Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7879153
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
61 KB
Subscribers
None
View Options
Index: trunk/src/omega/src/modellib_NoH.ml
===================================================================
--- trunk/src/omega/src/modellib_NoH.ml (revision 5342)
+++ trunk/src/omega/src/modellib_NoH.ml (revision 5343)
@@ -1,1484 +1,1484 @@
-(* $Id: modellib_SM.ml 5041 2014-01-07 17:09:34Z jr_reuter $
+(* $Id: modellib_NoH.ml 5041 2014-01-07 17:09:34Z jr_reuter $
Copyright (C) 1999-2014 by
Wolfgang Kilian <kilian@physik.uni-siegen.de>
Thorsten Ohl <ohl@physik.uni-wuerzburg.de>
Juergen Reuter <juergen.reuter@desy.de>
with contributions from
Christian Speckner <cnspeckn@googlemail.com>
Marco Sekulla <sekulla@physik.uni-siegen.de>
Fabian Bach <fabian.bach@desy.de> (only parts of this file)
WHIZARD is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
WHIZARD is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *)
let rcs_file = RCS.parse "Modellib_NoH" ["Lagragians"]
{ RCS.revision = "$Revision: 5041 $";
RCS.date = "$Date: 2014-01-07 18:09:34 +0100 (Di, 07 Jan 2014) $";
RCS.author = "$Author: jr_reuter $";
RCS.source
= "$URL: svn+ssh://msekulla@svn.hepforge.org/hepforge/svn/whizard/trunk/src/omega/src/modellib_NoH.ml $" }
(* \thocwmodulesection{Minimal Higgsless Model (Unitarity Gauge)} *)
module type NoH_flags =
sig
val triple_anom : bool
val quartic_anom : bool
val k_matrix : bool
val ckm_present : bool
val top_anom : bool
val top_anom_4f : bool
end
module NoH_rx : NoH_flags =
struct
let triple_anom = false
let quartic_anom = false
let k_matrix = true
let ckm_present = false
let top_anom = false
let top_anom_4f = false
end
(* \THOCWMODULESECTION{COMPLETE MINIMAL HIGGSLESS MODEL (INCLUDING SOME EXTENSIONS)} *)
MODULE NOH (FLAGS : NOH_FLAGS) =
STRUCT
- LET RCS = RCS.RENAME RCS_FILE "Modellib.NOH"
+ LET RCS = RCS.RENAME RCS_FILE "Modellib.NoH"
[ "minimal electroweak higgsless model in unitarity gauge"]
open Coupling
let default_width = ref Timelike
let use_fudged_width = ref false
let options = Options.create
[ "constant_width", Arg.Unit (fun () -> default_width := Constant),
"use constant width (also in t-channel)";
"fudged_width", Arg.Set use_fudged_width,
"use fudge factor for charge particle width";
"custom_width", Arg.String (fun f -> default_width := Custom f),
"use custom width";
"cancel_widths", Arg.Unit (fun () -> default_width := Vanishing),
"use vanishing width"]
type f_aux_top = TTGG | TBWA | TBWZ | TTWW | BBWW | (*i top auxiliary field "flavors" *)
QGUG | QBUB | QW | DL | DR |
QUQD1L | QUQD1R | QUQD8L | QUQD8R
type matter_field = L of int | N of int | U of int | D of int
type gauge_boson = Ga | Wp | Wm | Z | Gl
type other = Phip | Phim | Phi0
| Aux_top of int*int*int*bool*f_aux_top (*i lorentz*color*charge*top-side*flavor *)
type flavor = M of matter_field | G of gauge_boson | O of other
let matter_field f = M f
let gauge_boson f = G f
let other f = O f
type field =
| Matter of matter_field
| Gauge of gauge_boson
| Other of other
let field = function
| M f -> Matter f
| G f -> Gauge f
| O f -> Other f
type gauge = unit
let gauge_symbol () =
- failwith "Modellib.SM.gauge_symbol: internal error"
+ failwith "Modellib.NoH.gauge_symbol: internal error"
let family n = List.map matter_field [ L n; N n; U n; D n ]
let rec aux_top_flavors (f,l,co,ch) = List.append
( List.map other [ Aux_top(l,co,ch/2,true,f); Aux_top(l,co,ch/2,false,f) ] )
( if ch > 1 then List.append
( List.map other [ Aux_top(l,co,-ch/2,true,f); Aux_top(l,co,-ch/2,false,f) ] )
( aux_top_flavors (f,l,co,(ch-2)) )
else [] )
let external_flavors () =
[ "1st Generation", ThoList.flatmap family [1; -1];
"2nd Generation", ThoList.flatmap family [2; -2];
"3rd Generation", ThoList.flatmap family [3; -3];
"Gauge Bosons", List.map gauge_boson [Ga; Z; Wp; Wm; Gl];
"Goldstone Bosons", List.map other [Phip; Phim; Phi0] ]
let flavors () = List.append
( ThoList.flatmap snd (external_flavors ()) )
( ThoList.flatmap aux_top_flavors
[ (TTGG,2,1,1); (TBWA,2,0,2); (TBWZ,2,0,2); (TTWW,2,0,1); (BBWW,2,0,1);
(QGUG,1,1,1); (QBUB,1,0,1); (QW,1,0,3); (DL,0,0,3); (DR,0,0,3);
(QUQD1L,0,0,3); (QUQD1R,0,0,3); (QUQD8L,0,1,3); (QUQD8R,0,1,3) ] )
let spinor n =
if n >= 0 then
Spinor
else
ConjSpinor
let lorentz_aux = function
| 2 -> Tensor_1
| 1 -> Vector
| 0 -> Scalar
- | _ -> invalid_arg ("SM.lorentz_aux: wrong value")
+ | _ -> invalid_arg ("NoH.lorentz_aux: wrong value")
let lorentz = function
| M f ->
begin match f with
| L n -> spinor n | N n -> spinor n
| U n -> spinor n | D n -> spinor n
end
| G f ->
begin match f with
| Ga | Gl -> Vector
| Wp | Wm | Z -> Massive_Vector
end
| O f ->
begin match f with
| Aux_top (l,_,_,_,_) -> lorentz_aux l
| _ -> Scalar
end
let color = function
| M (U n) -> Color.SUN (if n > 0 then 3 else -3)
| M (D n) -> Color.SUN (if n > 0 then 3 else -3)
| G Gl -> Color.AdjSUN 3
| O (Aux_top (_,co,_,_,_)) -> if co == 0 then Color.Singlet else Color.AdjSUN 3
| _ -> Color.Singlet
let prop_spinor n =
if n >= 0 then
Prop_Spinor
else
Prop_ConjSpinor
let prop_aux = function
| 2 -> Aux_Tensor_1
| 1 -> Aux_Vector
| 0 -> Aux_Scalar
- | _ -> invalid_arg ("SM.prop_aux: wrong value")
+ | _ -> invalid_arg ("NoH.prop_aux: wrong value")
let propagator = function
| M f ->
begin match f with
| L n -> prop_spinor n | N n -> prop_spinor n
| U n -> prop_spinor n | D n -> prop_spinor n
end
| G f ->
begin match f with
| Ga | Gl -> Prop_Feynman
| Wp | Wm | Z -> Prop_Unitarity
end
| O f ->
begin match f with
| Phip | Phim | Phi0 -> Only_Insertion
| Aux_top (l,_,_,_,_) -> prop_aux l
end
(* Optionally, ask for the fudge factor treatment for the widths of
charged particles. Currently, this only applies to $W^\pm$ and top. *)
let width f =
if !use_fudged_width then
match f with
| G Wp | G Wm | M (U 3) | M (U (-3)) -> Fudged
| _ -> !default_width
else
!default_width
let goldstone = function
| G f ->
begin match f with
| Wp -> Some (O Phip, Coupling.Const 1)
| Wm -> Some (O Phim, Coupling.Const 1)
| Z -> Some (O Phi0, Coupling.Const 1)
| _ -> None
end
| _ -> None
let conjugate = function
| M f ->
M (begin match f with
| L n -> L (-n) | N n -> N (-n)
| U n -> U (-n) | D n -> D (-n)
end)
| G f ->
G (begin match f with
| Gl -> Gl | Ga -> Ga | Z -> Z
| Wp -> Wm | Wm -> Wp
end)
| O f ->
O (begin match f with
