Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F8723900
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
43 KB
Subscribers
None
View Options
diff --git a/include/HEJ/EventReweighter.hh b/include/HEJ/EventReweighter.hh
index e139ce1..58879e7 100644
--- a/include/HEJ/EventReweighter.hh
+++ b/include/HEJ/EventReweighter.hh
@@ -1,190 +1,201 @@
/** \file
* \brief Declares the EventReweighter class
*
* EventReweighter is the main class used within HEJ 2. It reweights the
* resummation events.
*
* \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie
* \date 2019
* \copyright GPLv2 or later
*/
#pragma once
#include <array>
#include <functional>
#include <utility>
#include <vector>
#include "HEJ/config.hh"
#include "HEJ/event_types.hh"
#include "HEJ/MatrixElement.hh"
+#include "HEJ/Parameters.hh"
#include "HEJ/PDF.hh"
#include "HEJ/PDG_codes.hh"
#include "HEJ/RNG.hh"
#include "HEJ/ScaleFunction.hh"
-#include "HEJ/Parameters.hh"
+#include "HEJ/StatusCode.hh"
namespace LHEF {
class HEPRUP;
}
namespace HEJ{
class Event;
//! Beam parameters
/**
* Currently, only symmetric beams are supported,
* so there is a single beam energy.
*/
struct Beam{
double E; /**< Beam energy */
std::array<ParticleID, 2> type; /**< Beam particles */
};
//! Main class for reweighting events in HEJ.
class EventReweighter{
using EventType = event_type::EventType;
public:
EventReweighter(
Beam beam, /**< Beam Energy */
int pdf_id, /**< PDF ID */
ScaleGenerator scale_gen, /**< Scale settings */
EventReweighterConfig conf, /**< Configuration parameters */
HEJ::RNG & ran /**< Random number generator */
);
EventReweighter(
LHEF::HEPRUP const & heprup, /**< LHEF event header */
ScaleGenerator scale_gen, /**< Scale settings */
EventReweighterConfig conf, /**< Configuration parameters */
HEJ::RNG & ran /**< Random number generator */
);
//! Get the used pdf
PDF const & pdf() const;
//! Generate resummation events for a given fixed-order event
/**
* @param ev Fixed-order event corresponding
* to the resummation events
* @param num_events Number of trial resummation configurations.
* @returns A vector of resummation events.
*
* The result vector depends on the type of the input event and the
* treatment of different types as specified in the constructor:
*
* \ref reweight The result vector contains between
* 0 and num_events resummation events.
*
* \ref keep If the input event passes the resummation jet cuts
* the result vector contains one event. Otherwise it is empty.
*
* \ref discard The result vector is empty
*/
std::vector<Event> reweight(
Event const & ev,
int num_events
);
+ //! Gives all StatusCodes of the last reweight()
+ /**
+ * Each StatusCode corresponds to one tried generation. Only good
+ * StatusCodes generated an event.
+ */
+ std::vector<StatusCode> const & status() const {
+ return status_;
+ }
+
private:
template<typename... T>
PDF const & pdf(T&& ...);
/** \internal
* \brief main generation/reweighting function:
* generate phase space points and divide out Born factors
*/
std::vector<Event> gen_res_events(
Event const & ev, int num_events
);
std::vector<Event> rescale(
Event const & Born_ev, std::vector<Event> events
) const;
/** \internal
* \brief Do the Jets pass the resummation Cuts?
*
* @param ev Event in Question
* @returns 0 or 1 depending on if ev passes Jet Cuts
*/
bool jets_pass_resummation_cuts(Event const & ev) const;
/** \internal
* \brief pdf_factors Function
*
* @param ev Event in Question
* @returns EventFactor due to PDFs
*
* Calculates the Central value and the variation due
* to the PDF choice made.
*/
Weights pdf_factors(Event const & ev) const;
/** \internal
* \brief matrix_elements Function
*
* @param ev Event in question
* @returns EventFactor due to MatrixElements
*
* Calculates the Central value and the variation due
* to the Matrix Element.
*/
Weights matrix_elements(Event const & ev) const;
/** \internal
* \brief Scale-dependent part of fixed-order matrix element
*
* @param ev Event in question
* @returns EventFactor scale variation due to FO-ME.
*
* This is only called to compute the scale variation for events where
* we don't do resummation (e.g. non-FKL).
* Since at tree level the scale dependence is just due to alpha_s,
* it is enough to return the alpha_s(mur) factors in the matrix element.
* The rest drops out in the ratio of (output event ME)/(input event ME),
* so we never have to compute it.
*/
Weights fixed_order_scale_ME(Event const & ev) const;
/** \internal
* \brief Computes the tree level matrix element
*
* @param ev Event in Question
* @returns HEJ approximation to Tree level Matrix Element
*
* This computes the HEJ approximation to the tree level FO
* Matrix element which is used within the LO weighting process.
*/
double tree_matrix_element(Event const & ev) const;
//! \internal General parameters
EventReweighterConfig param_;
//! \internal Beam energy
double E_beam_;
//! \internal PDF
PDF pdf_;
//! \internal Object to calculate the square of the matrix element
MatrixElement MEt2_;
//! \internal Object to calculate event renormalisation and factorisation scales
ScaleGenerator scale_gen_;
/** \internal random number generator
*
* \note We use a reference_wrapper so that EventReweighter objects can
* still be copied (which would be impossible with a reference).
