Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F8309850
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
80 KB
Subscribers
None
View Options
diff --git a/Shower/Base/Evolver.cc b/Shower/Base/Evolver.cc
--- a/Shower/Base/Evolver.cc
+++ b/Shower/Base/Evolver.cc
@@ -1,2071 +1,2074 @@
// -*- C++ -*-
//
// Evolver.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the Evolver class.
//
#include "Evolver.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/RefVector.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "Herwig++/Shower/Base/ShowerParticle.h"
#include "ThePEG/Utilities/EnumIO.h"
#include "ShowerKinematics.h"
#include "ThePEG/PDT/EnumParticles.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Handlers/EventHandler.h"
#include "ThePEG/Utilities/Throw.h"
#include "ShowerTree.h"
#include "ShowerProgenitor.h"
#include "KinematicsReconstructor.h"
#include "PartnerFinder.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include "ThePEG/PDT/DecayMode.h"
#include "Herwig++/Shower/ShowerHandler.h"
using namespace Herwig;
namespace {
void findChildren(tShowerParticlePtr parent,set<ShowerParticlePtr> & fs) {
for(unsigned int ix=0;ix<parent->children().size();++ix) {
tShowerParticlePtr child=
dynamic_ptr_cast<tShowerParticlePtr>(parent->children()[ix]);
if(child) findChildren(child,fs);
}
if(parent->children().empty()) {
if(parent->isFinalState()) fs.insert(parent);
}
}
}
IBPtr Evolver::clone() const {
return new_ptr(*this);
}
IBPtr Evolver::fullclone() const {
return new_ptr(*this);
}
void Evolver::persistentOutput(PersistentOStream & os) const {
os << _model << _splittingGenerator << _maxtry
<< _meCorrMode << _hardVetoMode << _hardVetoRead << _hardVetoReadOption
<< _limitEmissions
<< ounit(_iptrms,GeV) << _beta << ounit(_gamma,GeV) << ounit(_iptmax,GeV)
<< _vetoes << _hardonly << _trunc_Mode << _hardEmissionMode
<< _colourEvolutionMethod << _reconOpt
<< interaction_<< interactions_.size();
for(unsigned int ix=0;ix<interactions_.size();++ix)
os << oenum(interactions_[ix]);
}
void Evolver::persistentInput(PersistentIStream & is, int) {
unsigned int isize;
is >> _model >> _splittingGenerator >> _maxtry
>> _meCorrMode >> _hardVetoMode >> _hardVetoRead >> _hardVetoReadOption
>> _limitEmissions
>> iunit(_iptrms,GeV) >> _beta >> iunit(_gamma,GeV) >> iunit(_iptmax,GeV)
>> _vetoes >> _hardonly >> _trunc_Mode >> _hardEmissionMode
>> _colourEvolutionMethod >> _reconOpt
>> interaction_ >> isize;
interactions_.resize(isize);
for(unsigned int ix=0;ix<interactions_.size();++ix)
is >> ienum(interactions_[ix]);
}
void Evolver::doinit() {
Interfaced::doinit();
if(interaction_==0) {
interactions_.push_back(ShowerInteraction::QCD);
interactions_.push_back(ShowerInteraction::QED);
}
else if(interaction_==1) {
interactions_.push_back(ShowerInteraction::QCD);
}
else if(interaction_==2) {
interactions_.push_back(ShowerInteraction::QED);
interactions_.push_back(ShowerInteraction::QCD);
}
else if(interaction_==3) {
interactions_.push_back(ShowerInteraction::QED);
}
}
ClassDescription<Evolver> Evolver::initEvolver;
// Definition of the static class description member.