| Phip -> Phim | Phim -> Phip | Phi0 -> Phi0
| Aux_top (l,co,ch,n,f) -> Aux_top (l,co,(-ch),(not n),f)
end)
let fermion = function
| M f ->
begin match f with
| L n -> if n > 0 then 1 else -1
| N n -> if n > 0 then 1 else -1
| U n -> if n > 0 then 1 else -1
| D n -> if n > 0 then 1 else -1
end
| G f ->
begin match f with
| Gl | Ga | Z | Wp | Wm -> 0
end
| O _ -> 0
(* Electrical charge, lepton number, baryon number. We could avoid the
rationals altogether by multiplying the first and last by 3 \ldots *)
module Ch = Charges.QQ
let ( // ) = Algebra.Small_Rational.make
let generation' = function
| 1 -> [ 1//1; 0//1; 0//1]
| 2 -> [ 0//1; 1//1; 0//1]
| 3 -> [ 0//1; 0//1; 1//1]
| -1 -> [-1//1; 0//1; 0//1]
| -2 -> [ 0//1; -1//1; 0//1]
| -3 -> [ 0//1; 0//1; -1//1]
- | n -> invalid_arg ("SM.generation': " ^ string_of_int n)
+ | n -> invalid_arg ("NoH.generation': " ^ string_of_int n)
let generation f =
if Flags.ckm_present then
[]
else
match f with
| M (L n | N n | U n | D n) -> generation' n
| G _ | O _ -> [0//1; 0//1; 0//1]
let charge = function
| M f ->
begin match f with
| L n -> if n > 0 then -1//1 else 1//1
| N n -> 0//1
| U n -> if n > 0 then 2//3 else -2//3
| D n -> if n > 0 then -1//3 else 1//3
end
| G f ->
begin match f with
| Gl | Ga | Z -> 0//1
| Wp -> 1//1
| Wm -> -1//1
end
| O f ->
begin match f with
| Phi0 -> 0//1
| Phip -> 1//1
| Phim -> -1//1
| Aux_top (_,_,ch,_,_) -> ch//1
end
let lepton = function
| M f ->
begin match f with
| L n | N n -> if n > 0 then 1//1 else -1//1
| U _ | D _ -> 0//1
end
| G _ | O _ -> 0//1
let baryon = function
| M f ->
begin match f with
| L _ | N _ -> 0//1
| U n | D n -> if n > 0 then 1//1 else -1//1
end
| G _ | O _ -> 0//1
let charges f =
[ charge f; lepton f; baryon f] @ generation f
type constant =
| Unit | Half | Pi | Alpha_QED | Sin2thw
| Sinthw | Costhw | E | G_weak | I_G_weak | Vev
| Q_lepton | Q_up | Q_down | G_CC | G_CCQ of int*int
| G_NC_neutrino | G_NC_lepton | G_NC_up | G_NC_down
| G_TVA_ttA | G_TVA_bbA
| G_VLR_ttZ | G_TVA_ttZ | G_TVA_bbZ
| G_VLR_btW | G_VLR_tbW
| G_TLR_btW | G_TRL_tbW
| G_TLR_btWZ | G_TRL_tbWZ
| G_TLR_btWA | G_TRL_tbWA
| G_TVA_ttWW | G_TVA_bbWW
| G_TVA_ttG | G_TVA_ttGG
| G_VLR_qGuG | G_VLR_qBuB
| G_VLR_qBuB_u | G_VLR_qBuB_d | G_VLR_qBuB_e | G_VL_qBuB_n
| G_VL_qW | G_VL_qW_u | G_VL_qW_d
| G_SL_DttR | G_SR_DttR | G_SL_DttL | G_SLR_DbtR | G_SL_DbtL
| C_quqd1R_bt | C_quqd1R_tb | C_quqd1L_bt | C_quqd1L_tb
| C_quqd8R_bt | C_quqd8R_tb | C_quqd8L_bt | C_quqd8L_tb
| I_Q_W | I_G_ZWW
| G_WWWW | G_ZZWW | G_AZWW | G_AAWW
| I_G1_AWW | I_G1_ZWW
| I_G1_plus_kappa_plus_G4_AWW
| I_G1_plus_kappa_plus_G4_ZWW
| I_G1_plus_kappa_minus_G4_AWW
| I_G1_plus_kappa_minus_G4_ZWW
| I_G1_minus_kappa_plus_G4_AWW
| I_G1_minus_kappa_plus_G4_ZWW
| I_G1_minus_kappa_minus_G4_AWW
| I_G1_minus_kappa_minus_G4_ZWW
| I_lambda_AWW | I_lambda_ZWW
| G5_AWW | G5_ZWW
| I_kappa5_AWW | I_kappa5_ZWW
| I_lambda5_AWW | I_lambda5_ZWW
| Alpha_WWWW0 | Alpha_ZZWW1 | Alpha_WWWW2
| Alpha_ZZWW0 | Alpha_ZZZZ
| D_Alpha_ZZWW0_S | D_Alpha_ZZWW0_T | D_Alpha_ZZWW1_S
| D_Alpha_ZZWW1_T | D_Alpha_ZZWW1_U | D_Alpha_WWWW0_S
| D_Alpha_WWWW0_T | D_Alpha_WWWW0_U | D_Alpha_WWWW2_S
| D_Alpha_WWWW2_T | D_Alpha_ZZZZ_S | D_Alpha_ZZZZ_T
| Gs | I_Gs | G2
| Mass of flavor | Width of flavor
| K_Matrix_Coeff of int | K_Matrix_Pole of int
(* Two integer counters for the QCD and EW order of the couplings. *)
type orders = int * int
let orders = function
| Q_lepton | Q_up | Q_down | G_NC_lepton | G_NC_neutrino
| G_NC_up | G_NC_down | G_CC | G_CCQ _
| I_Q_W
| I_G_ZWW | I_G1_AWW | I_G1_ZWW | I_G_weak
| Half | Unit
| I_G1_plus_kappa_plus_G4_AWW
| I_G1_plus_kappa_plus_G4_ZWW
| I_G1_minus_kappa_plus_G4_AWW
| I_G1_minus_kappa_plus_G4_ZWW
| I_G1_plus_kappa_minus_G4_AWW
| I_G1_plus_kappa_minus_G4_ZWW
| I_G1_minus_kappa_minus_G4_AWW
| I_G1_minus_kappa_minus_G4_ZWW | I_kappa5_AWW
| I_kappa5_ZWW | G5_AWW | G5_ZWW
| I_lambda_AWW | I_lambda_ZWW | I_lambda5_AWW
| I_lambda5_ZWW | G_TVA_ttA | G_TVA_bbA
| G_VLR_ttZ | G_TVA_ttZ | G_TVA_bbZ
| G_VLR_btW | G_VLR_tbW | G_TLR_btW | G_TRL_tbW
| G_TLR_btWA | G_TRL_tbWA | G_TLR_btWZ | G_TRL_tbWZ
| G_VLR_qBuB | G_VLR_qBuB_u | G_VLR_qBuB_d
| G_VLR_qBuB_e | G_VL_qBuB_n | G_VL_qW | G_VL_qW_u | G_VL_qW_d
| G_SL_DttR | G_SR_DttR | G_SL_DttL | G_SLR_DbtR | G_SL_DbtL
| G_TVA_ttWW | G_TVA_bbWW -> (0,1)
| G_WWWW | G_ZZWW | G_AZWW | G_AAWW
| Alpha_WWWW0 | Alpha_WWWW2 | Alpha_ZZWW0
| Alpha_ZZWW1 | Alpha_ZZZZ
| D_Alpha_WWWW0_S | D_Alpha_WWWW0_T | D_Alpha_WWWW0_U
| D_Alpha_WWWW2_S | D_Alpha_WWWW2_T | D_Alpha_ZZWW0_S
| D_Alpha_ZZWW0_T | D_Alpha_ZZWW1_S | D_Alpha_ZZWW1_T
| D_Alpha_ZZWW1_U | D_Alpha_ZZZZ_S | D_Alpha_ZZZZ_T -> (0,2)
| Gs | I_Gs | G_TVA_ttG | G_TVA_ttGG | G_VLR_qGuG
| C_quqd1R_bt | C_quqd1R_tb | C_quqd1L_bt | C_quqd1L_tb
| C_quqd8R_bt | C_quqd8R_tb | C_quqd8L_bt | C_quqd8L_tb -> (1,0)
| G2 -> (2,0)
(* These constants are not used, hence initialized to zero. *)
| Sinthw | Sin2thw | Costhw | Pi
| Alpha_QED | G_weak | K_Matrix_Coeff _
| K_Matrix_Pole _ | Mass _ | Width _ | Vev | E -> (0,0)
(* \begin{dubious}
The current abstract syntax for parameter dependencies is admittedly
tedious. Later, there will be a parser for a convenient concrete syntax
as a part of a concrete syntax for models. But as these examples show,
it should include simple functions.
\end{dubious} *)
(* \begin{subequations}
\begin{align}
\alpha_{\text{QED}} &= \frac{1}{137.0359895} \\
\sin^2\theta_w &= 0.23124
\end{align}
\end{subequations} *)
let input_parameters =
[ Alpha_QED, 1. /. 137.0359895;
Sin2thw, 0.23124;
Mass (G Z), 91.187;
Mass (M (N 1)), 0.0; Mass (M (L 1)), 0.51099907e-3;
Mass (M (N 2)), 0.0; Mass (M (L 2)), 0.105658389;
Mass (M (N 3)), 0.0; Mass (M (L 3)), 1.77705;
Mass (M (U 1)), 5.0e-3; Mass (M (D 1)), 3.0e-3;
Mass (M (U 2)), 1.2; Mass (M (D 2)), 0.1;
Mass (M (U 3)), 174.0; Mass (M (D 3)), 4.2 ]
(* \begin{subequations}
\begin{align}
e &= \sqrt{4\pi\alpha} \\
\sin\theta_w &= \sqrt{\sin^2\theta_w} \\
\cos\theta_w &= \sqrt{1-\sin^2\theta_w} \\
g &= \frac{e}{\sin\theta_w} \\
m_W &= \cos\theta_w m_Z \\
v &= \frac{2m_W}{g} \\
g_{CC} =
-\frac{g}{2\sqrt2} &= -\frac{e}{2\sqrt2\sin\theta_w} \\
Q_{\text{lepton}} =
-q_{\text{lepton}}e &= e \\
Q_{\text{up}} =
-q_{\text{up}}e &= -\frac{2}{3}e \\
Q_{\text{down}} =
-q_{\text{down}}e &= \frac{1}{3}e \\
\ii q_We =
\ii g_{\gamma WW} &= \ii e \\
\ii g_{ZWW} &= \ii g \cos\theta_w \\