*/
std::reference_wrapper<HEJ::RNG> ran_;
+ std::vector<StatusCode> status_;
};
template<typename... T>
PDF const & EventReweighter::pdf(T&&... t){
return pdf_ = PDF{std::forward<T>(t)...};
}
}
diff --git a/include/HEJ/PhaseSpacePoint.hh b/include/HEJ/PhaseSpacePoint.hh
index 634c239..2619ae1 100644
--- a/include/HEJ/PhaseSpacePoint.hh
+++ b/include/HEJ/PhaseSpacePoint.hh
@@ -1,164 +1,172 @@
/** \file
* \brief Contains the PhaseSpacePoint Class
*
* \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie
* \date 2019
* \copyright GPLv2 or later
*/
#pragma once
#include <array>
#include <functional>
#include <unordered_map>
#include <vector>
#include "HEJ/config.hh"
#include "HEJ/Particle.hh"
#include "HEJ/RNG.hh"
+#include "HEJ/StatusCode.hh"
namespace HEJ{
class Event;
//! A point in resummation phase space
class PhaseSpacePoint{
public:
//! Default PhaseSpacePoint Constructor
PhaseSpacePoint() = default;
//! PhaseSpacePoint Constructor
/**
* @param ev Clustered Jet Event
* @param conf Configuration parameters
* @param ran Random number generator
*/
PhaseSpacePoint(
Event const & ev,
PhaseSpacePointConfig conf,
RNG & ran
);
//! Get phase space point weight
double weight() const{
return weight_;
}
//! Access incoming particles
std::array<Particle, 2> const & incoming() const{
return incoming_;
}
//! Access outgoing particles
std::vector<Particle> const & outgoing() const{
return outgoing_;
}
//! Particle decays
/**
* The key in the returned map corresponds to the index in the
* vector returned by outgoing()
*/
std::unordered_map<size_t, std::vector<Particle>> const & decays() const{
return decays_;
}
+ //! Status code of generation
+ StatusCode status() const{
+ return status_;
+ }
+
static constexpr int ng_max = 1000; //< maximum number of extra gluons
private:
std::vector<fastjet::PseudoJet> cluster_jets(
std::vector<fastjet::PseudoJet> const & partons
) const;
bool pass_resummation_cuts(
std::vector<fastjet::PseudoJet> const & jets
) const;
bool pass_extremal_cuts(
fastjet::PseudoJet const & ext_parton,
fastjet::PseudoJet const & jet
) const;
int sample_ng(std::vector<fastjet::PseudoJet> const & Born_jets);
int sample_ng_jets(int ng, std::vector<fastjet::PseudoJet> const & Born_jets);
double probability_in_jet(
std::vector<fastjet::PseudoJet> const & Born_jets
) const;
std::vector<fastjet::PseudoJet> gen_non_jet(
int ng_non_jet,
double ptmin, double ptmax
);
void rescale_rapidities(
std::vector<fastjet::PseudoJet> & partons,
double ymin, double ymax
);
std::vector<fastjet::PseudoJet> reshuffle(
std::vector<fastjet::PseudoJet> const & Born_jets,
fastjet::PseudoJet const & q
);
/** \internal
* final jet test:
* - number of jets must match Born kinematics
* - no partons designated as nonjet may end up inside jets
* - all other outgoing partons *must* end up inside jets
* - the extremal (in rapidity) partons must be inside the extremal jets
* - rapidities must be the same (by construction)
*/
bool jets_ok(
std::vector<fastjet::PseudoJet> const & Born_jets,
std::vector<fastjet::PseudoJet> const & partons
) const;
void reconstruct_incoming(std::array<Particle, 2> const & Born_incoming);
double phase_space_normalisation(
int num_Born_jets,
int num_res_partons
) const;
std::vector<fastjet::PseudoJet> split(
std::vector<fastjet::PseudoJet> const & jets, int ng_jets
);
std::vector<int> distribute_jet_partons(
int ng_jets, std::vector<fastjet::PseudoJet> const & jets
);
std::vector<fastjet::PseudoJet> split(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<int> const & np_in_jet
);
bool split_preserved_jets(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<fastjet::PseudoJet> const & jet_partons
) const;
template<class Particle>
Particle const & most_backward_FKL(
std::vector<Particle> const & partons
) const;
template<class Particle>
Particle const & most_forward_FKL(
std::vector<Particle> const & partons
) const;
template<class Particle>
Particle & most_backward_FKL(std::vector<Particle> & partons) const;
template<class Particle>
Particle & most_forward_FKL(std::vector<Particle> & partons) const;
bool extremal_ok(
std::vector<fastjet::PseudoJet> const & partons
) const;
void label_qqx(Event const & event);
void copy_AWZH_boson_from(Event const & event);
bool momentum_conserved() const;
bool unob_, unof_, qqxb_, qqxf_, qqxmid_;
double weight_;
PhaseSpacePointConfig param_;
std::array<Particle, 2> incoming_;
std::vector<Particle> outgoing_;
//! \internal Particle decays in the format {outgoing index, decay products}
std::unordered_map<size_t, std::vector<Particle>> decays_;
