Page MenuHomeHEPForge

No OneTemporary

diff --git a/PDF/HwRemDecayer.cc b/PDF/HwRemDecayer.cc
--- a/PDF/HwRemDecayer.cc
+++ b/PDF/HwRemDecayer.cc
@@ -1,2179 +1,2179 @@
// -*- C++ -*-
//
// HwRemDecayer.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the HwRemDecayer class.
//
#include "HwRemDecayer.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Utilities/UtilityBase.h"
#include "ThePEG/Utilities/SimplePhaseSpace.h"
#include "ThePEG/Utilities/Throw.h"
#include "Herwig/Shower/ShowerHandler.h"
using namespace Herwig;
namespace{
const bool dbg = false;
void reShuffle(Lorentz5Momentum &p1, Lorentz5Momentum &p2, Energy m1, Energy m2){
Lorentz5Momentum ptotal(p1+p2);
ptotal.rescaleMass();
if( ptotal.m() < m1+m2 ) {
if(dbg)
cerr << "Not enough energy to perform reshuffling \n";
throw HwRemDecayer::ExtraSoftScatterVeto();
}
Boost boostv = -ptotal.boostVector();
ptotal.boost(boostv);
p1.boost(boostv);
// set the masses and energies,
p1.setMass(m1);
p1.setE(0.5/ptotal.m()*(ptotal.m2()+sqr(m1)-sqr(m2)));
p1.rescaleRho();
// boost back to the lab
p1.boost(-boostv);
p2.boost(boostv);
// set the masses and energies,
p2.setMass(m2);
p2.setE(0.5/ptotal.m()*(ptotal.m2()+sqr(m2)-sqr(m1)));
p2.rescaleRho();
// boost back to the lab
p2.boost(-boostv);
}
}
void HwRemDecayer::initialize(pair<tRemPPtr, tRemPPtr> rems, tPPair beam, Step & step,
Energy forcedSplitScale) {
// the step
thestep = &step;
// valence content of the hadrons
theContent.first = getHadronContent(beam.first);
theContent.second = getHadronContent(beam.second);
// momentum extracted from the hadrons
theUsed.first = Lorentz5Momentum();
theUsed.second = Lorentz5Momentum();
theMaps.first.clear();
theMaps.second.clear();
theX.first = 0.0;
theX.second = 0.0;
theRems = rems;
_forcedSplitScale = forcedSplitScale;
// check remnants attached to the right hadrons
if( (theRems.first && parent(theRems.first ) != beam.first ) ||
(theRems.second && parent(theRems.second) != beam.second) )
throw Exception() << "Remnant order wrong in "
<< "HwRemDecayer::initialize(...)"
<< Exception::runerror;
return;
}
void HwRemDecayer::split(tPPtr parton, HadronContent & content,
tRemPPtr rem, Lorentz5Momentum & used,
PartnerMap &partners, tcPDFPtr pdf, bool first) {
theBeam = parent(rem);
theBeamData = dynamic_ptr_cast<Ptr<BeamParticleData>::const_pointer>
(theBeam->dataPtr());
double currentx = parton->momentum().rho()/theBeam->momentum().rho();
double check = rem==theRems.first ? theX.first : theX.second;
check += currentx;
if(1.0-check < 1e-3) throw ShowerHandler::ExtraScatterVeto();
bool anti;
Lorentz5Momentum lastp(parton->momentum());
int lastID(parton->id());
Energy oldQ(_forcedSplitScale);
_pdf = pdf;
//do nothing if already valence quark
if(first && content.isValenceQuark(parton)) {
//set the extracted value, because otherwise no RemID could be generated.
content.extract(lastID);
// add the particle to the colour partners
partners.push_back(make_pair(parton, tPPtr()));
//set the sign
anti = parton->hasAntiColour() && parton->id()!=ParticleID::g;
if(rem==theRems.first) theanti.first = anti;
else theanti.second = anti;
// add the x and return
if(rem==theRems.first) theX.first += currentx;
else theX.second += currentx;
return;
}
//or gluon for secondaries
else if(!first && lastID == ParticleID::g) {
partners.push_back(make_pair(parton, tPPtr()));
// add the x and return
if(rem==theRems.first) theX.first += currentx;
else theX.second += currentx;
return;
}
// if a sea quark.antiquark forced splitting to a gluon
// Create the new parton with its momentum and parent/child relationship set
PPtr newSea;
if( !(lastID == ParticleID::g ||
lastID == ParticleID::gamma) ) {
newSea = forceSplit(rem, -lastID, oldQ, currentx, lastp, used,content);
ColinePtr cl = new_ptr(ColourLine());
if(newSea->id() > 0) cl-> addColoured(newSea);
else cl->addAntiColoured(newSea);
// if a secondard scatter finished so return
if(!first || content.isValenceQuark(ParticleID::g) ){
partners.push_back(make_pair(parton, newSea));
// add the x and return
if(rem==theRems.first) theX.first += currentx;
else theX.second += currentx;
if(first) content.extract(ParticleID::g);
return;
}
}
// otherwise evolve back to valence
// final valence splitting
PPtr newValence = forceSplit(rem,
lastID!=ParticleID::gamma ?
ParticleID::g : ParticleID::gamma,
oldQ, currentx , lastp, used, content);
// extract from the hadron to allow remnant to be determined
content.extract(newValence->id());
// case of a gluon going into the hard subprocess
if( lastID == ParticleID::g ) {
partners.push_back(make_pair(parton, tPPtr()));
anti = newValence->hasAntiColour();
if(rem==theRems.first) theanti.first = anti;
else theanti.second = anti;
parton->colourLine(!anti)->addColoured(newValence, anti);
return;
}
else if( lastID == ParticleID::gamma) {
partners.push_back(make_pair(parton, newValence));
anti = newValence->hasAntiColour();
ColinePtr newLine(new_ptr(ColourLine()));
newLine->addColoured(newValence, anti);
if(rem==theRems.first) theanti.first = anti;
else theanti.second = anti;
// add the x and return
if(rem==theRems.first) theX.first += currentx;
else theX.second += currentx;
return;
}
//The valence quark will always be connected to the sea quark with opposite sign
tcPPtr particle;
if(lastID*newValence->id() < 0){
particle = parton;
partners.push_back(make_pair(newSea, tPPtr()));
}
else {
particle = newSea;
partners.push_back(make_pair(parton, tPPtr()));
}
anti = newValence->hasAntiColour();
if(rem==theRems.first) theanti.first = anti;
else theanti.second = anti;
if(particle->colourLine())
particle->colourLine()->addAntiColoured(newValence);
if(particle->antiColourLine())
particle->antiColourLine()->addColoured(newValence);
// add the x and return
if(rem==theRems.first) theX.first += currentx;
else theX.second += currentx;
return;
}
void HwRemDecayer::doSplit(pair<tPPtr, tPPtr> partons,
pair<tcPDFPtr, tcPDFPtr> pdfs,
bool first) {
if(theRems.first) {
ParticleVector children=theRems.first->children();
for(unsigned int ix=0;ix<children.size();++ix) {
if(children[ix]->dataPtr()==theRems.first->dataPtr())
theRems.first = dynamic_ptr_cast<RemPPtr>(children[ix]);
}
}
if(theRems.second) {
ParticleVector children=theRems.second->children();
for(unsigned int ix=0;ix<children.size();++ix) {
if(children[ix]->dataPtr()==theRems.second->dataPtr())
theRems.second = dynamic_ptr_cast<RemPPtr>(children[ix]);
}
}
// forced splitting for first parton
if(isPartonic(partons.first )) {
try {
split(partons.first, theContent.first, theRems.first,
theUsed.first, theMaps.first, pdfs.first, first);
}
catch(ShowerHandler::ExtraScatterVeto) {
throw ShowerHandler::ExtraScatterVeto();
}
}
// forced splitting for second parton
if(isPartonic(partons.second)) {
try {
split(partons.second, theContent.second, theRems.second,
theUsed.second, theMaps.second, pdfs.second, first);
// additional check for the remnants
// if can't do the rescale veto the emission
if(!first&&partons.first->data().coloured()&&
partons.second->data().coloured()) {
Lorentz5Momentum pnew[2]=
{theRems.first->momentum() - theUsed.first - partons.first->momentum(),
theRems.second->momentum() - theUsed.second - partons.second->momentum()};
pnew[0].setMass(getParticleData(theContent.first.RemID())->constituentMass());
pnew[0].rescaleEnergy();
pnew[1].setMass(getParticleData(theContent.second.RemID())->constituentMass());
pnew[1].rescaleEnergy();
for(unsigned int iy=0; iy<theRems.first->children().size(); ++iy)
pnew[0] += theRems.first->children()[iy]->momentum();
for(unsigned int iy=0; iy<theRems.second->children().size(); ++iy)
pnew[1] += theRems.second->children()[iy]->momentum();
Lorentz5Momentum ptotal=
theRems.first ->momentum()-partons.first ->momentum()+
theRems.second->momentum()-partons.second->momentum();
// add x limits
if(ptotal.m() < (pnew[0].m() + pnew[1].m()) ) {
if(partons.second->id() != ParticleID::g){
if(partons.second==theMaps.second.back().first)
theUsed.second -= theMaps.second.back().second->momentum();
else
theUsed.second -= theMaps.second.back().first->momentum();
thestep->removeParticle(theMaps.second.back().first);
thestep->removeParticle(theMaps.second.back().second);
}
theMaps.second.pop_back();
theX.second -= partons.second->momentum().rho()/
parent(theRems.second)->momentum().rho();
throw ShowerHandler::ExtraScatterVeto();
}
}
}
catch(ShowerHandler::ExtraScatterVeto){
if(!partons.first||!partons.second||
!theRems.first||!theRems.second)
throw ShowerHandler::ExtraScatterVeto();
//case of the first forcedSplitting worked fine
theX.first -= partons.first->momentum().rho()/
parent(theRems.first)->momentum().rho();
//case of the first interaction
//throw veto immediately, because event get rejected anyway.
