Page MenuHomeHEPForge

No OneTemporary

Index: trunk/omega/tests/omega_unit.ml
===================================================================
--- trunk/omega/tests/omega_unit.ml (revision 8861)
+++ trunk/omega/tests/omega_unit.ml (revision 8862)
@@ -1,229 +1,230 @@
(* omega_unit.ml --
Copyright (C) 1999-2023 by
Wolfgang Kilian <kilian@physik.uni-siegen.de>
Thorsten Ohl <ohl@physik.uni-wuerzburg.de>
Juergen Reuter <juergen.reuter@desy.de>
Christian Speckner <cnspeckn@googlemail.com>
WHIZARD is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
WHIZARD is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *)
open OUnit
let unattended = ref true
let skip_if_unattended () =
skip_if !unattended "not suitable for unattended tests"
let trivial_test =
"trivial" >::
(bracket
(fun () -> true)
(fun b -> assert_bool "always true" b)
(fun b -> ()))
let short_random_list n =
let l = ref [] in
for i = 1 to n do
l := Random.int 1024 :: !l
done;
!l
let allowed_recursion_depth () =
let rec allowed_recursion_depth' n =
try
allowed_recursion_depth' (succ n)
with
| Stack_overflow -> n in
allowed_recursion_depth' 0
let long_random_list factor =
let n = factor * allowed_recursion_depth () in
let l = ref [] in
for i = 1 to n do
l := Random.int n :: !l
done;
!l
module Integer =
struct
type t = int
let compare = compare
let pp_printer = Format.pp_print_int
let pp_print_sep = OUnitDiff.pp_comma_separator
end
module Integer_List = OUnitDiff.ListSimpleMake(Integer)
module ThoList_Unit_Tests =
struct
let inner_list = ThoList.range 1 5
let outer_list = List.map (( * ) 10) (ThoList.range 1 4)
let f n = List.map ((+) n) inner_list
let flatmap =
"flatmap" >::
(fun () ->
let result = ThoList.flatmap f outer_list
and expected = List.flatten (List.map f outer_list) in
assert_equal expected result)
let rev_flatmap =
"rev_flatmap" >::
(fun () ->
let result = ThoList.rev_flatmap f outer_list
and expected = List.rev (ThoList.flatmap f outer_list) in
Integer_List.assert_equal expected result)
let flatmap_stack_overflow =
"flatmap_stack_overflow" >::
(fun () ->
skip_if !unattended "memory limits not suitable for unattended tests";
let l = long_random_list 2 in
let f n = List.map ((+) n) (short_random_list 2) in
assert_raises Stack_overflow
(fun () -> ThoList.flatmap f l))
let rev_flatmap_no_stack_overflow =
"rev_flatmap_no_stack_overflow" >::
(fun () ->
skip_if !unattended "memory limits not suitable for unattended tests";
let l = long_random_list 10 in
let f n = List.map ((+) n) (short_random_list 10) in
ignore (ThoList.rev_flatmap f l);
assert_bool "always true" true)
let suite =
"ThoList" >:::
[flatmap;
flatmap_stack_overflow;
rev_flatmap;
rev_flatmap_no_stack_overflow ]
end
module IListSet =
Set.Make (struct type t = int list let compare = compare end)
let list_elements_unique l =
let rec list_elements_unique' set = function
| [] -> true
| x :: rest ->
if IListSet.mem x set then
false
else
list_elements_unique' (IListSet.add x set) rest in
list_elements_unique' IListSet.empty l
let ilistset_test =
"IListSet" >::
(fun () ->
assert_bool "true" (list_elements_unique [[1];[2]]);
assert_bool "false" (not (list_elements_unique [[1];[1]])))
module Combinatorics_Unit_Tests =
struct
let permute =
"permute" >::
(fun () ->
let n = 8 in
let l = ThoList.range 1 n in
let result = Combinatorics.permute l in
assert_equal (Combinatorics.factorial n) (List.length result);
assert_bool "unique" (list_elements_unique result))
let permute_no_stack_overflow =
"permute_no_stack_overflow" >::
(fun () ->
skip_if !unattended "memory limits not suitable for unattended tests";
let n = 10 in (* n = 10 needs 1 GB, n = 11 needs 7.3 GB *)
let l = ThoList.range 1 n in
let result = Combinatorics.permute l in
assert_equal (Combinatorics.factorial n) (List.length result))
let suite =
"Combinatorics" >:::
[permute;
permute_no_stack_overflow]
end
let selftest_suite =
"testsuite" >:::
[trivial_test;
ilistset_test]
module Permutation_Test_Using_Lists =
Permutation.Test(Permutation.Using_Lists)
module Permutation_Test_Using_Arrays =
Permutation.Test(Permutation.Using_Arrays)
let suite =
"omega" >:::
[selftest_suite;
ThoList_Unit_Tests.suite;
ThoList.Test.suite;
ThoArray.Test.suite;
ThoString.Test.suite;
Partial.Test.suite;
Permutation_Test_Using_Lists.suite;
Permutation_Test_Using_Arrays.suite;
Combinatorics_Unit_Tests.suite;
Combinatorics.Test.suite;
Young.Test.suite;
Algebra.Q.Test.suite;
Algebra.QC.Test.suite;
Algebra.Laurent.Test.suite;
Color.Flow.Test.suite;
Color.Arrow.Test.suite;
Color.Birdtracks.Test.suite;
Color.SU3.Test.suite;
(* [Color.U3.Test.suite;] *)
UFO_targets.Fortran.Test.suite;
UFO_Lorentz.Test.suite;
+ UFOx.Test.suite;
UFO.Test.suite;
Format_Fortran.Test.suite;
Dirac.Chiral.test_suite;
Dirac.Dirac.test_suite;
Dirac.Majorana.test_suite]
let suite_long =
"omega long" >:::
[Young.Test.suite_long;
Color.Flow.Test.suite_long;
Color.Arrow.Test.suite_long;
Color.Birdtracks.Test.suite_long;
Color.SU3.Test.suite_long;
(* [Color.U3.Test.suite_long] *) ]
let run_suite_long = ref false
let _ =
ignore
(run_test_tt_main
~arg_specs:[("-attended", Arg.Clear unattended,
" run tests that depend on the environment");
("-unattended", Arg.Set unattended,
" don't run tests depend on the environment");
("-long", Arg.Set run_suite_long,
" also run the very long tests")]
suite);
if !run_suite_long then
ignore (run_test_tt suite_long);
exit 0
Index: trunk/omega/src/UFOx.ml
===================================================================
--- trunk/omega/src/UFOx.ml (revision 8861)
+++ trunk/omega/src/UFOx.ml (revision 8862)
@@ -1,1522 +1,1556 @@
(* vertex.ml --
Copyright (C) 1999-2023 by
Wolfgang Kilian <kilian@physik.uni-siegen.de>
Thorsten Ohl <ohl@physik.uni-wuerzburg.de>
Juergen Reuter <juergen.reuter@desy.de>
with contributions from
Christian Speckner <cnspeckn@googlemail.com>
WHIZARD is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
WHIZARD is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *)
let error_in_string text start_pos end_pos =
let i = max 0 start_pos.Lexing.pos_cnum in
let j = min (String.length text) (max (i + 1) end_pos.Lexing.pos_cnum) in
String.sub text i (j - i)
let error_in_file name start_pos end_pos =
Printf.sprintf
"%s:%d.%d-%d.%d"
name
start_pos.Lexing.pos_lnum
(start_pos.Lexing.pos_cnum - start_pos.Lexing.pos_bol)
end_pos.Lexing.pos_lnum
(end_pos.Lexing.pos_cnum - end_pos.Lexing.pos_bol)
module SMap = Map.Make (struct type t = string let compare = compare end)
module Expr =
struct
type t = UFOx_syntax.expr
let of_string text =
try
UFOx_parser.input
UFOx_lexer.token
(UFOx_lexer.init_position "" (Lexing.from_string text))
with
| UFO_tools.Lexical_Error (msg, start_pos, end_pos) ->
invalid_arg (Printf.sprintf "lexical error (%s) at: `%s'"
msg (error_in_string text start_pos end_pos))
| UFOx_syntax.Syntax_Error (msg, start_pos, end_pos) ->