std::reference_wrapper<HEJ::RNG> ran_;
+
+ StatusCode status_;
};
}
diff --git a/include/HEJ/StatusCode.hh b/include/HEJ/StatusCode.hh
new file mode 100644
index 0000000..9e04007
--- /dev/null
+++ b/include/HEJ/StatusCode.hh
@@ -0,0 +1,39 @@
+/** \file
+ * \brief Header file for status codes of event generation
+ *
+ * \authors Jeppe Andersen, Marian Heil, Andreas Maier, Jennifer Smillie
+ * \date 2019
+ * \copyright GPLv2 or later
+ */
+#pragma once
+
+namespace HEJ {
+ enum StatusCode{
+ good,
+ discard,
+ empty_jets,
+ failed_reshuffle,
+ failed_resummation_cuts,
+ failed_split,
+ too_much_energy,
+ wrong_jets,
+ unspecified // should never appear
+ };
+
+ // @TODO better names
+ inline std::string to_string(StatusCode s){
+ switch(s){
+ case good: return "good";
+ case discard: return "discard";
+ case empty_jets: return "empty jets";
+ case failed_reshuffle: return "failed reshuffle";
+ case failed_resummation_cuts: return "below cuts";
+ case failed_split: return "failed split";
+ case too_much_energy: return "too much energy";
+ case wrong_jets: return "wrong jets";
+ case unspecified: return "unspecified";
+ default:;
+ }
+ throw std::logic_error{"unreachable"};
+ }
+ } // HEJ
diff --git a/src/EventReweighter.cc b/src/EventReweighter.cc
index 693a847..5f91743 100644
--- a/src/EventReweighter.cc
+++ b/src/EventReweighter.cc
@@ -1,257 +1,274 @@
/**
* \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie
* \date 2019
* \copyright GPLv2 or later
*/
#include "HEJ/EventReweighter.hh"
#include <algorithm>
#include <assert.h>
#include <limits>
#include <math.h>
#include <stddef.h>
#include <string>
#include <unordered_map>
#include "fastjet/ClusterSequence.hh"
#include "LHEF/LHEF.h"
#include "HEJ/Event.hh"
#include "HEJ/exceptions.hh"
#include "HEJ/Particle.hh"
#include "HEJ/PDG_codes.hh"
#include "HEJ/PhaseSpacePoint.hh"
namespace HEJ{
using EventType = event_type::EventType;
namespace {
static_assert(
std::numeric_limits<double>::has_quiet_NaN,
"no quiet NaN for double"
);
constexpr double NaN = std::numeric_limits<double>::quiet_NaN();
Event::EventData to_EventData(PhaseSpacePoint const & psp){
Event::EventData result;
result.incoming=psp.incoming();
assert(result.incoming.size() == 2);
result.outgoing=psp.outgoing();
// technically Event::EventData doesn't have to be sorted,
// but PhaseSpacePoint should be anyway
assert(
std::is_sorted(
begin(result.outgoing), end(result.outgoing),
rapidity_less{}
)
);
assert(result.outgoing.size() >= 2);
result.decays = psp.decays();
result.parameters.central = {NaN, NaN, psp.weight()};
return result;
}
} // namespace anonymous
EventReweighter::EventReweighter(
LHEF::HEPRUP const & heprup,
ScaleGenerator scale_gen,
EventReweighterConfig conf,
HEJ::RNG & ran
):
EventReweighter{
HEJ::Beam{
heprup.EBMUP.first,
{{
static_cast<HEJ::ParticleID>(heprup.IDBMUP.first),
static_cast<HEJ::ParticleID>(heprup.IDBMUP.second)
}}
},
heprup.PDFSUP.first,
std::move(scale_gen),
std::move(conf),
ran
}
{
if(heprup.EBMUP.second != E_beam_){
throw std::invalid_argument(
"asymmetric beam: " + std::to_string(E_beam_)
+ " ---> <--- " + std::to_string(heprup.EBMUP.second)
);
};
if(heprup.PDFSUP.second != pdf_.id()){
throw std::invalid_argument(
"conflicting PDF ids: " + std::to_string(pdf_.id())
+ " vs. " + std::to_string(heprup.PDFSUP.second)
);
}
}
EventReweighter::EventReweighter(
Beam beam,
int pdf_id,
ScaleGenerator scale_gen,
EventReweighterConfig conf,
HEJ::RNG & ran
):
param_{std::move(conf)},
E_beam_{beam.E},
pdf_{pdf_id, beam.type.front(), beam.type.back()},
MEt2_{
[this](double mu){ return pdf_.Halphas(mu); },
param_.ME_config
},
scale_gen_(std::move(scale_gen)),
ran_{ran}
{}
PDF const & EventReweighter::pdf() const{
return pdf_;
}
std::vector<Event> EventReweighter::reweight(
Event const & input_ev, int num_events
){
auto res_events = gen_res_events(input_ev, num_events);
if(res_events.empty()) return {};
for(auto & event: res_events) event = scale_gen_(event);
return rescale(input_ev, std::move(res_events));
}
std::vector<Event> EventReweighter::gen_res_events(
Event const & ev,
int phase_space_points
){
assert(ev.variations().empty());
+ status_.clear();
switch(param_.treat.at(ev.type())){
- case EventTreatment::discard: return {};
+ case EventTreatment::discard: {
+ status_.emplace_back(StatusCode::discard);
+ return {};
+ }
case EventTreatment::keep:
- if(! jets_pass_resummation_cuts(ev)) return {};
- else return {ev};
+ if(! jets_pass_resummation_cuts(ev)) {
+ status_.emplace_back(StatusCode::failed_resummation_cuts);
+ return {};
+ }
+ else {