if(first) throw ShowerHandler::ExtraScatterVeto();
//secondary interactions have to end on a gluon, if parton
//was NOT a gluon, the forced splitting particles must be removed
if(partons.first->id() != ParticleID::g) {
if(partons.first==theMaps.first.back().first)
theUsed.first -= theMaps.first.back().second->momentum();
else
theUsed.first -= theMaps.first.back().first->momentum();
thestep->removeParticle(theMaps.first.back().first);
thestep->removeParticle(theMaps.first.back().second);
}
theMaps.first.pop_back();
throw ShowerHandler::ExtraScatterVeto();
}
}
// veto if not enough energy for extraction
if( !first &&(theRems.first ->momentum().e() -
partons.first ->momentum().e() < 1.0e-3*MeV ||
theRems.second->momentum().e() -
partons.second->momentum().e() < 1.0e-3*MeV )) {
if(partons.first->id() != ParticleID::g) {
if(partons.first==theMaps.first.back().first)
theUsed.first -= theMaps.first.back().second->momentum();
else
theUsed.first -= theMaps.first.back().first->momentum();
thestep->removeParticle(theMaps.first.back().first);
thestep->removeParticle(theMaps.first.back().second);
}
theMaps.first.pop_back();
if(partons.second->id() != ParticleID::g) {
if(partons.second==theMaps.second.back().first)
theUsed.second -= theMaps.second.back().second->momentum();
else
theUsed.second -= theMaps.second.back().first->momentum();
thestep->removeParticle(theMaps.second.back().first);
thestep->removeParticle(theMaps.second.back().second);
}
theMaps.second.pop_back();
throw ShowerHandler::ExtraScatterVeto();
}
}
void HwRemDecayer::mergeColour(tPPtr pold, tPPtr pnew, bool anti) const {
ColinePtr clnew, clold;
//save the corresponding colour lines
clold = pold->colourLine(anti);
clnew = pnew->colourLine(!anti);
assert(clold);
// There is already a colour line (not the final diquark)
if(clnew){
if( (clnew->coloured().size() + clnew->antiColoured().size()) > 1 ){
if( (clold->coloured().size() + clold->antiColoured().size()) > 1 ){
//join the colour lines
//I don't use the join method, because potentially only (anti)coloured
//particles belong to one colour line
if(clold!=clnew){//procs are not already connected
while ( !clnew->coloured().empty() ) {
tPPtr p = clnew->coloured()[0];
clnew->removeColoured(p);
clold->addColoured(p);
}
while ( !clnew->antiColoured().empty() ) {
tPPtr p = clnew->antiColoured()[0];
clnew->removeAntiColoured(p);
clold->addAntiColoured(p);
}
}
}else{
//if pold is the only member on it's
//colour line, remove it.
clold->removeColoured(pold, anti);
//and add it to clnew
clnew->addColoured(pold, anti);
}
} else{//pnnew is the only member on it's colour line.
clnew->removeColoured(pnew, !anti);
clold->addColoured(pnew, !anti);
}
} else {//there is no coline at all for pnew
clold->addColoured(pnew, !anti);
}
}
void HwRemDecayer::fixColours(PartnerMap partners, bool anti,
double colourDisrupt) const {
PartnerMap::iterator prev;
tPPtr pnew, pold;
assert(partners.size()>=2);
PartnerMap::iterator it=partners.begin();
while(it != partners.end()) {
//skip the first one to have a partner
if(it==partners.begin()){
it++;
continue;
}
prev = it - 1;
//determine the particles to work with
pold = prev->first;
if(prev->second) {
if(!pold->coloured())
pold = prev->second;
else if(pold->hasAntiColour() != anti)
pold = prev->second;
}
assert(pold);
pnew = it->first;
if(it->second) {
if(it->second->colourLine(!anti)) //look for the opposite colour
pnew = it->second;
}
assert(pnew);
// Implement the disruption of colour connections
if( it != partners.end()-1 ) {//last one is diquark-has to be connected
//has to be inside the if statement, so that the probability is
//correctly counted:
if( UseRandom::rnd() < colourDisrupt ){
if(!it->second){//check, whether we have a gluon
mergeColour(pnew, pnew, anti);
}else{
if(pnew==it->first)//be careful about the order
mergeColour(it->second, it->first, anti);
else
mergeColour(it->first, it->second, anti);
}
it = partners.erase(it);
continue;
}
}
// regular merging
mergeColour(pold, pnew, anti);
//end of loop
it++;
}
return;
}
PPtr HwRemDecayer::forceSplit(const tRemPPtr rem, long child, Energy &lastQ,
double &lastx, Lorentz5Momentum &pf,
Lorentz5Momentum &p,
HadronContent & content) const {
static const double eps=1e-6;
// beam momentum
Lorentz5Momentum beam = theBeam->momentum();
// the last scale is minimum of last value and upper limit
Energy minQ=_range*_kinCutoff*sqrt(lastx)/(1-lastx);
if(minQ>lastQ) lastQ=minQ;
// generate the new value of qtilde
// weighted towards the lower value: dP/dQ = 1/Q -> Q(R) =
// Q0 (Qmax/Q0)^R
Energy q;
unsigned int ntry=0,maxtry=100;
double xExtracted = rem==theRems.first ? theX.first : theX.second;
double zmin= lastx/(1.-xExtracted) ,zmax,yy;
if(1-lastx<eps) throw ShowerHandler::ExtraScatterVeto();
do {
q = minQ*pow(lastQ/minQ,UseRandom::rnd());
yy = 1.+0.5*sqr(_kinCutoff/q);
zmax = yy - sqrt(sqr(yy)-1.);
++ntry;
}
while(zmax<zmin&&ntry<maxtry);
if(ntry==maxtry) throw ShowerHandler::ExtraScatterVeto();
if(zmax-zmin<eps) throw ShowerHandler::ExtraScatterVeto();
// now generate z as in FORTRAN HERWIG
// use y = ln(z/(1-z)) as integration variable
double ymin=log(zmin/(1.-zmin));
double ymax=log(zmax/(1.-zmax));
double dely=ymax-ymin;
unsigned int nz=_nbinmax;
dely/=nz;
yy=ymin+0.5*dely;
vector<int> ids;
if(child==21||child==22) {
ids=content.flav;
for(unsigned int ix=0;ix<ids.size();++ix) ids[ix] *= content.sign;
}
else {
ids.push_back(ParticleID::g);
}
// probabilities of the different types of possible splitting
map<long,pair<double,vector<double> > > partonprob;
double ptotal(0.);
for(unsigned int iflav=0;iflav<ids.size();++iflav) {
// only do each parton once
if(partonprob.find(ids[iflav])!=partonprob.end()) continue;
// particle data object
tcPDPtr in = getParticleData(ids[iflav]);
double psum(0.);
vector<double> prob;
for(unsigned int iz=0;iz<nz;++iz) {
double ez=exp(yy);
double wr=1.+ez;
double zr=wr/ez;
double wz=1./wr;
double zz=wz*ez;
double coup = child!=22 ?
_alphaS ->value(sqr(max(wz*q,_kinCutoff))) :
_alphaEM->value(sqr(max(wz*q,_kinCutoff)));
double az=wz*zz*coup;
// g -> q qbar
if(ids[iflav]==ParticleID::g) {
// calculate splitting function
// SP as q is always less than forcedSplitScale, the pdf scale is fixed
// pdfval = _pdf->xfx(theBeamData,in,sqr(q),lastx*zr);
double pdfval=_pdf->xfx(theBeamData,in,sqr(_forcedSplitScale),lastx*zr);
if(pdfval>0.) psum += pdfval*az*0.5*(sqr(zz)+sqr(wz));
}
// q -> q g
else {
// calculate splitting function
// SP as q is always less than forcedSplitScale, the pdf scale is fixed
// pdfval = _pdf->xfx(theBeamData,in,sqr(q),lastx*zr);
double pdfval=_pdf->xfx(theBeamData,in,sqr(_forcedSplitScale),lastx*zr);
if(pdfval>0.) psum += pdfval*az*4./3.*(1.+sqr(wz))*zr;
}
if(psum>0.) prob.push_back(psum);
yy+=dely;
}
if(psum>0.) partonprob[ids[iflav]] = make_pair(psum,prob);
ptotal+=psum;
}
// select the flavour
if(ptotal==0.) throw ShowerHandler::ExtraScatterVeto();
ptotal *= UseRandom::rnd();
map<long,pair<double,vector<double> > >::const_iterator pit;
for(pit=partonprob.begin();pit!=partonprob.end();++pit) {
if(pit->second.first>=ptotal) break;
else ptotal -= pit->second.first;
}
if(pit==partonprob.end())
throw Exception() << "Can't select parton for forced backward evolution in "
<< "HwRemDecayer::forceSplit" << Exception::eventerror;
// select z
unsigned int iz=0;
for(;iz<pit->second.second.size();++iz) {
if(pit->second.second[iz]>ptotal) break;
}
if(iz==pit->second.second.size()) --iz;
double ey=exp(ymin+dely*(float(iz+1)-UseRandom::rnd()));
double z=ey/(1.+ey);
Energy2 pt2=sqr((1.-z)*q)- z*sqr(_kinCutoff);
// create the particle
if(pit->first!=ParticleID::g) child=pit->first;
PPtr parton = getParticleData(child)->produceParticle();
Energy2 emittedm2 = sqr(parton->dataPtr()->constituentMass());
// Now boost pcm and pf to z only frame
Lorentz5Momentum p_ref = Lorentz5Momentum(ZERO, beam.vect());
Lorentz5Momentum n_ref = Lorentz5Momentum(ZERO, -beam.vect());
// generate phi and compute pt of branching
double phi = Constants::twopi*UseRandom::rnd();
Energy pt=sqrt(pt2);
Lorentz5Momentum qt = LorentzMomentum(pt*cos(phi), pt*sin(phi), ZERO, ZERO);
Axis axis(p_ref.vect().unit());
if(axis.perp2()>0.) {
LorentzRotation rot;
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
rot.setRotate(acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
qt.transform(rot);
}
// compute alpha for previous particle
Energy2 p_dot_n = p_ref*n_ref;
double lastalpha = pf*n_ref/p_dot_n;
Lorentz5Momentum qtout=qt;
Energy2 qtout2=-qt*qt;
double alphaout=(1.-z)/z*lastalpha;
double betaout=0.5*(emittedm2+qtout2)/alphaout/p_dot_n;
Lorentz5Momentum k=alphaout*p_ref+betaout*n_ref+qtout;
k.rescaleMass();
parton->set5Momentum(k);
pf+=k;
lastQ=q;
lastx/=z;
p += parton->momentum();
thestep->addDecayProduct(rem,parton,false);
return parton;
}
void HwRemDecayer::setRemMasses() const {
// get the masses of the remnants
Energy mrem[2];
Lorentz5Momentum ptotal,pnew[2];
vector<tRemPPtr> theprocessed;
theprocessed.push_back(theRems.first);
theprocessed.push_back(theRems.second);
// one remnant in e.g. DIS
if(!theprocessed[0]||!theprocessed[1]) {
tRemPPtr rem = theprocessed[0] ? theprocessed[0] : theprocessed[1];
Lorentz5Momentum deltap(rem->momentum());
// find the diquark and momentum we still need in the energy
tPPtr diquark;
vector<PPtr> progenitors;
for(unsigned int ix=0;ix<rem->children().size();++ix) {
if(!DiquarkMatcher::Check(rem->children()[ix]->data())) {
progenitors.push_back(rem->children()[ix]);
deltap -= rem->children()[ix]->momentum();
}
else
diquark = rem->children()[ix];
}
// now find the total momentum of the hadronic final-state to
// reshuffle against
// find the hadron for this remnant
tPPtr hadron=rem;
do hadron=hadron->parents()[0];
while(!hadron->parents().empty());
// find incoming parton to hard process from this hadron
tPPtr hardin =
generator()->currentEvent()->primaryCollision()->incoming().first==hadron ?
