV2 > 0 ? sqrt(pz2) : sqrt(0.0*GeV2);
}
if(dbg)
cerr << "pz has been calculated to: " << pz/GeV << endl;
g1.setZ(pz);
g2.setZ(-pz);
g1.rescaleEnergy();
g2.rescaleEnergy();
if(dbg){
cerr << "check inv mass in cmf frame: " << (g1+g2).m()/GeV
<< " vs. lab frame: " << (ig1+ig2).m()/GeV << endl;
}
g1.boost(boostv);
g2.boost(boostv);
//recalc the remnant momenta
Lorentz5Momentum r1old(r1), r2old(r2);
r1 -= ig1;
r2 -= ig2;
try{
reShuffle(r1, r2, r1old.m(), r2old.m());
}catch(ExtraSoftScatterVeto){
r1 = r1old;
r2 = r2old;
throw ExtraSoftScatterVeto();
}
if(dbg){
cerr << "remnant 1,2 momenta: " << r1/GeV << "--" << r2/GeV << endl;
cerr << "remnant 1,2 masses: " << r1.m()/GeV << " " << r2.m()/GeV << endl;
cerr << "check momenta in the lab..." << (-r1old-r2old+r1+r2+g1+g2)/GeV << endl;
}
}
void HwRemDecayer::doSoftInteractions_old(unsigned int N) {
if(N == 0) return;
if(!softRems_.first || !softRems_.second)
throw Exception() << "HwRemDecayer::doSoftInteractions: no "
<< "Remnants available."
<< Exception::runerror;
if( ptmin_ == -1.*GeV )
throw Exception() << "HwRemDecayer::doSoftInteractions: init "
<< "code has not been called! call initSoftInteractions."
<< Exception::runerror;
Lorentz5Momentum g1, g2;
Lorentz5Momentum r1(softRems_.first->momentum()), r2(softRems_.second->momentum());
unsigned int tries(1), i(0);
for(i=0; i<N; i++){
//check how often this scattering has been regenerated
if(tries > maxtrySoft_) break;
if(dbg){
cerr << "new try \n" << *softRems_.first << *softRems_.second << endl;
}
try{
softKinematics(r1, r2, g1, g2);
}catch(ExtraSoftScatterVeto){
tries++;
i--;
continue;
}
PPair oldrems = softRems_;
PPair gluons = make_pair(addParticle(softRems_.first, ParticleID::g, g1),
addParticle(softRems_.second, ParticleID::g, g2));
//now reset the remnants with the new ones
softRems_.first = addParticle(softRems_.first, softRems_.first->id(), r1);
softRems_.second = addParticle(softRems_.second, softRems_.second->id(), r2);
//do the colour connections
pair<bool, bool> anti = make_pair(oldrems.first->hasAntiColour(),
oldrems.second->hasAntiColour());
ColinePtr cl1 = new_ptr(ColourLine());
ColinePtr cl2 = new_ptr(ColourLine());
if( UseRandom::rnd() < colourDisrupt_ ){//this is the member variable, i.e. SOFT colour disruption
//connect the remnants independent of the gluons
oldrems.first->colourLine(anti.first)->addColoured(softRems_.first, anti.first);
oldrems.second->colourLine(anti.second)->addColoured(softRems_.second, anti.second);
//connect the gluons to each other
cl1->addColoured(gluons.first);
cl1->addAntiColoured(gluons.second);
cl2->addColoured(gluons.second);
cl2->addAntiColoured(gluons.first);
}else{
//connect the remnants to the gluons
oldrems.first->colourLine(anti.first)->addColoured(gluons.first, anti.first);
oldrems.second->colourLine(anti.second)->addColoured(gluons.second, anti.second);
//and the remaining colour line to the final remnant
cl1->addColoured(softRems_.first, anti.first);
cl1->addColoured(gluons.first, !anti.first);
cl2->addColoured(softRems_.second, anti.second);
cl2->addColoured(gluons.second, !anti.second);
}
//reset counter
tries = 1;
}
if(dbg)
cerr << "generated " << i << "th soft scatters\n";
}
void HwRemDecayer::doSoftInteractions_multiPeriph(unsigned int N) {
if(N == 0) return;
///////////////////////
int Nmpi = N;
if(N==0) return;
int j(0);
for(j=0;j<Nmpi;j++){
///////////////////////
+ // number (times two + plus quark-antiquark) of legs in the multiperipheral ladder
+ //int avgN = floor(1.0*log((softRems_.first->momentum()+softRems_.second->momentum()).m()/(sqrt(sqr(ptmin_)+sqr(mg_)))));
+ //int avgN = floor(0.5*log((softRems_.first->momentum()+softRems_.second->momentum()).m()/(sqrt(sqr(ptmin_)+sqr(mg_)))));
- int avgN = floor(1.0*log((softRems_.first->momentum()+softRems_.second->momentum()).m()/(sqrt(sqr(ptmin_)+sqr(mg_)))));
+ int avgN = floor(ladderMult_*log((softRems_.first->momentum()+softRems_.second->momentum()).m()/mg_));
+ initTotRap_ = abs(softRems_.first->momentum().rapidity())+abs(softRems_.second->momentum().rapidity());
+ //int avgN = floor(ladderMult_*0.5*(softRems_.first->momentum().rapidity()-softRems_.second->momentum().rapidity()));
//generate poisson distribution
double L = exp(-double(avgN));
int k = 0;
double p = 1;
do {
k++;
p *= UseRandom::rnd();
} while( p > L);
N=k-1;
+ valOfN_=N;
if(N == 0) return;
if(!softRems_.first || !softRems_.second)
throw Exception() << "HwRemDecayer::doSoftInteractions: no "
<< "Remnants available."