invalid_arg (Printf.sprintf "syntax error (%s) at: `%s'"
msg (error_in_string text start_pos end_pos))
| Parsing.Parse_error ->
invalid_arg ("parse error: " ^ text)
let of_strings = function
| [] -> UFOx_syntax.integer 0
| string :: strings ->
List.fold_right
(fun s acc -> UFOx_syntax.add (of_string s) acc)
strings (of_string string)
open UFOx_syntax
let rec map f = function
| Integer _ | Float _ | Quoted _ as e -> e
| Variable s as e ->
begin match f s with
| Some value -> value
| None -> e
end
| Sum (e1, e2) -> Sum (map f e1, map f e2)
| Difference (e1, e2) -> Difference (map f e1, map f e2)
| Product (e1, e2) -> Product (map f e1, map f e2)
| Quotient (e1, e2) -> Quotient (map f e1, map f e2)
| Power (e1, e2) -> Power (map f e1, map f e2)
| Application (s, el) -> Application (s, List.map (map f) el)
let substitute name value expr =
map (fun s -> if s = name then Some value else None) expr
let rename1 name_map name =
try Some (Variable (SMap.find name name_map)) with Not_found -> None
let rename alist_names value =
let name_map =
List.fold_left
(fun acc (name, name') -> SMap.add name name' acc)
SMap.empty alist_names in
map (rename1 name_map) value
let half name =
Quotient (Variable name, Integer 2)
let variables = UFOx_syntax.variables
let functions = UFOx_syntax.functions
end
module Value =
struct
module S = UFOx_syntax
module Q = Algebra.Q
type builtin =
| Sqrt
| Exp | Log | Log10
| Sin | Asin
| Cos | Acos
| Tan | Atan
| Sinh | Asinh
| Cosh | Acosh
| Tanh | Atanh
| Sec | Asec
| Csc | Acsc
| Conj | Abs
let builtin_to_string = function
| Sqrt -> "sqrt"
| Exp -> "exp"
| Log -> "log"
| Log10 -> "log10"
| Sin -> "sin"
| Cos -> "cos"
| Tan -> "tan"
| Asin -> "asin"
| Acos -> "acos"
| Atan -> "atan"
| Sinh -> "sinh"
| Cosh -> "cosh"
| Tanh -> "tanh"
| Asinh -> "asinh"
| Acosh -> "acosh"
| Atanh -> "atanh"
| Sec -> "sec"
| Csc -> "csc"
| Asec -> "asec"
| Acsc -> "acsc"
| Conj -> "conjg"
| Abs -> "abs"
let builtin_of_string = function
| "cmath.sqrt" -> Sqrt
| "cmath.exp" -> Exp
| "cmath.log" -> Log
| "cmath.log10" -> Log10
| "cmath.sin" -> Sin
| "cmath.cos" -> Cos
| "cmath.tan" -> Tan
| "cmath.asin" -> Asin
| "cmath.acos" -> Acos
| "cmath.atan" -> Atan
| "cmath.sinh" -> Sinh
| "cmath.cosh" -> Cosh
| "cmath.tanh" -> Tanh
| "cmath.asinh" -> Asinh
| "cmath.acosh" -> Acosh
| "cmath.atanh" -> Atanh
| "sec" -> Sec
| "csc" -> Csc
| "asec" -> Asec
| "acsc" -> Acsc
| "complexconjugate" -> Conj
| "abs" -> Abs
| name -> failwith ("UFOx.Value: unsupported function: " ^ name)
type t =
| Integer of int
| Rational of Q.t
| Real of float
| Complex of float * float
| Variable of string
| Sum of t list
| Difference of t * t
| Product of t list
| Quotient of t * t
| Power of t * t
| Application of builtin * t list
let rec to_string = function
| Integer i -> string_of_int i
| Rational q -> Q.to_string q
| Real x -> string_of_float x
| Complex (0.0, 1.0) -> "I"
| Complex (0.0, -1.0) -> "-I"
| Complex (0.0, i) -> string_of_float i ^ "*I"
| Complex (r, 1.0) -> string_of_float r ^ "+I"
| Complex (r, -1.0) -> string_of_float r ^ "-I"
| Complex (r, i) ->
string_of_float r ^ (if i < 0.0 then "-" else "+") ^
string_of_float (abs_float i) ^ "*I"
| Variable s -> s
| Sum [] -> "0"
| Sum [e] -> to_string e
| Sum es -> "(" ^ String.concat "+" (List.map maybe_parentheses es) ^ ")"
| Difference (e1, e2) -> to_string e1 ^ "-" ^ maybe_parentheses e2
| Product [] -> "1"
| Product ((Integer (-1) | Real (-1.)) :: es) ->
"-" ^ maybe_parentheses (Product es)
| Product es -> String.concat "*" (List.map maybe_parentheses es)
- | Quotient (e1, e2) -> to_string e1 ^ "/" ^ maybe_parentheses e2
+ | Quotient (e1, e2) -> maybe_parentheses e1 ^ "/" ^ maybe_parentheses e2
| Power ((Integer i as e), Integer p) ->
if p < 0 then
maybe_parentheses (Real (float_of_int i)) ^
"^(" ^ string_of_int p ^ ")"
else if p = 0 then
"1"
else if p <= 4 then
maybe_parentheses e ^ "^" ^ string_of_int p
else
maybe_parentheses (Real (float_of_int i)) ^
"^" ^ string_of_int p
| Power (e1, e2) ->
maybe_parentheses e1 ^ "^" ^ maybe_parentheses e2
| Application (f, [Integer i]) ->
to_string (Application (f, [Real (float i)]))
| Application (f, es) ->
builtin_to_string f ^
"(" ^ String.concat "," (List.map to_string es) ^ ")"
and maybe_parentheses = function
| Integer i as e ->
if i < 0 then
"(" ^ to_string e ^ ")"
else
to_string e
| Real x as e ->
if x < 0.0 then
"(" ^ to_string e ^ ")"
else
to_string e
| Complex (x, 0.0) -> to_string (Real x)
| Complex (0.0, 1.0) -> "I"
| Variable _ | Power (_, _) | Application (_, _) as e -> to_string e
| Sum [e] -> to_string e
| Product [e] -> maybe_parentheses e
| e -> "(" ^ to_string e ^ ")"
let rec to_coupling atom = function
| Integer i -> Coupling.Integer i
| Rational q ->
let n, d = Q.to_ratio q in
Coupling.Quot (Coupling.Integer n, Coupling.Integer d)
| Real x -> Coupling.Float x
| Product es -> Coupling.Prod (List.map (to_coupling atom) es)
| Variable s -> Coupling.Atom (atom s)
| Complex (r, 0.0) -> Coupling.Float r
| Complex (0.0, 1.0) -> Coupling.I
| Complex (0.0, -1.0) -> Coupling.Prod [Coupling.I; Coupling.Integer (-1)]
| Complex (0.0, i) -> Coupling.Prod [Coupling.I; Coupling.Float i]
| Complex (r, 1.0) ->
Coupling.Sum [Coupling.Float r; Coupling.I]
| Complex (r, -1.0) ->
Coupling.Diff (Coupling.Float r, Coupling.I)
| Complex (r, i) ->
Coupling.Sum [Coupling.Float r;
Coupling.Prod [Coupling.I; Coupling.Float i]]
| Sum es -> Coupling.Sum (List.map (to_coupling atom) es)
| Difference (e1, e2) ->
Coupling.Diff (to_coupling atom e1, to_coupling atom e2)
| Quotient (e1, e2) ->
Coupling.Quot (to_coupling atom e1, to_coupling atom e2)
| Power (e1, Integer e2) ->
Coupling.Pow (to_coupling atom e1, e2)
| Power (e1, e2) ->
Coupling.PowX (to_coupling atom e1, to_coupling atom e2)
| Application (f, [e]) -> apply1 (to_coupling atom e) f
| Application (f, []) ->
failwith
("UFOx.Value.to_coupling: " ^ builtin_to_string f ^
": empty argument list")
| Application (f, _::_::_) ->
failwith
("UFOx.Value.to_coupling: " ^ builtin_to_string f ^
": more than one argument in list")
and apply1 e = function
| Sqrt -> Coupling.Sqrt e
| Exp -> Coupling.Exp e
| Log -> Coupling.Log e
| Log10 -> Coupling.Log10 e
| Sin -> Coupling.Sin e
| Cos -> Coupling.Cos e
| Tan -> Coupling.Tan e
| Asin -> Coupling.Asin e
| Acos -> Coupling.Acos e
| Atan -> Coupling.Atan e
| Sinh -> Coupling.Sinh e
| Cosh -> Coupling.Cosh e
| Tanh -> Coupling.Tanh e
| Sec -> Coupling.Quot (Coupling.Integer 1, Coupling.Cos e)
| Csc -> Coupling.Quot (Coupling.Integer 1, Coupling.Sin e)
| Asec -> Coupling.Acos (Coupling.Quot (Coupling.Integer 1, e))
| Acsc -> Coupling.Asin (Coupling.Quot (Coupling.Integer 1, e))
| Conj -> Coupling.Conj e
| Abs -> Coupling.Abs e
| (Asinh | Acosh | Atanh as f) ->
failwith
("UFOx.Value.to_coupling: function `"
^ builtin_to_string f ^ "' not supported yet!")