+ status_.emplace_back(StatusCode::good);
+ return {ev};
+ }
default:;
}
const double Born_shat = shat(ev);
std::vector<Event> resummation_events;
+ status_.reserve(phase_space_points);
for(int psp_number = 0; psp_number < phase_space_points; ++psp_number){
PhaseSpacePoint psp{ev, param_.psp_config, ran_};
- if(psp.weight() == 0.) continue;
- if(psp.incoming()[0].E() > E_beam_ || psp.incoming()[1].E() > E_beam_) continue;
+ status_.emplace_back(psp.status());
+ if(psp.status() != StatusCode::good) continue;
+ assert(psp.weight() != 0.);
+ assert(psp.status() != StatusCode::unspecified);
+ if(psp.incoming()[0].E() > E_beam_ || psp.incoming()[1].E() > E_beam_) {
+ status_.back() = StatusCode::too_much_energy;
+ continue;
+ }
resummation_events.emplace_back(
to_EventData( std::move(psp) ).cluster(
param_.jet_param.def, param_.jet_param.min_pt
)
);
auto & new_event = resummation_events.back();
assert(new_event.type() == ev.type());
new_event.generate_colours(ran_);
assert(new_event.variations().empty());
new_event.central().mur = ev.central().mur;
new_event.central().muf = ev.central().muf;
const double resum_shat = shat(new_event);
new_event.central().weight *= ev.central().weight*Born_shat*Born_shat/
(phase_space_points*resum_shat*resum_shat);
}
return resummation_events;
}
std::vector<Event> EventReweighter::rescale(
Event const & Born_ev,
std::vector<Event> events
) const{
const double Born_pdf = pdf_factors(Born_ev).central;
const double Born_ME = tree_matrix_element(Born_ev);
for(auto & cur_event: events){
const auto pdf = pdf_factors(cur_event);
assert(pdf.variations.size() == cur_event.variations().size());
const auto ME = matrix_elements(cur_event);
assert(ME.variations.size() == cur_event.variations().size());
cur_event.parameters() *= pdf*ME/(Born_pdf*Born_ME);
}
return events;
};
bool EventReweighter::jets_pass_resummation_cuts(
Event const & ev
) const{
const auto out_as_PseudoJet = to_PseudoJet(filter_partons(ev.outgoing()));
fastjet::ClusterSequence cs{out_as_PseudoJet, param_.jet_param.def};
return cs.inclusive_jets(param_.jet_param.min_pt).size() == ev.jets().size();
}
Weights EventReweighter::pdf_factors(Event const & ev) const{
auto const & a = ev.incoming().front();
auto const & b = ev.incoming().back();
const double xa = a.p.e()/E_beam_;
const double xb = b.p.e()/E_beam_;
Weights result;
std::unordered_map<double, double> known_pdf;
result.central =
pdf_.pdfpt(0,xa,ev.central().muf,a.type)*
pdf_.pdfpt(1,xb,ev.central().muf,b.type);
known_pdf.emplace(ev.central().muf, result.central);
result.variations.reserve(ev.variations().size());
for(auto const & ev_param: ev.variations()){
const double muf = ev_param.muf;
auto cur_pdf = known_pdf.find(muf);
if(cur_pdf == known_pdf.end()){
cur_pdf = known_pdf.emplace(
muf,
pdf_.pdfpt(0,xa,muf,a.type)*pdf_.pdfpt(1,xb,muf,b.type)
).first;
}
result.variations.emplace_back(cur_pdf->second);
}
assert(result.variations.size() == ev.variations().size());
return result;
}
Weights
EventReweighter::matrix_elements(Event const & ev) const{
assert(param_.treat.count(ev.type()) > 0);
if(param_.treat.find(ev.type())->second == EventTreatment::keep){
return fixed_order_scale_ME(ev);
}
return MEt2_(ev);
}
double EventReweighter::tree_matrix_element(Event const & ev) const{
assert(ev.variations().empty());
assert(param_.treat.count(ev.type()) > 0);
if(param_.treat.find(ev.type())->second == EventTreatment::keep){
return fixed_order_scale_ME(ev).central;
}
return MEt2_.tree(ev).central;
}
Weights
EventReweighter::fixed_order_scale_ME(Event const & ev) const{
int alpha_s_power = 0;
for(auto const & part: ev.outgoing()){
if(is_parton(part))
++alpha_s_power;
else if(part.type == pid::Higgs) {
alpha_s_power += 2;
}
// nothing to do for other uncoloured particles
}
Weights result;
result.central = pow(pdf_.Halphas(ev.central().mur), alpha_s_power);
for(auto const & var: ev.variations()){
result.variations.emplace_back(
pow(pdf_.Halphas(var.mur), alpha_s_power)
);
}
return result;
}
} // namespace HEJ
diff --git a/src/PhaseSpacePoint.cc b/src/PhaseSpacePoint.cc
index c7fa77f..744c015 100644
--- a/src/PhaseSpacePoint.cc
+++ b/src/PhaseSpacePoint.cc
@@ -1,623 +1,634 @@
/**
* \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie
* \date 2019
* \copyright GPLv2 or later
*/
#include "HEJ/PhaseSpacePoint.hh"
#include <algorithm>
#include <assert.h>
#include <numeric>
#include <random>
#include "fastjet/ClusterSequence.hh"
#include "HEJ/Constants.hh"
#include "HEJ/Event.hh"
#include "HEJ/JetSplitter.hh"
#include "HEJ/kinematics.hh"
#include "HEJ/resummation_jet.hh"