generator()->currentEvent()->primarySubProcess()->incoming().first :
generator()->currentEvent()->primarySubProcess()->incoming().second;
tPPtr parent=hardin;
vector<PPtr> tempprog;
// find the outgoing particles emitted from the backward shower
do {
assert(!parent->parents().empty());
tPPtr newparent=parent->parents()[0];
if(newparent==hadron) break;
for(unsigned int ix=0;ix<newparent->children().size();++ix) {
if(newparent->children()[ix]!=parent)
findChildren(newparent->children()[ix],tempprog);
}
parent=newparent;
}
while(parent!=hadron);
// add to list of potential particles to reshuffle against in right order
for(unsigned int ix=tempprog.size();ix>0;--ix) progenitors.push_back(tempprog[ix-1]);
// final-state particles which are colour connected
tColinePair lines = make_pair(hardin->colourLine(),hardin->antiColourLine());
vector<PPtr> others;
for(ParticleVector::const_iterator
cit = generator()->currentEvent()->primarySubProcess()->outgoing().begin();
cit!= generator()->currentEvent()->primarySubProcess()->outgoing().end();++cit) {
// colour connected
if(lines.first&&lines.first==(**cit).colourLine()) {
findChildren(*cit,progenitors);
continue;
}
// anticolour connected
if(lines.second&&lines.second==(**cit).antiColourLine()) {
findChildren(*cit,progenitors);
continue;
}
// not connected
for(unsigned int ix=0;ix<(**cit).children().size();++ix)
others.push_back((**cit).children()[ix]);
}
// work out how much of the system needed for rescaling
unsigned int iloc=0;
Lorentz5Momentum psystem,ptotal;
do {
psystem+=progenitors[iloc]->momentum();
ptotal = psystem + deltap;
ptotal.rescaleMass();
psystem.rescaleMass();
++iloc;
if(ptotal.mass() > psystem.mass() + diquark->mass() &&
psystem.mass()>1*MeV && DISRemnantOpt_<2 && ptotal.e() > 0.*GeV ) break;
}
while(iloc<progenitors.size());
if(ptotal.mass() > psystem.mass() + diquark->mass()) --iloc;
if(iloc==progenitors.size()) {
// try touching the lepton in dis as a last restort
for(unsigned int ix=0;ix<others.size();++ix) {
progenitors.push_back(others[ix]);
psystem+=progenitors[iloc]->momentum();
ptotal = psystem + deltap;
ptotal.rescaleMass();
psystem.rescaleMass();
++iloc;
}
--iloc;
if(ptotal.mass() > psystem.mass() + diquark->mass()) {
if(DISRemnantOpt_==0||DISRemnantOpt_==2)
Throw<Exception>() << "Warning had to adjust the momentum of the"
<< " non-colour connected"
<< " final-state, e.g. the scattered lepton in DIS"
<< Exception::warning;
else
throw Exception() << "Can't set remnant momentum without adjusting "
<< "the momentum of the"
<< " non-colour connected"
<< " final-state, e.g. the scattered lepton in DIS"
<< " vetoing event"
<< Exception::eventerror;
}
else {
throw Exception() << "Can't put the remnant on-shell in HwRemDecayer::setRemMasses()"
<< Exception::eventerror;
}
}
psystem.rescaleMass();
LorentzRotation R = Utilities::getBoostToCM(make_pair(psystem, deltap));
Energy pz = SimplePhaseSpace::getMagnitude(sqr(ptotal.mass()),
psystem.mass(), diquark->mass());
LorentzRotation Rs(-(R*psystem).boostVector());
Rs.boost(0.0, 0.0, pz/sqrt(sqr(pz) + sqr(psystem.mass())));
Rs = Rs*R;
// put remnant on shell
deltap.transform(R);
deltap.setMass(diquark->mass());
deltap.setE(sqrt(sqr(diquark->mass())+sqr(pz)));
deltap.rescaleRho();
R.invert();
deltap.transform(R);
Rs = R*Rs;
// apply transformation to required particles to absorb recoil
for(unsigned int ix=0;ix<=iloc;++ix) {
progenitors[ix]->deepTransform(Rs);
}
diquark->set5Momentum(deltap);
}
// two remnants
else {
for(unsigned int ix=0;ix<2;++ix) {
if(!theprocessed[ix]) continue;
pnew[ix]=Lorentz5Momentum();
for(unsigned int iy=0;iy<theprocessed[ix]->children().size();++iy) {
pnew[ix]+=theprocessed[ix]->children()[iy]->momentum();
}
mrem[ix]=sqrt(pnew[ix].m2());
}
// now find the remnant remnant cmf frame
Lorentz5Momentum prem[2]={theprocessed[0]->momentum(),
theprocessed[1]->momentum()};
ptotal=prem[0]+prem[1];
ptotal.rescaleMass();
// boost momenta to this frame
if(ptotal.m()< (pnew[0].m()+pnew[1].m()))
throw Exception() << "Not enough energy in both remnants in "
<< "HwRemDecayer::setRemMasses() "
<< Exception::eventerror;
Boost boostv(-ptotal.boostVector());
ptotal.boost(boostv);
for(unsigned int ix=0;ix<2;++ix) {
prem[ix].boost(boostv);
// set the masses and energies,
prem[ix].setMass(mrem[ix]);
prem[ix].setE(0.5/ptotal.m()*(sqr(ptotal.m())+sqr(mrem[ix])-sqr(mrem[1-ix])));
prem[ix].rescaleRho();
// boost back to the lab
prem[ix].boost(-boostv);
// set the momenta of the remnants
theprocessed[ix]->set5Momentum(prem[ix]);
}
// boost the decay products
Lorentz5Momentum ptemp;
for(unsigned int ix=0;ix<2;++ix) {
Boost btorest(-pnew[ix].boostVector());
Boost bfmrest( prem[ix].boostVector());
for(unsigned int iy=0;iy<theprocessed[ix]->children().size();++iy) {
ptemp=theprocessed[ix]->children()[iy]->momentum();
ptemp.boost(btorest);
ptemp.boost(bfmrest);
theprocessed[ix]->children()[iy]->set5Momentum(ptemp);
}
}
}
}
void HwRemDecayer::initSoftInteractions(Energy ptmin, InvEnergy2 beta){
ptmin_ = ptmin;
beta_ = beta;
}
Energy HwRemDecayer::softPt() const {
Energy2 pt2(ZERO);
double xmin(0.0), xmax(1.0), x(0);
if(beta_ == ZERO){
return UseRandom::rnd(0.0,(double)(ptmin_/GeV))*GeV;
}
if(beta_ < ZERO){
xmin = 1.0;
xmax = exp( -beta_*sqr(ptmin_) );
}else{
xmin = exp( -beta_*sqr(ptmin_) );
xmax = 1.0;
}
x = UseRandom::rnd(xmin, xmax);
pt2 = 1.0/beta_ * log(1/x);
if( pt2 < ZERO || pt2 > sqr(ptmin_) )
throw Exception() << "HwRemDecayer::softPt generation of pt "
<< "outside allowed range [0," << ptmin_/GeV << "]."