let compress terms = terms
let rec of_expr e =
compress (of_expr' e)
and of_expr' = function
| S.Integer i -> Integer i
| S.Float x -> Real x
| S.Variable "cmath.pi" -> Variable "pi"
| S.Quoted name ->
invalid_arg ("UFOx.Value.of_expr: unexpected quoted variable '" ^
name ^ "'")
| S.Variable name -> Variable name
| S.Sum (e1, e2) ->
begin match of_expr e1, of_expr e2 with
| (Integer 0 | Real 0.), e -> e
| e, (Integer 0 | Real 0.) -> e
| Sum e1, Sum e2 -> Sum (e1 @ e2)
| e1, Sum e2 -> Sum (e1 :: e2)
| Sum e1, e2 -> Sum (e2 :: e1)
| e1, e2 -> Sum [e1; e2]
end
| S.Difference (e1, e2) ->
begin match of_expr e1, of_expr e2 with
| e1, (Integer 0 | Real 0.) -> e1
| e1, e2 -> Difference (e1, e2)
end
| S.Product (e1, e2) ->
begin match of_expr e1, of_expr e2 with
| (Integer 0 | Real 0.), _ -> Integer 0
| _, (Integer 0 | Real 0.) -> Integer 0
| (Integer 1 | Real 1.), e -> e
| e, (Integer 1 | Real 1.) -> e
| Product e1, Product e2 -> Product (e1 @ e2)
| e1, Product e2 -> Product (e1 :: e2)
| Product e1, e2 -> Product (e2 :: e1)
| e1, e2 -> Product [e1; e2]
end
| S.Quotient (e1, e2) ->
begin match of_expr e1, of_expr e2 with
| e1, (Integer 0 | Real 0.) ->
invalid_arg "UFOx.Value: divide by 0"
| e1, (Integer 1 | Real 1.) -> e1
| e1, e2 -> Quotient (e1, e2)
end
| S.Power (e, p) ->
begin match of_expr e, of_expr p with
| (Integer 0 | Real 0.), (Integer 0 | Real 0.) ->
invalid_arg "UFOx.Value: 0^0"
| _, (Integer 0 | Real 0.) -> Integer 1
| e, (Integer 1 | Real 1.) -> e
| Integer e, Integer p ->
if p < 0 then
Power (Real (float_of_int e), Integer p)
else if p = 0 then
Integer 1
else if p <= 4 then
Power (Integer e, Integer p)
else
Power (Real (float_of_int e), Integer p)
| e, p -> Power (e, p)
end
| S.Application ("complex", [r; i]) ->
begin match of_expr r, of_expr i with
| r, (Integer 0 | Real 0.0) -> r
| Real r, Real i -> Complex (r, i)
| Integer r, Real i -> Complex (float_of_int r, i)
| Real r, Integer i -> Complex (r, float_of_int i)
| Integer r, Integer i -> Complex (float_of_int r, float_of_int i)
| _ -> invalid_arg "UFOx.Value: complex expects two numeric arguments"
end
| S.Application ("complex", _) ->
invalid_arg "UFOx.Value: complex expects two arguments"
| S.Application ("complexconjugate", [e]) ->
Application (Conj, [of_expr e])
| S.Application ("complexconjugate", _) ->
invalid_arg "UFOx.Value: complexconjugate expects single argument"
| S.Application ("cmath.sqrt", [e]) ->
Application (Sqrt, [of_expr e])
| S.Application ("cmath.sqrt", _) ->
invalid_arg "UFOx.Value: sqrt expects single argument"
| S.Application (name, args) ->
Application (builtin_of_string name, List.map of_expr args)
end
let positive integers =
List.filter (fun (i, _) -> i > 0) integers
let not_positive integers =
List.filter (fun (i, _) -> i <= 0) integers
module type Index =
sig
type t = int
val position : t -> int
val factor : t -> int
val unpack : t -> int * int
val pack : int -> int -> t
val map_position : (int -> int) -> t -> t
val to_string : t -> string
val list_to_string : t list -> string
val free : (t * 'r) list -> (t * 'r) list
val summation : (t * 'r) list -> (t * 'r) list
val classes_to_string : ('r -> string) -> (t * 'r) list -> string
val fresh_summation : unit -> t
val named_summation : string -> unit -> t
end
module Index : Index =
struct
type t = int
let free i = positive i
let summation i = not_positive i
let position i =
if i > 0 then
i mod 1000
else
i
let factor i =
if i > 0 then
i / 1000
else
invalid_arg "UFOx.Index.factor: argument not positive"
let unpack i =
if i > 0 then
(position i, factor i)
else
(i, 0)
let pack i j =
if j > 0 then
if i > 0 then
1000 * j + i
else
invalid_arg "UFOx.Index.pack: position not positive"
else if j = 0 then
i
else
invalid_arg "UFOx.Index.pack: factor negative"
let map_position f i =
let pos, fac = unpack i in
pack (f pos) fac
let to_string i =
let pos, fac = unpack i in
if fac = 0 then
Printf.sprintf "%d" pos
else
Printf.sprintf "%d.%d" pos fac
let to_string' = string_of_int
let list_to_string is =
"[" ^ String.concat ", " (List.map to_string is) ^ "]"
let classes_to_string rep_to_string index_classes =
let reps =
ThoList.uniq (List.sort compare (List.map snd index_classes)) in
"[" ^
String.concat ", "
(List.map
(fun r ->
(rep_to_string r) ^ "=" ^
(list_to_string
(List.map
fst
(List.filter (fun (_, r') -> r = r') index_classes))))
reps) ^ "]"
type factory =
{ mutable named : int SMap.t;
mutable used : Sets.Int.t }
let factory =
{ named = SMap.empty;
used = Sets.Int.empty }
let first_anonymous = -1001
let fresh_summation () =
let next_anonymous =
try
pred (Sets.Int.min_elt factory.used)
with
| Not_found -> first_anonymous in
factory.used <- Sets.Int.add next_anonymous factory.used;
next_anonymous
let named_summation name () =
try
SMap.find name factory.named
with
| Not_found ->
begin
let next_named = fresh_summation () in
factory.named <- SMap.add name next_named factory.named;
next_named
end
end
module type Atom =
sig
type t
val map_indices : (int -> int) -> t -> t
val rename_indices : (int -> int) -> t -> t
val contract_pair : t -> t -> t option
val variable : t -> string option
val scalar : t -> bool
val is_unit : t -> bool
val invertible : t -> bool
val invert : t -> t
val of_expr : string -> UFOx_syntax.expr list -> t list
val to_string : t -> string
type r
val classify_indices : t list -> (Index.t * r) list
val disambiguate_indices : t list -> t list
val rep_to_string : r -> string
val rep_to_string_whizard : r -> string
val rep_of_int : bool -> int -> r
val rep_conjugate : r -> r
val rep_trivial : r -> bool
type r_omega
val omega : r -> r_omega
end
module type Tensor =
sig
type atom
type 'a linear = ('a list * Algebra.QC.t) list
type t =
| Linear of atom linear
| Ratios of (atom linear * atom linear) list
val map_atoms : (atom -> atom) -> t -> t
val map_indices : (int -> int) -> t -> t
val rename_indices : (int -> int) -> t -> t
val map_coeff : (Algebra.QC.t -> Algebra.QC.t) -> t -> t
val contract_pairs : t -> t
val variables : t -> string list
val of_expr : UFOx_syntax.expr -> t
val of_string : string -> t
val of_strings : string list -> t
val to_string : t -> string
type r
val classify_indices : t -> (Index.t * r) list
val rep_to_string : r -> string
val rep_to_string_whizard : r -> string
val rep_of_int : bool -> int -> r
val rep_conjugate : r -> r
val rep_trivial : r -> bool
type r_omega
val omega : r -> r_omega
end
module Tensor (A : Atom) : Tensor
with type atom = A.t and type r = A.r and type r_omega = A.r_omega =
struct
module S = UFOx_syntax
(* TODO: we have to switch to [Algebra.QC] to support complex
coefficients, as used in custom propagators. *)
module Q = Algebra.Q
module QC = Algebra.QC
type atom = A.t
type 'a linear = ('a list * Algebra.QC.t) list
type t =
| Linear of atom linear
| Ratios of (atom linear * atom linear) list
let term_to_string (tensors, c) =