#include "HEJ/utility.hh"
#include "HEJ/PDG_codes.hh"
#include "HEJ/event_types.hh"
namespace HEJ{
namespace {
constexpr int max_jet_user_idx = PhaseSpacePoint::ng_max;
bool is_nonjet_parton(fastjet::PseudoJet const & parton){
assert(parton.user_index() != -1);
return parton.user_index() > max_jet_user_idx;
}
bool is_jet_parton(fastjet::PseudoJet const & parton){
assert(parton.user_index() != -1);
return parton.user_index() <= max_jet_user_idx;
}
// user indices for partons with extremal rapidity
constexpr int qqxb_idx = -7;
constexpr int qqxf_idx = -6;
constexpr int unob_idx = -5;
constexpr int unof_idx = -4;
constexpr int backward_FKL_idx = -3;
constexpr int forward_FKL_idx = -2;
}
namespace {
double estimate_ng_mean(std::vector<fastjet::PseudoJet> const & Born_jets){
const double delta_y =
Born_jets.back().rapidity() - Born_jets.front().rapidity();
assert(delta_y > 0);
// Formula derived from fit in arXiv:1805.04446 (see Fig. 2)
return 0.975052*delta_y;
}
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::cluster_jets(
std::vector<fastjet::PseudoJet> const & partons
) const{
fastjet::ClusterSequence cs(partons, param_.jet_param.def);
return cs.inclusive_jets(param_.jet_param.min_pt);
}
bool PhaseSpacePoint::pass_resummation_cuts(
std::vector<fastjet::PseudoJet> const & jets
) const{
return cluster_jets(jets).size() == jets.size();
}
int PhaseSpacePoint::sample_ng(std::vector<fastjet::PseudoJet> const & Born_jets){
const double ng_mean = estimate_ng_mean(Born_jets);
std::poisson_distribution<int> dist(ng_mean);
const int ng = dist(ran_.get());
assert(ng >= 0);
assert(ng < ng_max);
weight_ *= std::tgamma(ng + 1)*std::exp(ng_mean)*std::pow(ng_mean, -ng);
return ng;
}
void PhaseSpacePoint::copy_AWZH_boson_from(Event const & event){
auto const & from = event.outgoing();
const auto AWZH_boson = std::find_if(
begin(from), end(from),
[](Particle const & p){ return is_AWZH_boson(p); }
);
if(AWZH_boson == end(from)) return;
auto insertion_point = std::lower_bound(
begin(outgoing_), end(outgoing_), *AWZH_boson, rapidity_less{}
);
outgoing_.insert(insertion_point, *AWZH_boson);
// copy decay products
const int idx = std::distance(begin(from), AWZH_boson);
assert(idx >= 0);
const auto decay_it = event.decays().find(idx);
if(decay_it != end(event.decays())){
const int new_idx = std::distance(begin(outgoing_), insertion_point);
assert(new_idx >= 0);
assert(outgoing_[new_idx].type == AWZH_boson->type);
decays_.emplace(new_idx, decay_it->second);
}
assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{}));
}
//! \brief relabels qqx-pair with its PDG IDs.
//*@param ev Born Event
//
// This function will label the qqx pair in a qqx event back to
// their original types from the input event.
void PhaseSpacePoint::label_qqx(Event const & event){
auto const & bornout = event.outgoing();
const auto backquark = std::find_if(
begin(bornout) + 1 - ((qqxb_)?1:0), end(bornout) - 1 + ((qqxf_)?1:0) ,
[](Particle const & s){ return (is_anyquark(s.type)); }
);
if(backquark == end(bornout) || (backquark+1)->type==pid::gluon) weight_= 0;
auto quark1type = backquark->type;
auto quark2type = (backquark+1)->type;
if(is_AWZ_boson((backquark+1)->type)) quark2type = (backquark+2)->type;
if( !((is_quark(quark1type) && is_antiquark(quark2type))
&& !(is_quark(quark2type) && is_antiquark(quark1type)))
){
weight_=0;
}
auto partons = to_PseudoJet(filter_partons(outgoing_));
fastjet::ClusterSequence cs(partons, event.jet_def());
const auto jets = fastjet::sorted_by_rapidity(cs.inclusive_jets(event.min_jet_pt()));
const auto indices = cs.particle_jet_indices({jets});
assert(partons.size() == indices.size());
int qpart=-1;
// Find Parton in res event closest to most backward qqx jet in born
for (size_t i=0; i<indices.size(); i++) {
if( (indices[i] != -1) && (indices[i]==indices[i+1]-1)
&& nearby_ep(backquark->rapidity(), partons[i].rapidity(), 0.1)){
qpart=i;
outgoing_.at(qpart).type = quark1type;
outgoing_.at(qpart+1).type = quark2type;
break;
}
}
if(qpart==-1) weight_=0;
assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{}));
}
PhaseSpacePoint::PhaseSpacePoint(
Event const & ev, PhaseSpacePointConfig conf, HEJ::RNG & ran
):
unob_{ev.type() == event_type::unob},
unof_{ev.type() == event_type::unof},
qqxb_{ev.type() == event_type::qqxexb},
qqxf_{ev.type() == event_type::qqxexf},
qqxmid_{ev.type() == event_type::qqxmid},
param_{std::move(conf)},
- ran_{ran}
+ ran_{ran},
+ status_{unspecified}
{
weight_ = 1;
const auto Born_jets = sorted_by_rapidity(ev.jets());
const int ng = sample_ng(Born_jets);
