Page MenuHomeHEPForge

No OneTemporary

diff --git a/src/Utils/FitUtils.cxx b/src/Utils/FitUtils.cxx
index 534076d..76a92d8 100644
--- a/src/Utils/FitUtils.cxx
+++ b/src/Utils/FitUtils.cxx
@@ -1,1191 +1,1186 @@
// Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret
/*******************************************************************************
* This file is part of NUISANCE.
*
* NUISANCE is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* NUISANCE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with NUISANCE. If not, see <http://www.gnu.org/licenses/>.
*******************************************************************************/
#include "FitUtils.h"
/*
MISC Functions
*/
//********************************************************************
double *FitUtils::GetArrayFromMap(std::vector<std::string> invals,
std::map<std::string, double> inmap) {
//********************************************************************
double *outarr = new double[invals.size()];
int count = 0;
for (size_t i = 0; i < invals.size(); i++) {
outarr[count++] = inmap[invals.at(i)];
}
return outarr;
}
/*
MISC Event
*/
//********************************************************************
// Returns the kinetic energy of a particle in GeV
double FitUtils::T(TLorentzVector part) {
//********************************************************************
double E_part = part.E() / 1000.;
double p_part = part.Vect().Mag() / 1000.;
double m_part = sqrt(E_part * E_part - p_part * p_part);
double KE_part = E_part - m_part;
return KE_part;
};
//********************************************************************
// Returns the momentum of a particle in GeV
double FitUtils::p(TLorentzVector part) {
//********************************************************************
double p_part = part.Vect().Mag() / 1000.;
return p_part;
};
double FitUtils::p(FitParticle *part) { return FitUtils::p(part->fP); };
//********************************************************************
// Returns the angle between two particles in radians
double FitUtils::th(TLorentzVector part1, TLorentzVector part2) {
//********************************************************************
double th = part1.Vect().Angle(part2.Vect());
return th;
};
double FitUtils::th(FitParticle *part1, FitParticle *part2) {
return FitUtils::th(part1->fP, part2->fP);
};
// T2K CC1pi+ helper functions
//
//********************************************************************
// Returns the angle between q3 and the pion defined in Raquel's CC1pi+ on CH
// paper
// Uses "MiniBooNE formula" for Enu, here called EnuCC1pip_T2K_MB
//********************************************************************
double FitUtils::thq3pi_CC1pip_T2K(TLorentzVector pnu, TLorentzVector pmu,
TLorentzVector ppi) {
// Want this in GeV
TVector3 p_mu = pmu.Vect() * (1. / 1000.);
// Get the reconstructed Enu
// We are not using Michel e sample, so we have pion kinematic information
double Enu = EnuCC1piprec(pnu, pmu, ppi, true);
// Get neutrino unit direction, multiply by reconstructed Enu
TVector3 p_nu = pnu.Vect() * (1. / (pnu.Vect().Mag())) * Enu;
TVector3 p_pi = ppi.Vect() * (1. / 1000.);
// This is now in GeV
TVector3 q3 = (p_nu - p_mu);
// Want this in GeV
double th_q3_pi = q3.Angle(p_pi);
return th_q3_pi;
}
//********************************************************************
// Returns the q3 defined in Raquel's CC1pi+ on CH paper
// Uses "MiniBooNE formula" for Enu
//********************************************************************
double FitUtils::q3_CC1pip_T2K(TLorentzVector pnu, TLorentzVector pmu,
TLorentzVector ppi) {
// Can't use the true Enu here; need to reconstruct it
// We do have Michel e- here so reconstruct Enu by "MiniBooNE formula" without
// pion kinematics
// The bool false refers to that we don't have pion kinematics
// Last bool refers to if we have pion kinematic information or not
double Enu = EnuCC1piprec(pnu, pmu, ppi, false);
TVector3 p_mu = pmu.Vect() * (1. / 1000.);
TVector3 p_nu = pnu.Vect() * (1. / pnu.Vect().Mag()) * Enu;
double q3 = (p_nu - p_mu).Mag();
return q3;
}
//********************************************************************
// Returns the W reconstruction from Raquel CC1pi+ CH thesis
// Uses the MiniBooNE formula Enu
//********************************************************************
double FitUtils::WrecCC1pip_T2K_MB(TLorentzVector pnu, TLorentzVector pmu,
TLorentzVector ppi) {
double E_mu = pmu.E() / 1000.;
double p_mu = pmu.Vect().Mag() / 1000.;
double E_nu = EnuCC1piprec(pnu, pmu, ppi, false);
double a1 = (E_nu + PhysConst::mass_neutron) - E_mu;
double a2 = E_nu - p_mu;
double wrec = sqrt(a1 * a1 - a2 * a2);
return wrec;
}
//********************************************************
double FitUtils::ProtonQ2QErec(double pE, double binding) {
//********************************************************
const double V = binding / 1000.; // binding potential
const double mn = PhysConst::mass_neutron; // neutron mass
const double mp = PhysConst::mass_proton; // proton mass
const double mn_eff = mn - V; // effective proton mass
const double pki = (pE / 1000.0) - mp;
double q2qe = mn_eff * mn_eff - mp * mp + 2 * mn_eff * (pki + mp - mn_eff);
return q2qe;
};
//********************************************************************
double FitUtils::EnuQErec(TLorentzVector pmu, double costh, double binding,
bool neutrino) {
//********************************************************************
// Convert all values to GeV
const double V = binding / 1000.; // binding potential