void Evolver::Init() {
static ClassDocumentation<Evolver> documentation
("This class is responsible for carrying out the showering,",
"including the kinematics reconstruction, in a given scale range,"
"including the option of the POWHEG approach to simulated next-to-leading order"
" radiation\\cite{Nason:2004rx}.",
"%\\cite{Nason:2004rx}\n"
"\\bibitem{Nason:2004rx}\n"
" P.~Nason,\n"
" ``A new method for combining NLO QCD with shower Monte Carlo algorithms,''\n"
" JHEP {\\bf 0411} (2004) 040\n"
" [arXiv:hep-ph/0409146].\n"
" %%CITATION = JHEPA,0411,040;%%\n");
static Reference<Evolver,SplittingGenerator>
interfaceSplitGen("SplittingGenerator",
"A reference to the SplittingGenerator object",
&Herwig::Evolver::_splittingGenerator,
false, false, true, false);
static Reference<Evolver,ShowerModel> interfaceShowerModel
("ShowerModel",
"The pointer to the object which defines the shower evolution model.",
&Evolver::_model, false, false, true, false, false);
static Parameter<Evolver,unsigned int> interfaceMaxTry
("MaxTry",
"The maximum number of attempts to generate the shower from a"
" particular ShowerTree",
&Evolver::_maxtry, 100, 1, 1000,
false, false, Interface::limited);
static Switch<Evolver, unsigned int> ifaceMECorrMode
("MECorrMode",
"Choice of the ME Correction Mode",
&Evolver::_meCorrMode, 1, false, false);
static SwitchOption off
(ifaceMECorrMode,"No","MECorrections off", 0);
static SwitchOption on
(ifaceMECorrMode,"Yes","hard+soft on", 1);
static SwitchOption hard
(ifaceMECorrMode,"Hard","only hard on", 2);
static SwitchOption soft
(ifaceMECorrMode,"Soft","only soft on", 3);
static Switch<Evolver, unsigned int> ifaceHardVetoMode
("HardVetoMode",
"Choice of the Hard Veto Mode",
&Evolver::_hardVetoMode, 1, false, false);
static SwitchOption HVoff
(ifaceHardVetoMode,"No","hard vetos off", 0);
static SwitchOption HVon
(ifaceHardVetoMode,"Yes","hard vetos on", 1);
static SwitchOption HVIS
(ifaceHardVetoMode,"Initial", "only IS emissions vetoed", 2);
static SwitchOption HVFS
(ifaceHardVetoMode,"Final","only FS emissions vetoed", 3);
static Switch<Evolver, unsigned int> ifaceHardVetoRead
("HardVetoScaleSource",
"If hard veto scale is to be read",
&Evolver::_hardVetoRead, 0, false, false);
static SwitchOption HVRcalc
(ifaceHardVetoRead,"Calculate","Calculate from hard process", 0);
static SwitchOption HVRread
(ifaceHardVetoRead,"Read","Read from XComb->lastScale", 1);
static Switch<Evolver, bool> ifaceHardVetoReadOption
("HardVetoReadOption",
"Apply read-in scale veto to all collisions or just the primary one?",
&Evolver::_hardVetoReadOption, false, false, false);
static SwitchOption AllCollisions
(ifaceHardVetoReadOption,
"AllCollisions",
"Read-in pT veto applied to primary and secondary collisions.",
false);
static SwitchOption PrimaryCollision
(ifaceHardVetoReadOption,
"PrimaryCollision",
"Read-in pT veto applied to primary but not secondary collisions.",
true);
static Parameter<Evolver, Energy> ifaceiptrms
("IntrinsicPtGaussian",
"RMS of intrinsic pT of Gaussian distribution:\n"
"2*(1-Beta)*exp(-sqr(intrinsicpT/RMS))/sqr(RMS)",
&Evolver::_iptrms, GeV, ZERO, ZERO, 1000000.0*GeV,
false, false, Interface::limited);
static Parameter<Evolver, double> ifacebeta
("IntrinsicPtBeta",
"Proportion of inverse quadratic distribution in generating intrinsic pT.\n"
"(1-Beta) is the proportion of Gaussian distribution",
&Evolver::_beta, 0, 0, 1,
false, false, Interface::limited);
static Parameter<Evolver, Energy> ifacegamma
("IntrinsicPtGamma",
"Parameter for inverse quadratic:\n"
"2*Beta*Gamma/(sqr(Gamma)+sqr(intrinsicpT))",
&Evolver::_gamma,GeV, ZERO, ZERO, 100000.0*GeV,
false, false, Interface::limited);
static Parameter<Evolver, Energy> ifaceiptmax
("IntrinsicPtIptmax",
"Upper bound on intrinsic pT for inverse quadratic",
&Evolver::_iptmax,GeV, ZERO, ZERO, 100000.0*GeV,
false, false, Interface::limited);
static RefVector<Evolver,ShowerVeto> ifaceVetoes
("Vetoes",
"The vetoes to be checked during showering",
&Evolver::_vetoes, -1,
false,false,true,true,false);
static Switch<Evolver,unsigned int> interfaceLimitEmissions
("LimitEmissions",
"Limit the number and type of emissions for testing",
&Evolver::_limitEmissions, 0, false, false);
static SwitchOption interfaceLimitEmissionsNoLimit
(interfaceLimitEmissions,
"NoLimit",
"Allow an arbitrary number of emissions",
0);
static SwitchOption interfaceLimitEmissionsOneInitialStateEmission