weight_ /= std::tgamma(ng + 1);
const int ng_jets = sample_ng_jets(ng, Born_jets);
std::vector<fastjet::PseudoJet> out_partons = gen_non_jet(
ng - ng_jets, CMINPT, param_.jet_param.min_pt
);
const auto qperp = std::accumulate(
begin(out_partons), end(out_partons),
fastjet::PseudoJet{}
);
const auto jets = reshuffle(Born_jets, qperp);
- if(weight_ == 0.) return;
+ if(weight_ == 0.) {
+ status_ = failed_reshuffle;
+ return;
+ }
if(! pass_resummation_cuts(jets)){
- weight_ = 0.;
- return;
+ status_ = failed_resummation_cuts;
+ weight_ = 0.;
+ return;
}
std::vector<fastjet::PseudoJet> jet_partons = split(jets, ng_jets);
- if(weight_ == 0.) return;
+ if(weight_ == 0.) {
+ status_ = StatusCode::failed_split;
+ return;
+ }
rescale_rapidities(
out_partons,
most_backward_FKL(jet_partons).rapidity(),
most_forward_FKL(jet_partons).rapidity()
);
if(! cluster_jets(out_partons).empty()){
weight_ = 0.;
+ status_ = StatusCode::empty_jets;
return;
}
std::sort(begin(out_partons), end(out_partons), rapidity_less{});
assert(
std::is_sorted(begin(jet_partons), end(jet_partons), rapidity_less{})
);
const auto first_jet_parton = out_partons.insert(
end(out_partons), begin(jet_partons), end(jet_partons)
);
std::inplace_merge(
begin(out_partons), first_jet_parton, end(out_partons), rapidity_less{}
);
if(! jets_ok(Born_jets, out_partons)){
weight_ = 0.;
+ status_ = StatusCode::wrong_jets;
return;
}
weight_ *= phase_space_normalisation(Born_jets.size(), out_partons.size());
outgoing_.reserve(out_partons.size() + 1); // one slot for possible A, W, Z, H
for(auto & p: out_partons){
outgoing_.emplace_back(Particle{pid::gluon, std::move(p), {}});
}
const auto WEmit = std::find_if(
begin(ev.outgoing()), end(ev.outgoing()),
[](Particle const & s){ return abs(s.type) == pid::Wp; }
);
if (WEmit != end(ev.outgoing())){
if(!qqxb_)
outgoing_[unob_].type = filter_partons(ev.outgoing())[unob_].type;
if(!qqxf_)
outgoing_.rbegin()[unof_].type = filter_partons(ev.outgoing()).rbegin()[unof_].type;
}
else{
most_backward_FKL(outgoing_).type = ev.incoming().front().type;
most_forward_FKL(outgoing_).type = ev.incoming().back().type;
}
if(qqxmid_||qqxb_||qqxf_){
label_qqx(ev);
}
copy_AWZH_boson_from(ev);
assert(!outgoing_.empty());
reconstruct_incoming(ev.incoming());
+ status_ = StatusCode::good;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::gen_non_jet(
int count, double ptmin, double ptmax
){
// heuristic parameters for pt sampling
const double ptpar = 1.3 + count/5.;
const double temp1 = atan((ptmax - ptmin)/ptpar);
std::vector<fastjet::PseudoJet> partons(count);
for(size_t i = 0; i < (size_t) count; ++i){
const double r1 = ran_.get().flat();
const double pt = ptmin + ptpar*tan(r1*temp1);
const double temp2 = cos(r1*temp1);
const double phi = 2*M_PI*ran_.get().flat();
weight_ *= 2.0*M_PI*pt*ptpar*temp1/(temp2*temp2);
// we don't know the allowed rapidity span yet,
// set a random value to be rescaled later on
const double y = ran_.get().flat();
partons[i].reset_PtYPhiM(pt, y, phi);
// Set user index higher than any jet-parton index
// in order to assert that these are not inside jets
partons[i].set_user_index(i + 1 + ng_max);
assert(ptmin-1e-5 <= partons[i].pt() && partons[i].pt() <= ptmax+1e-5);
}
assert(std::all_of(partons.cbegin(), partons.cend(), is_nonjet_parton));
return partons;
}
void PhaseSpacePoint::rescale_rapidities(
std::vector<fastjet::PseudoJet> & partons,
double ymin, double ymax
){
constexpr double ep = 1e-7;
for(auto & parton: partons){
assert(0 <= parton.rapidity() && parton.rapidity() <= 1);
const double dy = ymax - ymin - 2*ep;
const double y = ymin + ep + dy*parton.rapidity();
parton.reset_momentum_PtYPhiM(parton.pt(), y, parton.phi());
weight_ *= dy;
assert(ymin <= parton.rapidity() && parton.rapidity() <= ymax);
}
}
namespace {
template<typename T, typename... Rest>
auto min(T const & a, T const & b, Rest&&... r) {
using std::min;
return min(a, min(b, std::forward<Rest>(r)...));
}
}
double PhaseSpacePoint::probability_in_jet(
std::vector<fastjet::PseudoJet> const & Born_jets
) const{
assert(std::is_sorted(begin(Born_jets), end(Born_jets), rapidity_less{}));
assert(Born_jets.size() >= 2);
const double dy =
Born_jets.back().rapidity() - Born_jets.front().rapidity();
const double R = param_.jet_param.def.R();
const int njets = Born_jets.size();
const double p_J_y_large = (njets-1)*R*R/(2.*dy);
const double p_J_y0 = njets*R/M_PI;
return min(p_J_y_large, p_J_y0, 1.);
}
int PhaseSpacePoint::sample_ng_jets(
int ng, std::vector<fastjet::PseudoJet> const & Born_jets
){
const double p_J = probability_in_jet(Born_jets);