if QC.is_null c then
""
else
match tensors with
| [] -> QC.to_string c
| tensors ->
String.concat
"*" ((if QC.is_unit c then [] else [QC.to_string c]) @
List.map A.to_string tensors)
let linear_to_string terms =
String.concat "" (List.map term_to_string terms)
let to_string = function
| Linear terms -> linear_to_string terms
| Ratios ratios ->
String.concat
" + "
(List.map
(fun (n, d) ->
Printf.sprintf "(%s)/(%s)"
(linear_to_string n) (linear_to_string d)) ratios)
let variables_of_atoms atoms =
List.fold_left
(fun acc a ->
match A.variable a with
| None -> acc
| Some name -> Sets.String.add name acc)
Sets.String.empty atoms
let variables_of_linear linear =
List.fold_left
(fun acc (atoms, _) -> Sets.String.union (variables_of_atoms atoms) acc)
Sets.String.empty linear
let variables_set = function
| Linear linear -> variables_of_linear linear
| Ratios ratios ->
List.fold_left
(fun acc (numerator, denominator) ->
Sets.String.union
(variables_of_linear numerator)
(Sets.String.union (variables_of_linear denominator) acc))
Sets.String.empty ratios
let variables t =
Sets.String.elements (variables_set t)
let map_ratios f = function
| Linear n -> Linear (f n)
| Ratios ratios -> Ratios (List.map (fun (n, d) -> (f n, f d)) ratios)
let map_summands f t =
map_ratios (List.map f) t
let map_numerators f = function
| Linear n -> Linear (List.map f n)
| Ratios ratios ->
Ratios (List.map (fun (n, d) -> (List.map f n, d)) ratios)
let map_atoms f t =
map_summands (fun (atoms, q) -> (List.map f atoms, q)) t
let map_indices f t =
map_atoms (A.map_indices f) t
let rename_indices f t =
map_atoms (A.rename_indices f) t
let map_coeff f t =
map_numerators (fun (atoms, q) -> (atoms, f q)) t
type result =
| Matched of atom list
| Unmatched of atom list
(* [contract_pair a rev_prefix suffix] returns
[Unmatched (a :: List.rev_append rev_prefix suffix] if
there is no match (as defined by [A.contract_pair]) and
[Matched] with the reduced list otherwise. *)
let rec contract_pair a rev_prefix = function
| [] -> Unmatched (a :: List.rev rev_prefix)
| a' :: suffix ->
begin match A.contract_pair a a' with
| None -> contract_pair a (a' :: rev_prefix) suffix
| Some a'' ->
if A.is_unit a'' then
Matched (List.rev_append rev_prefix suffix)
else
Matched (List.rev_append rev_prefix (a'' :: suffix))
end
(* Use [contract_pair] to find all pairs that match according
to [A.contract_pair]. *)
let rec contract_pairs1 = function
| ([] | [_] as t) -> t
| a :: t ->
begin match contract_pair a [] t with
| Unmatched ([]) -> []
| Unmatched (a' :: t') -> a' :: contract_pairs1 t'
| Matched t' -> contract_pairs1 t'
end
let contract_pairs t =
map_summands (fun (t', c) -> (contract_pairs1 t', c)) t
let add t1 t2 =
match t1, t2 with
| Linear l1, Linear l2 -> Linear (l1 @ l2)
| Ratios r, Linear l | Linear l, Ratios r ->
Ratios ((l, [([], QC.unit)]) :: r)
| Ratios r1, Ratios r2 -> Ratios (r1 @ r2)
let multiply1 (t1, c1) (t2, c2) =
(List.sort compare (t1 @ t2), QC.mul c1 c2)
let multiply2 t1 t2 =
Product.list2 multiply1 t1 t2
let multiply t1 t2 =
match t1, t2 with
| Linear l1, Linear l2 -> Linear (multiply2 l1 l2)
| Ratios r, Linear l | Linear l, Ratios r ->
Ratios (List.map (fun (n, d) -> (multiply2 l n, d)) r)
| Ratios r1, Ratios r2 ->
Ratios (Product.list2
(fun (n1, d1) (n2, d2) ->
(multiply2 n1 n2, multiply2 d1 d2))
r1 r2)
let rec power n t =
if n < 0 then
invalid_arg "UFOx.Tensor.power: n < 0"
else if n = 0 then
Linear [([], QC.unit)]
else if n = 1 then
t
else
multiply t (power (pred n) t)
let compress ratios =
map_ratios
(fun terms ->
List.map (fun (t, cs) -> (t, QC.sum cs)) (ThoList.factorize terms))
ratios
let rec of_expr e =
contract_pairs (compress (of_expr' e))
and of_expr' = function
| S.Integer i -> Linear [([], QC.make (Q.make i 1) Q.null)]
| S.Float _ -> invalid_arg "UFOx.Tensor.of_expr: unexpected float"
| S.Quoted name ->
invalid_arg ("UFOx.Tensor.of_expr: unexpected quoted variable '" ^
name ^ "'")
| S.Variable name ->
(* There should be a gatekeeper here or in [A.of_expr]: *)
Linear [(A.of_expr name [], QC.unit)]
| S.Application ("complex", [re; im]) ->
begin match of_expr re, of_expr im with
| Linear [([], re)], Linear [([], im)] ->
if QC.is_real re && QC.is_real im then
Linear [([], QC.make (QC.real re) (QC.real im))]
else
invalid_arg ("UFOx.Tensor.of_expr: argument of complex is complex")
| _ ->
invalid_arg "UFOx.Tensor.of_expr: unexpected argument of complex"
end
| S.Application (name, args) ->
Linear [(A.of_expr name args, QC.unit)]
| S.Sum (e1, e2) -> add (of_expr e1) (of_expr e2)
| S.Difference (e1, e2) ->
add (of_expr e1) (of_expr (S.Product (S.Integer (-1), e2)))
| S.Product (e1, e2) -> multiply (of_expr e1) (of_expr e2)
| S.Quotient (n, d) ->
begin match of_expr n, of_expr d with
| n, Linear [] ->
invalid_arg "UFOx.Tensor.of_expr: zero denominator"
| n, Linear [([], q)] -> map_coeff (fun c -> QC.div c q) n
| n, Linear ([(invertibles, q)] as d) ->
if List.for_all A.invertible invertibles then
let inverses = List.map A.invert invertibles in
multiply (Linear [(inverses, QC.inv q)]) n
else
multiply (Ratios [[([], QC.unit)], d]) n
| n, (Linear d as d')->
if List.for_all (fun (t, _) -> List.for_all A.scalar t) d then
multiply (Ratios [[([], QC.unit)], d]) n
else
invalid_arg ("UFOx.Tensor.of_expr: non scalar denominator: " ^
to_string d')
| n, (Ratios _ as d) ->
invalid_arg ("UFOx.Tensor.of_expr: illegal denominator: " ^
to_string d)
end
| S.Power (e, p) ->
begin match of_expr e, of_expr p with
| Linear [([], q)], Linear [([], p)] ->
if QC.is_real p then
let re_p = QC.real p in
if Q.is_integer re_p then
Linear [([], QC.pow q (Q.to_integer re_p))]
else
invalid_arg "UFOx.Tensor.of_expr: rational power of number"
else
invalid_arg "UFOx.Tensor.of_expr: complex power of number"
| Linear [([], q)], _ ->
invalid_arg "UFOx.Tensor.of_expr: non-numeric power of number"
| t, Linear [([], p)] ->
if QC.is_integer p then
power (Q.to_integer (QC.real p)) t
else
invalid_arg "UFOx.Tensor.of_expr: non integer power of tensor"
| _ -> invalid_arg "UFOx.Tensor.of_expr: non numeric power of tensor"
end
type r = A.r
let rep_to_string = A.rep_to_string
let rep_to_string_whizard = A.rep_to_string_whizard
let rep_of_int = A.rep_of_int
let rep_conjugate = A.rep_conjugate
let rep_trivial = A.rep_trivial
let numerators = function
| Linear tensors -> tensors
| Ratios ratios -> ThoList.flatmap fst ratios
let classify_indices' filter tensors =
ThoList.uniq
(List.sort compare
(List.map
(fun (t, c) -> filter (A.classify_indices t))
(numerators tensors)))
(* NB: the number of summation indices is not guarateed to be
the same! Therefore it was foolish to try to check for
uniqueness \ldots *)
let classify_indices tensors =
match classify_indices' Index.free tensors with
| [] ->
(* There's always at least an empty list! *)
failwith "UFOx.Tensor.classify_indices: can't happen!"