<< Exception::runerror;
if( ptmin_ == -1.*GeV )
throw Exception() << "HwRemDecayer::doSoftInteractions: init "
<< "code has not been called! call initSoftInteractions."
<< Exception::runerror;
Lorentz5Momentum g1, g2, q1, q2;
//new
Lorentz5Momentum gint1, gint2;
//PPair firstrems = softRems_;
PPair oldgluons;
vector< pair<Lorentz5Momentum,Lorentz5Momentum> > gluonMomPairs;
Lorentz5Momentum r1(softRems_.first->momentum()), r2(softRems_.second->momentum());
unsigned int tries(1), i(0);
for(i=0; i<=N; i++){
//check how often this scattering has been regenerated
if(tries > maxtrySoft_) break;
if(dbg){
cerr << "new try \n" << *softRems_.first << *softRems_.second << endl;
}
try{
//softKinematics(r1, r2, g1, g2);
//new
if(i==0){
quarkPair_ = true;
softKinematics(r1, r2, q1, q2);
+ //cout<<r1/GeV<<" "<<r2/GeV<<endl;
}else if(i==1){
//first splitting; remnant -> remnant + gluon
//softKinematics(r1, r2, g1, g2);
quarkPair_ = false;
softKinematics(q1, q2, g1, g2);
+ //cout<<g1/GeV<<" "<<g2/GeV<<endl;
gluonMomPairs.push_back(make_pair(g1,g2));
}else{
//consequent splittings gluon -> gluon+gluon
//but, the previous gluon gets deleted
//Lorentz5Momentum oldg1(g1), oldg2(g2);
//Lorentz5Momentum oldg1(gluonMomPairs.back().first), oldg2(gluonMomPairs.back().second);
quarkPair_ = false;
//save first the previous gluon momentum
g1=gluonMomPairs.back().first;
g2=gluonMomPairs.back().second;
//split gluon momentum
softKinematics(g1, g2, gint1, gint2);
+
//erase the last entry
//gluonMomPairs.erase(std::remove(gluonMomPairs.begin(), gluonMomPairs.end(), make_pair(oldg1,oldg2)), gluonMomPairs.end());
gluonMomPairs.pop_back();
//add new gluons
gluonMomPairs.push_back(make_pair(g1,g2));
gluonMomPairs.push_back(make_pair(gint1,gint2));
-
+ //cout<<g1/GeV<<" "<<g2/GeV<<" "<<gint1/GeV<<" "<<gint2/GeV<<endl;
+ //cout<<gluonMomPairs.back().first/GeV<<" "<<gluonMomPairs.back().second/GeV<<endl<<endl;
+ //cout<<gluonMomPairs.back().first/GeV<<" "<<gluonMomPairs.back().second/GeV<<" "
+ // <<gluonMomPairs.size()<<" "<<N<<endl<<endl;
}
//new new
//softKinematics(r1,r2,g1,g2);
//gluonMomPairs.insert(gluonMomPairs.begin(),make_pair(g1,g2));
//
}catch(ExtraSoftScatterVeto){
tries++;
i--;
continue;
}
//reset counter
tries = 1;
}
if(dbg)
cerr << "generated " << i << "th soft scatters\n";
PPair quarks;
pair<bool, bool> anti_q;
if(gluonMomPairs.size()==0) return;
for(i=0; i<=gluonMomPairs.size(); i++){
PPair oldrems = softRems_;
PPair gluons;
//add quarks
if(i==0){
quarks = make_pair(addParticle(softRems_.first, ParticleID::u, q1),
addParticle(softRems_.second, ParticleID::ubar, q2));
anti_q = make_pair(quarks.first->hasAntiColour(),
quarks.second->hasAntiColour());
}
if(i>0){
gluons = make_pair(addParticle(softRems_.first, ParticleID::g, gluonMomPairs[i-1].first),
addParticle(softRems_.second, ParticleID::g, gluonMomPairs[i-1].second));
}
//now reset the remnants with the new ones
softRems_.first = addParticle(softRems_.first, softRems_.first->id(), r1);
softRems_.second = addParticle(softRems_.second, softRems_.second->id(), r2);
//do the colour connections
pair<bool, bool> anti = make_pair(oldrems.first->hasAntiColour(),
oldrems.second->hasAntiColour());
ColinePtr cl1 = new_ptr(ColourLine());
ColinePtr cl2 = new_ptr(ColourLine());
//new
if(i==0){
oldrems.first->colourLine(anti.first)->addColoured(softRems_.first, anti.first);
oldrems.second->colourLine(anti.second)->addColoured(softRems_.second, anti.second);
}
if(i!=0){
oldrems.first->colourLine(anti.first)->addColoured(softRems_.first, anti.first);
oldrems.second->colourLine(anti.second)->addColoured(softRems_.second, anti.second);