std::binomial_distribution<> bin_dist(ng, p_J);
const int ng_J = bin_dist(ran_.get());
weight_ *= std::pow(p_J, -ng_J)*std::pow(1 - p_J, ng_J - ng);
return ng_J;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::reshuffle(
std::vector<fastjet::PseudoJet> const & Born_jets,
fastjet::PseudoJet const & q
){
if(q == fastjet::PseudoJet{0, 0, 0, 0}) return Born_jets;
const auto jets = resummation_jet_momenta(Born_jets, q);
if(jets.empty()){
weight_ = 0;
return {};
}
// additional Jacobian to ensure Born integration over delta gives 1
weight_ *= resummation_jet_weight(Born_jets, q);
return jets;
}
std::vector<int> PhaseSpacePoint::distribute_jet_partons(
int ng_jets, std::vector<fastjet::PseudoJet> const & jets
){
size_t first_valid_jet = 0;
size_t num_valid_jets = jets.size();
const double R_eff = 5./3.*param_.jet_param.def.R();
// if there is an unordered jet too far away from the FKL jets
// then extra gluon constituents of the unordered jet would
// violate the FKL rapidity ordering
if((unob_||qqxb_) && jets[0].delta_R(jets[1]) > R_eff){
++first_valid_jet;
--num_valid_jets;
}
else if((unof_||qqxf_) && jets[jets.size()-1].delta_R(jets[jets.size()-2]) > R_eff){
--num_valid_jets;
}
std::vector<int> np(jets.size(), 1);
for(int i = 0; i < ng_jets; ++i){
++np[first_valid_jet + ran_.get().flat() * num_valid_jets];
}
weight_ *= std::pow(num_valid_jets, ng_jets);
return np;
}
#ifndef NDEBUG
namespace{
bool tagged_FKL_backward(
std::vector<fastjet::PseudoJet> const & jet_partons
){
return std::find_if(
begin(jet_partons), end(jet_partons),
[](fastjet::PseudoJet const & p){
return p.user_index() == backward_FKL_idx;
}
) != end(jet_partons);
}
bool tagged_FKL_forward(
std::vector<fastjet::PseudoJet> const & jet_partons
){
// the most forward FKL parton is most likely near the end of jet_partons;
// start search from there
return std::find_if(
jet_partons.rbegin(), jet_partons.rend(),
[](fastjet::PseudoJet const & p){
return p.user_index() == forward_FKL_idx;
}
) != jet_partons.rend();
}
bool tagged_FKL_extremal(
std::vector<fastjet::PseudoJet> const & jet_partons
){
return tagged_FKL_backward(jet_partons) && tagged_FKL_forward(jet_partons);
}
} // namespace anonymous
#endif
std::vector<fastjet::PseudoJet> PhaseSpacePoint::split(
std::vector<fastjet::PseudoJet> const & jets,
int ng_jets
){
return split(jets, distribute_jet_partons(ng_jets, jets));
}
bool PhaseSpacePoint::pass_extremal_cuts(
fastjet::PseudoJet const & ext_parton,
fastjet::PseudoJet const & jet
) const{
if(ext_parton.pt() < param_.min_extparton_pt) return false;
return (ext_parton - jet).pt()/jet.pt() < param_.max_ext_soft_pt_fraction;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::split(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<int> const & np
){
assert(! jets.empty());
assert(jets.size() == np.size());
assert(pass_resummation_cuts(jets));
const size_t most_backward_FKL_idx = 0 + unob_ + qqxb_;
const size_t most_forward_FKL_idx = jets.size() - 1 - unof_ - qqxf_;
const auto & jet = param_.jet_param;
const JetSplitter jet_splitter{jet.def, jet.min_pt, ran_};
std::vector<fastjet::PseudoJet> jet_partons;
// randomly distribute jet gluons among jets
for(size_t i = 0; i < jets.size(); ++i){
auto split_res = jet_splitter.split(jets[i], np[i]);
weight_ *= split_res.weight;
if(weight_ == 0) return {};
assert(
std::all_of(
begin(split_res.constituents), end(split_res.constituents),
is_jet_parton
)
);
const auto first_new_parton = jet_partons.insert(
end(jet_partons),
begin(split_res.constituents), end(split_res.constituents)
);
// mark uno and extremal FKL emissions here so we can check
// their position once all emissions are generated
auto extremal = end(jet_partons);
if (i == most_backward_FKL_idx){ //FKL backward emission
extremal = std::min_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(backward_FKL_idx);
}
else if(((unob_ || qqxb_) && i == 0)){
// unordered/qqxb
extremal = std::min_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index((unob_)?unob_idx:qqxb_idx);
}
else if (i == most_forward_FKL_idx){
extremal = std::max_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(forward_FKL_idx);
}
else if(((unof_ || qqxf_) && i == jets.size() - 1)){
// unordered/qqxf
extremal = std::max_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index((unof_)?unof_idx:qqxf_idx);
}
if(
extremal != end(jet_partons)
&& !pass_extremal_cuts(*extremal, jets[i])
){
weight_ = 0;
return {};
}
}
assert(tagged_FKL_extremal(jet_partons));
std::sort(begin(jet_partons), end(jet_partons), rapidity_less{});