const double mn = PhysConst::mass_neutron; // neutron mass
const double mp = PhysConst::mass_proton; // proton mass
double mN_eff = mn - V;
double mN_oth = mp;
if (!neutrino) {
mN_eff = mp - V;
mN_oth = mn;
}
double el = pmu.E() / 1000.;
double pl = (pmu.Vect().Mag()) / 1000.; // momentum of lepton
double ml = sqrt(el * el - pl * pl); // lepton mass
double rEnu =
(2 * mN_eff * el - ml * ml + mN_oth * mN_oth - mN_eff * mN_eff) /
(2 * (mN_eff - el + pl * costh));
return rEnu;
};
// Another good old helper function
double FitUtils::EnuQErec(TLorentzVector pmu, TLorentzVector pnu, double binding, bool neutrino) {
return EnuQErec(pmu, cos(pnu.Vect().Angle(pmu.Vect())), binding, neutrino);
}
double FitUtils::Q2QErec(TLorentzVector pmu, double costh, double binding, bool neutrino) {
double el = pmu.E() / 1000.;
double pl = (pmu.Vect().Mag()) / 1000.; // momentum of lepton
double ml = sqrt(el * el - pl * pl); // lepton mass
double rEnu = EnuQErec(pmu, costh, binding, neutrino);
double q2 = -ml * ml + 2. * rEnu * (el - pl * costh);
return q2;
};
double FitUtils::Q2QErec(TLorentzVector Pmu, TLorentzVector Pnu, double binding, bool neutrino) {
double q2qe = Q2QErec(Pmu, cos(Pnu.Vect().Angle(Pmu.Vect())), binding, neutrino);
return q2qe;
}
double FitUtils::EnuQErec(double pl, double costh, double binding,
bool neutrino) {
if (pl < 0) return 0.; // Make sure nobody is silly
double mN_eff = PhysConst::mass_neutron - binding / 1000.;
double mN_oth = PhysConst::mass_proton;
if (!neutrino) {
mN_eff = PhysConst::mass_proton - binding / 1000.;
mN_oth = PhysConst::mass_neutron;
}
double ml = PhysConst::mass_muon;
double el = sqrt(pl * pl + ml * ml);
double rEnu =
(2 * mN_eff * el - ml * ml + mN_oth * mN_oth - mN_eff * mN_eff) /
(2 * (mN_eff - el + pl * costh));
return rEnu;
};
double FitUtils::Q2QErec(double pl, double costh, double binding,
bool neutrino) {
if (pl < 0) return 0.; // Make sure nobody is silly
double ml = PhysConst::mass_muon;
double el = sqrt(pl * pl + ml * ml);
double rEnu = EnuQErec(pl, costh, binding, neutrino);
double q2 = -ml * ml + 2. * rEnu * (el - pl * costh);
return q2;
};
//********************************************************************
// Reconstructs Enu for CC1pi0
// Very similar for CC1pi+ reconstruction
double FitUtils::EnuCC1pi0rec(TLorentzVector pnu, TLorentzVector pmu,
TLorentzVector ppi0) {
//********************************************************************
double E_mu = pmu.E() / 1000;
double p_mu = pmu.Vect().Mag() / 1000;
double m_mu = sqrt(E_mu * E_mu - p_mu * p_mu);
double th_nu_mu = pnu.Vect().Angle(pmu.Vect());
double E_pi0 = ppi0.E() / 1000;
double p_pi0 = ppi0.Vect().Mag() / 1000;
double m_pi0 = sqrt(E_pi0 * E_pi0 - p_pi0 * p_pi0);
double th_nu_pi0 = pnu.Vect().Angle(ppi0.Vect());
const double m_n = PhysConst::mass_neutron; // neutron mass
const double m_p = PhysConst::mass_proton; // proton mass
double th_pi0_mu = ppi0.Vect().Angle(pmu.Vect());
double rEnu = (m_mu * m_mu + m_pi0 * m_pi0 + m_n * m_n - m_p * m_p -
2 * m_n * (E_pi0 + E_mu) + 2 * E_pi0 * E_mu -
2 * p_pi0 * p_mu * cos(th_pi0_mu)) /
(2 * (E_pi0 + E_mu - p_pi0 * cos(th_nu_pi0) -
p_mu * cos(th_nu_mu) - m_n));
return rEnu;
};
//********************************************************************
// Reconstruct Q2 for CC1pi0
// Beware: uses true Enu, not reconstructed Enu
double FitUtils::Q2CC1pi0rec(TLorentzVector pnu, TLorentzVector pmu,
TLorentzVector ppi0) {
//********************************************************************
double E_mu = pmu.E() / 1000.; // energy of lepton in GeV
double p_mu = pmu.Vect().Mag() / 1000.; // momentum of lepton
double m_mu = sqrt(E_mu * E_mu - p_mu * p_mu); // lepton mass
double th_nu_mu = pnu.Vect().Angle(pmu.Vect());
// double rEnu = EnuCC1pi0rec(pnu, pmu, ppi0); //reconstructed neutrino energy
// Use true neutrino energy
double rEnu = pnu.E() / 1000.;
double q2 = -m_mu * m_mu + 2. * rEnu * (E_mu - p_mu * cos(th_nu_mu));
return q2;
};
//********************************************************************
// Reconstruct Enu for CC1pi+
// pionInfo reflects if we're using pion kinematics or not
// In T2K CC1pi+ CH the Michel tag is used for pion in which pion kinematic info
// is lost and Enu is reconstructed without pion kinematics
double FitUtils::EnuCC1piprec(TLorentzVector pnu, TLorentzVector pmu,
TLorentzVector ppi, bool pionInfo) {
//********************************************************************
double E_mu = pmu.E() / 1000.;
double p_mu = pmu.Vect().Mag() / 1000.;
double m_mu = sqrt(E_mu * E_mu - p_mu * p_mu);
double E_pi = ppi.E() / 1000.;
double p_pi = ppi.Vect().Mag() / 1000.;
double m_pi = sqrt(E_pi * E_pi - p_pi * p_pi);
const double m_n = PhysConst::mass_neutron; // neutron/proton mass
// should really take proton mass for proton interaction, neutron for neutron
// interaction. However, difference is pretty much negligable here!
// need this angle too
double th_nu_pi = pnu.Vect().Angle(ppi.Vect());
double th_nu_mu = pnu.Vect().Angle(pmu.Vect());
double th_pi_mu = ppi.Vect().Angle(pmu.Vect());
double rEnu = -999;
// If experiment doesn't have pion kinematic information (T2K CC1pi+ CH
// example of this; Michel e sample has no directional information on pion)
// We'll need to modify the reconstruction variables
if (!pionInfo) {
// Assumes that pion angle contribution contributes net zero
// Also assumes the momentum of reconstructed pions when using Michel
// electrons is 130 MeV
// So need to redefine E_pi and p_pi
// It's a little unclear what happens to the pmu . ppi term (4-vector); do
// we include the angular contribution?