| [f] -> f
| _ ->
invalid_arg "UFOx.Tensor.classify_indices: incompatible free indices!"
let disambiguate_indices1 (atoms, q) =
(A.disambiguate_indices atoms, q)
let disambiguate_indices tensors =
map_ratios (List.map disambiguate_indices1) tensors
let check_indices t =
ignore (classify_indices t)
let of_expr e =
let t = disambiguate_indices (of_expr e) in
check_indices t;
t
let of_string s =
of_expr (Expr.of_string s)
let of_strings s =
of_expr (Expr.of_strings s)
type r_omega = A.r_omega
let omega = A.omega
end
module type Lorentz_Atom =
sig
type dirac = private
| C of int * int
| Gamma of int * int * int
| Gamma5 of int * int
| Identity of int * int
| ProjP of int * int
| ProjM of int * int
| Sigma of int * int * int * int
type vector = (* private *)
| Epsilon of int * int * int * int
| Metric of int * int
| P of int * int
type scalar = (* private *)
| Mass of int
| Width of int
| P2 of int
| P12 of int * int
| Variable of string
| Coeff of Value.t
type t = (* private *)
| Dirac of dirac
| Vector of vector
| Scalar of scalar
| Inverse of scalar
val map_indices_scalar : (int -> int) -> scalar -> scalar
val map_indices_vector : (int -> int) -> vector -> vector
val rename_indices_vector : (int -> int) -> vector -> vector
end
module Lorentz_Atom =
struct
type dirac =
| C of int * int
| Gamma of int * int * int
| Gamma5 of int * int
| Identity of int * int
| ProjP of int * int
| ProjM of int * int
| Sigma of int * int * int * int
type vector =
| Epsilon of int * int * int * int
| Metric of int * int
| P of int * int
type scalar =
| Mass of int
| Width of int
| P2 of int
| P12 of int * int
| Variable of string
| Coeff of Value.t
type t =
| Dirac of dirac
| Vector of vector
| Scalar of scalar
| Inverse of scalar
let map_indices_scalar f = function
| Mass i -> Mass (f i)
| Width i -> Width (f i)
| P2 i -> P2 (f i)
| P12 (i, j) -> P12 (f i, f j)
| (Variable _ | Coeff _ as s) -> s
let map_indices_vector f = function
| Epsilon (mu, nu, ka, la) -> Epsilon (f mu, f nu, f ka, f la)
| Metric (mu, nu) -> Metric (f mu, f nu)
| P (mu, n) -> P (f mu, f n)
let rename_indices_vector f = function
| Epsilon (mu, nu, ka, la) -> Epsilon (f mu, f nu, f ka, f la)
| Metric (mu, nu) -> Metric (f mu, f nu)
| P (mu, n) -> P (f mu, n)
end
module Lorentz_Atom' : Atom
with type t = Lorentz_Atom.t and type r_omega = Coupling.lorentz =
struct
type t = Lorentz_Atom.t
open Lorentz_Atom
let map_indices_dirac f = function
| C (i, j) -> C (f i, f j)
| Gamma (mu, i, j) -> Gamma (f mu, f i, f j)
| Gamma5 (i, j) -> Gamma5 (f i, f j)
| Identity (i, j) -> Identity (f i, f j)
| ProjP (i, j) -> ProjP (f i, f j)
| ProjM (i, j) -> ProjM (f i, f j)
| Sigma (mu, nu, i, j) -> Sigma (f mu, f nu, f i, f j)
let rename_indices_dirac = map_indices_dirac
let map_indices_scalar f = function
| Mass i -> Mass (f i)
| Width i -> Width (f i)
| P2 i -> P2 (f i)
| P12 (i, j) -> P12 (f i, f j)
| Variable s -> Variable s
| Coeff c -> Coeff c
let map_indices f = function
| Dirac d -> Dirac (map_indices_dirac f d)
| Vector v -> Vector (map_indices_vector f v)
| Scalar s -> Scalar (map_indices_scalar f s)
| Inverse s -> Inverse (map_indices_scalar f s)
let rename_indices2 fd fv = function
| Dirac d -> Dirac (rename_indices_dirac fd d)
| Vector v -> Vector (rename_indices_vector fv v)
| Scalar s -> Scalar s
| Inverse s -> Inverse s
let rename_indices f atom =
rename_indices2 f f atom
let contract_pair a1 a2 =
match a1, a2 with
| Vector (P (mu1, i1)), Vector (P (mu2, i2)) ->
if mu1 <= 0 && mu1 = mu2 then
if i1 = i2 then
Some (Scalar (P2 i1))
else
Some (Scalar (P12 (i1, i2)))
else
None
| Scalar s, Inverse s' | Inverse s, Scalar s' ->
if s = s' then
Some (Scalar (Coeff (Value.Integer 1)))
else
None
| _ -> None
let variable = function
| Scalar (Variable s) | Inverse (Variable s) -> Some s
| _ -> None
let scalar = function
| Dirac _ | Vector _ -> false
| Scalar _ | Inverse _ -> true
let is_unit = function
| Scalar (Coeff c) | Inverse (Coeff c) ->
begin match c with
| Value.Integer 1 -> true
| Value.Rational q -> Algebra.Q.is_unit q
| _ -> false
end
| _ -> false
let invertible = scalar
let invert = function
| Dirac _ -> invalid_arg "UFOx.Lorentz_Atom.invert Dirac"
| Vector _ -> invalid_arg "UFOx.Lorentz_Atom.invert Vector"
| Scalar s -> Inverse s
| Inverse s -> Scalar s
let i2s = Index.to_string
let dirac_to_string = function
| C (i, j) ->
Printf.sprintf "C(%s,%s)" (i2s i) (i2s j)
| Gamma (mu, i, j) ->
Printf.sprintf "Gamma(%s,%s,%s)" (i2s mu) (i2s i) (i2s j)
| Gamma5 (i, j) ->
Printf.sprintf "Gamma5(%s,%s)" (i2s i) (i2s j)
| Identity (i, j) ->
Printf.sprintf "Identity(%s,%s)" (i2s i) (i2s j)
| ProjP (i, j) ->
Printf.sprintf "ProjP(%s,%s)" (i2s i) (i2s j)
| ProjM (i, j) ->
Printf.sprintf "ProjM(%s,%s)" (i2s i) (i2s j)
| Sigma (mu, nu, i, j) ->
Printf.sprintf "Sigma(%s,%s,%s,%s)" (i2s mu) (i2s nu) (i2s i) (i2s j)
let vector_to_string = function
| Epsilon (mu, nu, ka, la) ->
Printf.sprintf "Epsilon(%s,%s,%s,%s)" (i2s mu) (i2s nu) (i2s ka) (i2s la)
| Metric (mu, nu) ->
Printf.sprintf "Metric(%s,%s)" (i2s mu) (i2s nu)
| P (mu, n) ->
Printf.sprintf "P(%s,%d)" (i2s mu) n
let scalar_to_string = function
| Mass id -> Printf.sprintf "Mass(%d)" id
| Width id -> Printf.sprintf "Width(%d)" id
| P2 id -> Printf.sprintf "P(%d)**2" id
| P12 (id1, id2) -> Printf.sprintf "P(%d)*P(%d)" id1 id2
| Variable s -> s
| Coeff c -> Value.to_string c
let to_string = function
| Dirac d -> dirac_to_string d
| Vector v -> vector_to_string v
| Scalar s -> scalar_to_string s
| Inverse s -> "1/" ^ scalar_to_string s
module S = UFOx_syntax
(* \begin{dubious}
Here we handle some special cases in order to be able to
parse propagators. This needs to be made more general,
but unfortunately the syntax for the propagator extension
is not well documented and appears to be a bit chaotic!