if(i==1){
cl1->addColoured(quarks.first, anti_q.first);
cl1->addColoured(gluons.first, anti.first);
cl2->addColoured(quarks.second, anti_q.second);
cl2->addColoured(gluons.second, !anti.second);
}else{
cl1->addColoured(oldgluons.first, !anti.first);
cl1->addColoured(gluons.first, anti.first);
cl2->addColoured(oldgluons.second, anti.second);
cl2->addColoured(gluons.second, !anti.second);
}
}
if(i==gluonMomPairs.size()){
ColinePtr clg = new_ptr(ColourLine());
clg->addColoured(gluons.first, !anti.first);
clg->addColoured(gluons.second, anti.second);
}
oldgluons = gluons;
}
+
+ ///TEST///////////
+ //cout<<"r1: "<<r1/GeV<<" q1: "<<q1/GeV;
+ //for(i=0; i<gluonMomPairs.size(); i++){
+ // cout<<" g"<<i<<": "<<gluonMomPairs[i].first/GeV<<" ";
+ //}
+
+ //for(i=0; i<gluonMomPairs.size(); i++){
+ // cout<<" g"<<gluonMomPairs.size()+i<<": "<<gluonMomPairs[gluonMomPairs.size()-i-1].second/GeV<<" ";
+ //}
+ //cout<<"q2: "<<q2/GeV<<" r2: "<<r2/GeV;
+ //cout<<endl<<endl;
+
+ //cout<<"r1: "<<r1.rapidity()<<" q1: "<<q1.rapidity();
+ //for(i=0; i<gluonMomPairs.size(); i++){
+ // cout<<" g"<<i<<": "<<gluonMomPairs[i].first.rapidity()<<" ";
+ //}
+ //for(i=0; i<gluonMomPairs.size(); i++){
+ // cout<<" g"<<gluonMomPairs.size()+i<<": "<<gluonMomPairs[gluonMomPairs.size()-i-1].second.rapidity()<<" ";
+ //}
+ //cout<<"q2: "<<q2.rapidity()<<" r2: "<<r2.rapidity()<<" end."<<endl<<endl;
+ //////////////////
+
////////
}
////////
}
void HwRemDecayer::finalize(double colourDisrupt, unsigned int softInt){
PPair diquarks;
//Do the final Rem->Diquark or Rem->quark "decay"
if(theRems.first) {
diquarks.first = finalSplit(theRems.first, theContent.first.RemID(),
theUsed.first);
theMaps.first.push_back(make_pair(diquarks.first, tPPtr()));
}
if(theRems.second) {
diquarks.second = finalSplit(theRems.second, theContent.second.RemID(),
theUsed.second);
theMaps.second.push_back(make_pair(diquarks.second, tPPtr()));
}
setRemMasses();
if(theRems.first) {
fixColours(theMaps.first, theanti.first, colourDisrupt);
if(theContent.first.hadron->id()==ParticleID::pomeron&&
pomeronStructure_==0) fixColours(theMaps.first, !theanti.first, colourDisrupt);
}
if(theRems.second) {
fixColours(theMaps.second, theanti.second, colourDisrupt);
if(theContent.second.hadron->id()==ParticleID::pomeron&&
pomeronStructure_==0) fixColours(theMaps.second, !theanti.second, colourDisrupt);
}
if( !theRems.first || !theRems.second ) return;
//stop here if we don't have two remnants
softRems_ = diquarks;
doSoftInteractions(softInt);
}
HwRemDecayer::HadronContent
HwRemDecayer::getHadronContent(tcPPtr hadron) const {
HadronContent hc;
hc.hadron = hadron->dataPtr();
long id(hadron->id());
// baryon
if(BaryonMatcher::Check(hadron->data())) {
hc.sign = id < 0? -1: 1;
hc.flav.push_back((id = abs(id)/10)%10);
hc.flav.push_back((id /= 10)%10);
hc.flav.push_back((id /= 10)%10);
hc.extracted = -1;
}
else if(hadron->data().id()==ParticleID::gamma ||
(hadron->data().id()==ParticleID::pomeron && pomeronStructure_==1)) {
hc.sign = 1;
for(int ix=1;ix<6;++ix) {
hc.flav.push_back( ix);
hc.flav.push_back(-ix);
}
}
else if(hadron->data().id()==ParticleID::pomeron ) {
hc.sign = 1;
hc.flav.push_back(ParticleID::g);
hc.flav.push_back(ParticleID::g);
}
else if(hadron->data().id()==ParticleID::reggeon ) {
hc.sign = 1;
for(int ix=1;ix<3;++ix) {
hc.flav.push_back( ix);
hc.flav.push_back(-ix);
}
}
hc.pomeronStructure = pomeronStructure_;
return hc;
}
long HwRemDecayer::HadronContent::RemID() const{
if(extracted == -1)
throw Exception() << "Try to build a Diquark id without "
<< "having extracted something in "
<< "HwRemDecayer::RemID(...)"