<< Exception::runerror;
//ofstream myfile2("softPt.txt", ios::app );
//myfile2 << pt2/GeV2 <<" "<<sqrt(pt2)/GeV<< endl;
//myfile2.close();
return sqrt(pt2);
}
void HwRemDecayer::softKinematics(Lorentz5Momentum &r1, Lorentz5Momentum &r2,
Lorentz5Momentum &g1, Lorentz5Momentum &g2) const {
g1 = Lorentz5Momentum();
g2 = Lorentz5Momentum();
//All necessary variables for the two soft gluons
Energy pt(softPt()), pz(ZERO);
Energy2 pz2(ZERO);
double phi(UseRandom::rnd(2.*Constants::pi));
double x_g1(0.0), x_g2(0.0);
//Get the external momenta
tcPPair beam(generator()->currentEventHandler()->currentCollision()->incoming());
Lorentz5Momentum P1(beam.first->momentum()), P2(beam.second->momentum());
if(dbg){
cerr << "new event --------------------\n"
<< *(beam.first) << *(softRems_.first)
<< "-------------------\n"
<< *(beam.second) << *(softRems_.second) << endl;
}
//parton mass
Energy mp;
if(quarkPair_){
mp = getParticleData(ParticleID::u)->constituentMass();
}else{
mp = mg_;
}
//Get x_g1 and x_g2
//first limits
double xmin = sqr(ptmin_)/4.0/(P1+P2).m2();
double x1max = (r1.e()+abs(r1.z()))/(P1.e() + abs(P1.z()));
double x2max = (r2.e()+abs(r2.z()))/(P2.e() + abs(P2.z()));
double x1;
if(!multiPeriph_){
//now generate according to 1/x
x_g1 = xmin * exp(UseRandom::rnd(log(x1max/xmin)));
x_g2 = xmin * exp(UseRandom::rnd(log(x2max/xmin)));
}else{
if(valOfN_==0) return;
double param = (1/(2*valOfN_+1))*initTotRap_;
do{
// need 1-x instead of x to get the proper final momenta
x1 = UseRandom::rndGauss(gaussWidth_, 1 - (exp(param)-1)/exp(param));
}while(x1 < 0 || x1>=1.0);
x_g1 = x1max*x1;
x_g2 = x2max*x1;
}
if(dbg)
cerr << x1max << " " << x_g1 << endl << x2max << " " << x_g2 << endl;
Lorentz5Momentum ig1, ig2, cmf;
ig1 = x_g1*P1;
ig2 = x_g2*P2;
ig1.setMass(mp);
ig2.setMass(mp);
ig1.rescaleEnergy();
ig2.rescaleEnergy();
cmf = ig1 + ig2;
//boost vector from cmf to lab
Boost boostv(cmf.boostVector());
//outgoing gluons in cmf
g1.setMass(mp);
g2.setMass(mp);
g1.setX(pt*cos(phi));
g2.setX(-pt*cos(phi));
g1.setY(pt*sin(phi));
g2.setY(-pt*sin(phi));
pz2 = cmf.m2()/4 - sqr(mp) - (pt*pt);
if( pz2/GeV2 < 0.0 ){
if(dbg)
cerr << "EXCEPTION not enough energy...." << endl;
throw ExtraSoftScatterVeto();
}
if(!multiPeriph_){
if(UseRandom::rndbool()){
pz = sqrt(pz2);
}else
pz = -sqrt(pz2);
}else{
pz = pz2 > ZERO ? sqrt(pz2) : ZERO;
}
if(dbg)
cerr << "pz1 has been calculated to: " << pz/GeV << endl;
g1.setZ(pz);
g2.setZ(-pz);
g1.rescaleEnergy();
g2.rescaleEnergy();
if(dbg){
cerr << "check inv mass in cmf frame: " << (g1+g2).m()/GeV
<< " vs. lab frame: " << (ig1+ig2).m()/GeV << endl;
}
g1.boost(boostv);
g2.boost(boostv);
//recalc the remnant momenta
Lorentz5Momentum r1old(r1), r2old(r2);
r1 -= g1;
r2 -= g2;
try{
reShuffle(r1, r2, r1old.m(), r2old.m());
}catch(ExtraSoftScatterVeto){
r1 = r1old;
r2 = r2old;
throw ExtraSoftScatterVeto();
}
if(dbg){
cerr << "remnant 1,2 momenta: " << r1/GeV << "--" << r2/GeV << endl;
cerr << "remnant 1,2 masses: " << r1.m()/GeV << " " << r2.m()/GeV << endl;
cerr << "check momenta in the lab..." << (-r1old-r2old+r1+r2+g1+g2)/GeV << endl;
}
}
void HwRemDecayer::doSoftInteractions_old(unsigned int N) {
if(N == 0) return;
if(!softRems_.first || !softRems_.second)
throw Exception() << "HwRemDecayer::doSoftInteractions: no "
<< "Remnants available."
<< Exception::runerror;
if( ptmin_ == -1.*GeV )
throw Exception() << "HwRemDecayer::doSoftInteractions: init "
<< "code has not been called! call initSoftInteractions."
<< Exception::runerror;
Lorentz5Momentum g1, g2;
Lorentz5Momentum r1(softRems_.first->momentum()), r2(softRems_.second->momentum());
unsigned int tries(1), i(0);
for(i=0; i<N; i++){
//check how often this scattering has been regenerated
if(tries > maxtrySoft_) break;
if(dbg){
cerr << "new try \n" << *softRems_.first << *softRems_.second << endl;
}
try{
softKinematics(r1, r2, g1, g2);
}catch(ExtraSoftScatterVeto){
tries++;
i--;
continue;
}
PPair oldrems = softRems_;
PPair gluons = make_pair(addParticle(softRems_.first, ParticleID::g, g1),
addParticle(softRems_.second, ParticleID::g, g2));
//now reset the remnants with the new ones
softRems_.first = addParticle(softRems_.first, softRems_.first->id(), r1);
softRems_.second = addParticle(softRems_.second, softRems_.second->id(), r2);
//do the colour connections
pair<bool, bool> anti = make_pair(oldrems.first->hasAntiColour(),
oldrems.second->hasAntiColour());
ColinePtr cl1 = new_ptr(ColourLine());
ColinePtr cl2 = new_ptr(ColourLine());
// case 2:
oldrems.first->colourLine(anti.first)
->addColoured(gluons.second,anti.second);
cl2->addColoured(softRems_.first, anti.second);
cl2->addColoured(gluons.second, !anti.second);
oldrems.first->colourLine(anti.first)
->addColoured(gluons.second,anti.second);
oldrems.second->colourLine(anti.second)
->addColoured(gluons.first,anti.first);
cl1->addColoured(softRems_.second, anti.first);
cl1->addColoured(gluons.first, !anti.first);
cl2->addColoured(softRems_.first, anti.second);
cl2->addColoured(gluons.second, !anti.second);
//reset counter
tries = 1;
}
if(dbg)
cerr << "generated " << i << "th soft scatters\n";
}
// Solve the reshuffling equation to rescale the remnant momenta
double bisectReshuffling(const vector<PPtr>& particles,
Energy w,
double target = -16., double maxLevel = 80.) {
double level = 0;
double left = 0;
double right = 1;
double check = -1.;
double xi = -1;
while ( level < maxLevel ) {
xi = (left+right)*pow(0.5,level+1.);
check = 0.;
for (vector<PPtr>::const_iterator p = particles.begin(); p != particles.end(); ++p){
check += sqrt(sqr(xi)*((*p)->momentum().vect().mag2())+sqr((*p)->mass()))/w;
}
if ( log10(abs(1.-check)) <= target )
break;
left *= 2.;
right *= 2.;
if ( check >= 1. ) {
right -= 1.;
++level;
}
if ( check < 1. ) {
left += 1.;
++level;
}
}
return xi;
}
LorentzRotation HwRemDecayer::rotate(const LorentzMomentum &p) const {
LorentzRotation R;
static const double ptcut = 1e-20;
Energy2 pt2 = sqr(p.x())+sqr(p.y());
Energy2 pp2 = sqr(p.z())+pt2;
double phi, theta;
if(pt2 <= pp2*ptcut) {
if(p.z() > ZERO) theta = 0.;
else theta = Constants::pi;
phi = 0.;
} else {
Energy pp = sqrt(pp2);
Energy pt = sqrt(pt2);
double ct = p.z()/pp;
double cf = p.x()/pt;
phi = -acos(cf);
theta = acos(ct);
}
// Rotate first around the z axis to put p in the x-z plane
// Then rotate around the Y axis to put p on the z axis
R.rotateZ(phi).rotateY(theta);
return R;
}
struct vectorSort{
bool operator() (Lorentz5Momentum i,Lorentz5Momentum j) {return(i.rapidity() < j.rapidity());}
} ySort;
void HwRemDecayer::doSoftInteractions_multiPeriph(unsigned int N) {
if(N == 0) return;
int Nmpi = N;
for(int j=0;j<Nmpi;j++){
///////////////////////
// TODO: parametrization of the ladder multiplicity (need to tune to 900GeV, 7Tev and 13Tev)
// Parameterize the ladder multiplicity to: ladderMult_ = A_0 * (s/1TeV^2)^alpha
// with the two tunable parameters A_0 =ladderNorm_ and alpha = ladderPower_
// Get the collision energy
Energy energy(generator()->maximumCMEnergy());
double reference = sqr(energy/TeV);
// double ladderMult_;
// Parametrization of the ladder multiplicity
// ladderMult_ = ladderNorm_ * pow( ( reference ) , ladderPower_ );
double avgN = 2.*ladderMult_*log((softRems_.first->momentum()
+softRems_.second->momentum()).m()/mg_) + ladderbFactor_;
initTotRap_ = abs(softRems_.first->momentum().rapidity())
+abs(softRems_.second->momentum().rapidity());
// Generate the poisson distribution with mean avgN
N=UseRandom::rndPoisson(avgN);
-
+
valOfN_=N;
if(N <= 1){
continue;
}
if(!softRems_.first || !softRems_.second)
throw Exception() << "HwRemDecayer::doSoftInteractions: no "
<< "Remnants available."
<< Exception::runerror;
if( ptmin_ == -1.*GeV )
throw Exception() << "HwRemDecayer::doSoftInteractions: init "
<< "code has not been called! call initSoftInteractions."