(interfaceLimitEmissions,
"OneInitialStateEmission",
"Allow one emission in the initial state and none in the final state",
1);
static SwitchOption interfaceLimitEmissionsOneFinalStateEmission
(interfaceLimitEmissions,
"OneFinalStateEmission",
"Allow one emission in the final state and none in the initial state",
2);
static SwitchOption interfaceLimitEmissionsHardOnly
(interfaceLimitEmissions,
"HardOnly",
"Only allow radiation from the hard ME correction",
3);
static SwitchOption interfaceLimitEmissionsOneEmission
(interfaceLimitEmissions,
"OneEmission",
"Allow one emission in either the final state or initial state, but not both",
4);
static Switch<Evolver,bool> interfaceHardOnly
("HardOnly",
"Only generate the emission supplied by the hardest emission"
" generator, for testing only.",
&Evolver::_hardonly, false, false, false);
static SwitchOption interfaceHardOnlyNo
(interfaceHardOnly,
"No",
"Generate full shower",
false);
static SwitchOption interfaceHardOnlyYes
(interfaceHardOnly,
"Yes",
"Only the hardest emission",
true);
static Switch<Evolver,bool> interfaceTruncMode
("TruncatedShower", "Include the truncated shower?",
&Evolver::_trunc_Mode, 1, false, false);
static SwitchOption interfaceTruncMode0
(interfaceTruncMode,"No","Truncated Shower is OFF", 0);
static SwitchOption interfaceTruncMode1
(interfaceTruncMode,"Yes","Truncated Shower is ON", 1);
static Switch<Evolver,unsigned int> interfaceHardEmissionMode
("HardEmissionMode",
"Whether to use ME corrections or POWHEG for the hardest emission",
&Evolver::_hardEmissionMode, 0, false, false);
static SwitchOption interfaceHardEmissionModeMECorrection
(interfaceHardEmissionMode,
"MECorrection",
"Old fashioned ME correction",
0);
static SwitchOption interfaceHardEmissionModePOWHEG
(interfaceHardEmissionMode,
"POWHEG",
"Powheg style hard emission",
1);
static Switch<Evolver,int> interfaceColourEvolutionMethod
("ColourEvolutionMethod",
"Choice of method for choosing the colour factor in gluon evolution",
&Evolver::_colourEvolutionMethod, 0, false, false);
static SwitchOption interfaceColourEvolutionMethodDefault
(interfaceColourEvolutionMethod,
"Default",
"Colour factor is CA for all scales",
0);
static SwitchOption interfaceColourEvolutionMethodHalfCA
(interfaceColourEvolutionMethod,
"HalfCA",
"Only use half the normal radiation until second scale is reached",
1);
static Switch<Evolver,unsigned int > interfaceInteractions
("Interactions",
"The interactions to be used in the shower",
&Evolver::interaction_, 1, false, false);
static SwitchOption interfaceInteractionsQCDFirst
(interfaceInteractions,
"QCDFirst",
"QCD first then QED",
0);
static SwitchOption interfaceInteractionsQCDOnly
(interfaceInteractions,
"QCDOnly",
"Only QCD",
1);
static SwitchOption interfaceInteractionsQEDFirst
(interfaceInteractions,
"QEDFirst",
"QED first then QCD",
2);
static SwitchOption interfaceInteractionsQEDOnly
(interfaceInteractions,
"QEDOnly",
"Only QED",
3);
static Switch<Evolver,unsigned int> interfaceReconstructionOption
("ReconstructionOption",
"Treatment of the reconstruction of the transverse momentum of "
"a branching from the evolution scale.",
&Evolver::_reconOpt, 0, false, false);
static SwitchOption interfaceReconstructionOptionCutOff
(interfaceReconstructionOption,
"CutOff",
"Use the cut-off masses in the calculation",
0);
static SwitchOption interfaceReconstructionOptionOffShell
(interfaceReconstructionOption,
"OffShell",
"Use the off-shell masses in the calculation",
1);
}
void Evolver::generateIntrinsicpT(vector<ShowerProgenitorPtr> particlesToShower) {
_intrinsic.clear();
if ( !ipTon() || !isISRadiationON() ) return;
// don't do anything for the moment for secondary scatters
if( !ShowerHandler::currentHandler()->firstInteraction() ) return;
// generate intrinsic pT
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
// only consider initial-state particles
if(particlesToShower[ix]->progenitor()->isFinalState()) continue;
if(!particlesToShower[ix]->progenitor()->dataPtr()->coloured()) continue;
Energy ipt;
if(UseRandom::rnd() > _beta) {
ipt=_iptrms*sqrt(-log(UseRandom::rnd()));
}
else {
ipt=_gamma*sqrt(pow(1.+sqr(_iptmax/_gamma), UseRandom::rnd())-1.);
}
pair<Energy,double> pt = make_pair(ipt,UseRandom::rnd(Constants::twopi));
_intrinsic[particlesToShower[ix]] = pt;
}
}
void Evolver::setupMaximumScales(ShowerTreePtr hard,
vector<ShowerProgenitorPtr> p) {
// find out if hard partonic subprocess.