<< Exception::runerror;
//the hadron was a meson or photon
if(flav.size()==2) return sign*flav[(extracted+1)%2];
long remId;
int id1(sign*flav[(extracted+1)%3]),
id2(sign*flav[(extracted+2)%3]),
sign(0), spin(0);
if (abs(id1) > abs(id2)) swap(id1, id2);
sign = (id1 < 0) ? -1 : 1; // Needed for the spin 0/1 part
remId = id2*1000+id1*100;
// Now decide if we have spin 0 diquark or spin 1 diquark
if(id1 == id2) spin = 3; // spin 1
else spin = 1; // otherwise spin 0
remId += sign*spin;
return remId;
}
tPPtr HwRemDecayer::addParticle(tcPPtr parent, long id, Lorentz5Momentum p) const {
PPtr newp = new_ptr(Particle(getParticleData(id)));
newp->set5Momentum(p);
// Add the new remnant to the step, but don't do colour connections
thestep->addDecayProduct(parent,newp,false);
return newp;
}
void HwRemDecayer::findChildren(tPPtr part,vector<PPtr> & particles) const {
if(part->children().empty()) particles.push_back(part);
else {
for(unsigned int ix=0;ix<part->children().size();++ix)
findChildren(part->children()[ix],particles);
}
}
ParticleVector HwRemDecayer::decay(const DecayMode &,
const Particle &, Step &) const {
throw Exception() << "HwRemDecayer::decay(...) "
<< "must not be called explicitely."
<< Exception::runerror;
}
void HwRemDecayer::persistentOutput(PersistentOStream & os) const {
os << ounit(_kinCutoff, GeV) << _range << _zbin << _ybin
<< _nbinmax << _alphaS << _alphaEM << DISRemnantOpt_
- << maxtrySoft_ << colourDisrupt_ << pomeronStructure_
+ << maxtrySoft_ << colourDisrupt_ << ladderMult_ << pomeronStructure_
<< ounit(mg_,GeV) << ounit(ptmin_,GeV) << ounit(beta_,sqr(InvGeV))
- << allowTop_ << multiPeriph_;
+ << allowTop_ << multiPeriph_ << valOfN_ << initTotRap_;
}
void HwRemDecayer::persistentInput(PersistentIStream & is, int) {
is >> iunit(_kinCutoff, GeV) >> _range >> _zbin >> _ybin
>> _nbinmax >> _alphaS >> _alphaEM >> DISRemnantOpt_
- >> maxtrySoft_ >> colourDisrupt_ >> pomeronStructure_
+ >> maxtrySoft_ >> colourDisrupt_ >> ladderMult_ >> pomeronStructure_
>> iunit(mg_,GeV) >> iunit(ptmin_,GeV) >> iunit(beta_,sqr(InvGeV))
- >> allowTop_ >> multiPeriph_;
+ >> allowTop_ >> multiPeriph_ >> valOfN_ >> initTotRap_;
}
ClassDescription<HwRemDecayer> HwRemDecayer::initHwRemDecayer;
// Definition of the static class description member.
void HwRemDecayer::Init() {
static ClassDocumentation<HwRemDecayer> documentation
("The HwRemDecayer class decays the remnant for Herwig");
static Parameter<HwRemDecayer,double> interfaceZBinSize
("ZBinSize",
"The size of the vbins in z for the interpolation of the splitting function.",
&HwRemDecayer::_zbin, 0.05, 0.001, 0.1,
false, false, Interface::limited);
static Parameter<HwRemDecayer,int> interfaceMaxBin
("MaxBin",
"Maximum number of z bins",
&HwRemDecayer::_nbinmax, 100, 10, 1000,
false, false, Interface::limited);
static Reference<HwRemDecayer,ShowerAlpha> interfaceAlphaS
("AlphaS",
"Pointer to object to calculate the strong coupling",
&HwRemDecayer::_alphaS, false, false, true, false, false);
static Reference<HwRemDecayer,ShowerAlpha> interfaceAlphaEM
("AlphaEM",
"Pointer to object to calculate the electromagnetic coupling",
&HwRemDecayer::_alphaEM, false, false, true, false, false);
static Parameter<HwRemDecayer,Energy> interfaceKinCutoff
("KinCutoff",
"Parameter kinCutoff used to constrain qtilde",
&HwRemDecayer::_kinCutoff, GeV, 0.75*GeV, 0.5*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<HwRemDecayer,double> interfaceEmissionRange
("EmissionRange",
"Factor above the minimum possible value in which the forced splitting is allowed.",
&HwRemDecayer::_range, 1.1, 1.0, 10.0,
false, false, Interface::limited);
static Switch<HwRemDecayer,unsigned int> interfaceDISRemnantOption
("DISRemnantOption",
"Options for the treatment of the remnant in DIS",
&HwRemDecayer::DISRemnantOpt_, 0, false, false);
static SwitchOption interfaceDISRemnantOptionDefault
(interfaceDISRemnantOption,
"Default",
"Use the minimum number of particles needed to take the recoil"
" and allow the lepton to be used if needed",
0);
static SwitchOption interfaceDISRemnantOptionNoLepton
(interfaceDISRemnantOption,
"NoLepton",
"Use the minimum number of particles needed to take the recoil but"
" veto events where the lepton kinematics would need to be altered",
1);
static SwitchOption interfaceDISRemnantOptionAllParticles
(interfaceDISRemnantOption,
"AllParticles",
"Use all particles in the colour connected system to take the recoil"
" and use the lepton if needed.",
2);
static SwitchOption interfaceDISRemnantOptionAllParticlesNoLepton
(interfaceDISRemnantOption,
"AllParticlesNoLepton",
"Use all the particles in the colour connected system to take the"
" recoil but don't use the lepton.",
3);
static Parameter<HwRemDecayer,unsigned int> interfaceMaxTrySoft