// This below doesn't
th_nu_pi = M_PI / 2.;
p_pi = 0.130;
E_pi = sqrt(p_pi * p_pi + m_pi * m_pi);
// rEnu = (m_mu*m_mu + m_pi*m_pi - 2*m_n*(E_mu + E_pi) + 2*E_mu*E_pi -
// 2*p_mu*p_pi) / (2*(E_mu + E_pi - p_mu*cos(th_nu_mu) - m_n));
}
rEnu =
(m_mu * m_mu + m_pi * m_pi - 2 * m_n * (E_pi + E_mu) + 2 * E_pi * E_mu -
2 * p_pi * p_mu * cos(th_pi_mu)) /
(2 * (E_pi + E_mu - p_pi * cos(th_nu_pi) - p_mu * cos(th_nu_mu) - m_n));
return rEnu;
};
//********************************************************************
// Reconstruct neutrino energy from outgoing particles; will differ from the
// actual neutrino energy. Here we use assumption of a Delta resonance
double FitUtils::EnuCC1piprecDelta(TLorentzVector pnu, TLorentzVector pmu) {
//********************************************************************
const double m_Delta =
PhysConst::mass_delta; // PDG value for Delta mass in GeV
const double m_n = PhysConst::mass_neutron; // neutron/proton mass
// should really take proton mass for proton interaction, neutron for neutron
// interaction. However, difference is pretty much negligable here!
double E_mu = pmu.E() / 1000;
double p_mu = pmu.Vect().Mag() / 1000;
double m_mu = sqrt(E_mu * E_mu - p_mu * p_mu);
double th_nu_mu = pnu.Vect().Angle(pmu.Vect());
double rEnu = (m_Delta * m_Delta - m_n * m_n - m_mu * m_mu + 2 * m_n * E_mu) /
(2 * (m_n - E_mu + p_mu * cos(th_nu_mu)));
return rEnu;
};
// MOVE TO T2K UTILS!
//********************************************************************
// Reconstruct Enu using "extended MiniBooNE" as defined in Raquel's T2K TN
//
// Supposedly includes pion direction and binding energy of target nucleon
// I'm not convinced (yet), maybe
double FitUtils::EnuCC1piprec_T2K_eMB(TLorentzVector pnu, TLorentzVector pmu,
TLorentzVector ppi) {
//********************************************************************
// Unit vector for neutrino momentum
TVector3 p_nu_vect_unit = pnu.Vect() * (1. / pnu.E());
double E_mu = pmu.E() / 1000.;
TVector3 p_mu_vect = pmu.Vect() * (1. / 1000.);
double E_pi = ppi.E() / 1000.;
TVector3 p_pi_vect = ppi.Vect() * (1. / 1000.);
double E_bind =
27. / 1000.; // This should be roughly correct for CH; but not clear!
double m_p = PhysConst::mass_proton;
// Makes life a little easier, gonna square this one
double a1 = m_p - E_bind - E_mu - E_pi;
// Just gets the magnitude square of the muon and pion momentum vectors
double a2 = (p_mu_vect + p_pi_vect).Mag2();
// Gets the somewhat complicated scalar product between neutrino and
// (p_mu+p_pi), scaled to Enu
double a3 = p_nu_vect_unit * (p_mu_vect + p_pi_vect);
double rEnu =
(m_p * m_p - a1 * a1 + a2) / (2 * (m_p - E_bind - E_mu - E_pi + a3));
return rEnu;
}
//********************************************************************
// Reconstructed Q2 for CC1pi+
//
// enuType describes how the neutrino energy is reconstructed
// 0 uses true neutrino energy; case for MINERvA and MiniBooNE
// 1 uses "extended MiniBooNE" reconstructed (T2K CH)
// 2 uses "MiniBooNE" reconstructed (EnuCC1piprec with pionInfo = true) (T2K CH)
// "MiniBooNE" reconstructed (EnuCC1piprec with pionInfo = false, the
// case for T2K when using Michel tag) (T2K CH)
// 3 uses Delta for reconstruction (T2K CH)
double FitUtils::Q2CC1piprec(TLorentzVector pnu, TLorentzVector pmu,
TLorentzVector ppi, int enuType, bool pionInfo) {
//********************************************************************
double E_mu = pmu.E() / 1000.; // energy of lepton in GeV
double p_mu = pmu.Vect().Mag() / 1000.; // momentum of lepton
double m_mu = sqrt(E_mu * E_mu - p_mu * p_mu); // lepton mass
double th_nu_mu = pnu.Vect().Angle(pmu.Vect());
// Different ways of reconstructing the neutrino energy; default is just to
// use the truth (case 0)
double rEnu = -999;
switch (enuType) {
case 0: // True neutrino energy, default; this is the case for when Q2
// defined as Q2 true (MiniBooNE, MINERvA)
rEnu = pnu.E() / 1000.;
break;
case 1: // Extended MiniBooNE reconstructed, as defined by Raquel's CC1pi+
// CH T2K analysis
// Definitely uses pion info :)
rEnu = EnuCC1piprec_T2K_eMB(pnu, pmu, ppi);
break;
case 2: // MiniBooNE reconstructed, as defined by MiniBooNE and Raquel's
// CC1pi+ CH T2K analysis and Linda's CC1pi+ H2O
// Can have this with and without pion info, depending on if Michel tag
// used (Raquel)
rEnu = EnuCC1piprec(pnu, pmu, ppi, pionInfo);
break;
case 3:
rEnu = EnuCC1piprecDelta(pnu, pmu);
break;
} // No need for default here since default value of enuType = 0, defined in
// header
double q2 = -m_mu * m_mu + 2. * rEnu * (E_mu - p_mu * cos(th_nu_mu));
return q2;
};
//********************************************************************
// Returns the reconstructed W from a nucleon and an outgoing pion
//
// Could do this a lot more clever (pp + ppi).Mag() would do the job, but this
// would be less instructive
//********************************************************************
double FitUtils::MpPi(TLorentzVector pp, TLorentzVector ppi) {
double E_p = pp.E();
double p_p = pp.Vect().Mag();
double m_p = sqrt(E_p * E_p - p_p * p_p);
double E_pi = ppi.E();
double p_pi = ppi.Vect().Mag();
double m_pi = sqrt(E_pi * E_pi - p_pi * p_pi);
double th_p_pi = pp.Vect().Angle(ppi.Vect());
// fairly easy thing to derive since bubble chambers measure the proton!