\ii g_{WWW} &= \ii g
\end{align}
\end{subequations} *)
let derived_parameters =
[ Real E, Sqrt (Prod [Const 4; Atom Pi; Atom Alpha_QED]);
Real Sinthw, Sqrt (Atom Sin2thw);
Real Costhw, Sqrt (Diff (Const 1, Atom Sin2thw));
Real G_weak, Quot (Atom E, Atom Sinthw);
Real (Mass (G Wp)), Prod [Atom Costhw; Atom (Mass (G Z))];
Real Vev, Quot (Prod [Const 2; Atom (Mass (G Wp))], Atom G_weak);
Real Q_lepton, Atom E;
Real Q_up, Prod [Quot (Const (-2), Const 3); Atom E];
Real Q_down, Prod [Quot (Const 1, Const 3); Atom E];
Real G_CC, Neg (Quot (Atom G_weak, Prod [Const 2; Sqrt (Const 2)]));
Complex I_Q_W, Prod [I; Atom E];
Complex I_G_weak, Prod [I; Atom G_weak];
Complex I_G_ZWW, Prod [I; Atom G_weak; Atom Costhw] ]
(* \begin{equation}
- \frac{g}{2\cos\theta_w}
\end{equation} *)
let g_over_2_costh =
Quot (Neg (Atom G_weak), Prod [Const 2; Atom Costhw])
(* \begin{subequations}
\begin{align}
- \frac{g}{2\cos\theta_w} g_V
&= - \frac{g}{2\cos\theta_w} (T_3 - 2 q \sin^2\theta_w) \\
- \frac{g}{2\cos\theta_w} g_A
&= - \frac{g}{2\cos\theta_w} T_3
\end{align}
\end{subequations} *)
let nc_coupling c t3 q =
(Real_Array c,
[Prod [g_over_2_costh; Diff (t3, Prod [Const 2; q; Atom Sin2thw])];
Prod [g_over_2_costh; t3]])
let half = Quot (Const 1, Const 2)
let derived_parameter_arrays =
[ nc_coupling G_NC_neutrino half (Const 0);
nc_coupling G_NC_lepton (Neg half) (Const (-1));
nc_coupling G_NC_up half (Quot (Const 2, Const 3));
nc_coupling G_NC_down (Neg half) (Quot (Const (-1), Const 3)) ]
let parameters () =
{ input = input_parameters;
derived = derived_parameters;
derived_arrays = derived_parameter_arrays }
module F = Modeltools.Fusions (struct
type f = flavor
type c = constant
let compare = compare
let conjugate = conjugate
end)
(* \begin{equation}
\mathcal{L}_{\textrm{EM}} =
- e \sum_i q_i \bar\psi_i\fmslash{A}\psi_i
\end{equation} *)
let mgm ((m1, g, m2), fbf, c) = ((M m1, G g, M m2), fbf, c)
let mom ((m1, o, m2), fbf, c) = ((M m1, O o, M m2), fbf, c)
let electromagnetic_currents n =
List.map mgm
[ ((L (-n), Ga, L n), FBF (1, Psibar, V, Psi), Q_lepton);
((U (-n), Ga, U n), FBF (1, Psibar, V, Psi), Q_up);
((D (-n), Ga, D n), FBF (1, Psibar, V, Psi), Q_down) ]
let color_currents n =
List.map mgm
[ ((U (-n), Gl, U n), FBF ((-1), Psibar, V, Psi), Gs);
((D (-n), Gl, D n), FBF ((-1), Psibar, V, Psi), Gs) ]
(* \begin{equation}
\mathcal{L}_{\textrm{NC}} =
- \frac{g}{2\cos\theta_W}
\sum_i \bar\psi_i\fmslash{Z}(g_V^i-g_A^i\gamma_5)\psi_i
\end{equation} *)
let neutral_currents n =
List.map mgm
[ ((L (-n), Z, L n), FBF (1, Psibar, VA, Psi), G_NC_lepton);
((N (-n), Z, N n), FBF (1, Psibar, VA, Psi), G_NC_neutrino);
((U (-n), Z, U n), FBF (1, Psibar, VA, Psi), G_NC_up);
((D (-n), Z, D n), FBF (1, Psibar, VA, Psi), G_NC_down) ]
(* \begin{equation}
\mathcal{L}_{\textrm{CC}} =
- \frac{g}{2\sqrt2} \sum_i \bar\psi_i
(T^+\fmslash{W}^+ + T^-\fmslash{W}^-)(1-\gamma_5)\psi_i
\end{equation} *)
let charged_currents' n =
List.map mgm
[ ((L (-n), Wm, N n), FBF (1, Psibar, VL, Psi), G_CC);
((N (-n), Wp, L n), FBF (1, Psibar, VL, Psi), G_CC) ]
let charged_currents'' n =
List.map mgm
[ ((D (-n), Wm, U n), FBF (1, Psibar, VL, Psi), G_CC);
((U (-n), Wp, D n), FBF (1, Psibar, VL, Psi), G_CC) ]
let charged_currents_triv =
ThoList.flatmap charged_currents' [1;2;3] @
ThoList.flatmap charged_currents'' [1;2;3]
let charged_currents_ckm =
let charged_currents_2 n1 n2 =
List.map mgm
[ ((D (-n1), Wm, U n2), FBF (1, Psibar, VL, Psi), G_CCQ (n2,n1));
((U (-n1), Wp, D n2), FBF (1, Psibar, VL, Psi), G_CCQ (n1,n2)) ] in
ThoList.flatmap charged_currents' [1;2;3] @
List.flatten (Product.list2 charged_currents_2 [1;2;3] [1;2;3])
(* \begin{equation}
\mathcal{L}_{\textrm{TGC}} =
- e \partial_\mu A_\nu W_+^\mu W_-^\nu + \ldots
- e \cot\theta_w \partial_\mu Z_\nu W_+^\mu W_-^\nu + \ldots
\end{equation} *)
let tgc ((g1, g2, g3), t, c) = ((G g1, G g2, G g3), t, c)
let standard_triple_gauge =
List.map tgc
[ ((Ga, Wm, Wp), Gauge_Gauge_Gauge 1, I_Q_W);
((Z, Wm, Wp), Gauge_Gauge_Gauge 1, I_G_ZWW);
((Gl, Gl, Gl), Gauge_Gauge_Gauge 1, I_Gs)]
(* \begin{multline}
\mathcal{L}_{\textrm{TGC}}(g_1,\kappa)
= g_1 \mathcal{L}_T(V,W^+,W^-) \\
+ \frac{\kappa+g_1}{2} \Bigl(\mathcal{L}_T(W^-,V,W^+)
- \mathcal{L}_T(W^+,V,W^-)\Bigr)\\
+ \frac{\kappa-g_1}{2} \Bigl(\mathcal{L}_L(W^-,V,W^+)
- \mathcal{L}_T(W^+,V,W^-)\Bigr)
\end{multline} *)
(* \begin{dubious}
The whole thing in the LEP2 workshop notation:
\begin{multline}
\ii\mathcal{L}_{\textrm{TGC},V} / g_{WWV} = \\
g_1^V V^\mu (W^-_{\mu\nu}W^{+,\nu}-W^+_{\mu\nu}W^{-,\nu})
+ \kappa_V W^+_\mu W^-_\nu V^{\mu\nu}
+ \frac{\lambda_V}{m_W^2} V_{\mu\nu}
W^-_{\rho\mu} W^{+,\hphantom{\nu}\rho}_{\hphantom{+,}\nu} \\
+ \ii g_5^V \epsilon_{\mu\nu\rho\sigma}
\left( (\partial^\rho W^{-,\mu}) W^{+,\nu}
- W^{-,\mu}(\partial^\rho W^{+,\nu}) \right) V^\sigma \\
+ \ii g_4^V W^-_\mu W^+_\nu (\partial^\mu V^\nu + \partial^\nu V^\mu)
- \frac{\tilde\kappa_V}{2} W^-_\mu W^+_\nu \epsilon^{\mu\nu\rho\sigma}
V_{\rho\sigma}
- \frac{\tilde\lambda_V}{2m_W^2}
W^-_{\rho\mu} W^{+,\mu}_{\hphantom{+,\mu}\nu} \epsilon^{\nu\rho\alpha\beta}
V_{\alpha\beta}
\end{multline}
using the conventions of Itzykson and Zuber with $\epsilon^{0123} = +1$.
\end{dubious} *)
(* \begin{dubious}
This is equivalent to the notation of Hagiwara et al.~\cite{HPZH87}, if we
remember that they have opposite signs for~$g_{WWV}$:
\begin{multline}
\mathcal{L}_{WWV} / (-g_{WWV}) = \\
\ii g_1^V \left( W^\dagger_{\mu\nu} W^\mu
- W^\dagger_\mu W^\mu_{\hphantom{\mu}\nu} \right) V^\nu
+ \ii \kappa_V W^\dagger_\mu W_\nu V^{\mu\nu}
+ \ii \frac{\lambda_V}{m_W^2}
W^\dagger_{\lambda\mu} W^\mu_{\hphantom{\mu}\nu} V^{\nu\lambda} \\
- g_4^V W^\dagger_\mu W_\nu
\left(\partial^\mu V^\nu + \partial^\nu V^\mu \right)
+ g_5^V \epsilon^{\mu\nu\lambda\sigma}
\left( W^\dagger_\mu \stackrel{\leftrightarrow}{\partial_\lambda}
W_\nu \right) V_\sigma\\
+ \ii \tilde\kappa_V W^\dagger_\mu W_\nu \tilde{V}^{\mu\nu}
+ \ii\frac{\tilde\lambda_V}{m_W^2}
W^\dagger_{\lambda\mu} W^\mu_{\hphantom{\mu}\nu} \tilde{V}^{\nu\lambda}
\end{multline}
Here $V^\mu$ stands for either the photon or the~$Z$ field, $W^\mu$ is the
$W^-$ field, $W_{\mu\nu} = \partial_\mu W_\nu - \partial_\nu W_\mu$,
$V_{\mu\nu} = \partial_\mu V_\nu - \partial_\nu V_\mu$, and
$\tilde{V}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\lambda\sigma}
V^{\lambda\sigma}$.