<< Exception::runerror;
// The remnants
PPtr rem1 = softRems_.first;
PPtr rem2 = softRems_.second;
// Vector for the ladder particles
vector<Lorentz5Momentum> ladderMomenta;
// Remnant momenta
Lorentz5Momentum r1(softRems_.first->momentum()), r2(softRems_.second->momentum());
Lorentz5Momentum cm =r1+r2;
// Initialize partons in the ladder
// The toy masses are needed for the correct calculation of the available energy
Lorentz5Momentum sumMomenta;
for(unsigned int i = 0; i < N; i++) {
// choose constituents
Energy newMass = ZERO;
Energy toyMass;
if(i<2){
// u and d have the same mass so its enough to use u
toyMass = getParticleData(ParticleID::u)->constituentMass();
}
else{
toyMass = getParticleData(ParticleID::g)->constituentMass();
}
Lorentz5Momentum cp(ZERO,ZERO,ZERO,newMass,newMass);
// dummy container for the momentum that is used for momentum conservation
Lorentz5Momentum dummy(ZERO,ZERO,ZERO,toyMass,toyMass);
ladderMomenta.push_back(cp);
sumMomenta+=dummy;
}
// Get the beam energy
tcPPair beam(generator()->currentEventHandler()->currentCollision()->incoming());
Lorentz5Momentum P1(beam.first->momentum()), P2(beam.second->momentum());
// Calculate available energy for the partons
double x1;
double param = (1./(valOfN_-1.))*initTotRap_;
do{
// Need 1-x instead of x to get the proper final momenta
x1 = UseRandom::rndGauss( gaussWidth_ , exp(-param) );
}while(x1 < 0 || x1>=1.0);
// Remnants 1 and 2 need to be rescaled later by this amount
Lorentz5Momentum ig1 = x1*r1;
Lorentz5Momentum ig2 = x1*r2;
// The available energy that is used to generate the ladder
// sumMomenta is the the sum of rest masses of the ladder partons
// the available energy goes all into the kinematics
Energy availableEnergy = (ig1+ig2).m() - sumMomenta.m();
// If not enough energy then continue
if ( availableEnergy < ZERO ) {
continue;
}
unsigned int its(0);
// Generate the momenta of the partons in the ladder
if ( !(doPhaseSpaceGenerationGluons(ladderMomenta,availableEnergy,its)) ){
continue;
}
// Add gluon mass and rescale
Lorentz5Momentum totalMomPartons;
Lorentz5Momentum totalMassLessPartons;
// Sort the ladder partons according to their rapidity and then choose which ones will be the quarks
sort(ladderMomenta.begin(),ladderMomenta.end(),ySort);
int countPartons=0;
long quarkID=0;
// Choose between up and down quarks
int choice = UseRandom::rnd2(1,1);
switch (choice) {
case 0: quarkID = ParticleID::u; break;
case 1: quarkID = ParticleID::d; break;
}
for (auto &p:ladderMomenta){
totalMomPartons+=p;
// Set the mass of the gluons and the two quarks in the ladder
if(countPartons==0 || countPartons==(ladderMomenta.size()-1)){
p.setMass( getParticleData(quarkID)->constituentMass() );
}else{
p.setMass( getParticleData(ParticleID::g)->constituentMass() );
}
p.rescaleEnergy();
countPartons++;
}
// Continue if energy conservation is violated
if ( abs(availableEnergy - totalMomPartons.m()) > 1e-8*GeV){
continue;
}
// Boost momenta into CM frame
const Boost boostv(-totalMomPartons.boostVector());
Lorentz5Momentum totalMomentumAfterBoost;
for ( unsigned int i=0; i<ladderMomenta.size(); i++){
ladderMomenta[i].boost(boostv);
totalMomentumAfterBoost +=ladderMomenta[i];
}
const Boost boostvR(-cm.boostVector());
r1.boost(boostvR);
r2.boost(boostvR);
// Remainig energy after generation of soft ladder
Energy remainingEnergy = cm.m() - totalMomentumAfterBoost.m();
// Continue if not enough energy
if(remainingEnergy<ZERO) {
continue;
}
vector<PPtr> remnants;
rem1->set5Momentum(r1);
rem2->set5Momentum(r2);
remnants.push_back(rem1);
remnants.push_back(rem2);
vector<PPtr> reshuffledRemnants;
Lorentz5Momentum totalMomentumAll;
// Bisect reshuffling for rescaling of remnants
double xi_remnants = bisectReshuffling(remnants,remainingEnergy);
// Rescale remnants
for ( auto &rems: remnants ) {
Lorentz5Momentum reshuffledMomentum;
reshuffledMomentum = xi_remnants*rems->momentum();
reshuffledMomentum.setMass(getParticleData(softRems_.first->id())->constituentMass());
reshuffledMomentum.rescaleEnergy();
reshuffledMomentum.boost(-boostvR);
rems->set5Momentum(reshuffledMomentum);
totalMomentumAll+=reshuffledMomentum;
}
// Then the other particles
for ( auto &p:ladderMomenta ) {
p.boost(-boostvR);
totalMomentumAll+=p;
}
// Do the colour connections
// Original rems are the ones which are connected to other parts of the event
PPair oldRems_ = softRems_;
pair<bool, bool> anti = make_pair(oldRems_.first->hasAntiColour(),
oldRems_.second->hasAntiColour());
// Replace first remnant
softRems_.first = addParticle(softRems_.first, softRems_.first->id(),
remnants[0]->momentum());
// Switch for random connections
if (randomRemnantConnection_){
disrupt_ = UseRandom::rnd3(1,1,1);
}
// Connect the old remnant to the new remnant
if(disrupt_==0){
oldRems_.first->colourLine(anti.first)->addColoured(softRems_.first, anti.first);
}
// Replace second remnant
softRems_.second = addParticle(softRems_.second, softRems_.second->id(),
remnants[1]->momentum());
// This connects the old remnants to the new remnants
if(disrupt_==0){
oldRems_.second->colourLine(anti.second)->addColoured(softRems_.second, anti.second);
}
// Add all partons to the first remnant for the event record
vector<PPtr> partons;
int count=0;
// Choose the colour connections and position of quark antiquark
// Choose between R1-q-g..g-qbar-R2 or R1-qbar-g...g-q-R2
// (place of quark antiquarks in the ladder)
int quarkPosition = UseRandom::rnd2(1,1);
for (auto &p:ladderMomenta){
if(p.mass()==getParticleData(ParticleID::u)->constituentMass()){
if(count==0){
if(quarkPosition==0){
partons.push_back(addParticle(softRems_.first, quarkID, p));
count++;
}else{
partons.push_back(addParticle(softRems_.first, -quarkID, p));
count++;
}
}else{
if(quarkPosition==0){
partons.push_back(addParticle(softRems_.first, -quarkID, p));
}else{
partons.push_back(addParticle(softRems_.first, quarkID, p));
}
}
}else{
partons.push_back(addParticle(softRems_.first, ParticleID::g, p));
}
softRems_.first = addParticle(softRems_.first, softRems_.first->id(),
softRems_.first->momentum());
if (disrupt_==0) {
oldRems_.first->colourLine(anti.first)->addColoured(softRems_.first, anti.first);
}
}
// Need to differenciate between the two quark positions, this defines the
// colour connections to the new remnants and old remnants
if(quarkPosition==0){
switch(disrupt_){
case 0:
{
// ladder self contained
if(partons.size()==2){
ColinePtr clq = new_ptr(ColourLine());
clq->addColoured(partons[0]);
clq->addAntiColoured(partons[1]);
}
ColinePtr clfirst = new_ptr(ColourLine());
ColinePtr cllast = new_ptr(ColourLine());
if(partons.size()>2){
clfirst->addColoured(partons[0]);
clfirst->addAntiColoured(partons[1]);
cllast->addAntiColoured(partons[partons.size()-1]);
cllast->addColoured(partons[partons.size()-2]);
//now the remaining gluons
for (unsigned int i=1; i<partons.size()-2; i++){
ColinePtr cl = new_ptr(ColourLine());
cl->addColoured(partons[i]);
cl->addAntiColoured(partons[i+1]);
}
}
break;
}
case 1:
{
// Connect remnants with ladder
// Case 1 (only 2 quarks)
if(partons.size()==2){
ColinePtr clq = new_ptr(ColourLine());
clq->addColoured(partons[0]);
clq->addAntiColoured(partons[1]);
// and connect remnants to old rems
oldRems_.first->colourLine(anti.first)
->addColoured(softRems_.first, anti.first);
oldRems_.second->colourLine(anti.second)
->addColoured(softRems_.second, anti.second);
} else {
// Case 2
// New remnant 1 with first quark in ladder
ColinePtr cl1 = new_ptr(ColourLine());
cl1->addColoured(softRems_.first,anti.first);
cl1->addColoured(partons[0]);
// Connect old rems to the first gluon
oldRems_.first->colourLine(anti.first)
->addAntiColoured(partons[1]);
// Connect gluons with each other
for (unsigned int i=1; i<partons.size()-2; i++){
ColinePtr cl = new_ptr(ColourLine());
cl->addColoured(partons[i]);
cl->addAntiColoured(partons[i+1]);
}
// Connect remnant 2 with with last gluon
ColinePtr cl2 = new_ptr(ColourLine());
cl2->addColoured(softRems_.second,anti.second);
cl2->addColoured(partons[partons.size()-2]);
// Connect old remnant 2 with antiquark
oldRems_.second->colourLine(anti.first)
->addAntiColoured(partons[partons.size()-1]);
}
break;
}
case 2:
{
if(partons.size()==2){
ColinePtr clq = new_ptr(ColourLine());
clq->addColoured(partons[0]);
clq->addAntiColoured(partons[1]);
oldRems_.first->colourLine(anti.first)
->addColoured(softRems_.first, anti.first);
oldRems_.second->colourLine(anti.second)
->addColoured(softRems_.second, anti.second);
}else{
