Page MenuHomeHEPForge

No OneTemporary

diff --git a/Vectors/ThreeVector.h b/Vectors/ThreeVector.h
--- a/Vectors/ThreeVector.h
+++ b/Vectors/ThreeVector.h
@@ -1,419 +1,419 @@
// -*- C++ -*-
//
// ThreeVector.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 2006-2011 David Grellscheid, Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_ThreeVector_H
#define ThePEG_ThreeVector_H
/**
* @file ThreeVector.h contains the ThreeVector class. ThreeVector can be
* created with any unit type as template parameter. All basic
* mathematical operations are supported, as well as a subset of the
* CLHEP Vector3 functionality.
*/
#include "ThreeVector.fh"
#include "ThePEG/Config/ThePEG.h"
#include "ThePEG/Utilities/UnitIO.h"
#include <cassert>
namespace ThePEG {
/**
* A 3-component vector. It can be created with any unit type
* as template parameter. All basic mathematical operations are
* supported, as well as a subset of the CLHEP Vector3
* functionality.
*/
template <typename Value>
class ThreeVector
{
private:
/// Value squared
typedef typename BinaryOpTraits<Value,Value>::MulT Value2;
/// Value to the 4th power
typedef typename BinaryOpTraits<Value2,Value2>::MulT Value4;
public:
/** @name Constructors. */
//@{
ThreeVector()
: theX(), theY(), theZ() {}
ThreeVector(Value x, Value y, Value z)
: theX(x), theY(y), theZ(z) {}
template<typename ValueB>
ThreeVector(const ThreeVector<ValueB> & v)
: theX(v.x()), theY(v.y()), theZ(v.z()) {}
//@}
public:
/// @name Component access methods.
//@{
Value x() const { return theX; }
Value y() const { return theY; }
Value z() const { return theZ; }
//@}
/// @name Component set methods.
//@{
void setX(Value x) { theX = x; }
void setY(Value y) { theY = y; }
void setZ(Value z) { theZ = z; }
//@}
public:
/// Squared magnitude \f$x^2+y^2+z^2\f$.
Value2 mag2() const { return sqr(x()) + sqr(y()) + sqr(z()); }
/// Magnitude \f$\sqrt{x^2+y^2+z^2}\f$.
Value mag() const { return sqrt(mag2()); }
/// Squared transverse component \f$x^2+y^2\f$.
Value2 perp2() const { return sqr(x()) + sqr(y()); }
/// Transverse component \f$\sqrt{x^2+y^2}\f$.
Value perp() const { return sqrt(perp2()); }
/// Dot product.
template <typename U>
typename BinaryOpTraits<Value,U>::MulT
dot(const ThreeVector<U> & a) const {
return x()*a.x() + y()*a.y() + z()*a.z();
}
/// Squared transverse component with respect to the given axis.
template <typename U>
Value2 perp2(const ThreeVector<U> & p) const {
typedef typename BinaryOpTraits<U,U>::MulT pSqType;
const pSqType pMag2 = p.mag2();
assert( pMag2 > pSqType() );
typename BinaryOpTraits<Value,U>::MulT
ss = this->dot(p);
Value2 ret = mag2() - sqr(ss)/pMag2;
if ( ret <= Value2() )
ret = Value2();
return ret;
}
/// Transverse component with respect to the given axis.
template <typename U>
Value perp(const ThreeVector<U> & p) const {
return sqrt(perp2(p));
}
/// @name Spherical coordinates.
//@{
/// Polar angle.
double theta() const {
assert(!(x() == Value() && y() == Value() && z() == Value()));
return atan2(perp(),z());
}
/// Azimuthal angle.
double phi() const {
return atan2(y(),x());
}
/// Set the polar angle.
void setTheta(double th) {
double ma = mag();
double ph = phi();
setX(ma*sin(th)*cos(ph));
setY(ma*sin(th)*sin(ph));
setZ(ma*cos(th));
}
/// Set the azimuthal angle.
void setPhi(double ph) {