if(
!extremal_ok(jet_partons)
|| !split_preserved_jets(jets, jet_partons)
){
weight_ = 0.;
return {};
}
return jet_partons;
}
bool PhaseSpacePoint::extremal_ok(
std::vector<fastjet::PseudoJet> const & partons
) const{
assert(std::is_sorted(begin(partons), end(partons), rapidity_less{}));
if(unob_ && partons.front().user_index() != unob_idx) return false;
if(unof_ && partons.back().user_index() != unof_idx) return false;
if(qqxb_ && partons.front().user_index() != qqxb_idx) return false;
if(qqxf_ && partons.back().user_index() != qqxf_idx) return false;
return
most_backward_FKL(partons).user_index() == backward_FKL_idx
&& most_forward_FKL(partons).user_index() == forward_FKL_idx;
}
bool PhaseSpacePoint::split_preserved_jets(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<fastjet::PseudoJet> const & jet_partons
) const{
assert(std::is_sorted(begin(jets), end(jets), rapidity_less{}));
const auto split_jets = sorted_by_rapidity(cluster_jets(jet_partons));
// this can happen if two overlapping jets
// are both split into more than one parton
if(split_jets.size() != jets.size()) return false;
for(size_t i = 0; i < split_jets.size(); ++i){
// this can happen if there are two overlapping jets
// and a parton is assigned to the "wrong" jet
if(!nearby_ep(jets[i].rapidity(), split_jets[i].rapidity(), 1e-2)){
return false;
}
}
return true;
}
template<class Particle>
Particle const & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> const & partons
) const{
return partons[0 + unob_ + qqxb_];
}
template<class Particle>
Particle const & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> const & partons
) const{
const size_t idx = partons.size() - 1 - unof_ - qqxf_;
assert(idx < partons.size());
return partons[idx];
}
template<class Particle>
Particle & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> & partons
) const{
return partons[0 + unob_ + qqxb_];
}
template<class Particle>
Particle & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> & partons
) const{
const size_t idx = partons.size() - 1 - unof_ - qqxf_;
assert(idx < partons.size());
return partons[idx];
}
namespace {
bool contains_idx(
fastjet::PseudoJet const & jet, fastjet::PseudoJet const & parton
){
auto const & constituents = jet.constituents();
const int idx = parton.user_index();
return std::find_if(
begin(constituents), end(constituents),
[idx](fastjet::PseudoJet const & con){return con.user_index() == idx;}
) != end(constituents);
}
}
bool PhaseSpacePoint::jets_ok(
std::vector<fastjet::PseudoJet> const & Born_jets,
std::vector<fastjet::PseudoJet> const & partons
) const{
fastjet::ClusterSequence cs(partons, param_.jet_param.def);
const auto jets = sorted_by_rapidity(cs.inclusive_jets(param_.jet_param.min_pt));
if(jets.size() != Born_jets.size()) return false;
int in_jet = 0;
for(size_t i = 0; i < jets.size(); ++i){
assert(jets[i].has_constituents());
for(auto && parton: jets[i].constituents()){
if(is_nonjet_parton(parton)) return false;
}
in_jet += jets[i].constituents().size();
}
const int expect_in_jet = std::count_if(
partons.cbegin(), partons.cend(), is_jet_parton
);
if(in_jet != expect_in_jet) return false;
// note that PseudoJet::contains does not work here
if(! (
contains_idx(most_backward_FKL(jets), most_backward_FKL(partons))
&& contains_idx(most_forward_FKL(jets), most_forward_FKL(partons))
)) return false;
if(unob_ && !contains_idx(jets.front(), partons.front())) return false;
if(unof_ && !contains_idx(jets.back(), partons.back())) return false;
for(size_t i = 0; i < jets.size(); ++i){
assert(nearby_ep(jets[i].rapidity(), Born_jets[i].rapidity(), 1e-2));
}
return true;
}
void PhaseSpacePoint::reconstruct_incoming(
std::array<Particle, 2> const & Born_incoming
){
std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_);
for(size_t i = 0; i < incoming_.size(); ++i){
incoming_[i].type = Born_incoming[i].type;
}
assert(momentum_conserved());
}
double PhaseSpacePoint::phase_space_normalisation(
int num_Born_jets, int num_out_partons
) const{
return pow(16*pow(M_PI,3), num_Born_jets - num_out_partons);
}
bool PhaseSpacePoint::momentum_conserved() const{
fastjet::PseudoJet diff;
for(auto const & in: incoming()) diff += in.p;
const double norm = diff.E();
for(auto const & out: outgoing()) diff -= out.p;
return nearby(diff, fastjet::PseudoJet{}, norm);
}
} //namespace HEJ
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Mon, Jan 20, 9:50 PM (1 d, 7 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4225710
Default Alt Text
(43 KB)
Attached To
rHEJ HEJ
Event Timeline
Log In to Comment