bool isPartonic(false);
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit = _currenttree->incomingLines().begin();
Lorentz5Momentum pcm;
for(; cit!=hard->incomingLines().end(); ++cit) {
pcm += cit->first->progenitor()->momentum();
isPartonic |= cit->first->progenitor()->coloured();
}
// find maximum pt from hard process, the maximum pt from all outgoing
// coloured lines (this is simpler and more general than
// 2stu/(s^2+t^2+u^2)). Maximum scale for scattering processes will
// be transverse mass.
Energy ptmax = -1.0*GeV;
// general case calculate the scale
if (!hardVetoXComb()||
(hardVetoReadOption()&&
!ShowerHandler::currentHandler()->firstInteraction())) {
// scattering process
if(hard->isHard()) {
// coloured incoming particles
if (isPartonic) {
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
cjt = hard->outgoingLines().begin();
for(; cjt!=hard->outgoingLines().end(); ++cjt) {
if (cjt->first->progenitor()->coloured())
ptmax = max(ptmax,cjt->first->progenitor()->momentum().mt());
}
}
if (ptmax < ZERO) ptmax = pcm.m();
if(hardVetoXComb()&&hardVetoReadOption()&&
!ShowerHandler::currentHandler()->firstInteraction()) {
ptmax=min(ptmax,sqrt(ShowerHandler::currentHandler()
->lastXCombPtr()->lastScale()));
}
}
// decay, incoming() is the decaying particle.
else {
ptmax = hard->incomingLines().begin()->first
->progenitor()->momentum().mass();
}
}
// hepeup.SCALUP is written into the lastXComb by the
// LesHouchesReader itself - use this by user's choice.
// Can be more general than this.
else {
ptmax = sqrt( ShowerHandler::currentHandler()
->lastXCombPtr()->lastScale() );
}
// set maxHardPt for all progenitors. For partonic processes this
// is now the max pt in the FS, for non-partonic processes or
// processes with no coloured FS the invariant mass of the IS
vector<ShowerProgenitorPtr>::const_iterator ckt = p.begin();
for (; ckt != p.end(); ckt++) (*ckt)->maxHardPt(ptmax);
}
void Evolver::showerHardProcess(ShowerTreePtr hard, XCPtr xcomb) {
_hardme = HwMEBasePtr();
// extract the matrix element
tStdXCombPtr lastXC = dynamic_ptr_cast<tStdXCombPtr>(xcomb);
if(lastXC) {
_hardme = dynamic_ptr_cast<HwMEBasePtr>(lastXC->matrixElement());
}
_decayme = HwDecayerBasePtr();
// set the current tree
currentTree(hard);
hardTree(HardTreePtr());
// number of attempts if more than one interaction switched on
unsigned int interactionTry=0;
bool showerOrder(true);
do {
try {
// zero number of emissions
_nis = _nfs = 0;
// extract particles to shower
vector<ShowerProgenitorPtr> particlesToShower=setupShower(true);
// setup the maximum scales for the shower, given by the hard process
if (hardVetoOn()) setupMaximumScales(currentTree(), particlesToShower);
// generate the intrinsic p_T once and for all
generateIntrinsicpT(particlesToShower);
// loop over possible interactions
if(hardTree()) {
if(hardTree()->interaction()!=interactions_[0]) {
showerOrder = false;
swap(interactions_[0],interactions_[1]);
}
}
for(unsigned int inter=0;inter<interactions_.size();++inter) {
// zero pt so only added first time round