\end{dubious} *)
let anomalous_triple_gauge =
List.map tgc
[ ((Ga, Wm, Wp), Dim4_Vector_Vector_Vector_T (-1),
I_G1_AWW);
((Z, Wm, Wp), Dim4_Vector_Vector_Vector_T (-1),
I_G1_ZWW);
((Wm, Ga, Wp), Dim4_Vector_Vector_Vector_T 1,
I_G1_plus_kappa_minus_G4_AWW);
((Wm, Z, Wp), Dim4_Vector_Vector_Vector_T 1,
I_G1_plus_kappa_minus_G4_ZWW);
((Wp, Ga, Wm), Dim4_Vector_Vector_Vector_T (-1),
I_G1_plus_kappa_plus_G4_AWW);
((Wp, Z, Wm), Dim4_Vector_Vector_Vector_T (-1),
I_G1_plus_kappa_plus_G4_ZWW);
((Wm, Ga, Wp), Dim4_Vector_Vector_Vector_L (-1),
I_G1_minus_kappa_plus_G4_AWW);
((Wm, Z, Wp), Dim4_Vector_Vector_Vector_L (-1),
I_G1_minus_kappa_plus_G4_ZWW);
((Wp, Ga, Wm), Dim4_Vector_Vector_Vector_L 1,
I_G1_minus_kappa_minus_G4_AWW);
((Wp, Z, Wm), Dim4_Vector_Vector_Vector_L 1,
I_G1_minus_kappa_minus_G4_ZWW);
((Ga, Wm, Wp), Dim4_Vector_Vector_Vector_L5 (-1),
I_kappa5_AWW);
((Z, Wm, Wp), Dim4_Vector_Vector_Vector_L5 (-1),
I_kappa5_ZWW);
((Ga, Wm, Wp), Dim4_Vector_Vector_Vector_T5 (-1),
G5_AWW);
((Z, Wm, Wp), Dim4_Vector_Vector_Vector_T5 (-1),
G5_ZWW);
((Ga, Wp, Wm), Dim6_Gauge_Gauge_Gauge (-1),
I_lambda_AWW);
((Z, Wp, Wm), Dim6_Gauge_Gauge_Gauge (-1),
I_lambda_ZWW);
((Ga, Wp, Wm), Dim6_Gauge_Gauge_Gauge_5 (-1),
I_lambda5_AWW);
((Z, Wp, Wm), Dim6_Gauge_Gauge_Gauge_5 (-1),
I_lambda5_ZWW) ]
let triple_gauge =
if Flags.triple_anom then
anomalous_triple_gauge
else
standard_triple_gauge
(* \begin{equation}
\mathcal{L}_{\textrm{QGC}} =
- g^2 W_{+,\mu} W_{-,\nu} W_+^\mu W_-^\nu + \ldots
\end{equation} *)
(* Actually, quartic gauge couplings are a little bit more straightforward
using auxiliary fields. Here we have to impose the antisymmetry manually:
\begin{subequations}
\begin{multline}
(W^{+,\mu}_1 W^{-,\nu}_2 - W^{+,\nu}_1 W^{-,\mu}_2)
(W^+_{3,\mu} W^-_{4,\nu} - W^+_{3,\nu} W^-_{4,\mu}) \\
= 2(W^+_1W^+_3)(W^-_2W^-_4) - 2(W^+_1W^-_4)(W^-_2W^+_3)
\end{multline}
also ($V$ can be $A$ or $Z$)
\begin{multline}
(W^{+,\mu}_1 V^\nu_2 - W^{+,\nu}_1 V^\mu_2)
(W^-_{3,\mu} V_{4,\nu} - W^-_{3,\nu} V_{4,\mu}) \\
= 2(W^+_1W^-_3)(V_2V_4) - 2(W^+_1V_4)(V_2W^-_3)
\end{multline}
\end{subequations} *)
(* \begin{subequations}
\begin{multline}
W^{+,\mu} W^{-,\nu} W^+_\mu W^-_\nu
\end{multline}
\end{subequations} *)
let qgc ((g1, g2, g3, g4), t, c) = ((G g1, G g2, G g3, G g4), t, c)
let gauge4 = Vector4 [(2, C_13_42); (-1, C_12_34); (-1, C_14_23)]
let minus_gauge4 = Vector4 [(-2, C_13_42); (1, C_12_34); (1, C_14_23)]
let standard_quartic_gauge =
List.map qgc
[ (Wm, Wp, Wm, Wp), gauge4, G_WWWW;
(Wm, Z, Wp, Z), minus_gauge4, G_ZZWW;
(Wm, Z, Wp, Ga), minus_gauge4, G_AZWW;
(Wm, Ga, Wp, Ga), minus_gauge4, G_AAWW;
(Gl, Gl, Gl, Gl), gauge4, G2 ]
(* \begin{subequations}
\begin{align}
\mathcal{L}_4
&= \alpha_4 \left( \frac{g^4}{2}\left( (W^+_\mu W^{-,\mu})^2
+ W^+_\mu W^{+,\mu} W^-_\mu W^{-,\mu}
\right)\right.\notag \\
&\qquad\qquad\qquad \left.
+ \frac{g^4}{\cos^2\theta_w} W^+_\mu Z^\mu W^-_\nu Z^\nu
+ \frac{g^4}{4\cos^4\theta_w} (Z_\mu Z^\mu)^2 \right) \\
\mathcal{L}_5
&= \alpha_5 \left( g^4 (W^+_\mu W^{-,\mu})^2
+ \frac{g^4}{\cos^2\theta_w} W^+_\mu W^{-,\mu} Z_\nu Z^\nu
+ \frac{g^4}{4\cos^4\theta_w} (Z_\mu Z^\mu)^2 \right)
\end{align}
\end{subequations}
or
\begin{multline}
\mathcal{L}_4 + \mathcal{L}_5
= (\alpha_4+2\alpha_5) g^4 \frac{1}{2} (W^+_\mu W^{-,\mu})^2 \\
+ 2\alpha_4 g^4 \frac{1}{4} W^+_\mu W^{+,\mu} W^-_\mu W^{-,\mu}
+ \alpha_4 \frac{g^4}{\cos^2\theta_w} W^+_\mu Z^\mu W^-_\nu Z^\nu \\
+ 2\alpha_5 \frac{g^4}{\cos^2\theta_w} \frac{1}{2} W^+_\mu W^{-,\mu} Z_\nu Z^\nu
+ (2\alpha_4 + 2\alpha_5) \frac{g^4}{\cos^4\theta_w} \frac{1}{8} (Z_\mu Z^\mu)^2
\end{multline}
and therefore
\begin{subequations}
\begin{align}
\alpha_{(WW)_0} &= (\alpha_4+2\alpha_5) g^4 \\
\alpha_{(WW)_2} &= 2\alpha_4 g^4 \\
\alpha_{(WZ)_0} &= 2\alpha_5 \frac{g^4}{\cos^2\theta_w} \\
\alpha_{(WZ)_1} &= \alpha_4 \frac{g^4}{\cos^2\theta_w} \\
\alpha_{ZZ} &= (2\alpha_4 + 2\alpha_5) \frac{g^4}{\cos^4\theta_w}
\end{align}
\end{subequations} *)
let anomalous_quartic_gauge =
if Flags.quartic_anom then
List.map qgc
[ ((Wm, Wm, Wp, Wp),
Vector4 [(1, C_13_42); (1, C_14_23)], Alpha_WWWW0);
((Wm, Wm, Wp, Wp),
Vector4 [1, C_12_34], Alpha_WWWW2);
((Wm, Wp, Z, Z),
Vector4 [1, C_12_34], Alpha_ZZWW0);
((Wm, Wp, Z, Z),
Vector4 [(1, C_13_42); (1, C_14_23)], Alpha_ZZWW1);
((Z, Z, Z, Z),
Vector4 [(1, C_12_34); (1, C_13_42); (1, C_14_23)], Alpha_ZZZZ) ]
else
[]
(* In any diagonal channel~$\chi$, the scattering amplitude~$a_\chi(s)$ is
unitary iff\footnote{%
Trivial proof:
\begin{equation}
-1 = \textrm{Im}\left(\frac{1}{a_\chi(s)}\right)
= \frac{\textrm{Im}(a_\chi^*(s))}{|a_\chi(s)|^2}
= - \frac{\textrm{Im}(a_\chi(s))}{|a_\chi(s)|^2}
\end{equation}
i.\,e.~$\textrm{Im}(a_\chi(s)) = |a_\chi(s)|^2$.}
\begin{equation}
\textrm{Im}\left(\frac{1}{a_\chi(s)}\right) = -1
\end{equation}
For a real perturbative scattering amplitude~$r_\chi(s)$ this can be
enforced easily--and arbitrarily--by
\begin{equation}
\frac{1}{a_\chi(s)} = \frac{1}{r_\chi(s)} - \mathrm{i}
\end{equation}
*)
let k_matrix_quartic_gauge =
if Flags.k_matrix then
List.map qgc
[ ((Wm, Wp, Wm, Wp), Vector4_K_Matrix_jr (0,
[(1, C_12_34)]), D_Alpha_WWWW0_S);
((Wm, Wp, Wm, Wp), Vector4_K_Matrix_jr (0,
[(1, C_14_23)]), D_Alpha_WWWW0_T);
((Wm, Wp, Wm, Wp), Vector4_K_Matrix_jr (0,
[(1, C_13_42)]), D_Alpha_WWWW0_U);
((Wp, Wm, Wp, Wm), Vector4_K_Matrix_jr (0,
[(1, C_12_34)]), D_Alpha_WWWW0_S);
((Wp, Wm, Wp, Wm), Vector4_K_Matrix_jr (0,
[(1, C_14_23)]), D_Alpha_WWWW0_T);
((Wp, Wm, Wp, Wm), Vector4_K_Matrix_jr (0,
[(1, C_13_42)]), D_Alpha_WWWW0_U);
((Wm, Wm, Wp, Wp), Vector4_K_Matrix_jr (0,
[(1, C_12_34)]), D_Alpha_WWWW2_S);
((Wm, Wm, Wp, Wp), Vector4_K_Matrix_jr (0,
[(1, C_13_42); (1, C_14_23)]), D_Alpha_WWWW2_T);
((Wm, Wp, Z, Z), Vector4_K_Matrix_jr (0,
[(1, C_12_34)]), D_Alpha_ZZWW0_S);
((Wm, Wp, Z, Z), Vector4_K_Matrix_jr (0,
[(1, C_13_42); (1, C_14_23)]), D_Alpha_ZZWW0_T);
((Wm, Z, Wp, Z), Vector4_K_Matrix_jr (0,
[(1, C_12_34)]), D_Alpha_ZZWW1_S);
((Wm, Z, Wp, Z), Vector4_K_Matrix_jr (0,
[(1, C_13_42)]), D_Alpha_ZZWW1_T);
((Wm, Z, Wp, Z), Vector4_K_Matrix_jr (0,
[(1, C_14_23)]), D_Alpha_ZZWW1_U);
((Wp, Z, Z, Wm), Vector4_K_Matrix_jr (1,
[(1, C_12_34)]), D_Alpha_ZZWW1_S);
((Wp, Z, Z, Wm), Vector4_K_Matrix_jr (1,
[(1, C_13_42)]), D_Alpha_ZZWW1_U);
((Wp, Z, Z, Wm), Vector4_K_Matrix_jr (1,
[(1, C_14_23)]), D_Alpha_ZZWW1_T);
((Z, Wp, Wm, Z), Vector4_K_Matrix_jr (2,
[(1, C_12_34)]), D_Alpha_ZZWW1_S);
((Z, Wp, Wm, Z), Vector4_K_Matrix_jr (2,
[(1, C_13_42)]), D_Alpha_ZZWW1_U);
((Z, Wp, Wm, Z), Vector4_K_Matrix_jr (2,
[(1, C_14_23)]), D_Alpha_ZZWW1_T);
((Z, Z, Z, Z), Vector4_K_Matrix_jr (0,
[(1, C_12_34)]), D_Alpha_ZZZZ_S);
((Z, Z, Z, Z), Vector4_K_Matrix_jr (0,
[(1, C_13_42); (1, C_14_23)]), D_Alpha_ZZZZ_T);
((Z, Z, Z, Z), Vector4_K_Matrix_jr (3,
[(1, C_14_23)]), D_Alpha_ZZZZ_S);
((Z, Z, Z, Z), Vector4_K_Matrix_jr (3,
[(1, C_13_42); (1, C_12_34)]), D_Alpha_ZZZZ_T)]
else
[]
(*i Thorsten's original implementation of the K matrix, which we keep since
it still might be usefull for the future.