("MaxTrySoft",
"The maximum number of regeneration attempts for an additional soft scattering",
&HwRemDecayer::maxtrySoft_, 10, 0, 100,
false, false, Interface::limited);
static Parameter<HwRemDecayer,double> interfacecolourDisrupt
("colourDisrupt",
"Fraction of connections to additional soft subprocesses, which are colour disrupted.",
&HwRemDecayer::colourDisrupt_,
1.0, 0.0, 1.0,
false, false, Interface::limited);
+
+ static Parameter<HwRemDecayer,double> interfaceladderMult
+ ("ladderMult",
+ "The multiplicity factor in the multiperipheral ladder.",
+ &HwRemDecayer::ladderMult_,
+ 1.0, 0.0, 10.0,
+ false, false, Interface::limited);
static Switch<HwRemDecayer,unsigned int> interfacePomeronStructure
("PomeronStructure",
"Option for the treatment of the valance structure of the pomeron",
&HwRemDecayer::pomeronStructure_, 0, false, false);
static SwitchOption interfacePomeronStructureGluon
(interfacePomeronStructure,
"Gluon",
"Assume the pomeron is a two gluon state",
0);
static SwitchOption interfacePomeronStructureQQBar
(interfacePomeronStructure,
"QQBar",
"Assumne the pomeron is q qbar as for the photon,"
" this option is not recommended and is provide for compatiblity with POMWIG",
1);
static Switch<HwRemDecayer,bool> interfaceAllowTop
("AllowTop",
"Allow top quarks in the hadron",
&HwRemDecayer::allowTop_, false, false, false);
static SwitchOption interfaceAllowTopNo
(interfaceAllowTop,
"No",
"Don't allow them",
false);
static SwitchOption interfaceAllowTopYes
(interfaceAllowTop,
"Yes",
"Allow them",
true);
static Switch<HwRemDecayer,bool> interfaceMultiPeriph
("MultiPeriph",
"Use multiperipheral kinematics",
&HwRemDecayer::multiPeriph_, false, false, false);
static SwitchOption interfaceMultiPeriphNo
(interfaceMultiPeriph,
"No",
"Don't use multiperipheral",
false);
static SwitchOption interfaceMultiPeriphYes
(interfaceMultiPeriph,
"Yes",
"Use multiperipheral kinematics",
true);
}
bool HwRemDecayer::canHandle(tcPDPtr particle, tcPDPtr parton) const {
if(! (StandardQCDPartonMatcher::Check(*parton) || parton->id()==ParticleID::gamma) ) {
if(abs(parton->id())==ParticleID::t) {
if(!allowTop_)
throw Exception() << "Top is not allow as a parton in the remant handling, please "
<< "use a PDF which does not contain top for the remnant"
<< " handling (preferred) or allow top in the remnant using\n"
<< " set " << fullName() << ":AllowTop Yes\n"
<< Exception::runerror;
}
else
return false;
}
return HadronMatcher::Check(*particle) || particle->id()==ParticleID::gamma
|| particle->id()==ParticleID::pomeron || particle->id()==ParticleID::reggeon;
}
bool HwRemDecayer::isPartonic(tPPtr parton) const {
if(parton->parents().empty()) return false;
tPPtr parent = parton->parents()[0];
bool partonic = false;
for(unsigned int ix=0;ix<parent->children().size();++ix) {
if(dynamic_ptr_cast<tRemPPtr>(parent->children()[ix])) {
partonic = true;
break;
}
}
return partonic;
}
diff --git a/PDF/HwRemDecayer.h b/PDF/HwRemDecayer.h
--- a/PDF/HwRemDecayer.h
+++ b/PDF/HwRemDecayer.h
@@ -1,664 +1,686 @@
// -*- C++ -*-
//
// HwRemDecayer.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_HwRemDecayer_H
#define HERWIG_HwRemDecayer_H
//
// This is the declaration of the HwRemDecayer class.
//
#include "ThePEG/PDT/RemnantDecayer.h"
#include "ThePEG/Handlers/EventHandler.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/EventRecord/SubProcess.h"
#include "ThePEG/PDF/BeamParticleData.h"
#include "Herwig/Shower/QTilde/Couplings/ShowerAlpha.h"
#include "Herwig/PDT/StandardMatchers.h"
#include "ThePEG/PDT/StandardMatchers.h"
#include "HwRemDecayer.fh"
namespace Herwig {
using namespace ThePEG;
/**
* The HwRemDecayer class is responsible for the decay of the remnants. Additional
* secondary scatters have to be evolved backwards to a gluon, the
* first/hard interaction has to be evolved back to a valence quark.
* This is all generated inside this class,
* which main methods are then called by the ShowerHandler.
*
* A simple forced splitting algorithm is used.
* This takes the Remnant object produced from the PDF and backward
* evolution (hadron - parton) and produce partons with the remaining
* flavours and with the correct colour connections.
*
* The algorithim operates by starting with the parton which enters the hard process.
* If this is from the sea there is a forced branching to produce the antiparticle
* from a gluon branching. If the parton entering the hard process was a gluon, or
* a gluon was produced from the first step of the algorithm, there is then a further
* branching back to a valence parton. After these partons have been produced a quark or
* diquark is produced to give the remaining valence content of the incoming hadron.