\end{dubious} *)
let quoted_index s =
Index.named_summation s ()
let integer_or_id = function
| S.Integer n -> n
| S.Variable "id" -> 1
| _ -> failwith "UFOx.Lorentz_Atom.integer_or_id: impossible"
let vector_index = function
| S.Integer n -> n
| S.Quoted mu -> quoted_index mu
| S.Variable id ->
let l = String.length id in
if l > 1 then
if id.[0] = 'l' then
int_of_string (String.sub id 1 (pred l))
else
invalid_arg ("UFOx.Lorentz_Atom.vector_index: " ^ id)
else
invalid_arg "UFOx.Lorentz_Atom.vector_index: empty variable"
| _ -> invalid_arg "UFOx.Lorentz_Atom.vector_index"
let spinor_index = function
| S.Integer n -> n
| S.Variable id ->
let l = String.length id in
if l > 1 then
if id.[0] = 's' then
int_of_string (String.sub id 1 (pred l))
else
invalid_arg ("UFOx.Lorentz_Atom.spinor_index: " ^ id)
else
invalid_arg "UFOx.Lorentz_Atom.spinor_index: empty variable"
| _ -> invalid_arg "UFOx.Lorentz_Atom.spinor_index"
let of_expr name args =
match name, args with
| "C", [i; j] -> [Dirac (C (spinor_index i, spinor_index j))]
| "C", _ ->
invalid_arg "UFOx.Lorentz.of_expr: invalid arguments to C()"
| "Epsilon", [mu; nu; ka; la] ->
[Vector (Epsilon (vector_index mu, vector_index nu,
vector_index ka, vector_index la))]
| "Epsilon", _ ->
invalid_arg "UFOx.Lorentz.of_expr: invalid arguments to Epsilon()"
| "Gamma", [mu; i; j] ->
[Dirac (Gamma (vector_index mu, spinor_index i, spinor_index j))]
| "Gamma", _ ->
invalid_arg "UFOx.Lorentz.of_expr: invalid arguments to Gamma()"
| "Gamma5", [i; j] -> [Dirac (Gamma5 (spinor_index i, spinor_index j))]
| "Gamma5", _ ->
invalid_arg "UFOx.Lorentz.of_expr: invalid arguments to Gamma5()"
| "Identity", [i; j] -> [Dirac (Identity (spinor_index i, spinor_index j))]
| "Identity", _ ->
invalid_arg "UFOx.Lorentz.of_expr: invalid arguments to Identity()"
| "Metric", [mu; nu] -> [Vector (Metric (vector_index mu, vector_index nu))]
| "Metric", _ ->
invalid_arg "UFOx.Lorentz.of_expr: invalid arguments to Metric()"
| "P", [mu; id] -> [Vector (P (vector_index mu, integer_or_id id))]
| "P", _ ->
invalid_arg "UFOx.Lorentz.of_expr: invalid arguments to P()"
| "ProjP", [i; j] -> [Dirac (ProjP (spinor_index i, spinor_index j))]
| "ProjP", _ ->
invalid_arg "UFOx.Lorentz.of_expr: invalid arguments to ProjP()"
| "ProjM", [i; j] -> [Dirac (ProjM (spinor_index i, spinor_index j))]
| "ProjM", _ ->
invalid_arg "UFOx.Lorentz.of_expr: invalid arguments to ProjM()"
| "Sigma", [mu; nu; i; j] ->
if mu <> nu then
[Dirac (Sigma (vector_index mu, vector_index nu,
spinor_index i, spinor_index j))]
else
invalid_arg "UFOx.Lorentz.of_expr: implausible arguments to Sigma()"
| "Sigma", _ ->
invalid_arg "UFOx.Lorentz.of_expr: invalid arguments to Sigma()"
| "PSlash", [i; j; id] ->
let mu = Index.fresh_summation () in
[Dirac (Gamma (mu, spinor_index i, spinor_index j));
Vector (P (mu, integer_or_id id))]
| "PSlash", _ ->
invalid_arg "UFOx.Lorentz.of_expr: invalid arguments to PSlash()"
| "Mass", [id] -> [Scalar (Mass (integer_or_id id))]
| "Mass", _ ->
invalid_arg "UFOx.Lorentz.of_expr: invalid arguments to Mass()"
| "Width", [id] -> [Scalar (Width (integer_or_id id))]
| "Width", _ ->
invalid_arg "UFOx.Lorentz.of_expr: invalid arguments to Width()"
| name, [] ->
[Scalar (Variable name)]
| name, _ ->
invalid_arg ("UFOx.Lorentz.of_expr: invalid tensor '" ^ name ^ "'")
type r = S | V | T | Sp | CSp | Maj | VSp | CVSp | VMaj | Ghost
let rep_trivial = function
| S | Ghost -> true
| V | T | Sp | CSp | Maj | VSp | CVSp | VMaj -> false
let rep_to_string = function
| S -> "0"
| V -> "1"
| T -> "2"
| Sp -> "1/2"
| CSp-> "1/2bar"
| Maj -> "1/2M"
| VSp -> "3/2"
| CVSp -> "3/2bar"
| VMaj -> "3/2M"
| Ghost -> "Ghost"
let rep_to_string_whizard = function
| S -> "0"
| V -> "1"
| T -> "2"
| Sp | CSp | Maj -> "1/2"
| VSp | CVSp | VMaj -> "3/2"
| Ghost -> "Ghost"
let rep_of_int neutral = function
| -1 -> Ghost
| 1 -> S
| 2 -> if neutral then Maj else Sp
| -2 -> if neutral then Maj else CSp (* used by [UFO.Particle.force_conjspinor] *)
| 3 -> V
| 4 -> if neutral then VMaj else VSp
| -4 -> if neutral then VMaj else CVSp (* used by [UFO.Particle.force_conjspinor] *)
| 5 -> T
| s when s > 0 ->
failwith "UFOx.Lorentz: spin > 2 not supported!"
| _ ->
invalid_arg "UFOx.Lorentz: invalid non-positive spin value"
let rep_conjugate = function
| S -> S
| V -> V
| T -> T
| Sp -> CSp (* ??? *)
| CSp -> Sp (* ??? *)
| Maj -> Maj
| VSp -> CVSp
| CVSp -> VSp
| VMaj -> VMaj
| Ghost -> Ghost
let classify_vector_indices1 = function
| Epsilon (mu, nu, ka, la) -> [(mu, V); (nu, V); (ka, V); (la, V)]
| Metric (mu, nu) -> [(mu, V); (nu, V)]
| P (mu, n) -> [(mu, V)]
let classify_dirac_indices1 = function
| C (i, j) -> [(i, CSp); (j, Sp)] (* ??? *)
| Gamma5 (i, j) | Identity (i, j)
| ProjP (i, j) | ProjM (i, j) -> [(i, CSp); (j, Sp)]
| Gamma (mu, i, j) -> [(mu, V); (i, CSp); (j, Sp)]
| Sigma (mu, nu, i, j) -> [(mu, V); (nu, V); (i, CSp); (j, Sp)]
let classify_indices1 = function
| Dirac d -> classify_dirac_indices1 d
| Vector v -> classify_vector_indices1 v
| Scalar _ | Inverse _ -> []
module IMap = Map.Make (struct type t = int let compare = compare end)
exception Incompatible_factors of r * r
let product rep1 rep2 =
match rep1, rep2 with
| V, V -> T
| V, Sp -> VSp
| V, CSp -> CVSp
| V, Maj -> VMaj
| Sp, V -> VSp
| CSp, V -> CVSp
| Maj, V -> VMaj
| _, _ -> raise (Incompatible_factors (rep1, rep2))
let combine_or_add_index (i, rep) map =
let pos, fac = Index.unpack i in
try
let fac', rep' = IMap.find pos map in
if pos < 0 then
IMap.add pos (fac, rep) map
else if fac <> fac' then
IMap.add pos (0, product rep rep') map
else if rep <> rep' then (* Can be disambiguated! *)
IMap.add pos (0, product rep rep') map
else
invalid_arg (Printf.sprintf "UFO: duplicate subindex %d" pos)
with
| Not_found -> IMap.add pos (fac, rep) map
| Incompatible_factors (rep1, rep2) ->
invalid_arg
(Printf.sprintf
"UFO: incompatible factors (%s,%s) at %d"
(rep_to_string rep1) (rep_to_string rep2) pos)