// NNew remnant 1 with first gluon in ladder
ColinePtr cl1 = new_ptr(ColourLine());
cl1->addColoured(softRems_.first,anti.first);
cl1->addColoured(partons[1],!anti.first);
// Connect old rems to the first gluon as well
oldRems_.first->colourLine(anti.first)
->addColoured(partons[1],anti.first);
// Gluons with each other
// Connect quark with second gluon
ColinePtr clq1 = new_ptr(ColourLine());
clq1->addColoured(partons[0]);
clq1->addAntiColoured(partons[2]);
// First gluon already is handled
for (unsigned int i=2; i<partons.size()-2; i++){
ColinePtr cl = new_ptr(ColourLine());
cl->addColoured(partons[i]);
cl->addAntiColoured(partons[i+1]);
}
// Connect remnant 2 with with last gluon
ColinePtr cl2 = new_ptr(ColourLine());
cl2->addColoured(softRems_.second,anti.second);
cl2->addColoured(partons[partons.size()-2],!anti.second);
// Connect original remnant 2 with antiquark
oldRems_.second->colourLine(anti.first)
->addColoured(partons[partons.size()-1],anti.second);
}
break;
}
}
} else {
switch(disrupt_){
case 0:
{
if(partons.size()==2){
ColinePtr clq = new_ptr(ColourLine());
clq->addAntiColoured(partons[0]);
clq->addColoured(partons[1]);
}
ColinePtr clfirst = new_ptr(ColourLine());
ColinePtr cllast = new_ptr(ColourLine());
if(partons.size()>2){
clfirst->addAntiColoured(partons[0]);
clfirst->addColoured(partons[1]);
cllast->addColoured(partons[partons.size()-1]);
cllast->addAntiColoured(partons[partons.size()-2]);
//now the remaining gluons
for (unsigned int i=1; i<partons.size()-2; i++){
ColinePtr cl = new_ptr(ColourLine());
cl->addAntiColoured(partons[i]);
cl->addColoured(partons[i+1]);
}
}
break;
}
case 1:
{
//Case 1 (only 2 quarks)
if(partons.size()==2){
ColinePtr clq = new_ptr(ColourLine());
clq->addAntiColoured(partons[0]);
clq->addColoured(partons[1]);
// and connect remnants to old rems
oldRems_.first->colourLine(anti.first)
->addColoured(softRems_.first, anti.first);
oldRems_.second->colourLine(anti.second)
->addColoured(softRems_.second, anti.second);
} else {
//Case 2
//new remnant 1 with first gluon in ladder
ColinePtr cl1 = new_ptr(ColourLine());
cl1->addColoured(softRems_.first,anti.first);
cl1->addColoured(partons[1],!anti.first);
//Connect old rems to the first antiquark
oldRems_.first->colourLine(anti.first)
->addColoured(partons[0],anti.first);
//gluons with each other
for (unsigned int i=1; i<partons.size()-2; i++){
ColinePtr cl = new_ptr(ColourLine());
cl->addAntiColoured(partons[i]);
cl->addColoured(partons[i+1]);
}
//Connect remnant 2 with with last quark
ColinePtr cl2 = new_ptr(ColourLine());
cl2->addColoured(softRems_.second,anti.second);
cl2->addColoured(partons[partons.size()-1],!anti.second);
//Connect original remnant with first gluon
oldRems_.second->colourLine(anti.first)
->addColoured(partons[partons.size()-2],anti.second);
}
break;
}
case 2:
{
// only two quarks case
if(partons.size()==2){
ColinePtr clq = new_ptr(ColourLine());
clq->addAntiColoured(partons[0]);
clq->addColoured(partons[1]);
// and connect remnants to old rems
oldRems_.first->colourLine(anti.first)
->addColoured(softRems_.first, anti.first);
oldRems_.second->colourLine(anti.second)
->addColoured(softRems_.second, anti.second);
}else{
//new remnant 1 with first gluon in ladder
ColinePtr cl1 = new_ptr(ColourLine());
cl1->addColoured(softRems_.first,anti.first);
cl1->addColoured(partons[1],!anti.first);
//Connect old rems to the first antiquark
oldRems_.first->colourLine(anti.first)
->addColoured(partons[0],anti.first);
//gluons with each other
// connect quark with second gluon
ColinePtr clq1 = new_ptr(ColourLine());
clq1->addColoured(partons[partons.size()-1]);
clq1->addAntiColoured(partons[partons.size()-2]);
// first gluon already is handled
for (unsigned int i=1; i<partons.size()-2; i++){
ColinePtr cl = new_ptr(ColourLine());
cl->addAntiColoured(partons[i]);
cl->addColoured(partons[i+1]);
}
//Connect remnant 2 with with last gluon
ColinePtr cl2 = new_ptr(ColourLine());
cl2->addColoured(softRems_.second,anti.second);
cl2->addColoured(partons[partons.size()-2],!anti.second);
//Connect original remnant 2 with antiquark
oldRems_.second->colourLine(anti.first)
->addColoured(partons[partons.size()-3],anti.second);
}
break;
}
}
}
}
}
// Do the phase space generation here is 1 to 1 the same from UA5 model
bool HwRemDecayer::doPhaseSpaceGenerationGluons(vector<Lorentz5Momentum> &softGluons, Energy CME, unsigned int &its)
const{
// Define the parameters
unsigned int _maxtries = 300;
double alog = log(CME*CME/GeV2);
unsigned int ncl = softGluons.size();
// calculate the slope parameters for the different clusters
// outside loop to save time
vector<Lorentz5Momentum> mom(ncl);
// Sets the slopes depending on the constituent quarks of the cluster
for(unsigned int ix=0;ix<ncl;++ix)
{
mom[ix]=softGluons[ix];
}
// generate the momenta
double eps = 1e-10/double(ncl);
vector<double> xi(ncl);
vector<Energy> tempEnergy(ncl);
Energy sum1(ZERO);
double yy(0.);
while(its < _maxtries) {
++its;
Energy sumx = ZERO;
Energy sumy = ZERO;
unsigned int iterations(0);
unsigned int _maxtriesNew = 100;
while(iterations < _maxtriesNew) {
iterations++;
Energy sumxIt = ZERO;
Energy sumyIt = ZERO;
bool success=false;
Energy pTmax=ZERO;
Energy firstPt=ZERO;
for(unsigned int i = 0; i<ncl; ++i) {
// Different options for soft pt sampling
//1) pT1>pT2...pTN
//2) pT1>pT2>..>pTN
//3) flat
//4) y dependent
//5) Frist then flat
int triesPt=0;
Energy pt;
Energy ptTest;
switch(PtDistribution_) {
case 0: //default softPt()
pt=softPt();
break;
case 1: //pTordered
if(i==0){
pt=softPt();
pTmax=pt;
}else{
do{
pt=softPt();
}while(pt>pTmax);
}
break;
case 2: //strongly pT ordered
if ( i==0 ) {
pt=softPt();
pTmax=pt;
} else {
do {
if ( triesPt==20 ) {
pt=pTmax;
break;
}
pt=softPt();
triesPt++;
} while ( pt>pTmax );
pTmax=pt;
}
break;
case 3: //flat
pt = UseRandom::rnd(0.0,(double)(ptmin_/GeV))*GeV;
break;
case 4: //flat below first pT
if ( i==0 ) {
pt = softPt();
firstPt = pt;
} else {
pt = firstPt * UseRandom::rnd();
}
break;
case 5: //flat but rising below first pT
if ( i==0 ) {
pt=softPt();
firstPt = pt;
} else {
pt = firstPt * pow(UseRandom::rnd(),1/2);
}
}
Energy2 ptp = pt*pt;
if(ptp <= ZERO) pt = - sqrt(-ptp);
else pt = sqrt(ptp);
// randomize azimuth
Energy px,py;
//randomize the azimuth, but the last one should cancel all others
if(i<ncl-1){
randAzm(pt,px,py);
// set transverse momentum
mom[i].setX(px);
mom[i].setY(py);
sumxIt += px;
sumyIt += py;
}else{
//calculate azimuth angle s.t
// double factor;
Energy pTdummy;
pTdummy = sqrt(sumxIt*sumxIt+sumyIt*sumyIt);
if( pTdummy < ptmin_ ){
px=-sumxIt;
py=-sumyIt;
mom[i].setX(px);
mom[i].setY(py);
sumxIt+=px;
sumyIt+=py;
sumx = sumxIt;
sumy = sumyIt;
success=true;
}
}
}
if(success){
break;
}
}
sumx /= ncl;
sumy /= ncl;
// find the sum of the transverse mass
Energy sumtm=ZERO;
for(unsigned int ix = 0; ix<ncl; ++ix) {
mom[ix].setX(mom[ix].x()-sumx);
mom[ix].setY(mom[ix].y()-sumy);
Energy2 pt2 = mom[ix].perp2();
// Use the z component of the clusters momentum for temporary storage
mom[ix].setZ(sqrt(pt2+mom[ix].mass2()));
sumtm += mom[ix].z();
}
// if transverse mass greater the CMS try again
if(sumtm > CME) continue;
// randomize the mom vector to get the first and the compensating parton
// at all possible positions:
long (*p_irnd)(long) = UseRandom::irnd;
- random_shuffle(mom.begin(),mom.end());
+ random_shuffle(mom.begin(),mom.end(),p_irnd);
for(unsigned int i = 0; i<ncl; i++) xi[i] = randUng(0.6,1.0);
// sort into ascending order
sort(xi.begin(), xi.end());
double ximin = xi[0];
double ximax = xi.back()-ximin;
xi[0] = 0.;
for(unsigned int i = ncl-2; i>=1; i--) xi[i+1] = (xi[i]-ximin)/ximax;
xi[1] = 1.;
yy= log(CME*CME/(mom[0].z()*mom[1].z()));
bool suceeded=false;
Energy sum2,sum3,sum4;
for(unsigned int j = 0; j<10; j++) {
sum1 = sum2 = sum3 = sum4 = ZERO;
for(unsigned int i = 0; i<ncl; i++) {
Energy tm = mom[i].z();
double ex = exp(yy*xi[i]);
sum1 += tm*ex;
sum2 += tm/ex;
sum3 += (tm*ex)*xi[i];
sum4 += (tm/ex)*xi[i];
}
double fy = alog-log(sum1*sum2/GeV2);
double dd = (sum3*sum2 - sum1*sum4)/(sum1*sum2);
double dyy = fy/dd;
if(abs(dyy/yy) < eps) {
yy += dyy;
suceeded=true;
break;
}
yy += dyy;
}
if(suceeded){
break;
}
if(its > 100) eps *= 10.;
}
if(its==_maxtries){
return false;
}
// throw Exception() << "Can't generate soft underlying event in "
// << "UA5Handler::generateCylindricalPS"
// << Exception::eventerror;
double zz = log(CME/sum1);
for(unsigned int i = 0; i<ncl; i++) {
Energy tm = mom[i].z();
double E1 = exp(zz + yy*xi[i]);