double xy = perp();
setX(xy*cos(ph));
setY(xy*sin(ph));
}
//@}
/// Parallel vector with unit length.
ThreeVector<double> unit() const {
Value2 mg2 = mag2();
assert(mg2 > Value2());
Value mg = sqrt(mg2);
return ThreeVector<double>(x()/mg, y()/mg, z()/mg);
}
/// Orthogonal vector.
ThreeVector<Value> orthogonal() const {
Value xx = abs(x());
Value yy = abs(y());
Value zz = abs(z());
if (xx < yy) {
return xx < zz ? ThreeVector<Value>(Value(),z(),-y())
: ThreeVector<Value>(y(),-x(),Value());
} else {
return yy < zz ? ThreeVector<Value>(-z(),Value(),x())
: ThreeVector<Value>(y(),-x(),Value());
}
}
/// Azimuthal angle difference, brought into the range \f$(-\pi,\pi]\f$.
template <typename U>
double deltaPhi (const ThreeVector<U> & v2) const {
double dphi = v2.phi() - phi();
if ( dphi > Constants::pi ) {
dphi -= Constants::twopi;
} else if ( dphi <= -Constants::pi ) {
dphi += Constants::twopi;
}
return dphi;
}
/**
* Apply a rotation.
* @param angle Rotation angle in radians.
* @param axis Rotation axis.
*/
template <typename U>
ThreeVector<Value> & rotate(double angle, const ThreeVector<U> & axis) {
if (angle == 0.0)
return *this;
const U ll = axis.mag();
assert( ll > U() );
const double sa = sin(angle), ca = cos(angle);
const double dx = axis.x()/ll, dy = axis.y()/ll, dz = axis.z()/ll;
const Value xx = x(), yy = y(), zz = z();
setX((ca+(1-ca)*dx*dx) * xx
+((1-ca)*dx*dy-sa*dz) * yy
+((1-ca)*dx*dz+sa*dy) * zz
);
setY(((1-ca)*dy*dx+sa*dz) * xx
+(ca+(1-ca)*dy*dy) * yy
+((1-ca)*dy*dz-sa*dx) * zz
);
setZ(((1-ca)*dz*dx-sa*dy) * xx
+((1-ca)*dz*dy+sa*dx) * yy
+(ca+(1-ca)*dz*dz) * zz
);
return *this;
}
/**
* Rotate the reference frame to a new z-axis.
*/
ThreeVector<Value> & rotateUz (const Axis & axis) {
Axis ax = axis.unit();
double u1 = ax.x();
double u2 = ax.y();
double u3 = ax.z();
double up = u1*u1 + u2*u2;
if (up>0) {
up = sqrt(up);
Value px = x(), py = y(), pz = z();
setX( (u1*u3*px - u2*py)/up + u1*pz );
setY( (u2*u3*px + u1*py)/up + u2*pz );
setZ( -up*px + u3*pz );
}
else if (u3 < 0.) {
setX(-x());
setZ(-z());
}
return *this;
}
/**
* Rotate from a reference frame to the z-axis.
*/
ThreeVector<Value> & rotateUzBack (const Axis & axis) {
Axis ax = axis.unit();
double u1 = ax.x();
double u2 = ax.y();
double u3 = ax.z();
double up = u1*u1 + u2*u2;
if (up>0) {
up = sqrt(up);
Value px = x(), py = y(), pz = z();
setX( ( u1*u3*px + u2*u3*py)/up - up*pz );
setY( (-u2*px + u1*py)/up );
setZ( u1*px + u2*py + u3*pz );
}
else if (u3 < 0.) {
setX(-x());
setZ(-z());
}
return *this;
}
/// Vector cross-product
template <typename U>
ThreeVector<typename BinaryOpTraits<Value,U>::MulT>
cross(const ThreeVector<U> & a) const {
typedef ThreeVector<typename BinaryOpTraits<Value,U>::MulT> ResultT;
return ResultT( y()*a.z()-z()*a.y(),
-x()*a.z()+z()*a.x(),
x()*a.y()-y()*a.x());
}
public:
/// @name Comparison operators.
//@{
- bool operator==(const ThreeVector<Value> & a) {
+ bool operator==(const ThreeVector<Value> & a) const {
return (theX == a.x() && theY == a.y() && theZ == a.z());
}
- bool operator!=(const ThreeVector<Value> & a) {
+ bool operator!=(const ThreeVector<Value> & a) const {
return !(*this == a);
}
//@}
public:
/// @name Mathematical assignment operators.
//@{
ThreeVector<Value> & operator+=(const ThreeVector<Value> & a) {
theX += a.x();
theY += a.y();
theZ += a.z();