double invMass = sqrt(m_p * m_p + m_pi * m_pi + 2 * E_p * E_pi -
2 * p_pi * p_p * cos(th_p_pi));
return invMass;
};
//********************************************************
// Reconstruct the hadronic mass using neutrino and muon
// Could technically do E_nu = EnuCC1pipRec(pnu,pmu,ppi) too, but this wwill be
// reconstructed Enu; so gives reconstructed Wrec which most of the time isn't
// used!
//
// Only MINERvA uses this so far; and the Enu is Enu_true
// If we want W_true need to take initial state nucleon motion into account
// Return value is in MeV!!!
double FitUtils::Wrec(TLorentzVector pnu, TLorentzVector pmu) {
//********************************************************
double E_mu = pmu.E();
double p_mu = pmu.Vect().Mag();
double m_mu = sqrt(E_mu * E_mu - p_mu * p_mu);
double th_nu_mu = pnu.Vect().Angle(pmu.Vect());
// The factor of 1000 is necessary for downstream functions
const double m_p = PhysConst::mass_proton * 1000;
// MINERvA cut on W_exp which is tuned to W_true; so use true Enu from
// generators
double E_nu = pnu.E();
double w_rec = sqrt(m_p * m_p + m_mu * m_mu - 2 * m_p * E_mu +
2 * E_nu * (m_p - E_mu + p_mu * cos(th_nu_mu)));
return w_rec;
};
//********************************************************
// Reconstruct the true hadronic mass using the initial state and muon
// Could technically do E_nu = EnuCC1pipRec(pnu,pmu,ppi) too, but this wwill be
// reconstructed Enu; so gives reconstructed Wrec which most of the time isn't
// used!
//
// No one seems to use this because it's fairly MC dependent!
// Return value is in MeV!!!
double FitUtils::Wtrue(TLorentzVector pnu, TLorentzVector pmu,
TLorentzVector pnuc) {
//********************************************************
// Could simply do the TLorentzVector operators here but this is more
// instructive?
// ... and prone to errors ...
double E_mu = pmu.E();
double p_mu = pmu.Vect().Mag();
double m_mu = sqrt(E_mu * E_mu - p_mu * p_mu);
double th_nu_mu = pnu.Vect().Angle(pmu.Vect());
double E_nuc = pnuc.E();
double p_nuc = pnuc.Vect().Mag();
double m_nuc = sqrt(E_nuc * E_nuc - p_nuc * p_nuc);
double th_nuc_mu = pmu.Vect().Angle(pnuc.Vect());
double th_nu_nuc = pnu.Vect().Angle(pnuc.Vect());
double E_nu = pnu.E();
double w_rec = sqrt(m_nuc * m_nuc + m_mu * m_mu - 2 * E_nu * E_mu +
2 * E_nu * p_mu * cos(th_nu_mu) - 2 * E_nuc * E_mu +
2 * p_nuc * p_mu * cos(th_nuc_mu) + 2 * E_nu * E_nuc -
2 * E_nu * p_nuc * cos(th_nu_nuc));
return w_rec;
};
double FitUtils::SumKE_PartVect(std::vector<FitParticle *> const fps) {
double sum = 0.0;
for (size_t p_it = 0; p_it < fps.size(); ++p_it) {
sum += fps[p_it]->KE();
}
return sum;
}
double FitUtils::SumTE_PartVect(std::vector<FitParticle *> const fps) {
double sum = 0.0;
for (size_t p_it = 0; p_it < fps.size(); ++p_it) {
sum += fps[p_it]->E();
}
return sum;
}
/*
E Recoil
*/
double FitUtils::GetErecoil_TRUE(FitEvent *event) {
// Get total energy of hadronic system.
double Erecoil = 0.0;
for (unsigned int i = 2; i < event->Npart(); i++) {
// Only final state
if (!event->PartInfo(i)->fIsAlive) continue;
if (event->PartInfo(i)->fNEUTStatusCode != 0) continue;
// Skip Lepton
if (abs(event->PartInfo(i)->fPID) == abs(event->PartInfo(0)->fPID) - 1)
continue;
// Add Up KE of protons and TE of everything else
if (event->PartInfo(i)->fPID == 2212 || event->PartInfo(i)->fPID == 2112) {
Erecoil +=
fabs(event->PartInfo(i)->fP.E()) - fabs(event->PartInfo(i)->fP.Mag());
} else {
Erecoil += event->PartInfo(i)->fP.E();
}
}
return Erecoil;
}
double FitUtils::GetErecoil_CHARGED(FitEvent *event) {
// Get total energy of hadronic system.
double Erecoil = 0.0;
for (unsigned int i = 2; i < event->Npart(); i++) {
// Only final state
if (!event->PartInfo(i)->fIsAlive) continue;
if (event->PartInfo(i)->fNEUTStatusCode != 0) continue;
// Skip Lepton
if (abs(event->PartInfo(i)->fPID) == abs(event->PartInfo(0)->fPID) - 1)
continue;
// Skip Neutral particles
if (event->PartInfo(i)->fPID == 2112 || event->PartInfo(i)->fPID == 111 ||
event->PartInfo(i)->fPID == 22)
continue;
// Add Up KE of protons and TE of everything else
if (event->PartInfo(i)->fPID == 2212) {
Erecoil +=
fabs(event->PartInfo(i)->fP.E()) - fabs(event->PartInfo(i)->fP.Mag());
} else {
Erecoil += event->PartInfo(i)->fP.E();
}
}
return Erecoil;
}
// MOVE TO MINERVA Utils!