let k_matrix_quartic_gauge =
if Flags.k_matrix then
List.map qgc
[ ((Wm, Wp, Wm, Wp), Vector4_K_Matrix_tho (0, [K_Matrix_Coeff 0,
K_Matrix_Pole 0]), Alpha_WWWW0);
((Wm, Wm, Wp, Wp), Vector4_K_Matrix_tho (0, [K_Matrix_Coeff 2,
K_Matrix_Pole 2]), Alpha_WWWW2);
((Wm, Wp, Z, Z), Vector4_K_Matrix_tho (0, [(K_Matrix_Coeff 0,
K_Matrix_Pole 0); (K_Matrix_Coeff 2,
K_Matrix_Pole 2)]), Alpha_ZZWW0);
((Wm, Z, Wp, Z), Vector4_K_Matrix_tho (0, [K_Matrix_Coeff 1,
K_Matrix_Pole 1]), Alpha_ZZWW1);
((Z, Z, Z, Z), Vector4_K_Matrix_tho (0, [K_Matrix_Coeff 0,
K_Matrix_Pole 0]), Alpha_ZZZZ) ]
else
[]
i*)
let quartic_gauge =
standard_quartic_gauge @ anomalous_quartic_gauge @ k_matrix_quartic_gauge
(* WK's couplings (apparently, he still intends to divide by
$\Lambda^2_{\text{EWSB}}=16\pi^2v_{\mathrm{F}}^2$):
\begin{subequations}
\begin{align}
\mathcal{L}^{\tau}_4 &=
\left\lbrack (\partial_{\mu}H)(\partial^{\mu}H)
+ \frac{g^2v_{\mathrm{F}}^2}{4} V_{\mu} V^{\mu} \right\rbrack^2 \\
\mathcal{L}^{\tau}_5 &=
\left\lbrack (\partial_{\mu}H)(\partial_{\nu}H)
+ \frac{g^2v_{\mathrm{F}}^2}{4} V_{\mu} V_{\nu} \right\rbrack^2
\end{align}
\end{subequations}
with
\begin{equation}
V_{\mu} V_{\nu} =
\frac{1}{2} \left( W^+_{\mu} W^-_{\nu} + W^+_{\nu} W^-_{\mu} \right)
+ \frac{1}{2\cos^2\theta_{w}} Z_{\mu} Z_{\nu}
\end{equation}
(note the symmetrization!), i.\,e.
\begin{subequations}
\begin{align}
\mathcal{L}_4 &= \alpha_4 \frac{g^4v_{\mathrm{F}}^4}{16} (V_{\mu} V_{\nu})^2 \\
\mathcal{L}_5 &= \alpha_5 \frac{g^4v_{\mathrm{F}}^4}{16} (V_{\mu} V^{\mu})^2
\end{align}
\end{subequations} *)
let goldstone_vertices =
[ ((O Phi0, G Wm, G Wp), Scalar_Vector_Vector 1, I_G_ZWW);
((O Phip, G Ga, G Wm), Scalar_Vector_Vector 1, I_Q_W);
((O Phip, G Z, G Wm), Scalar_Vector_Vector 1, I_G_ZWW);
((O Phim, G Wp, G Ga), Scalar_Vector_Vector 1, I_Q_W);
((O Phim, G Wp, G Z), Scalar_Vector_Vector 1, I_G_ZWW) ]
(* Anomalous trilinear interactions $f_i f_j V$ :
\begin{equation}
\Delta\mathcal{L}_{tt\gamma} =
- e \frac{\upsilon}{\Lambda^2}
\bar{t} i\sigma^{\mu\nu} k_\nu (d_V(k^2) + i d_A(k^2) \gamma_5) t A_\mu
\end{equation} *)
let anomalous_ttA =
if Flags.top_anom then
[ ((M (U (-3)), G Ga, M (U 3)), FBF (1, Psibar, TVAM, Psi), G_TVA_ttA) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{bb\gamma} =
- e \frac{\upsilon}{\Lambda^2}
\bar{b} i\sigma^{\mu\nu} k_\nu (d_V(k^2) + i d_A(k^2) \gamma_5) b A_\mu
\end{equation} *)
let anomalous_bbA =
if Flags.top_anom then
[ ((M (D (-3)), G Ga, M (D 3)), FBF (1, Psibar, TVAM, Psi), G_TVA_bbA) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{ttg} =
- g_s \frac{\upsilon}{\Lambda^2}
\bar{t}\lambda^a i\sigma^{\mu\nu}k_\nu
(d_V(k^2)+id_A(k^2)\gamma_5)tG^a_\mu
\end{equation} *)
let anomalous_ttG =
if Flags.top_anom then
[ ((M (U (-3)), G Gl, M (U 3)), FBF (1, Psibar, TVAM, Psi), G_TVA_ttG) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{ttZ} =
- \frac{g}{2 c_W} \frac{\upsilon^2}{\Lambda^2}\left\lbrack
\bar{t} \fmslash{Z} (X_L(k^2) P_L + X_R(k^2) P_R) t
+ \bar{t}\frac{i\sigma^{\mu\nu}k_\nu}{m_Z}
(d_V(k^2)+id_A(k^2)\gamma_5)tZ_\mu\right\rbrack
\end{equation} *)
let anomalous_ttZ =
if Flags.top_anom then
[ ((M (U (-3)), G Z, M (U 3)), FBF (1, Psibar, VLRM, Psi), G_VLR_ttZ);
((M (U (-3)), G Z, M (U 3)), FBF (1, Psibar, TVAM, Psi), G_TVA_ttZ) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{bbZ} =
- \frac{g}{2 c_W} \frac{\upsilon^2}{\Lambda^2}
\bar{b}\frac{i\sigma^{\mu\nu}k_\nu}{m_Z}
(d_V(k^2)+id_A(k^2)\gamma_5)bZ_\mu
\end{equation} *)
let anomalous_bbZ =
if Flags.top_anom then
[ ((M (D (-3)), G Z, M (D 3)), FBF (1, Psibar, TVAM, Psi), G_TVA_bbZ) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{tbW} =
- \frac{g}{\sqrt{2}} \frac{\upsilon^2}{\Lambda^2}\left\lbrack
\bar{b}\fmslash{W}^-(V_L(k^2) P_L+V_R(k^2) P_R) t
+ \bar{b}\frac{i\sigma^{\mu\nu}k_\nu}{m_W}
(g_L(k^2)P_L+g_R(k^2)P_R)tW^-_\mu\right\rbrack
+ \textnormal{H.c.}
\end{equation} *)
let anomalous_tbW =
if Flags.top_anom then
[ ((M (D (-3)), G Wm, M (U 3)), FBF (1, Psibar, VLRM, Psi), G_VLR_btW);
((M (U (-3)), G Wp, M (D 3)), FBF (1, Psibar, VLRM, Psi), G_VLR_tbW);
((M (D (-3)), G Wm, M (U 3)), FBF (1, Psibar, TLRM, Psi), G_TLR_btW);
((M (U (-3)), G Wp, M (D 3)), FBF (1, Psibar, TRLM, Psi), G_TRL_tbW) ]
else
[]
(* quartic fermion-gauge interactions $f_i f_j V_1 V_2$ emerging from gauge-invariant
effective operators:
\begin{equation}
\Delta\mathcal{L}_{ttgg} =
- \frac{g_s^2}{2} f_{abc} \frac{\upsilon}{\Lambda^2}
\bar{t} \lambda^a \sigma^{\mu\nu}
(d_V(k^2)+id_A(k^2)\gamma_5)t G^b_\mu G^c_\nu
\end{equation} *)
let anomalous_ttGG =
if Flags.top_anom then
[ ((M (U (-3)), O (Aux_top (2,1,0,true,TTGG)), M (U 3)), FBF (1, Psibar, TVA, Psi), G_TVA_ttGG);
((O (Aux_top (2,1,0,false,TTGG)), G Gl, G Gl), Aux_Gauge_Gauge 1, I_Gs) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{tbWA} =
- i\sin\theta_w \frac{g^2}{2\sqrt{2}} \frac{\upsilon^2}{\Lambda^2}\left\lbrack
\bar{b}\frac{\sigma^{\mu\nu}}{m_W}
(g_L(k^2)P_L+g_R(k^2)P_R)t A_\mu W^-_\nu \right\rbrack
+ \textnormal{H.c.}
\end{equation} *)
let anomalous_tbWA =
if Flags.top_anom then
[ ((M (D (-3)), O (Aux_top (2,0,-1,true,TBWA)), M (U 3)), FBF (1, Psibar, TLR, Psi), G_TLR_btWA);
((O (Aux_top (2,0,1,false,TBWA)), G Ga, G Wm), Aux_Gauge_Gauge 1, I_G_weak);
((M (U (-3)), O (Aux_top (2,0,1,true,TBWA)), M (D 3)), FBF (1, Psibar, TRL, Psi), G_TRL_tbWA);
((O (Aux_top (2,0,-1,false,TBWA)), G Wp, G Ga), Aux_Gauge_Gauge 1, I_G_weak) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{tbWZ} =
- i\cos\theta_w \frac{g^2}{2\sqrt{2}} \frac{\upsilon^2}{\Lambda^2}\left\lbrack
\bar{b}\frac{\sigma^{\mu\nu}}{m_W}
(g_L(k^2)P_L+g_R(k^2)P_R)t Z_\mu W^-_\nu \right\rbrack
+ \textnormal{H.c.}
\end{equation} *)
let anomalous_tbWZ =
if Flags.top_anom then
[ ((M (D (-3)), O (Aux_top (2,0,-1,true,TBWZ)), M (U 3)), FBF (1, Psibar, TLR, Psi), G_TLR_btWZ);
((O (Aux_top (2,0,1,false,TBWZ)), G Z, G Wm), Aux_Gauge_Gauge 1, I_G_weak);
((M (U (-3)), O (Aux_top (2,0,1,true,TBWZ)), M (D 3)), FBF (1, Psibar, TRL, Psi), G_TRL_tbWZ);
((O (Aux_top (2,0,-1,false,TBWZ)), G Wp, G Z), Aux_Gauge_Gauge 1, I_G_weak) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{ttWW} =