if(inter!=0) intrinsicpT().clear();
// set up for second pass if required
if(inter!=0) constructHardTree(particlesToShower,interactions_[inter]);
// main shower loop
unsigned int ntry(0);
do {
// clear results of last attempt if needed
if(ntry!=0) {
currentTree()->clear();
setEvolutionPartners(true,interactions_[inter]);
_nis = _nfs = 0;
}
// generate the shower
// pick random starting point
unsigned int istart=UseRandom::irnd(particlesToShower.size());
unsigned int istop = particlesToShower.size();
// loop over particles with random starting point
for(unsigned int ix=istart;ix<=istop;++ix) {
if(ix==particlesToShower.size()) {
if(istart!=0) {
istop = istart-1;
ix=0;
}
else break;
}
// set the progenitor
_progenitor=particlesToShower[ix];
// initial-state
if(!_progenitor->progenitor()->isFinalState()) {
if(!isISRadiationON()) continue;
// get the PDF
setBeamParticle(_progenitor->beam());
assert(beamParticle());
// perform the shower
// set the beam particle
tPPtr beamparticle=progenitor()->original();
if(!beamparticle->parents().empty())
beamparticle=beamparticle->parents()[0];
// generate the shower
progenitor()->hasEmitted(startSpaceLikeShower(beamparticle,
interactions_[inter]));
}
// final-state
else {
if(!isFSRadiationON()) continue;
// perform shower
progenitor()->hasEmitted(startTimeLikeShower(interactions_[inter]));
}
}
}
while(!showerModel()->kinematicsReconstructor()->
reconstructHardJets(hard,intrinsicpT(),
interactions_[inter])&&
maximumTries()>++ntry);
if(_maxtry==ntry) throw ShowerHandler::ShowerTriesVeto(ntry);
}
// the tree has now showered
_currenttree->hasShowered(true);
if(!showerOrder) swap(interactions_[0],interactions_[1]);
hardTree(HardTreePtr());
return;
}
catch (InteractionVeto) {
currentTree()->clear();
++interactionTry;
}
}
while(interactionTry<=5);
throw Exception() << "Too many tries for shower in "
<< "Evolver::showerHardProcess()"
<< Exception::eventerror;
}
void Evolver::hardMatrixElementCorrection(bool hard) {
// set the initial enhancement factors for the soft correction
_initialenhance = 1.;
_finalenhance = 1.;
// if hard matrix element switched off return
if(!MECOn()) return;
// see if we can get the correction from the matrix element
// or decayer
if(hard) {
if(_hardme&&_hardme->hasMECorrection()) {
_hardme->initializeMECorrection(_currenttree,
_initialenhance,_finalenhance);
if(hardMEC())
_hardme->applyHardMatrixElementCorrection(_currenttree);
}
}
else {
if(_decayme&&_decayme->hasMECorrection()) {
_decayme->initializeMECorrection(_currenttree,
_initialenhance,_finalenhance);
if(hardMEC())
_decayme->applyHardMatrixElementCorrection(_currenttree);
}
}
}
double Evolver::getReductionFactor(tShowerParticlePtr particle) {
// octet -> octet octet reduction factor
if ( _colourEvolutionMethod == 1 ) {
// Determine which colour factor to use for octet->octet octet
// There are three possibilities.
// 1) Radiation is emitted from a hard parton, or the primary emission
// of a hard parton, at a scale above the progenitor's second
// scale, and we have half as much radiation.