double FitUtils::GetErecoil_MINERvA_LowRecoil(FitEvent *event) {
// Get total energy of hadronic system.
double Erecoil = 0.0;
for (unsigned int i = 2; i < event->Npart(); i++) {
// Only final state
if (!event->PartInfo(i)->fIsAlive) continue;
if (event->PartInfo(i)->fNEUTStatusCode != 0) continue;
// Skip Lepton
if (abs(event->PartInfo(i)->fPID) == 13) continue;
// Skip Neutrons particles
if (event->PartInfo(i)->fPID == 2112) continue;
int PID = event->PartInfo(i)->fPID;
// KE of Protons and charged pions
if (PID == 2212 or PID == 211 or PID == -211) {
// Erecoil += FitUtils::T(event->PartInfo(i)->fP);
Erecoil +=
fabs(event->PartInfo(i)->fP.E()) - fabs(event->PartInfo(i)->fP.Mag());
// Total Energy of non-neutrons
// } else if (PID != 2112 and PID < 999 and PID != 22 and abs(PID) !=
// 14) {
} else if (PID == 111 || PID == 11 || PID == -11 || PID == 22) {
Erecoil += (event->PartInfo(i)->fP.E());
}
}
return Erecoil;
}
// MOVE TO MINERVA Utils!
// The alternative Eavailble definition takes true q0 and subtracts the kinetic energy of neutrons and pion masses
// returns in MeV
double FitUtils::Eavailable(FitEvent *event) {
double Eav = 0.0;
// Now take q0 and subtract Eav
double q0 = event->GetNeutrinoIn()->fP.E();
- if (event->GetHMFSParticle(13)) {
- q0 -= event->GetHMFSParticle(13)->fP.E();
- } else if (event->GetHMFSParticle(-13)) {
- q0 -= event->GetHMFSParticle(-13)->fP.E();
- } else if (event->GetHMFSParticle(14)) {
- q0 -= event->GetHMFSParticle(14)->fP.E();
- } else if (event->GetHMFSParticle(-14)) {
- q0 -= event->GetHMFSParticle(-14)->fP.E();
- }else {
- std::cerr << "Found no Muon or Muon Neutrino" << std::endl;
- }
+ // Get the pdg of incoming neutrino
+ int ISPDG = event->GetBeamNeutrinoPDG();
+
+ // For CC
+ if (event->IsCC()) q0 -= event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->fP.E();
+ else q0 -= event->GetHMFSParticle(ISPDG)->fP.E();
for (unsigned int i = 2; i < event->Npart(); i++) {
// Only final state
if (!event->PartInfo(i)->fIsAlive) continue;
if (event->PartInfo(i)->fNEUTStatusCode != 0) continue;
int PID = event->PartInfo(i)->fPID;
// Neutrons
if (PID == 2112) {
// Adding kinetic energy of neutron
Eav += FitUtils::T(event->PartInfo(i)->fP)*1000.;
// All pion masses
} else if (abs(PID) == 211 || PID == 111) {
Eav += event->PartInfo(i)->fP.M();
}
}
return q0-Eav;
}
TVector3 GetVectorInTPlane(const TVector3 &inp, const TVector3 &planarNormal) {
TVector3 pnUnit = planarNormal.Unit();
double inpProjectPN = inp.Dot(pnUnit);
TVector3 InPlanarInput = inp - (inpProjectPN * pnUnit);
return InPlanarInput;
}
TVector3 GetUnitVectorInTPlane(const TVector3 &inp,
const TVector3 &planarNormal) {
return GetVectorInTPlane(inp, planarNormal).Unit();
}
Double_t GetDeltaPhiT(TVector3 const &V_lepton, TVector3 const &V_other,
TVector3 const &Normal, bool PiMinus = false) {
TVector3 V_lepton_T = GetUnitVectorInTPlane(V_lepton, Normal);
TVector3 V_other_T = GetUnitVectorInTPlane(V_other, Normal);
return PiMinus ? acos(V_lepton_T.Dot(V_other_T))
: (M_PI - acos(V_lepton_T.Dot(V_other_T)));
}
TVector3 GetDeltaPT(TVector3 const &V_lepton, TVector3 const &V_other,
TVector3 const &Normal) {
TVector3 V_lepton_T = GetVectorInTPlane(V_lepton, Normal);
TVector3 V_other_T = GetVectorInTPlane(V_other, Normal);
return V_lepton_T + V_other_T;
}
Double_t GetDeltaAlphaT(TVector3 const &V_lepton, TVector3 const &V_other,
TVector3 const &Normal, bool PiMinus = false) {
TVector3 DeltaPT = GetDeltaPT(V_lepton, V_other, Normal);
return GetDeltaPhiT(V_lepton, DeltaPT, Normal, PiMinus);
}
double FitUtils::Get_STV_dpt(FitEvent *event, int ISPDG, bool Is0pi) {
// Check that the neutrino exists
if (event->NumISParticle(ISPDG) == 0) {
return -9999;
}
// Return 0 if the proton or muon are missing
if (event->NumFSParticle(2212) == 0 ||
event->NumFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1)) == 0) {
return -9999;
}
// Now get the TVector3s for each particle
TVector3 const &NuP = event->GetHMISParticle(ISPDG)->fP.Vect();
TVector3 const &LeptonP =
event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->fP.Vect();
// Find the highest momentum proton in the event between 450 and 1200 MeV with theta_p < 70
TLorentzVector Pnu = event->GetNeutrinoIn()->fP;
int HMFSProton = 0;
double HighestMomentum = 0.0;
// Get the stack of protons
std::vector<FitParticle*> Protons = event->GetAllFSProton();
for (size_t i = 0; i < Protons.size(); ++i) {
if (Protons[i]->p() > 450 &&
Protons[i]->p() < 1200 &&
Protons[i]->P3().Angle(Pnu.Vect()) < (M_PI/180.0)*70.0 &&
Protons[i]->p() > HighestMomentum) {
HighestMomentum = Protons[i]->p();
HMFSProton = i;
}
}
// Now get the proton
TLorentzVector Pprot = Protons[HMFSProton]->fP;
// Get highest momentum proton in allowed proton range
TVector3 HadronP = Pprot.Vect();
// If we don't have a CC0pi signal definition we also add in pion momentum
if (!Is0pi) {
if (event->NumFSParticle(PhysConst::pdg_pions) == 0) {
return -9999;
}
// Count up pion momentum
TLorentzVector pp = event->GetHMFSParticle(PhysConst::pdg_pions)->fP;
HadronP += pp.Vect();
}
return GetDeltaPT(LeptonP, HadronP, NuP).Mag();