mom[i].setZ(0.5*tm*(1./E1-E1));
mom[i].setE( 0.5*tm*(1./E1+E1));
softGluons[i]=mom[i];
}
return true;
}
void HwRemDecayer::finalize(double colourDisrupt, unsigned int softInt){
PPair diquarks;
//Do the final Rem->Diquark or Rem->quark "decay"
if(theRems.first) {
diquarks.first = finalSplit(theRems.first, theContent.first.RemID(),
theUsed.first);
theMaps.first.push_back(make_pair(diquarks.first, tPPtr()));
}
if(theRems.second) {
diquarks.second = finalSplit(theRems.second, theContent.second.RemID(),
theUsed.second);
theMaps.second.push_back(make_pair(diquarks.second, tPPtr()));
}
setRemMasses();
if(theRems.first) {
fixColours(theMaps.first, theanti.first, colourDisrupt);
if(theContent.first.hadron->id()==ParticleID::pomeron&&
pomeronStructure_==0) fixColours(theMaps.first, !theanti.first, colourDisrupt);
}
if(theRems.second) {
fixColours(theMaps.second, theanti.second, colourDisrupt);
if(theContent.second.hadron->id()==ParticleID::pomeron&&
pomeronStructure_==0) fixColours(theMaps.second, !theanti.second, colourDisrupt);
}
if( !theRems.first || !theRems.second ) return;
//stop here if we don't have two remnants
softRems_ = diquarks;
doSoftInteractions(softInt);
}
HwRemDecayer::HadronContent
HwRemDecayer::getHadronContent(tcPPtr hadron) const {
HadronContent hc;
hc.hadron = hadron->dataPtr();
long id(hadron->id());
// baryon
if(BaryonMatcher::Check(hadron->data())) {
hc.sign = id < 0? -1: 1;
hc.flav.push_back((id = abs(id)/10)%10);
hc.flav.push_back((id /= 10)%10);
hc.flav.push_back((id /= 10)%10);
hc.extracted = -1;
}
else if(hadron->data().id()==ParticleID::gamma ||
(hadron->data().id()==ParticleID::pomeron && pomeronStructure_==1)) {
hc.sign = 1;
for(int ix=1;ix<6;++ix) {
hc.flav.push_back( ix);
hc.flav.push_back(-ix);
}
}
else if(hadron->data().id()==ParticleID::pomeron ) {
hc.sign = 1;
hc.flav.push_back(ParticleID::g);
hc.flav.push_back(ParticleID::g);
}
else if(hadron->data().id()==ParticleID::reggeon ) {
hc.sign = 1;
for(int ix=1;ix<3;++ix) {
hc.flav.push_back( ix);
hc.flav.push_back(-ix);
}
}
hc.pomeronStructure = pomeronStructure_;
return hc;
}
long HwRemDecayer::HadronContent::RemID() const{
if(extracted == -1)
throw Exception() << "Try to build a Diquark id without "
<< "having extracted something in "
<< "HwRemDecayer::RemID(...)"
<< Exception::runerror;
//the hadron was a meson or photon
if(flav.size()==2) return sign*flav[(extracted+1)%2];
long remId;
int id1(sign*flav[(extracted+1)%3]),
id2(sign*flav[(extracted+2)%3]),
sign(0), spin(0);
if (abs(id1) > abs(id2)) swap(id1, id2);
sign = (id1 < 0) ? -1 : 1; // Needed for the spin 0/1 part
remId = id2*1000+id1*100;
// Now decide if we have spin 0 diquark or spin 1 diquark
if(id1 == id2) spin = 3; // spin 1
else spin = 1; // otherwise spin 0
remId += sign*spin;
return remId;
}
tPPtr HwRemDecayer::addParticle(tcPPtr parent, long id, Lorentz5Momentum p) const {
PPtr newp = new_ptr(Particle(getParticleData(id)));
newp->set5Momentum(p);
// Add the new remnant to the step, but don't do colour connections
thestep->addDecayProduct(parent,newp,false);
return newp;
}
void HwRemDecayer::findChildren(tPPtr part,vector<PPtr> & particles) const {
if(part->children().empty()) particles.push_back(part);
else {
for(unsigned int ix=0;ix<part->children().size();++ix)
findChildren(part->children()[ix],particles);
}
}
ParticleVector HwRemDecayer::decay(const DecayMode &,
const Particle &, Step &) const {
throw Exception() << "HwRemDecayer::decay(...) "
<< "must not be called explicitely."
<< Exception::runerror;
}
void HwRemDecayer::persistentOutput(PersistentOStream & os) const {
os << ounit(_kinCutoff, GeV) << _range << _zbin << _ybin
<< _nbinmax << _alphaS << _alphaEM << DISRemnantOpt_
<< maxtrySoft_ << colourDisrupt_ << ladderPower_<< ladderNorm_ << ladderMult_ << ladderbFactor_ << pomeronStructure_
<< ounit(mg_,GeV) << ounit(ptmin_,GeV) << ounit(beta_,sqr(InvGeV))
<< allowTop_ << multiPeriph_ << valOfN_ << initTotRap_ << PtDistribution_
<< disrupt_ << randomRemnantConnection_;
}
void HwRemDecayer::persistentInput(PersistentIStream & is, int) {
is >> iunit(_kinCutoff, GeV) >> _range >> _zbin >> _ybin
>> _nbinmax >> _alphaS >> _alphaEM >> DISRemnantOpt_
>> maxtrySoft_ >> colourDisrupt_ >> ladderPower_ >> ladderNorm_ >> ladderMult_ >> ladderbFactor_ >> pomeronStructure_
>> iunit(mg_,GeV) >> iunit(ptmin_,GeV) >> iunit(beta_,sqr(InvGeV))
>> allowTop_ >> multiPeriph_ >> valOfN_ >> initTotRap_ >> PtDistribution_
>> disrupt_ >> randomRemnantConnection_;
}
// The following static variable is needed for the type
// description system in ThePEG.
DescribeClass<HwRemDecayer,RemnantDecayer>
describeHerwigHwRemDecayer("Herwig::HwRemDecayer", "HwShower.so");
void HwRemDecayer::Init() {
static ClassDocumentation<HwRemDecayer> documentation
("The HwRemDecayer class decays the remnant for Herwig");
static Parameter<HwRemDecayer,double> interfaceZBinSize
("ZBinSize",
"The size of the vbins in z for the interpolation of the splitting function.",
&HwRemDecayer::_zbin, 0.05, 0.001, 0.1,
false, false, Interface::limited);
static Parameter<HwRemDecayer,int> interfaceMaxBin
("MaxBin",
"Maximum number of z bins",
&HwRemDecayer::_nbinmax, 100, 10, 1000,
false, false, Interface::limited);
static Reference<HwRemDecayer,ShowerAlpha> interfaceAlphaS
("AlphaS",
"Pointer to object to calculate the strong coupling",
&HwRemDecayer::_alphaS, false, false, true, false, false);
static Reference<HwRemDecayer,ShowerAlpha> interfaceAlphaEM
("AlphaEM",
"Pointer to object to calculate the electromagnetic coupling",
&HwRemDecayer::_alphaEM, false, false, true, false, false);
static Parameter<HwRemDecayer,Energy> interfaceKinCutoff
("KinCutoff",
"Parameter kinCutoff used to constrain qtilde",
&HwRemDecayer::_kinCutoff, GeV, 0.75*GeV, 0.5*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<HwRemDecayer,double> interfaceEmissionRange
("EmissionRange",
"Factor above the minimum possible value in which the forced splitting is allowed.",
&HwRemDecayer::_range, 1.1, 1.0, 10.0,
false, false, Interface::limited);
static Switch<HwRemDecayer,unsigned int> interfaceDISRemnantOption
("DISRemnantOption",
"Options for the treatment of the remnant in DIS",
&HwRemDecayer::DISRemnantOpt_, 0, false, false);
static SwitchOption interfaceDISRemnantOptionDefault
(interfaceDISRemnantOption,
"Default",
"Use the minimum number of particles needed to take the recoil"
" and allow the lepton to be used if needed",
0);
static SwitchOption interfaceDISRemnantOptionNoLepton
(interfaceDISRemnantOption,
"NoLepton",
"Use the minimum number of particles needed to take the recoil but"
" veto events where the lepton kinematics would need to be altered",
1);
static SwitchOption interfaceDISRemnantOptionAllParticles
(interfaceDISRemnantOption,
"AllParticles",
"Use all particles in the colour connected system to take the recoil"
" and use the lepton if needed.",
2);
static SwitchOption interfaceDISRemnantOptionAllParticlesNoLepton
(interfaceDISRemnantOption,
"AllParticlesNoLepton",
"Use all the particles in the colour connected system to take the"
" recoil but don't use the lepton.",
3);
static Parameter<HwRemDecayer,unsigned int> interfaceMaxTrySoft
("MaxTrySoft",
"The maximum number of regeneration attempts for an additional soft scattering",
&HwRemDecayer::maxtrySoft_, 10, 0, 100,
false, false, Interface::limited);
static Parameter<HwRemDecayer,double> interfacecolourDisrupt
("colourDisrupt",
"Fraction of connections to additional soft subprocesses, which are colour disrupted.",
&HwRemDecayer::colourDisrupt_,
1.0, 0.0, 1.0,
false, false, Interface::limited);
static Parameter<HwRemDecayer,double> interaceladderPower
("ladderPower",
"The power factor in the ladder parameterization.",
&HwRemDecayer::ladderPower_,
1.0, -5.0, 10.0,
false, false, Interface::limited);
static Parameter<HwRemDecayer,double> interfaceladderNorm
("ladderNorm",
"The normalization factor in the ladder parameterization",
&HwRemDecayer::ladderNorm_,
1.0, 0.0, 10.0,
false, false, Interface::limited);
static Parameter<HwRemDecayer,double> interfaceladderMult
("ladderMult",
"The ladder multiplicity factor ",
&HwRemDecayer::ladderMult_,
1.0, 0.0, 10.0,
false, false, Interface::limited);
static Parameter<HwRemDecayer,double> interfaceladderbFactor
("ladderbFactor",
"The additive factor in the multiperipheral ladder multiplicity.",
&HwRemDecayer::ladderbFactor_,
1.0, 0.0, 10.0,
false, false, Interface::limited);
static Parameter<HwRemDecayer,double> interfacegaussWidth
("gaussWidth",