return *this;
}
ThreeVector<Value> & operator-=(const ThreeVector<Value> & a) {
theX -= a.x();
theY -= a.y();
theZ -= a.z();
return *this;
}
ThreeVector<Value> & operator*=(double a) {
theX *= a;
theY *= a;
theZ *= a;
return *this;
}
ThreeVector<Value> & operator/=(double a) {
theX /= a;
theY /= a;
theZ /= a;
return *this;
}
//@}
/// Cosine of the azimuthal angle between two vectors.
template <typename U>
double cosTheta(const ThreeVector<U> & q) const {
typedef typename BinaryOpTraits<Value,U>::MulT
ProdType;
ProdType ptot = mag()*q.mag();
assert( ptot > ProdType() );
double arg = dot(q)/ptot;
if (arg > 1.0) arg = 1.0;
else if(arg < -1.0) arg = -1.0;
return arg;
}
/// Angle between two vectors.
template <typename U>
double angle(const ThreeVector<U> & v) const {
return acos(cosTheta(v));
}
private:
/// @name Vector components
//@{
Value theX;
Value theY;
Value theZ;
//@}
};
/// Stream output. Format \f$(x,y,z)\f$.
inline ostream &
operator<< (ostream & os, const ThreeVector<double> & v)
{
return os << '(' << v.x() << ',' << v.y() << ',' << v.z() << ')';
}
/// @name Basic mathematical operations
//@{
template <typename Value>
inline ThreeVector<Value>
operator+(ThreeVector<Value> a,
const ThreeVector<Value> & b)
{
return a += b;
}
template <typename Value>
inline ThreeVector<Value>
operator-(ThreeVector<Value> a,
const ThreeVector<Value> & b)
{
return a -= b;
}
template <typename Value>
inline ThreeVector<Value> operator-(const ThreeVector<Value> & v) {
return ThreeVector<Value>(-v.x(),-v.y(),-v.z());
}
template <typename Value>
inline ThreeVector<Value> operator*(ThreeVector<Value> v, double a) {
return v *= a;
}
template <typename Value>
inline ThreeVector<Value> operator*(double a, ThreeVector<Value> v) {
return v *= a;
}
template <typename ValueA, typename ValueB>
inline ThreeVector<typename BinaryOpTraits<ValueA,ValueB>::MulT>
operator*(ValueB a, ThreeVector<ValueA> v) {
typedef typename BinaryOpTraits<ValueA,ValueB>::MulT ResultT;
return ThreeVector<ResultT>(a*v.x(), a*v.y(), a*v.z());
}
template <typename ValueA, typename ValueB>
inline ThreeVector<typename BinaryOpTraits<ValueA,ValueB>::MulT>
operator*(ThreeVector<ValueA> v, ValueB a) {
return a*v;
}
//@}
/// Vector dot product.
template <typename ValueA, typename ValueB>
inline typename BinaryOpTraits<ValueA,ValueB>::MulT
operator*(const ThreeVector<ValueA> & a,
const ThreeVector<ValueB> & b)
{
return a.dot(b);
}
/// A parallel vector with unit length.
template <typename Value>
ThreeVector<double> unitVector(const ThreeVector<Value> & v) {
return v.unit();
}
/** Output a ThreeVector with units to a stream. */
template <typename OStream, typename UT, typename Value>
void ounitstream(OStream & os, const ThreeVector<Value> & p, UT & u) {
os << ounit(p.x(), u) << ounit(p.y(), u) << ounit(p.z(), u);
}
/** Input a ThreeVector with units from a stream. */
template <typename IStream, typename UT, typename Value>
void iunitstream(IStream & is, ThreeVector<Value> & p, UT & u) {
Value x, y, z;
is >> iunit(x, u) >> iunit(y, u) >> iunit(z, u);
p = ThreeVector<Value>(x, y, z);
}
}
#endif /* ThePEG_ThreeVector_H */

File Metadata

Mime Type
text/x-diff
Expires
Mon, Jan 20, 9:37 PM (1 d, 4 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4242495
Default Alt Text
(11 KB)

Event Timeline