}
double FitUtils::Get_STV_dphit(FitEvent *event, int ISPDG, bool Is0pi) {
// Check that the neutrino exists
if (event->NumISParticle(ISPDG) == 0) {
return -9999;
}
// Return 0 if the proton or muon are missing
if (event->NumFSParticle(2212) == 0 ||
event->NumFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1)) == 0) {
return -9999;
}
// Now get the TVector3s for each particle
TVector3 const &NuP = event->GetHMISParticle(ISPDG)->fP.Vect();
TVector3 const &LeptonP =
event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->fP.Vect();
// Find the highest momentum proton in the event between 450 and 1200 MeV with theta_p < 70
TLorentzVector Pnu = event->GetNeutrinoIn()->fP;
int HMFSProton = 0;
double HighestMomentum = 0.0;
// Get the stack of protons
std::vector<FitParticle*> Protons = event->GetAllFSProton();
for (size_t i = 0; i < Protons.size(); ++i) {
if (Protons[i]->p() > 450 &&
Protons[i]->p() < 1200 &&
Protons[i]->P3().Angle(Pnu.Vect()) < (M_PI/180.0)*70.0 &&
Protons[i]->p() > HighestMomentum) {
HighestMomentum = Protons[i]->p();
HMFSProton = i;
}
}
// Now get the proton
TLorentzVector Pprot = Protons[HMFSProton]->fP;
// Get highest momentum proton in allowed proton range
TVector3 HadronP = Pprot.Vect();
if (!Is0pi) {
if (event->NumFSParticle(PhysConst::pdg_pions) == 0) {
return -9999;
}
TLorentzVector pp = event->GetHMFSParticle(PhysConst::pdg_pions)->fP;
HadronP += pp.Vect();
}
return GetDeltaPhiT(LeptonP, HadronP, NuP);
}
double FitUtils::Get_STV_dalphat(FitEvent *event, int ISPDG, bool Is0pi) {
// Check that the neutrino exists
if (event->NumISParticle(ISPDG) == 0) {
return -9999;
}
// Return 0 if the proton or muon are missing
if (event->NumFSParticle(2212) == 0 ||
event->NumFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1)) == 0) {
return -9999;
}
// Now get the TVector3s for each particle
TVector3 const &NuP = event->GetHMISParticle(ISPDG)->fP.Vect();
TVector3 const &LeptonP =
event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->fP.Vect();
// Find the highest momentum proton in the event between 450 and 1200 MeV with theta_p < 70
TLorentzVector Pnu = event->GetNeutrinoIn()->fP;
int HMFSProton = 0;
double HighestMomentum = 0.0;
// Get the stack of protons
std::vector<FitParticle*> Protons = event->GetAllFSProton();
for (size_t i = 0; i < Protons.size(); ++i) {
if (Protons[i]->p() > 450 &&
Protons[i]->p() < 1200 &&
Protons[i]->P3().Angle(Pnu.Vect()) < (M_PI/180.0)*70.0 &&
Protons[i]->p() > HighestMomentum) {
HighestMomentum = Protons[i]->p();
HMFSProton = i;
}
}
// Now get the proton
TLorentzVector Pprot = Protons[HMFSProton]->fP;
// Get highest momentum proton in allowed proton range
TVector3 HadronP = Pprot.Vect();
if (!Is0pi) {
if (event->NumFSParticle(PhysConst::pdg_pions) == 0) {
return -9999;
}
TLorentzVector pp = event->GetHMFSParticle(PhysConst::pdg_pions)->fP;
HadronP += pp.Vect();
}
return GetDeltaAlphaT(LeptonP, HadronP, NuP);
}
// As defined in PhysRevC.95.065501
// Using prescription from arXiv 1805.05486
// Returns in GeV
double FitUtils::Get_pn_reco_C(FitEvent *event, int ISPDG, bool Is0pi) {
const double mn = PhysConst::mass_neutron; // neutron mass
const double mp = PhysConst::mass_proton; // proton mass
// Check that the neutrino exists
if (event->NumISParticle(ISPDG) == 0) {
return -9999;
}
// Return 0 if the proton or muon are missing
if (event->NumFSParticle(2212) == 0 ||
event->NumFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1)) == 0) {
return -9999;
}
// Now get the TVector3s for each particle
TVector3 const &NuP = event->GetHMISParticle(ISPDG)->fP.Vect();
TVector3 const &LeptonP =
event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->fP.Vect();
// Find the highest momentum proton in the event between 450 and 1200 MeV with theta_p < 70
TLorentzVector Pnu = event->GetNeutrinoIn()->fP;
int HMFSProton = 0;
double HighestMomentum = 0.0;
// Get the stack of protons
std::vector<FitParticle*> Protons = event->GetAllFSProton();
for (size_t i = 0; i < Protons.size(); ++i) {
// Update the highest momentum particle
if (Protons[i]->p() > 450 &&
Protons[i]->p() < 1200 &&
Protons[i]->P3().Angle(Pnu.Vect()) < (M_PI/180.0)*70.0 &&
Protons[i]->p() > HighestMomentum) {
HighestMomentum = Protons[i]->p();
HMFSProton = i;
}
}
// Now get the proton
TLorentzVector Pprot = Protons[HMFSProton]->fP;
// Get highest momentum proton in allowed proton range
TVector3 HadronP = Pprot.Vect();
//TVector3 HadronP = event->GetHMFSParticle(2212)->fP.Vect();
double const el = event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->E()/1000.;
double const eh = Pprot.E()/1000.;
if (!Is0pi) {
if (event->NumFSParticle(PhysConst::pdg_pions) == 0) {
return -9999;
}
TLorentzVector pp = event->GetHMFSParticle(PhysConst::pdg_pions)->fP;
HadronP += pp.Vect();
}
TVector3 dpt = GetDeltaPT(LeptonP, HadronP, NuP);
double dptMag = dpt.Mag()/1000.;
double ma = 6*mn + 6*mp - 0.09216; // target mass (E is from PhysRevC.95.065501)
double map = ma - mn + 0.02713; // remnant mass
double pmul = LeptonP.Dot(NuP.Unit())/1000.;
double phl = HadronP.Dot(NuP.Unit())/1000.;