"The gaussian width of the fluctuation of longitudinal momentum fraction.",
&HwRemDecayer::gaussWidth_,
0.1, 0.0, 1.0,
false, false, Interface::limited);
static Switch<HwRemDecayer,unsigned int> interfacePomeronStructure
("PomeronStructure",
"Option for the treatment of the valance structure of the pomeron",
&HwRemDecayer::pomeronStructure_, 0, false, false);
static SwitchOption interfacePomeronStructureGluon
(interfacePomeronStructure,
"Gluon",
"Assume the pomeron is a two gluon state",
0);
static SwitchOption interfacePomeronStructureQQBar
(interfacePomeronStructure,
"QQBar",
"Assumne the pomeron is q qbar as for the photon,"
" this option is not recommended and is provide for compatiblity with POMWIG",
1);
static Switch<HwRemDecayer,bool> interfaceAllowTop
("AllowTop",
"Allow top quarks in the hadron",
&HwRemDecayer::allowTop_, false, false, false);
static SwitchOption interfaceAllowTopNo
(interfaceAllowTop,
"No",
"Don't allow them",
false);
static SwitchOption interfaceAllowTopYes
(interfaceAllowTop,
"Yes",
"Allow them",
true);
static Switch<HwRemDecayer,bool> interfaceMultiPeriph
("MultiPeriph",
"Use multiperipheral kinematics",
&HwRemDecayer::multiPeriph_, false, false, false);
static SwitchOption interfaceMultiPeriphNo
(interfaceMultiPeriph,
"No",
"Don't use multiperipheral",
false);
static SwitchOption interfaceMultiPeriphYes
(interfaceMultiPeriph,
"Yes",
"Use multiperipheral kinematics",
true);
static Switch<HwRemDecayer,unsigned int> interfacePtDistribution
("PtDistribution",
"Options for different pT generation methods",
&HwRemDecayer::PtDistribution_, 0, false, false);
static SwitchOption interfacePtDistributionDefault
(interfacePtDistribution,
"Default",
"Default generation of pT",
0);
static SwitchOption interfacePtDistributionOrdered
(interfacePtDistribution,
"Ordered",
"Ordered generation of pT,where the first pT is the hardest",
1);
static SwitchOption interfacePtDistributionStronglyOrdered
(interfacePtDistribution,
"StronglyOrdered",
"Strongly ordered generation of pT",
2);
static SwitchOption interfacePtDistributionFlat
(interfacePtDistribution,
"Flat",
"Sample from a flat pT distribution",
3);
static SwitchOption interfacePtDistributionFlatOrdered
(interfacePtDistribution,
"FlatOrdered",
"First pT normal, then flat",
4);
static SwitchOption interfacePtDistributionFlatOrdered2
(interfacePtDistribution,
"FlatOrdered2",
"First pT normal, then flat but steep",
5);
static Switch<HwRemDecayer,unsigned int> interfaceRemnantConnection
("RemnantConnection",
"Options for different colour connections between the remnant and the ladder",
&HwRemDecayer::disrupt_, 0, false, false);
static SwitchOption interfaceRemnantConnectionDisrupt
(interfaceRemnantConnection,
"Default",
"Connect new remnants to old remnants and the ladder is connected itself",
0);
static SwitchOption interfaceRemnantConnectionConnected
(interfaceRemnantConnection,
"Connected",
"Connect the remnants to the gluon ladder",
1);
static SwitchOption interfaceRemnantConnectionConnected2
(interfaceRemnantConnection,
"Connected2",
"Connect the remnants to the gluon ladder, possibility 2",
2);
static Switch<HwRemDecayer,bool> interfaceRandomConnection
("RandomConnection",
"Choose between differnet remnant connections",
&HwRemDecayer::randomRemnantConnection_, false, false, false);
static SwitchOption interfaceRandomConnectionNo
(interfaceRandomConnection,
"No",
"Don't use random connections",
false);
static SwitchOption interfaceRandomConnectionYes
(interfaceRandomConnection,
"Yes",
"Use random connections ",
true);
}
bool HwRemDecayer::canHandle(tcPDPtr particle, tcPDPtr parton) const {
if(! (StandardQCDPartonMatcher::Check(*parton) || parton->id()==ParticleID::gamma) ) {
if(abs(parton->id())==ParticleID::t) {
if(!allowTop_)
throw Exception() << "Top is not allow as a parton in the remant handling, please "
<< "use a PDF which does not contain top for the remnant"
<< " handling (preferred) or allow top in the remnant using\n"
<< " set " << fullName() << ":AllowTop Yes\n"
<< Exception::runerror;
}
else
return false;
}
return HadronMatcher::Check(*particle) || particle->id()==ParticleID::gamma
|| particle->id()==ParticleID::pomeron || particle->id()==ParticleID::reggeon;
}
bool HwRemDecayer::isPartonic(tPPtr parton) const {
if(parton->parents().empty()) return false;
tPPtr parent = parton->parents()[0];
bool partonic = false;
for(unsigned int ix=0;ix<parent->children().size();++ix) {
if(dynamic_ptr_cast<tRemPPtr>(parent->children()[ix])) {
partonic = true;
break;
}
}
return partonic;
}
diff --git a/src/LHC-MB.in b/src/LHC-MB.in
--- a/src/LHC-MB.in
+++ b/src/LHC-MB.in
@@ -1,102 +1,102 @@
# -*- ThePEG-repository -*-
################################################################################
# This file contains our best tune to UE data from ATLAS at 7 TeV. More recent
# tunes and tunes for other centre-of-mass energies as well as more usage
# instructions can be obtained from this Herwig wiki page:
# http://projects.hepforge.org/herwig/trac/wiki/MB_UE_tunes
# The model for soft interactions and diffractions is explained in
# [S. Gieseke, P. Kirchgaesser, F. Loshaj, arXiv:1612.04701]
################################################################################
read snippets/PPCollider.in
##################################################
# Technical parameters for this run
##################################################
cd /Herwig/Generators
##################################################
# LHC physics parameters (override defaults here)
##################################################
set EventGenerator:EventHandler:LuminosityFunction:Energy 7000.0
# Intrinsic pT tune extrapolated to LHC energy
set /Herwig/Shower/ShowerHandler:IntrinsicPtGaussian 2.2*GeV
# Minimum Bias
read snippets/MB.in
# Read in parameters of the soft model recommended for MB/UE simulations
read snippets/SoftTune.in
#Diffraction model
read snippets/Diffraction.in
#Turn on Baryonic reconnection
read snippets/BaryonicReconnection.in
# Normalization of the Min bias cross section for correct diffractive cross section
set /Herwig/MatrixElements/MEMinBias:csNorm 0.01
# Use LHC parametrization of the cross section
set /Herwig/UnderlyingEvent/MPIHandler:DLmode 3
#some preliminary parameters for the MPI model which need to be tuned
#TODO
set /Herwig/UnderlyingEvent/MPIHandler:pTmin0 3.02
set /Herwig/UnderlyingEvent/MPIHandler:InvRadius 0.9
set /Herwig/UnderlyingEvent/MPIHandler:Power 0.308
set /Herwig/Partons/RemnantDecayer:ladderMult 0.45
set /Herwig/Partons/RemnantDecayer:ladderbFactor 1.0
#ordered pTs
set /Herwig/Partons/RemnantDecayer:PtDistribution 5
#use random remnant connections
-set /Herwig/Partons/RemnantDecayer:RandomConnection Yes
+set /Herwig/Partons/RemnantDecayer:RandomConnection No
# set the correct PDFs
set /Herwig/Partons/HardLOPDF:PDFName CT14lo
set /Herwig/Partons/ShowerLOPDF:PDFName CT14lo
set /Herwig/Partons/MPIPDF:PDFName CT14lo
set /Herwig/Partons/RemnantPDF:PDFName CT14lo
#set /Herwig/Shower/ShowerHandler:CascadeHandler NULL # Switch off parton shower
#set /Herwig/Hadronization/HadronizationHandler:HadronizationHandler NULL
# do Soft interactions
#set /Herwig/Hadronization/ColourReconnector:ColourReconnection No
#################################################
# Analyses
##################################################
#Comment these lines out in order to use rivet analyses
#cd /Herwig/Analysis
#create ThePEG::RivetAnalysis RivetAnalysis RivetAnalysis.so
#cd /Herwig/Generators
#insert EventGenerator:AnalysisHandlers 0 /Herwig/Analysis/RivetAnalysis
#Some example analyses
#insert /Herwig/Analysis/RivetAnalysis:Analyses 0 ATLAS_2012_I1084540
#insert /Herwig/Analysis/RivetAnalysis:Analyses 0 ATLAS_2010_S8918562
#set /Herwig/Analysis/Plot:EventNumber 54
#cd /Herwig/Generators
#insert EventGenerator:AnalysisHandlers 0 /Herwig/Analysis/Plot
#insert EventGenerator:AnalysisHandlers 0 /Herwig/Analysis/HepMCFile
#set /Herwig/Analysis/HepMCFile:PrintEvent 1000000
#set /Herwig/Analysis/HepMCFile:Format GenEvent
#set /Herwig/Analysis/HepMCFile:Units GeV_mm
#set /Herwig/Analysis/HepMCFile:Filename events.fifo
##################################################
# Save run for later usage with 'Herwig run'
##################################################
cd /Herwig/Generators
saverun LHC-MB EventGenerator

File Metadata

Mime Type
text/x-diff
Expires
Sat, Dec 21, 3:59 PM (1 d, 20 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023368
Default Alt Text
(76 KB)

Event Timeline