*
* The forced branching are generated using a scale between QSpac and EmissionRange times
* the minimum scale. The energy fractions are then distributed using
* \f[\frac{\alpha_S}{2\pi}\frac{P(z)}{z}f(x/z,\tilde{q})\f]
* with the massless splitting functions.
*
* \author Manuel B\"ahr
*
* @see \ref HwRemDecayerInterfaces "The interfaces"
* defined for HwRemDecayer.
*/
class HwRemDecayer: public RemnantDecayer {
public:
/** Typedef to store information about colour partners */
typedef vector<pair<tPPtr, tPPtr> > PartnerMap;
public:
/**
* The default constructor.
*/
- HwRemDecayer() : allowTop_(false),multiPeriph_(false),ptmin_(-1.*GeV), beta_(ZERO),
+ HwRemDecayer() : allowTop_(false),quarkPair_(false),multiPeriph_(false),
+ ptmin_(-1.*GeV), beta_(ZERO),
maxtrySoft_(10),
- colourDisrupt_(1.0),
+ colourDisrupt_(1.0),
+ ladderMult_(1.0),
+ valOfN_(0),
+ initTotRap_(0),
_kinCutoff(0.75*GeV),
_forcedSplitScale(2.5*GeV),
_range(1.1), _zbin(0.05),_ybin(0.),
_nbinmax(100), DISRemnantOpt_(0),
pomeronStructure_(0), mg_(ZERO) {}
/** @name Virtual functions required by the Decayer class. */
//@{
/**
* Check if this decayer can perfom the decay specified by the
* given decay mode.
* @return true if this decayer can handle the given mode, otherwise false.
*/
virtual bool accept(const DecayMode &) const {
return true;
}
/**
* Return true if this decayer can handle the extraction of the \a
* extracted parton from the given \a particle.
*/
virtual bool canHandle(tcPDPtr particle, tcPDPtr parton) const;
/**
* Return true if this decayed can extract more than one parton from
* a particle.
*/
virtual bool multiCapable() const {
return true;
}
/**
* Perform a decay for a given DecayMode and a given Particle instance.
* @param dm the DecayMode describing the decay.
* @param p the Particle instance to be decayed.
* @param step the step we are working on.
* @return a ParticleVector containing the decay products.
*/
virtual ParticleVector decay(const DecayMode & dm, const Particle & p, Step & step) const;
//@}
public:
/**
* struct that is used to catch exceptions which are thrown
* due to energy conservation issues of additional soft scatters
*/
struct ExtraSoftScatterVeto {};
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
/**
* Do several checks and initialization, for remnantdecay inside ShowerHandler.
*/
void initialize(pair<tRemPPtr, tRemPPtr> rems, tPPair beam, Step & step,
Energy forcedSplitScale);
/**
* Initialize the soft scattering machinery.
* @param ptmin = the pt cutoff used in the UE model
* @param beta = slope of the soft pt-spectrum
*/
void initSoftInteractions(Energy ptmin, InvEnergy2 beta);
/**
* Perform the acual forced splitting.
* @param partons is a pair of ThePEG::Particle pointers which store the final
* partons on which the shower ends.
* @param pdfs are pointers to the pdf objects for both beams
* @param first is a flage wether or not this is the first or a secondary interation
*/
void doSplit(pair<tPPtr, tPPtr> partons, pair<tcPDFPtr, tcPDFPtr> pdfs, bool first);
/**
* Perform the final creation of the diquarks. Set the remnant masses and do
* all colour connections.
* @param colourDisrupt = variable to control how many "hard" scatters
* are colour isolated
* @param softInt = parameter for the number of soft scatters
*/
void finalize(double colourDisrupt=0.0, unsigned int softInt=0);
/**
* Find the children
*/
void findChildren(tPPtr,vector<PPtr> &) const;
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const {return new_ptr(*this);}
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const {return new_ptr(*this);}
//@}
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit() {
Interfaced::doinit();
_ybin=0.25/_zbin;
mg_ = getParticleData(ParticleID::g)->constituentMass();
}
//@}
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static ClassDescription<HwRemDecayer> initHwRemDecayer;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
HwRemDecayer & operator=(const HwRemDecayer &);
public:
/**
* Simple struct to store info about baryon quark and di-quark
* constituents.
*/
struct HadronContent {
/**
* manually extract the valence flavour \a id.
*/
inline void extract(int id) {
for(unsigned int i=0; i<flav.size(); i++) {
if(id == sign*flav[i]){
if(hadron->id() == ParticleID::gamma ||
(hadron->id() == ParticleID::pomeron && pomeronStructure==1) ||
hadron->id() == ParticleID::reggeon) {
flav[0] = id;
flav[1] = -id;
extracted = 0;
flav.resize(2);
}
else if (hadron->id() == ParticleID::pomeron && pomeronStructure==0) {
extracted = 0;
}
else {
extracted = i;
}
break;
}
}
}
/**
* Return a proper particle ID assuming that \a id has been removed
* from the hadron.
*/
long RemID() const;
/**
* Method to determine whether \a parton is a quark from the sea.
* @return TRUE if \a parton is neither a valence quark nor a gluon.