//double pmul = GetVectorInTPlane(LeptonP, dpt).Mag()/1000.;
//double phl = GetVectorInTPlane(HadronP, dpt).Mag()/1000.;
double R = ma + pmul + phl - el - eh;
double dpl = 0.5*R - (map*map + dptMag*dptMag)/(2*R);
//double dpl = ((R*R)-(dptMag*dptMag)-(map*map))/(2*R); // as in in PhysRevC.95.065501 - gives same result
double pn_reco = sqrt((dptMag*dptMag) + (dpl*dpl));
//std::cout << "Diagnostics: " << std::endl;
//std::cout << "mn: " << mn << std::endl;
//std::cout << "ma: " << ma << std::endl;
//std::cout << "map: " << map << std::endl;
//std::cout << "pmu: " << LeptonP.Mag()/1000. << std::endl;
//std::cout << "ph: " << HadronP.Mag()/1000. << std::endl;
//std::cout << "pmul: " << pmul << std::endl;
//std::cout << "phl: " << phl << std::endl;
//std::cout << "el: " << el << std::endl;
//std::cout << "eh: " << eh << std::endl;
//std::cout << "R: " << R << std::endl;
//std::cout << "dptMag: " << dptMag << std::endl;
//std::cout << "dpl: " << dpl << std::endl;
//std::cout << "pn_reco: " << pn_reco << std::endl;
return pn_reco;
}
double FitUtils::Get_pn_reco_Ar(FitEvent *event, int ISPDG, bool Is0pi) {
const double mn = PhysConst::mass_neutron; // neutron mass
const double mp = PhysConst::mass_proton; // proton mass
// Check that the neutrino exists
if (event->NumISParticle(ISPDG) == 0) {
return -9999;
}
// Return 0 if the proton or muon are missing
if (event->NumFSParticle(2212) == 0 ||
event->NumFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1)) == 0) {
return -9999;
}
// Now get the TVector3s for each particle
TVector3 const &NuP = event->GetHMISParticle(ISPDG)->fP.Vect();
TVector3 const &LeptonP =
event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->fP.Vect();
// Find the highest momentum proton in the event between 450 and 1200 MeV with theta_p < 70
TLorentzVector Pnu = event->GetNeutrinoIn()->fP;
int HMFSProton = 0;
double HighestMomentum = 0.0;
// Get the stack of protons
std::vector<FitParticle*> Protons = event->GetAllFSProton();
for (size_t i = 0; i < Protons.size(); ++i) {
// Update the highest momentum particle
if (Protons[i]->p() > 450 &&
Protons[i]->p() < 1200 &&
Protons[i]->P3().Angle(Pnu.Vect()) < (M_PI/180.0)*70.0 &&
Protons[i]->p() > HighestMomentum) {
HighestMomentum = Protons[i]->p();
HMFSProton = i;
}
}
// Now get the proton
TLorentzVector Pprot = Protons[HMFSProton]->fP;
// Get highest momentum proton in allowed proton range
TVector3 HadronP = Pprot.Vect();
//TVector3 HadronP = event->GetHMFSParticle(2212)->fP.Vect();
double const el = event->GetHMFSParticle(ISPDG + ((ISPDG < 0) ? 1 : -1))->E()/1000.;
double const eh = Pprot.E()/1000.;
if (!Is0pi) {
if (event->NumFSParticle(PhysConst::pdg_pions) == 0) {
return -9999;
}
TLorentzVector pp = event->GetHMFSParticle(PhysConst::pdg_pions)->fP;
HadronP += pp.Vect();
}
TVector3 dpt = GetDeltaPT(LeptonP, HadronP, NuP);
double dptMag = dpt.Mag()/1000.;
//double ma = 6*mn + 6*mp - 0.09216; // target mass (E is from PhysRevC.95.065501)
//double map = ma - mn + 0.02713; // remnant mass
double ma = 6*mn + 6*mp - 0.34381; // target mass (E is from PhysRevC.95.065501)
double map = ma - mn + 0.02713; // remnant mass
double pmul = LeptonP.Dot(NuP.Unit())/1000.;
double phl = HadronP.Dot(NuP.Unit())/1000.;
//double pmul = GetVectorInTPlane(LeptonP, dpt).Mag()/1000.;
//double phl = GetVectorInTPlane(HadronP, dpt).Mag()/1000.;
double R = ma + pmul + phl - el - eh;
double dpl = 0.5*R - (map*map + dptMag*dptMag)/(2*R);
//double dpl = ((R*R)-(dptMag*dptMag)-(map*map))/(2*R); // as in in PhysRevC.95.065501 - gives same result
double pn_reco = sqrt((dptMag*dptMag) + (dpl*dpl));
//std::cout << "Diagnostics: " << std::endl;
//std::cout << "mn: " << mn << std::endl;
//std::cout << "ma: " << ma << std::endl;
//std::cout << "map: " << map << std::endl;
//std::cout << "pmu: " << LeptonP.Mag()/1000. << std::endl;
//std::cout << "ph: " << HadronP.Mag()/1000. << std::endl;
//std::cout << "pmul: " << pmul << std::endl;
//std::cout << "phl: " << phl << std::endl;
//std::cout << "el: " << el << std::endl;
//std::cout << "eh: " << eh << std::endl;
//std::cout << "R: " << R << std::endl;
//std::cout << "dptMag: " << dptMag << std::endl;
//std::cout << "dpl: " << dpl << std::endl;
//std::cout << "pn_reco: " << pn_reco << std::endl;
return pn_reco;
}
// Get Cos theta with Adler angles
double FitUtils::CosThAdler(TLorentzVector Pnu, TLorentzVector Pmu, TLorentzVector Ppi, TLorentzVector Pprot) {
// Get the "resonance" lorentz vector (pion proton system)
TLorentzVector Pres = Pprot + Ppi;
// Boost the particles into the resonance rest frame so we can define the x,y,z axis
Pnu.Boost(Pres.BoostVector());
Pmu.Boost(-Pres.BoostVector());
Ppi.Boost(-Pres.BoostVector());
// The z-axis is defined as the axis of three-momentum transfer, \vec{k}
// Also unit normalise the axis
TVector3 zAxis = (Pnu.Vect()-Pmu.Vect())*(1.0/((Pnu.Vect()-Pmu.Vect()).Mag()));
// Then the angle between the pion in the "resonance" rest-frame and the z-axis is the theta Adler angle
double costhAdler = cos(Ppi.Vect().Angle(zAxis));
return costhAdler;
}
// Get phi with Adler angles, a bit more complicated...