- i \frac{g^2}{2} \frac{\upsilon^2}{\Lambda^2}
\bar{t} \frac{\sigma^{\mu\nu}}{m_W}
(d_V(k^2)+id_A(k^2)\gamma_5)t W^-_\mu W^+_\nu
\end{equation} *)
let anomalous_ttWW =
if Flags.top_anom then
[ ((M (U (-3)), O (Aux_top (2,0,0,true,TTWW)), M (U 3)), FBF (1, Psibar, TVA, Psi), G_TVA_ttWW);
((O (Aux_top (2,0,0,false,TTWW)), G Wm, G Wp), Aux_Gauge_Gauge 1, I_G_weak) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{bbWW} =
- i \frac{g^2}{2} \frac{\upsilon^2}{\Lambda^2}
\bar{b} \frac{\sigma^{\mu\nu}}{m_W}
(d_V(k^2)+id_A(k^2)\gamma_5)b W^-_\mu W^+_\nu
\end{equation} *)
let anomalous_bbWW =
if Flags.top_anom then
[ ((M (D (-3)), O (Aux_top (2,0,0,true,BBWW)), M (D 3)), FBF (1, Psibar, TVA, Psi), G_TVA_bbWW);
((O (Aux_top (2,0,0,false,BBWW)), G Wm, G Wp), Aux_Gauge_Gauge 1, I_G_weak) ]
else
[]
(* 4-fermion contact terms emerging from operator rewriting: *)
let anomalous_top_qGuG_tt =
[ ((M (U (-3)), O (Aux_top (1,1,0,true,QGUG)), M (U 3)), FBF (1, Psibar, VLR, Psi), G_VLR_qGuG) ]
let anomalous_top_qGuG_ff n =
List.map mom
[ ((U (-n), Aux_top (1,1,0,false,QGUG), U n), FBF (1, Psibar, V, Psi), Unit);
((D (-n), Aux_top (1,1,0,false,QGUG), D n), FBF (1, Psibar, V, Psi), Unit) ]
let anomalous_top_qGuG =
if Flags.top_anom_4f then
anomalous_top_qGuG_tt @ ThoList.flatmap anomalous_top_qGuG_ff [1;2;3]
else
[]
let anomalous_top_qBuB_tt =
[ ((M (U (-3)), O (Aux_top (1,0,0,true,QBUB)), M (U 3)), FBF (1, Psibar, VLR, Psi), G_VLR_qBuB) ]
let anomalous_top_qBuB_ff n =
List.map mom
[ ((U (-n), Aux_top (1,0,0,false,QBUB), U n), FBF (1, Psibar, VLR, Psi), G_VLR_qBuB_u);
((D (-n), Aux_top (1,0,0,false,QBUB), D n), FBF (1, Psibar, VLR, Psi), G_VLR_qBuB_d);
((L (-n), Aux_top (1,0,0,false,QBUB), L n), FBF (1, Psibar, VLR, Psi), G_VLR_qBuB_e);
((N (-n), Aux_top (1,0,0,false,QBUB), N n), FBF (1, Psibar, VL, Psi), G_VL_qBuB_n) ]
let anomalous_top_qBuB =
if Flags.top_anom_4f then
anomalous_top_qBuB_tt @ ThoList.flatmap anomalous_top_qBuB_ff [1;2;3]
else
[]
let anomalous_top_qW_tq =
[ ((M (U (-3)), O (Aux_top (1,0,0,true,QW)), M (U 3)), FBF (1, Psibar, VL, Psi), G_VL_qW);
((M (D (-3)), O (Aux_top (1,0,-1,true,QW)), M (U 3)), FBF (1, Psibar, VL, Psi), G_VL_qW);
((M (U (-3)), O (Aux_top (1,0,1,true,QW)), M (D 3)), FBF (1, Psibar, VL, Psi), G_VL_qW) ]
let anomalous_top_qW_ff n =
List.map mom
[ ((U (-n), Aux_top (1,0,0,false,QW), U n), FBF (1, Psibar, VL, Psi), G_VL_qW_u);
((D (-n), Aux_top (1,0,0,false,QW), D n), FBF (1, Psibar, VL, Psi), G_VL_qW_d);
((N (-n), Aux_top (1,0,0,false,QW), N n), FBF (1, Psibar, VL, Psi), G_VL_qW_u);
((L (-n), Aux_top (1,0,0,false,QW), L n), FBF (1, Psibar, VL, Psi), G_VL_qW_d);
((D (-n), Aux_top (1,0,-1,false,QW), U n), FBF (1, Psibar, VL, Psi), Half);
((U (-n), Aux_top (1,0,1,false,QW), D n), FBF (1, Psibar, VL, Psi), Half);
((L (-n), Aux_top (1,0,-1,false,QW), N n), FBF (1, Psibar, VL, Psi), Half);
((N (-n), Aux_top (1,0,1,false,QW), L n), FBF (1, Psibar, VL, Psi), Half) ]
let anomalous_top_qW =
if Flags.top_anom_4f then
anomalous_top_qW_tq @ ThoList.flatmap anomalous_top_qW_ff [1;2;3]
else
[]
let anomalous_top_DuDd =
if Flags.top_anom_4f then
[ ((M (U (-3)), O (Aux_top (0,0,0,true,DR)), M (U 3)), FBF (1, Psibar, SR, Psi), Half);
((M (U (-3)), O (Aux_top (0,0,0,false,DR)), M (U 3)), FBF (1, Psibar, SL, Psi), G_SL_DttR);
((M (D (-3)), O (Aux_top (0,0,0,false,DR)), M (D 3)), FBF (1, Psibar, SR, Psi), G_SR_DttR);
((M (U (-3)), O (Aux_top (0,0,0,true,DL)), M (U 3)), FBF (1, Psibar, SL, Psi), Half);
((M (D (-3)), O (Aux_top (0,0,0,false,DL)), M (D 3)), FBF (1, Psibar, SL, Psi), G_SL_DttL);
((M (D (-3)), O (Aux_top (0,0,-1,true,DR)), M (U 3)), FBF (1, Psibar, SR, Psi), Half);
((M (U (-3)), O (Aux_top (0,0,1,false,DR)), M (D 3)), FBF (1, Psibar, SLR, Psi), G_SLR_DbtR);
((M (D (-3)), O (Aux_top (0,0,-1,true,DL)), M (U 3)), FBF (1, Psibar, SL, Psi), Half);
((M (U (-3)), O (Aux_top (0,0,1,false,DL)), M (D 3)), FBF (1, Psibar, SL, Psi), G_SL_DbtL) ]
else
[]
let anomalous_top_quqd1_tq =
[ ((M (D (-3)), O (Aux_top (0,0,-1,true,QUQD1R)), M (U 3)), FBF (1, Psibar, SR, Psi), C_quqd1R_bt);
((M (U (-3)), O (Aux_top (0,0, 1,true,QUQD1R)), M (D 3)), FBF (1, Psibar, SL, Psi), C_quqd1R_tb);
((M (D (-3)), O (Aux_top (0,0,-1,true,QUQD1L)), M (U 3)), FBF (1, Psibar, SL, Psi), C_quqd1L_bt);
((M (U (-3)), O (Aux_top (0,0, 1,true,QUQD1L)), M (D 3)), FBF (1, Psibar, SR, Psi), C_quqd1L_tb) ]
let anomalous_top_quqd1_ff n =
List.map mom
[ ((U (-n), Aux_top (0,0, 1,false,QUQD1R), D n), FBF (1, Psibar, SR, Psi), Half);
((D (-n), Aux_top (0,0,-1,false,QUQD1R), U n), FBF (1, Psibar, SL, Psi), Half);
((U (-n), Aux_top (0,0, 1,false,QUQD1L), D n), FBF (1, Psibar, SL, Psi), Half);
((D (-n), Aux_top (0,0,-1,false,QUQD1L), U n), FBF (1, Psibar, SR, Psi), Half) ]
let anomalous_top_quqd1 =
if Flags.top_anom_4f then
anomalous_top_quqd1_tq @ ThoList.flatmap anomalous_top_quqd1_ff [1;2;3]
else
[]
let anomalous_top_quqd8_tq =
[ ((M (D (-3)), O (Aux_top (0,1,-1,true,QUQD8R)), M (U 3)), FBF (1, Psibar, SR, Psi), C_quqd8R_bt);
((M (U (-3)), O (Aux_top (0,1, 1,true,QUQD8R)), M (D 3)), FBF (1, Psibar, SL, Psi), C_quqd8R_tb);
((M (D (-3)), O (Aux_top (0,1,-1,true,QUQD8L)), M (U 3)), FBF (1, Psibar, SL, Psi), C_quqd8L_bt);
((M (U (-3)), O (Aux_top (0,1, 1,true,QUQD8L)), M (D 3)), FBF (1, Psibar, SR, Psi), C_quqd8L_tb) ]
let anomalous_top_quqd8_ff n =
List.map mom
[ ((U (-n), Aux_top (0,1, 1,false,QUQD8R), D n), FBF (1, Psibar, SR, Psi), Half);
((D (-n), Aux_top (0,1,-1,false,QUQD8R), U n), FBF (1, Psibar, SL, Psi), Half);
((U (-n), Aux_top (0,1, 1,false,QUQD8L), D n), FBF (1, Psibar, SL, Psi), Half);
((D (-n), Aux_top (0,1,-1,false,QUQD8L), U n), FBF (1, Psibar, SR, Psi), Half) ]
let anomalous_top_quqd8 =
if Flags.top_anom_4f then
anomalous_top_quqd8_tq @ ThoList.flatmap anomalous_top_quqd8_ff [1;2;3]
else
[]
let vertices3 =
(ThoList.flatmap electromagnetic_currents [1;2;3] @
ThoList.flatmap color_currents [1;2;3] @
ThoList.flatmap neutral_currents [1;2;3] @
(if Flags.ckm_present then
charged_currents_ckm
else
charged_currents_triv) @
triple_gauge @
goldstone_vertices @
anomalous_ttA @ anomalous_bbA @