let combine_or_add_indices atom map =
List.fold_right combine_or_add_index (classify_indices1 atom) map
let project_factors (pos, (fac, rep)) =
if fac = 0 then
(pos, rep)
else
invalid_arg (Printf.sprintf "UFO: leftover subindex %d.%d" pos fac)
let classify_indices atoms =
List.map
project_factors
(IMap.bindings (List.fold_right combine_or_add_indices atoms IMap.empty))
let add_factor fac indices pos =
if pos > 0 then
if Sets.Int.mem pos indices then
Index.pack pos fac
else
pos
else
pos
let disambiguate_indices1 indices atom =
rename_indices2 (add_factor 1 indices) (add_factor 2 indices) atom
let vectorspinors atoms =
List.fold_left
(fun acc (i, r) ->
match r with
| S | V | T | Sp | CSp | Maj | Ghost -> acc
| VSp | CVSp | VMaj -> Sets.Int.add i acc)
Sets.Int.empty (classify_indices atoms)
let disambiguate_indices atoms =
let vectorspinor_indices = vectorspinors atoms in
List.map (disambiguate_indices1 vectorspinor_indices) atoms
type r_omega = Coupling.lorentz
let omega = function
| S -> Coupling.Scalar
| V -> Coupling.Vector
| T -> Coupling.Tensor_2
| Sp -> Coupling.Spinor
| CSp -> Coupling.ConjSpinor
| Maj -> Coupling.Majorana
| VSp -> Coupling.Vectorspinor
| CVSp -> Coupling.Vectorspinor (* TODO: not really! *)
| VMaj -> Coupling.Vectorspinor (* TODO: not really! *)
| Ghost -> Coupling.Scalar
end
module Lorentz = Tensor(Lorentz_Atom')
module type Color_Atom =
sig
type t = (* private *)
| Identity of int * int
| Identity8 of int * int
| T of int * int * int
| F of int * int * int
| D of int * int * int
| Epsilon of int * int * int
| EpsilonBar of int * int * int
| T6 of int * int * int
| K6 of int * int * int
| K6Bar of int * int * int
end
module Color_Atom =
struct
type t =
| Identity of int * int
| Identity8 of int * int
| T of int * int * int
| F of int * int * int
| D of int * int * int
| Epsilon of int * int * int
| EpsilonBar of int * int * int
| T6 of int * int * int
| K6 of int * int * int
| K6Bar of int * int * int
end
module Color_Atom' : Atom
with type t = Color_Atom.t and type r_omega = Color.t =
struct
type t = Color_Atom.t
module S = UFOx_syntax
open Color_Atom
let map_indices f = function
| Identity (i, j) -> Identity (f i, f j)
| Identity8 (a, b) -> Identity8 (f a, f b)
| T (a, i, j) -> T (f a, f i, f j)
| F (a, i, j) -> F (f a, f i, f j)
| D (a, i, j) -> D (f a, f i, f j)
| Epsilon (i, j, k) -> Epsilon (f i, f j, f k)
| EpsilonBar (i, j, k) -> EpsilonBar (f i, f j, f k)
| T6 (a, i', j') -> T6 (f a, f i', f j')
| K6 (i', j, k) -> K6 (f i', f j, f k)
| K6Bar (i', j, k) -> K6Bar (f i', f j, f k)
let rename_indices = map_indices
let contract_pair _ _ = None
let variable _ = None
let scalar _ = false
let invertible _ = false
let is_unit _ = false
let invert _ =
invalid_arg "UFOx.Color_Atom.invert"
let of_expr1 name args =
match name, args with
| "Identity", [S.Integer i; S.Integer j] -> Identity (i, j)
| "Identity", _ ->
invalid_arg "UFOx.Color.of_expr: invalid arguments to Identity()"
| "T", [S.Integer a; S.Integer i; S.Integer j] -> T (a, i, j)
| "T", _ ->
invalid_arg "UFOx.Color.of_expr: invalid arguments to T()"
| "f", [S.Integer a; S.Integer b; S.Integer c] -> F (a, b, c)
| "f", _ ->
invalid_arg "UFOx.Color.of_expr: invalid arguments to f()"
| "d", [S.Integer a; S.Integer b; S.Integer c] -> D (a, b, c)
| "d", _ ->
invalid_arg "UFOx.Color.of_expr: invalid arguments to d()"
| "Epsilon", [S.Integer i; S.Integer j; S.Integer k] ->
Epsilon (i, j, k)
| "Epsilon", _ ->
invalid_arg "UFOx.Color.of_expr: invalid arguments to Epsilon()"
| "EpsilonBar", [S.Integer i; S.Integer j; S.Integer k] ->
EpsilonBar (i, j, k)
| "EpsilonBar", _ ->
invalid_arg "UFOx.Color.of_expr: invalid arguments to EpsilonBar()"
| "T6", [S.Integer a; S.Integer i'; S.Integer j'] -> T6 (a, i', j')
| "T6", _ ->
invalid_arg "UFOx.Color.of_expr: invalid arguments to T6()"
| "K6", [S.Integer i'; S.Integer j; S.Integer k] -> K6 (i', j, k)
| "K6", _ ->
invalid_arg "UFOx.Color.of_expr: invalid arguments to K6()"
| "K6Bar", [S.Integer i'; S.Integer j; S.Integer k] -> K6Bar (i', j, k)
| "K6Bar", _ ->
invalid_arg "UFOx.Color.of_expr: invalid arguments to K6Bar()"
| name, _ ->
invalid_arg ("UFOx.Color.of_expr: invalid tensor '" ^ name ^ "'")
let of_expr name args =
[of_expr1 name args]
let to_string = function
| Identity (i, j) -> Printf.sprintf "Identity(%d,%d)" i j
| Identity8 (a, b) -> Printf.sprintf "Identity8(%d,%d)" a b
| T (a, i, j) -> Printf.sprintf "T(%d,%d,%d)" a i j
| F (a, b, c) -> Printf.sprintf "f(%d,%d,%d)" a b c
| D (a, b, c) -> Printf.sprintf "d(%d,%d,%d)" a b c
| Epsilon (i, j, k) -> Printf.sprintf "Epsilon(%d,%d,%d)" i j k
| EpsilonBar (i, j, k) -> Printf.sprintf "EpsilonBar(%d,%d,%d)" i j k
| T6 (a, i', j') -> Printf.sprintf "T6(%d,%d,%d)" a i' j'
| K6 (i', j, k) -> Printf.sprintf "K6(%d,%d,%d)" i' j k
| K6Bar (i', j, k) -> Printf.sprintf "K6Bar(%d,%d,%d)" i' j k
type r = S | F | C | A
let rep_trivial = function
| S -> true
| F | C | A -> false
let rep_to_string = function
| S -> "1"
| F -> "3"
| C -> "3bar"
| A-> "8"
let rep_to_string_whizard = function
| S -> "1"
| F -> "3"
| C -> "-3"
| A-> "8"
let rep_of_int neutral = function
| 1 -> S
| 3 -> F
| -3 -> C
| 8 -> A
| 6 | -6 -> failwith "UFOx.Color: sextets not supported yet!"
| 10 | -10 -> failwith "UFOx.Color: decuplets not supported yet!"
| n ->
invalid_arg
(Printf.sprintf
"UFOx.Color: impossible representation color = %d!" n)
let rep_conjugate = function
| S -> S
| C -> F
| F -> C
| A -> A
let classify_indices1 = function
| Identity (i, j) -> [(i, C); (j, F)]
| Identity8 (a, b) -> [(a, A); (b, A)]
| T (a, i, j) -> [(i, F); (j, C); (a, A)]
| Color_Atom.F (a, b, c) | D (a, b, c) -> [(a, A); (b, A); (c, A)]
| Epsilon (i, j, k) -> [(i, F); (j, F); (k, F)]
| EpsilonBar (i, j, k) -> [(i, C); (j, C); (k, C)]
| T6 (a, i', j') ->
failwith "UFOx.Color: sextets not supported yet!"
| K6 (i', j, k) ->
failwith "UFOx.Color: sextets not supported yet!"
| K6Bar (i', j, k) ->
failwith "UFOx.Color: sextets not supported yet!"