double FitUtils::PhiAdler(TLorentzVector Pnu, TLorentzVector Pmu, TLorentzVector Ppi, TLorentzVector Pprot) {
// Get the "resonance" lorentz vector (pion proton system)
TLorentzVector Pres = Pprot + Ppi;
// Boost the particles into the resonance rest frame so we can define the x,y,z axis
Pnu.Boost(Pres.BoostVector());
Pmu.Boost(-Pres.BoostVector());
Ppi.Boost(-Pres.BoostVector());
// The z-axis is defined as the axis of three-momentum transfer, \vec{k}
// Also unit normalise the axis
TVector3 zAxis = (Pnu.Vect()-Pmu.Vect())*(1.0/((Pnu.Vect()-Pmu.Vect()).Mag()));
// The y-axis is then defined perpendicular to z and muon momentum in the resonance frame
TVector3 yAxis = Pnu.Vect().Cross(Pmu.Vect());
yAxis *= 1.0/double(yAxis.Mag());
// And the x-axis is then simply perpendicular to z and x
TVector3 xAxis = yAxis.Cross(zAxis);
xAxis *= 1.0/double(xAxis.Mag());
double x = Ppi.Vect().Dot(xAxis);
double y = Ppi.Vect().Dot(yAxis);
//double z = Ppi.Vect().Dot(zAxis);
double newphi = atan2(y, x)*(180./M_PI);
// Convert negative angles to positive
if (newphi < 0.0) newphi += 360.0;
// Old silly method before atan2
/*
// Then finally construct phi as the angle between pion projection and x axis
// Get the project of the pion momentum on to the zaxis
TVector3 PiVectZ = zAxis*Ppi.Vect().Dot(zAxis);
// The subtract the projection off the pion vector to get to get the plane
TVector3 PiPlane = Ppi.Vect() - PiVectZ;
double phi = -999.99;
if (PiPlane.Y() > 0) {
phi = (180./M_PI)*PiPlane.Angle(xAxis);
} else if (PiPlane.Y() < 0) {
phi = (180./M_PI)*(2*M_PI-PiPlane.Angle(xAxis));
} else if (PiPlane.Y() == 0) {
TRandom3 rand;
double randNo = rand.Rndm();
if (randNo > 0.5) {
phi = (180./M_PI)*PiPlane.Angle(xAxis);
} else {
phi = (180./M_PI)*(2*M_PI-PiPlane.Angle(xAxis));
}
}
*/
return newphi;
}
//********************************************************************
double FitUtils::ppInfK(TLorentzVector pmu, double costh, double binding,
bool neutrino) {
//********************************************************************
// Convert all values to GeV
//const double V = binding / 1000.; // binding potential
//const double mn = PhysConst::mass_neutron; // neutron mass
const double mp = PhysConst::mass_proton; // proton mass
double el = pmu.E() / 1000.;
//double pl = (pmu.Vect().Mag()) / 1000.; // momentum of lepton
double enu = EnuQErec(pmu, costh, binding, neutrino);
double ep_inf = enu - el + mp;
double pp_inf = sqrt(ep_inf * ep_inf - mp * mp);
return pp_inf;
};
//********************************************************************
TVector3 FitUtils::tppInfK(TLorentzVector pmu, double costh, double binding,
bool neutrino) {
//********************************************************************
// Convert all values to GeV
//const double V = binding / 1000.; // binding potential
//const double mn = PhysConst::mass_neutron; // neutron mass
//const double mp = PhysConst::mass_proton; // proton mass
double pl_x = pmu.X() / 1000.;
double pl_y = pmu.Y() / 1000.;
double pl_z= pmu.Z() / 1000.;
double enu = EnuQErec(pmu, costh, binding, neutrino);
TVector3 tpp_inf(-pl_x, -pl_y, -pl_z+enu);
return tpp_inf;
};
//********************************************************************
double FitUtils::cthpInfK(TLorentzVector pmu, double costh, double binding,
bool neutrino) {
//********************************************************************
// Convert all values to GeV
//const double V = binding / 1000.; // binding potential
//const double mn = PhysConst::mass_neutron; // neutron mass
const double mp = PhysConst::mass_proton; // proton mass
double el = pmu.E() / 1000.;
double pl = (pmu.Vect().Mag()) / 1000.; // momentum of lepton
double enu = EnuQErec(pmu, costh, binding, neutrino);
double ep_inf = enu - el + mp;
double pp_inf = sqrt(ep_inf * ep_inf - mp * mp);
double cth_inf = (enu*enu + pp_inf*pp_inf - pl*pl)/(2*enu*pp_inf);
return cth_inf;
};

File Metadata

Mime Type
text/x-diff
Expires
Sat, Dec 21, 5:05 PM (19 h, 6 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023572
Default Alt Text
(43 KB)

Event Timeline