anomalous_ttZ @ anomalous_bbZ @
anomalous_tbW @ anomalous_tbWA @ anomalous_tbWZ @
anomalous_ttWW @ anomalous_bbWW @
anomalous_ttG @ anomalous_ttGG @
anomalous_top_qGuG @ anomalous_top_qBuB @
anomalous_top_qW @ anomalous_top_DuDd @
anomalous_top_quqd1 @ anomalous_top_quqd8)
let vertices4 =
quartic_gauge
let vertices () = (vertices3, vertices4, [])
(* For efficiency, make sure that [F.of_vertices vertices] is
evaluated only once. *)
let table = F.of_vertices (vertices ())
let fuse2 = F.fuse2 table
let fuse3 = F.fuse3 table
let fuse = F.fuse table
let max_degree () = 4
let flavor_of_string = function
| "e-" -> M (L 1) | "e+" -> M (L (-1))
| "mu-" -> M (L 2) | "mu+" -> M (L (-2))
| "tau-" -> M (L 3) | "tau+" -> M (L (-3))
| "nue" -> M (N 1) | "nuebar" -> M (N (-1))
| "numu" -> M (N 2) | "numubar" -> M (N (-2))
| "nutau" -> M (N 3) | "nutaubar" -> M (N (-3))
| "u" -> M (U 1) | "ubar" -> M (U (-1))
| "c" -> M (U 2) | "cbar" -> M (U (-2))
| "t" -> M (U 3) | "tbar" -> M (U (-3))
| "d" -> M (D 1) | "dbar" -> M (D (-1))
| "s" -> M (D 2) | "sbar" -> M (D (-2))
| "b" -> M (D 3) | "bbar" -> M (D (-3))
| "g" | "gl" -> G Gl
| "A" -> G Ga | "Z" | "Z0" -> G Z
| "W+" -> G Wp | "W-" -> G Wm
| "Aux_t_ttGG0" -> O (Aux_top (2,1, 0,true,TTGG)) | "Aux_ttGG0" -> O (Aux_top (2,1, 0,false,TTGG))
| "Aux_t_tbWA+" -> O (Aux_top (2,0, 1,true,TBWA)) | "Aux_tbWA+" -> O (Aux_top (2,0, 1,false,TBWA))
| "Aux_t_tbWA-" -> O (Aux_top (2,0,-1,true,TBWA)) | "Aux_tbWA-" -> O (Aux_top (2,0,-1,false,TBWA))
| "Aux_t_tbWZ+" -> O (Aux_top (2,0, 1,true,TBWZ)) | "Aux_tbWZ+" -> O (Aux_top (2,0, 1,false,TBWZ))
| "Aux_t_tbWZ-" -> O (Aux_top (2,0,-1,true,TBWZ)) | "Aux_tbWZ-" -> O (Aux_top (2,0,-1,false,TBWZ))
| "Aux_t_ttWW0" -> O (Aux_top (2,0, 0,true,TTWW)) | "Aux_ttWW0" -> O (Aux_top (2,0, 0,false,TTWW))
| "Aux_t_bbWW0" -> O (Aux_top (2,0, 0,true,BBWW)) | "Aux_bbWW0" -> O (Aux_top (2,0, 0,false,BBWW))
| "Aux_t_qGuG0" -> O (Aux_top (1,1, 0,true,QGUG)) | "Aux_qGuG0" -> O (Aux_top (1,1, 0,false,QGUG))
| "Aux_t_qBuB0" -> O (Aux_top (1,0, 0,true,QBUB)) | "Aux_qBuB0" -> O (Aux_top (1,0, 0,false,QBUB))
| "Aux_t_qW0" -> O (Aux_top (1,0, 0,true,QW)) | "Aux_qW0" -> O (Aux_top (1,0, 0,false,QW))
| "Aux_t_qW+" -> O (Aux_top (1,0, 1,true,QW)) | "Aux_qW+" -> O (Aux_top (1,0, 1,false,QW))
| "Aux_t_qW-" -> O (Aux_top (1,0,-1,true,QW)) | "Aux_qW-" -> O (Aux_top (1,0,-1,false,QW))
| "Aux_t_dL0" -> O (Aux_top (0,0, 0,true,DL)) | "Aux_dL0" -> O (Aux_top (0,0, 0,false,DL))
| "Aux_t_dL+" -> O (Aux_top (0,0, 1,true,DL)) | "Aux_dL+" -> O (Aux_top (0,0, 1,false,DL))
| "Aux_t_dL-" -> O (Aux_top (0,0,-1,true,DL)) | "Aux_dL-" -> O (Aux_top (0,0,-1,false,DL))
| "Aux_t_dR0" -> O (Aux_top (0,0, 0,true,DR)) | "Aux_dR0" -> O (Aux_top (0,0, 0,false,DR))
| "Aux_t_dR+" -> O (Aux_top (0,0, 1,true,DR)) | "Aux_dR+" -> O (Aux_top (0,0, 1,false,DR))
| "Aux_t_dR-" -> O (Aux_top (0,0,-1,true,DR)) | "Aux_dR-" -> O (Aux_top (0,0,-1,false,DR))
| "Aux_t_quqd1L+" -> O (Aux_top (0,0, 1,true,QUQD1L)) | "Aux_quqd1L+" -> O (Aux_top (0,0, 1,false,QUQD1L))
| "Aux_t_quqd1L-" -> O (Aux_top (0,0,-1,true,QUQD1L)) | "Aux_quqd1L-" -> O (Aux_top (0,0,-1,false,QUQD1L))
| "Aux_t_quqd1R+" -> O (Aux_top (0,0, 1,true,QUQD1R)) | "Aux_quqd1R+" -> O (Aux_top (0,0, 1,false,QUQD1R))
| "Aux_t_quqd1R-" -> O (Aux_top (0,0,-1,true,QUQD1R)) | "Aux_quqd1R-" -> O (Aux_top (0,0,-1,false,QUQD1R))
| "Aux_t_quqd8L+" -> O (Aux_top (0,1, 1,true,QUQD8L)) | "Aux_quqd8L+" -> O (Aux_top (0,1, 1,false,QUQD8L))
| "Aux_t_quqd8L-" -> O (Aux_top (0,1,-1,true,QUQD8L)) | "Aux_quqd8L-" -> O (Aux_top (0,1,-1,false,QUQD8L))
| "Aux_t_quqd8R+" -> O (Aux_top (0,1, 1,true,QUQD8R)) | "Aux_quqd8R+" -> O (Aux_top (0,1, 1,false,QUQD8R))
| "Aux_t_quqd8R-" -> O (Aux_top (0,1,-1,true,QUQD8R)) | "Aux_quqd8R-" -> O (Aux_top (0,1,-1,false,QUQD8R))
- | _ -> invalid_arg "Modellib.SM.flavor_of_string"
+ | _ -> invalid_arg "Modellib.NoH.flavor_of_string"
let flavor_to_string = function
| M f ->
begin match f with
| L 1 -> "e-" | L (-1) -> "e+"
| L 2 -> "mu-" | L (-2) -> "mu+"
| L 3 -> "tau-" | L (-3) -> "tau+"
| L _ -> invalid_arg
- "Modellib.SM.flavor_to_string: invalid lepton"
+ "Modellib.NoH.flavor_to_string: invalid lepton"
| N 1 -> "nue" | N (-1) -> "nuebar"
| N 2 -> "numu" | N (-2) -> "numubar"
| N 3 -> "nutau" | N (-3) -> "nutaubar"
| N _ -> invalid_arg
- "Modellib.SM.flavor_to_string: invalid neutrino"
+ "Modellib.NoH.flavor_to_string: invalid neutrino"
| U 1 -> "u" | U (-1) -> "ubar"
| U 2 -> "c" | U (-2) -> "cbar"
| U 3 -> "t" | U (-3) -> "tbar"
| U _ -> invalid_arg
- "Modellib.SM.flavor_to_string: invalid up type quark"
+ "Modellib.NoH.flavor_to_string: invalid up type quark"
| D 1 -> "d" | D (-1) -> "dbar"
| D 2 -> "s" | D (-2) -> "sbar"
| D 3 -> "b" | D (-3) -> "bbar"
| D _ -> invalid_arg
- "Modellib.SM.flavor_to_string: invalid down type quark"
+ "Modellib.NoH.flavor_to_string: invalid down type quark"
end
| G f ->
begin match f with
| Gl -> "gl"
| Ga -> "A" | Z -> "Z"
| Wp -> "W+" | Wm -> "W-"
end
| O f ->
begin match f with
| Phip -> "phi+" | Phim -> "phi-" | Phi0 -> "phi0"
| Aux_top (_,_,ch,n,v) -> "Aux_" ^ (if n then "t_" else "") ^ (
begin match v with
| TTGG -> "ttGG" | TBWA -> "tbWA" | TBWZ -> "tbWZ"
| TTWW -> "ttWW" | BBWW -> "bbWW"
| QGUG -> "qGuG" | QBUB -> "qBuB"
| QW -> "qW" | DL -> "dL" | DR -> "dR"
| QUQD1L -> "quqd1L" | QUQD1R -> "quqd1R"
| QUQD8L -> "quqd8L" | QUQD8R -> "quqd8R"
end ) ^ ( if ch > 0 then "+" else if ch < 0 then "-" else "0" )
end
let flavor_to_TeX = function
| M f ->
begin match f with
| L 1 -> "e^-" | L (-1) -> "e^+"
| L 2 -> "\\mu^-" | L (-2) -> "\\mu^+"
| L 3 -> "\\tau^-" | L (-3) -> "\\tau^+"
| L _ -> invalid_arg
- "Modellib.SM.flavor_to_TeX: invalid lepton"
+ "Modellib.NoH.flavor_to_TeX: invalid lepton"
| N 1 -> "\\nu_e" | N (-1) -> "\\bar{\\nu}_e"
| N 2 -> "\\nu_\\mu" | N (-2) -> "\\bar{\\nu}_\\mu"
| N 3 -> "\\nu_\\tau" | N (-3) -> "\\bar{\\nu}_\\tau"
| N _ -> invalid_arg
- "Modellib.SM.flavor_to_TeX: invalid neutrino"
+ "Modellib.NoH.flavor_to_TeX: invalid neutrino"
| U 1 -> "u" | U (-1) -> "\\bar{u}"
| U 2 -> "c" | U (-2) -> "\\bar{c}"
| U 3 -> "t" | U (-3) -> "\\bar{t}"