let classify_indices tensors =
List.sort compare
(List.fold_right
(fun v acc -> classify_indices1 v @ acc)
tensors [])
let disambiguate_indices atoms =
atoms
type r_omega = Color.t
(* FIXME: $N_C=3$ should not be hardcoded! *)
let omega = function
| S -> Color.Singlet
| F -> Color.SUN (3)
| C -> Color.SUN (-3)
| A -> Color.AdjSUN (3)
end
module Color = Tensor(Color_Atom')
module type Test =
sig
- val example : unit -> unit
val suite : OUnit.test
end
+
+module Test : Test =
+ struct
+
+ open OUnit
+
+ let parse_unparse s =
+ Value.to_string (Value.of_expr (Expr.of_string s))
+
+ let assert_parse_unparse unparsed expr =
+ assert_equal ~printer:(fun s -> s) unparsed (parse_unparse expr)
+
+ let suite_expr =
+ "unparse/parse" >:::
+ [ "a + b" >::
+ (fun () -> assert_parse_unparse "(a+b)" "a+b");
+
+ "(a - b) / c" >::
+ (fun () -> assert_parse_unparse "(a-b)/c" "(a-b)/c");
+
+ "(a + b - c) / d" >::
+ (fun () -> assert_parse_unparse "((a+b)-c)/d" "(a+b-c)/d");
+
+ "S2HDMIV:lam1" >::
+ (fun () ->
+ assert_parse_unparse
+ "(((Mh3^2*RA3x1^2)+(Mh1^2*RA1x1^2)+(Mh2^2*RA2x1^2))-(musq*SB^2))/(CB^2*vH^2)"
+ "(Mh1**2*RA1x1**2 + Mh2**2*RA2x1**2 + Mh3**2*RA3x1**2 - musq*SB**2)/(CB**2*vH**2)") ]
+
+ let suite =
+ "UFOx" >:::
+ [suite_expr]
+
+ end
+
Index: trunk/omega/src/UFOx.mli
===================================================================
--- trunk/omega/src/UFOx.mli (revision 8861)
+++ trunk/omega/src/UFOx.mli (revision 8862)
@@ -1,250 +1,250 @@
(* vertex.mli --
Copyright (C) 1999-2023 by
Wolfgang Kilian <kilian@physik.uni-siegen.de>
Thorsten Ohl <ohl@physik.uni-wuerzburg.de>
Juergen Reuter <juergen.reuter@desy.de>
with contributions from
Christian Speckner <cnspeckn@googlemail.com>
WHIZARD is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
WHIZARD is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *)
module Expr :
sig
type t
val of_string : string -> t
val of_strings : string list -> t
val substitute : string -> t -> t -> t
val rename : (string * string) list -> t -> t
val half : string -> t
val variables : t -> Sets.String_Caseless.t
val functions : t -> Sets.String_Caseless.t
end
module Value :
sig
type t
val of_expr : Expr.t -> t
val to_string : t -> string
val to_coupling : (string -> 'b) -> t -> 'b Coupling.expr
end
(* \begin{dubious}
UFO represents rank-2 indices $(i,j)$ as $1000\cdot j + i$.
This should be replaced by a proper union type eventually.
Unfortunately, this requires many changes in the [Atom]s in
[UFOx]. Therefore, we try a quick'n'dirty proof of principle
first.
\end{dubious} *)
module type Index =
sig
type t = int
val position : t -> int
val factor : t -> int
val unpack : t -> int * int
val pack : int -> int -> t
val map_position : (int -> int) -> t -> t
val to_string : t -> string
val list_to_string : t list -> string
(* Indices are represented by a pair [int * 'r], where
['r] denotes the representation the index belongs to. *)
(* [free indices] returns all free indices in the
list [indices], i.\,e.~all positive indices. *)
val free : (t * 'r) list -> (t * 'r) list
(* [summation indices] returns all summation indices in the
list [indices], i.\,e.~all negative indices. *)
val summation : (t * 'r) list -> (t * 'r) list
val classes_to_string : ('r -> string) -> (t * 'r) list -> string
(* Generate summation indices, starting from~$-1001$.
TODO: check that there are no clashes with explicitely
named indices. *)
val fresh_summation : unit -> t
val named_summation : string -> unit -> t
end
module Index : Index
module type Tensor =
sig
type atom
(* A tensor is a linear combination of products of [atom]s
with rational coefficients. The following could be refined
by introducing [scalar] atoms and restricting the denominators
to [(scalar list * Algebra.QC.t) list]. At the moment, this
restriction is implemented dynamically by [of_expr] and not
statically in the type system.
Polymorphic variants appear to be the right tool, either
directly or as phantom types.
However, this is certainly only \textit{nice-to-have}
and is not essential. *)
type 'a linear = ('a list * Algebra.QC.t) list
type t =
| Linear of atom linear
| Ratios of (atom linear * atom linear) list
(* We might need to replace atoms if the syntax is not
context free. *)
val map_atoms : (atom -> atom) -> t -> t
(* We need to rename indices to implement permutations \ldots *)
val map_indices : (int -> int) -> t -> t
(* \ldots{} but in order to to clean up inconsistencies
in the syntax of \texttt{lorentz.py} and
\texttt{propagators.py} we also need to rename indices
without touching the second argument of \texttt{P}, the
argument of \texttt{Mass} etc. *)
val rename_indices : (int -> int) -> t -> t
(* We need scale coefficients. *)
val map_coeff : (Algebra.QC.t -> Algebra.QC.t) -> t -> t
(* Try to contract adjacent pairs of [atoms] as allowed
but [Atom.contract_pair]. This is not exhaustive, but
helps a lot with invariant squares of momenta in
applications of [Lorentz]. *)
val contract_pairs : t -> t
(* The list of variable referenced in the tensor expression,
that will need to be imported by the numerical code. *)
val variables : t -> string list
(* Parsing and unparsing. Lists of [string]s are
interpreted as sums. *)
val of_expr : UFOx_syntax.expr -> t
val of_string : string -> t
val of_strings : string list -> t
val to_string : t -> string
(* The supported representations. *)
type r
val classify_indices : t -> (int * r) list
val rep_to_string : r -> string
val rep_to_string_whizard : r -> string
val rep_of_int : bool -> int -> r
val rep_conjugate : r -> r
val rep_trivial : r -> bool
(* There is not a 1-to-1 mapping between the representations
in the model files and the representations used by O'Mega,
e.\,g.~in [Coupling.lorentz]. We might need to use heuristics. *)
type r_omega
val omega : r -> r_omega
end
module type Atom =
sig
type t
val map_indices : (int -> int) -> t -> t
val rename_indices : (int -> int) -> t -> t
val contract_pair : t -> t -> t option
val variable : t -> string option
val scalar : t -> bool
val is_unit : t -> bool
val invertible : t -> bool
val invert : t -> t
val of_expr : string -> UFOx_syntax.expr list -> t list
val to_string : t -> string
type r
val classify_indices : t list -> (int * r) list
val disambiguate_indices : t list -> t list
val rep_to_string : r -> string
val rep_to_string_whizard : r -> string
val rep_of_int : bool -> int -> r
val rep_conjugate : r -> r
val rep_trivial : r -> bool
type r_omega
val omega : r -> r_omega
end
module type Lorentz_Atom =
sig
type dirac = private
| C of int * int
| Gamma of int * int * int
| Gamma5 of int * int
| Identity of int * int
| ProjP of int * int
| ProjM of int * int
| Sigma of int * int * int * int
type vector = (* private *)
| Epsilon of int * int * int * int
| Metric of int * int
| P of int * int
type scalar = (* private *)
| Mass of int
| Width of int
| P2 of int
| P12 of int * int
| Variable of string
| Coeff of Value.t
type t = (* private *)
| Dirac of dirac
| Vector of vector
| Scalar of scalar
| Inverse of scalar
val map_indices_scalar : (int -> int) -> scalar -> scalar
val map_indices_vector : (int -> int) -> vector -> vector
val rename_indices_vector : (int -> int) -> vector -> vector
end
module Lorentz_Atom : Lorentz_Atom
module Lorentz : Tensor
with type atom = Lorentz_Atom.t and type r_omega = Coupling.lorentz
module type Color_Atom =
sig
type t = (* private *)
| Identity of int * int
| Identity8 of int * int
| T of int * int * int
| F of int * int * int
| D of int * int * int
| Epsilon of int * int * int
| EpsilonBar of int * int * int
| T6 of int * int * int
| K6 of int * int * int
| K6Bar of int * int * int
end
module Color_Atom : Color_Atom
module Color : Tensor
with type atom = Color_Atom.t and type r_omega = Color.t
module type Test =
sig
- val example : unit -> unit
val suite : OUnit.test
end
+module Test : Test

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 6:01 PM (1 d, 17 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805479
Default Alt Text
(64 KB)

Event Timeline