*/
bool isSeaQuark(tcPPtr parton) const {
return ((parton->id() != ParticleID::g) && ( !isValenceQuark(parton) ) );
}
/**
* Method to determine whether \a parton is a valence quark.
*/
bool isValenceQuark(tcPPtr parton) const {
return isValenceQuark(parton->id());
}
/**
* Method to determine whether \a parton is a quark from the sea.
* @return TRUE if \a parton is neither a valence quark nor a gluon.
*/
bool isSeaQuarkData(tcPDPtr partonData) const {
return ((partonData->id() != ParticleID::g) && ( !isValenceQuarkData(partonData) ) );
}
/**
* Method to determine whether \a parton is a valence quark.
*/
bool isValenceQuarkData(tcPDPtr partonData) const {
int id(sign*partonData->id());
return find(flav.begin(),flav.end(),id) != flav.end();
}
/**
* Method to determine whether \a parton is a valence quark.
*/
bool isValenceQuark(int id) const {
return find(flav.begin(),flav.end(),sign*id) != flav.end();
}
/** The valence flavours of the corresponding baryon. */
vector<int> flav;
/** The array index of the extracted particle. */
int extracted;
/** -1 if the particle is an anti-particle. +1 otherwise. */
int sign;
/** The ParticleData objects of the hadron */
tcPDPtr hadron;
/** Pomeron treatment */
unsigned int pomeronStructure;
};
/**
* Return the hadron content objects for the incoming particles.
*/
const pair<HadronContent, HadronContent>& content() const {
return theContent;
}
/**
* Return a HadronContent struct from a PPtr to a hadron.
*/
HadronContent getHadronContent(tcPPtr hadron) const;
/**
* Set the hadron contents.
*/
void setHadronContent(tPPair beam) {
theContent.first = getHadronContent(beam.first);
theContent.second = getHadronContent(beam.second);
}
private:
/**
* Do the forced Splitting of the Remnant with respect to the
* extracted parton \a parton.
* @param parton = PPtr to the parton going into the subprocess.
* @param content = HadronContent struct to keep track of flavours.
* @param rem = Pointer to the ThePEG::RemnantParticle.
* @param used = Momentum vector to keep track of remaining momenta.
* @param partners = Vector of pairs filled with tPPtr to the particles
* which should be colour connected.
* @param pdf pointer to the PDF Object which is used for this particle
* @param first = Flag for the first interaction.
*/
void split(tPPtr parton, HadronContent & content, tRemPPtr rem,
Lorentz5Momentum & used, PartnerMap & partners, tcPDFPtr pdf, bool first);
/**
* Merge the colour lines of two particles
* @param p1 = Pointer to particle 1
* @param p2 = Pointer to particle 2
* @param anti = flag to indicate, if (anti)colour was extracted as first parton.
*/
void mergeColour(tPPtr p1, tPPtr p2, bool anti) const;
/**
* Set the colour connections.
* @param partners = Object that holds the information which particles to connect.
* @param anti = flag to indicate, if (anti)colour was extracted as first parton.
* @param disrupt parameter for disruption of the colour structure
*/
void fixColours(PartnerMap partners, bool anti, double disrupt) const;
/**
* Set the momenta of the Remnants properly and boost the decay particles.
*/
void setRemMasses() const;
/**
* This creates a parton from the remaining flavours of the hadron. The
* last parton used was a valance parton, so only 2 (or 1, if meson) flavours
* remain to be used.
*/
PPtr finalSplit(const tRemPPtr rem, long remID,
Lorentz5Momentum usedMomentum) const {
// Create the remnant and set its momentum, also reset all of the decay
// products from the hadron
PPtr remnant = new_ptr(Particle(getParticleData(remID)));
Lorentz5Momentum prem(rem->momentum()-usedMomentum);
prem.setMass(getParticleData(remID)->constituentMass());
prem.rescaleEnergy();
remnant->set5Momentum(prem);
// Add the remnant to the step, but don't do colour connections
thestep->addDecayProduct(rem,remnant,false);
return remnant;
}
/**
* This takes the particle and find a splitting for np -> p + child and
* creates the correct kinematics and connects for such a split. This
* Splitting has an upper bound on qtilde given by the energy argument
* @param rem The Remnant
* @param child The PDG code for the outgoing particle
* @param oldQ The maximum scale for the evolution
* @param oldx The fraction of the hadron's momentum carried by the last parton
* @param pf The momentum of the last parton at input and after branching at output
* @param p The total emitted momentum
* @param content The content of the hadron
*/
PPtr forceSplit(const tRemPPtr rem, long child, Energy &oldQ, double &oldx,
Lorentz5Momentum &pf, Lorentz5Momentum &p,
HadronContent & content) const;
/**
* Check if a particle is a parton from a hadron or not
* @param parton The parton to be tested
*/
bool isPartonic(tPPtr parton) const;
/** @name Soft interaction methods. */
//@{
/**
* Produce pt values according to dN/dp_T = N p_T exp(-beta_*p_T^2)
*/
Energy softPt() const;
/**
* Get the 2 pairs of 5Momenta for the scattering. Needs calling of
* initSoftInteractions.