| U _ -> invalid_arg
- "Modellib.SM.flavor_to_TeX: invalid up type quark"
+ "Modellib.NoH.flavor_to_TeX: invalid up type quark"
| D 1 -> "d" | D (-1) -> "\\bar{d}"
| D 2 -> "s" | D (-2) -> "\\bar{s}"
| D 3 -> "b" | D (-3) -> "\\bar{b}"
| D _ -> invalid_arg
- "Modellib.SM.flavor_to_TeX: invalid down type quark"
+ "Modellib.NoH.flavor_to_TeX: invalid down type quark"
end
| G f ->
begin match f with
| Gl -> "g"
| Ga -> "\\gamma" | Z -> "Z"
| Wp -> "W^+" | Wm -> "W^-"
end
| O f ->
begin match f with
| Phip -> "\\phi^+" | Phim -> "\\phi^-" | Phi0 -> "\\phi^0"
| Aux_top (_,_,ch,n,v) -> "\\textnormal{Aux_" ^ (if n then "t_" else "") ^ (
begin match v with
| TTGG -> "ttGG" | TBWA -> "tbWA" | TBWZ -> "tbWZ"
| TTWW -> "ttWW" | BBWW -> "bbWW"
| QGUG -> "qGuG" | QBUB -> "qBuB"
| QW -> "qW" | DL -> "dL" | DR -> "dR"
| QUQD1L -> "quqd1L" | QUQD1R -> "quqd1R"
| QUQD8L -> "quqd8L" | QUQD8R -> "quqd8R"
end ) ^ ( if ch > 0 then "^+" else if ch < 0 then "^-" else "^0" ) ^ "}"
end
let flavor_symbol = function
| M f ->
begin match f with
| L n when n > 0 -> "l" ^ string_of_int n
| L n -> "l" ^ string_of_int (abs n) ^ "b"
| N n when n > 0 -> "n" ^ string_of_int n
| N n -> "n" ^ string_of_int (abs n) ^ "b"
| U n when n > 0 -> "u" ^ string_of_int n
| U n -> "u" ^ string_of_int (abs n) ^ "b"
| D n when n > 0 -> "d" ^ string_of_int n
| D n -> "d" ^ string_of_int (abs n) ^ "b"
end
| G f ->
begin match f with
| Gl -> "gl"
| Ga -> "a" | Z -> "z"
| Wp -> "wp" | Wm -> "wm"
end
| O f ->
begin match f with
| Phip -> "pp" | Phim -> "pm" | Phi0 -> "p0"
| Aux_top (_,_,ch,n,v) -> "aux_" ^ (if n then "t_" else "") ^ (
begin match v with
| TTGG -> "ttgg" | TBWA -> "tbwa" | TBWZ -> "tbwz"
| TTWW -> "ttww" | BBWW -> "bbww"
| QGUG -> "qgug" | QBUB -> "qbub"
| QW -> "qw" | DL -> "dl" | DR -> "dr"
| QUQD1L -> "quqd1l" | QUQD1R -> "quqd1r"
| QUQD8L -> "quqd8l" | QUQD8R -> "quqd8r"
end ) ^ "_" ^ ( if ch > 0 then "p" else if ch < 0 then "m" else "0" )
end
let pdg = function
| M f ->
begin match f with
| L n when n > 0 -> 9 + 2*n
| L n -> - 9 + 2*n
| N n when n > 0 -> 10 + 2*n
| N n -> - 10 + 2*n
| U n when n > 0 -> 2*n
| U n -> 2*n
| D n when n > 0 -> - 1 + 2*n
| D n -> 1 + 2*n
end
| G f ->
begin match f with
| Gl -> 21
| Ga -> 22 | Z -> 23
| Wp -> 24 | Wm -> (-24)
end
| O f ->
begin match f with
| Phip | Phim -> 27 | Phi0 -> 26
| Aux_top (_,_,ch,t,f) -> let n =
begin match f with
| QW -> 0
| QUQD1R -> 1 | QUQD1L -> 2
| QUQD8R -> 3 | QUQD8L -> 4
| _ -> 5
end
in (602 + 3*n - ch) * ( if t then (1) else (-1) )
end
let mass_symbol f =
"mass(" ^ string_of_int (abs (pdg f)) ^ ")"
let width_symbol f =
"width(" ^ string_of_int (abs (pdg f)) ^ ")"
let constant_symbol = function
| Unit -> "unit" | Half -> "half" | Pi -> "PI"
| Alpha_QED -> "alpha" | E -> "e" | G_weak -> "g" | Vev -> "vev"
| I_G_weak -> "ig"
| Sin2thw -> "sin2thw" | Sinthw -> "sinthw" | Costhw -> "costhw"
| Q_lepton -> "qlep" | Q_up -> "qup" | Q_down -> "qdwn"
| G_NC_lepton -> "gnclep" | G_NC_neutrino -> "gncneu"
| G_NC_up -> "gncup" | G_NC_down -> "gncdwn"
| G_TVA_ttA -> "gtva_tta" | G_TVA_bbA -> "gtva_bba"
| G_VLR_ttZ -> "gvlr_ttz" | G_TVA_ttZ -> "gtva_ttz" | G_TVA_bbZ -> "gtva_bbz"
| G_VLR_btW -> "gvlr_btw" | G_VLR_tbW -> "gvlr_tbw"
| G_TLR_btW -> "gtlr_btw" | G_TRL_tbW -> "gtrl_tbw"
| G_TLR_btWA -> "gtlr_btwa" | G_TRL_tbWA -> "gtrl_tbwa"
| G_TLR_btWZ -> "gtlr_btwz" | G_TRL_tbWZ -> "gtrl_tbwz"
| G_TVA_ttWW -> "gtva_ttww" | G_TVA_bbWW -> "gtva_bbww"
| G_TVA_ttG -> "gtva_ttg" | G_TVA_ttGG -> "gtva_ttgg"
| G_VLR_qGuG -> "gvlr_qgug"
| G_VLR_qBuB -> "gvlr_qbub"
| G_VLR_qBuB_u -> "gvlr_qbub_u" | G_VLR_qBuB_d -> "gvlr_qbub_d"
| G_VLR_qBuB_e -> "gvlr_qbub_e" | G_VL_qBuB_n -> "gvl_qbub_n"
| G_VL_qW -> "gvl_qw"
| G_VL_qW_u -> "gvl_qw_u" | G_VL_qW_d -> "gvl_qw_d"
| G_SL_DttR -> "gsl_dttr" | G_SR_DttR -> "gsr_dttr" | G_SL_DttL -> "gsl_dttl"
| G_SLR_DbtR -> "gslr_dbtr" | G_SL_DbtL -> "gsl_dbtl"
| C_quqd1R_bt -> "c_quqd1_1" | C_quqd1R_tb -> "conjg(c_quqd1_1)"
| C_quqd1L_bt -> "conjg(c_quqd1_2)" | C_quqd1L_tb -> "c_quqd1_2"
| C_quqd8R_bt -> "c_quqd8_1" | C_quqd8R_tb -> "conjg(c_quqd8_1)"
| C_quqd8L_bt -> "conjg(c_quqd8_2)" | C_quqd8L_tb -> "c_quqd8_2"
| G_CC -> "gcc"
| G_CCQ (n1,n2) -> "gccq" ^ string_of_int n1 ^ string_of_int n2
| I_Q_W -> "iqw" | I_G_ZWW -> "igzww"
| G_WWWW -> "gw4" | G_ZZWW -> "gzzww"
| G_AZWW -> "gazww" | G_AAWW -> "gaaww"
| I_G1_AWW -> "ig1a" | I_G1_ZWW -> "ig1z"
| I_G1_plus_kappa_plus_G4_AWW -> "ig1pkpg4a"
| I_G1_plus_kappa_plus_G4_ZWW -> "ig1pkpg4z"
| I_G1_plus_kappa_minus_G4_AWW -> "ig1pkmg4a"
| I_G1_plus_kappa_minus_G4_ZWW -> "ig1pkmg4z"
| I_G1_minus_kappa_plus_G4_AWW -> "ig1mkpg4a"
| I_G1_minus_kappa_plus_G4_ZWW -> "ig1mkpg4z"
| I_G1_minus_kappa_minus_G4_AWW -> "ig1mkmg4a"
| I_G1_minus_kappa_minus_G4_ZWW -> "ig1mkmg4z"
| I_lambda_AWW -> "ila"
| I_lambda_ZWW -> "ilz"
| G5_AWW -> "rg5a"
| G5_ZWW -> "rg5z"
| I_kappa5_AWW -> "ik5a"
| I_kappa5_ZWW -> "ik5z"
| I_lambda5_AWW -> "il5a" | I_lambda5_ZWW -> "il5z"
| Alpha_WWWW0 -> "alww0" | Alpha_WWWW2 -> "alww2"
| Alpha_ZZWW0 -> "alzw0" | Alpha_ZZWW1 -> "alzw1"
| Alpha_ZZZZ -> "alzz"
| D_Alpha_ZZWW0_S -> "dalzz0_s(gkm,mkm,"
| D_Alpha_ZZWW0_T -> "dalzz0_t(gkm,mkm,"
| D_Alpha_ZZWW1_S -> "dalzz1_s(gkm,mkm,"
| D_Alpha_ZZWW1_T -> "dalzz1_t(gkm,mkm,"
| D_Alpha_ZZWW1_U -> "dalzz1_u(gkm,mkm,"
| D_Alpha_WWWW0_S -> "dalww0_s(gkm,mkm,"
| D_Alpha_WWWW0_T -> "dalww0_t(gkm,mkm,"
| D_Alpha_WWWW0_U -> "dalww0_u(gkm,mkm,"
| D_Alpha_WWWW2_S -> "dalww2_s(gkm,mkm,"
| D_Alpha_WWWW2_T -> "dalww2_t(gkm,mkm,"
| D_Alpha_ZZZZ_S -> "dalz4_s(gkm,mkm,"
| D_Alpha_ZZZZ_T -> "dalz4_t(gkm,mkm,"
| Gs -> "gs" | I_Gs -> "igs" | G2 -> "gs**2"
| Mass f -> "mass" ^ flavor_symbol f
| Width f -> "width" ^ flavor_symbol f
| K_Matrix_Coeff i -> "kc" ^ string_of_int i
| K_Matrix_Pole i -> "kp" ^ string_of_int i
end
(*i
* Local Variables:
* mode:caml
* indent-tabs-mode:nil
* page-delimiter:"^(\\* .*\n"
* End:
i*)
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 7:39 PM (1 d, 9 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805875
Default Alt Text
(61 KB)
Attached To
rWHIZARDSVN whizardsvn
Event Timeline
Log In to Comment