*/
void softKinematics(Lorentz5Momentum &r1, Lorentz5Momentum &r2,
Lorentz5Momentum &g1, Lorentz5Momentum &g2) const;
/**
* Create N soft gluon interactions
*/
void doSoftInteractions(unsigned int N){
if(!multiPeriph_){
doSoftInteractions_old(N);}
else{
doSoftInteractions_multiPeriph(N);
}
}
/**
* Create N soft gluon interactions (old version)
*/
void doSoftInteractions_old(unsigned int N);
/**
* Create N soft gluon interactions - multiperhpheral kinematics
*/
void doSoftInteractions_multiPeriph(unsigned int N);
/**
* Method to add a particle to the step
* @param parent = pointer to the parent particle
* @param id = Particle ID of the newly created particle
* @param p = Lorentz5Momentum of the new particle
*/
tPPtr addParticle(tcPPtr parent, long id, Lorentz5Momentum p) const;
//@}
/**
* A flag which indicates, whether the extracted valence quark was a
* anti particle.
*/
pair<bool, bool> theanti;
/**
* variable to sum up the x values of the extracted particles
*/
pair<double, double> theX;
/**Pair of HadronContent structs to know about the quark content of the beams*/
pair<HadronContent, HadronContent> theContent;
/**Pair of Lorentz5Momentum to keep track of the forced splitting product momenta*/
pair<Lorentz5Momentum, Lorentz5Momentum> theUsed;
/**
* Pair of PartnerMap's to store the particles, which will be colour
* connected in the end.
*/
pair<PartnerMap, PartnerMap> theMaps;
/**
* Variable to hold a pointer to the current step. The variable is used to
* determine, wether decay(const DecayMode & dm, const Particle & p, Step & step)
* has been called in this event or not.
*/
StepPtr thestep;
/**
* Pair of Remnant pointers. This is needed to boost
* in the Remnant-Remnant CMF after all have been decayed.
*/
pair<RemPPtr, RemPPtr> theRems;
/**
* The beam particle data for the current incoming hadron
*/
mutable tcPPtr theBeam;
/**
* the beam data
*/
mutable Ptr<BeamParticleData>::const_pointer theBeamData;
/**
* The PDF for the current initial-state shower
*/
mutable tcPDFPtr _pdf;
private:
/**
* Switch to control handling of top quarks in proton
*/
bool allowTop_;
/**
* Switch to control using multiperipheral kinemaics
*/
bool multiPeriph_;
/**
* True if kinematics is to be calculated for quarks
*/
bool quarkPair_;
/** @name Soft interaction variables. */
//@{
/**
* Pair of soft Remnant pointers, i.e. Diquarks.
*/
tPPair softRems_;
/**
* ptcut of the UE model
*/
Energy ptmin_;
/**
* slope of the soft pt-spectrum: dN/dp_T = N p_T exp(-beta*p_T^2)
*/
InvEnergy2 beta_;
/**
* Maximum number of attempts for the regeneration of an additional
* soft scattering, before the number of scatters is reduced.
*/
unsigned int maxtrySoft_;
/**
* Variable to store the relative number of colour disrupted
* connections to additional soft subprocesses.
*/
double colourDisrupt_;
+
+ /**
+ * Variable to store the multiplicity factor of the
+ multiperipheral ladder.
+ */
+ double ladderMult_;
+
+ /**
+ * Variable to store the current total multiplicity
+ of a ladder.
+ */
+ double valOfN_;
+
+ /**
+ * Variable to store the initial total rapidity between
+ of the remnants.
+ */
+ double initTotRap_;
//@}
/** @name Forced splitting variables. */
//@{
/**
* The kinematic cut-off
*/
Energy _kinCutoff;
/**
* The PDF freezing scale as set in ShowerHandler
*/
Energy _forcedSplitScale;
/**
* Range for emission
*/
double _range;
/**
* Size of the bins in z for the interpolation
*/
double _zbin;
/**
* Size of the bins in y for the interpolation
*/
double _ybin;
/**
* Maximum number of bins for the z interpolation
*/
int _nbinmax;
/**
* Pointer to the object calculating the QCD coupling
*/
ShowerAlphaPtr _alphaS;
/**
* Pointer to the object calculating the QED coupling
*/
ShowerAlphaPtr _alphaEM;
/**
* Option for the DIS remnant
*/
unsigned int DISRemnantOpt_;
/**
* Option for the treatment of the pomeron structure
*/
unsigned int pomeronStructure_;
//@}
/**
* The gluon constituent mass.
*/
Energy mg_;
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of HwRemDecayer. */
template <>
struct BaseClassTrait<Herwig::HwRemDecayer,1> {
/** Typedef of the first base class of HwRemDecayer. */
typedef RemnantDecayer NthBase;
};
/** This template specialization informs ThePEG about the name of
* the HwRemDecayer class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::HwRemDecayer>
: public ClassTraitsBase<Herwig::HwRemDecayer> {
/** Return a platform-independent class name */
static string className() { return "Herwig::HwRemDecayer"; }
/**
* The name of a file containing the dynamic library where the class
* HwRemDecayer is implemented. It may also include several, space-separated,
* libraries if the class HwRemDecayer depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "HwShower.so"; }
};
/** @endcond */
}
#endif /* HERWIG_HwRemDecayer_H */

File Metadata

Mime Type
text/x-diff
Expires
Tue, Jan 21, 2:11 AM (1 d, 17 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4212860
Default Alt Text
(72 KB)

Event Timeline