// 2) Radiation is emitted from a hard parton, or the primary emission
// of a hard parton, at a scale below the progenitor's second
// scale, and we have the normal amount of radiation
// 3) Radiation is emitted from a secondary emission of a hard parton,
// and we have the normal amount of radiation
if (getParticleData(particle->id())->iColour()==PDT::Colour8) {
// Particle is an octet
if (particle->radiationLine() == 1 || particle->radiationLine() == 2) {
// Particle is connected along hard progenitor's radiation line
if (particle->evolutionScale() > particle->progenitor()->evolutionScale2() ) {
// Particle radiaties with half strength
return 0.5;
}
}
}
}
return 1.0;
}
bool Evolver::timeLikeShower(tShowerParticlePtr particle,
ShowerInteraction::Type type,
bool first) {
// don't do anything if not needed
if(_limitEmissions == 1 || _limitEmissions == 3 ||
( _limitEmissions == 2 && _nfs != 0) ||
( _limitEmissions == 4 && _nfs + _nis != 0) ) return false;
// octet -> octet octet reduction factor
double reduction = getReductionFactor(particle);
ShowerParticleVector theChildren;
int ntry=0;
do {
++ntry;
// generate the emission
Branching fb;
while (true) {
fb=_splittingGenerator->chooseForwardBranching(*particle,
reduction*_finalenhance,type);
// no emission return
if(!fb.kinematics) return false;
// if emission OK break
if(!timeLikeVetoed(fb,particle,type)) break;
// otherwise reset scale and continue - SO IS involved in veto algorithm
particle->setEvolutionScale(fb.kinematics->scale());
}
// has emitted
// Assign the shower kinematics to the emitting particle.
particle->setShowerKinematics(fb.kinematics);
// Assign the splitting function to the emitting particle.
// For the time being we are considering only 1->2 branching
// Create the ShowerParticle objects for the two children of
// the emitting particle; set the parent/child relationship
// if same as definition create particles, otherwise create cc
tcPDPtr pdata[2];
for(unsigned int ix=0;ix<2;++ix) pdata[ix]=getParticleData(fb.ids[ix+1]);
if(particle->id()!=fb.ids[0]) {
for(unsigned int ix=0;ix<2;++ix) {
tPDPtr cc(pdata[ix]->CC());
if(cc) pdata[ix]=cc;
}
}
theChildren.push_back(new_ptr(ShowerParticle(pdata[0],true)));
theChildren.push_back(new_ptr(ShowerParticle(pdata[1],true)));
// update the children
particle->showerKinematics()->updateChildren(particle, theChildren,true);
// update number of emissions
++_nfs;
if(_limitEmissions!=0) return true;
// shower the first particle
timeLikeShower(theChildren[0],type,false);
// shower the second particle
timeLikeShower(theChildren[1],type,false);
// that's if for old approach
if(_reconOpt==0) break;
// branching has happened
particle->showerKinematics()->updateParent(particle, theChildren,true);
// clean up the vetoed emission
if(particle->virtualMass()==ZERO) {
particle->setShowerKinematics(ShoKinPtr());
for(unsigned int ix=0;ix<theChildren.size();++ix)
particle->abandonChild(theChildren[ix]);
theChildren.clear();
}
}
while(particle->virtualMass()==ZERO&&ntry<50);
if(first)
particle->showerKinematics()->resetChildren(particle,theChildren);
return true;
}
bool
Evolver::spaceLikeShower(tShowerParticlePtr particle, PPtr beam,
ShowerInteraction::Type type) {
//using the pdf's associated with the ShowerHandler assures, that
//modified pdf's are used for the secondary interactions via
//CascadeHandler::resetPDFs(...)
tcPDFPtr pdf;
if(ShowerHandler::currentHandler()->firstPDF().particle() == _beam)
pdf = ShowerHandler::currentHandler()->firstPDF().pdf();
if(ShowerHandler::currentHandler()->secondPDF().particle() == _beam)
pdf = ShowerHandler::currentHandler()->secondPDF().pdf();
Energy freeze = ShowerHandler::currentHandler()->pdfFreezingScale();
// don't do anything if not needed
if(_limitEmissions == 2 || _limitEmissions == 3 ||
( _limitEmissions == 1 && _nis != 0 ) ||
( _limitEmissions == 4 && _nis + _nfs != 0 ) ) return false;
// octet -> octet octet reduction factor
double reduction = getReductionFactor(particle);
Branching bb;
// generate branching
while (true) {
bb=_splittingGenerator->chooseBackwardBranching(*particle,beam,
reduction*_initialenhance,
_beam,type,
pdf,freeze);
// return if no emission
if(!bb.kinematics) return false;
// if not vetoed break
if(!spaceLikeVetoed(bb,particle,type)) break;
// otherwise reset scale and continue
particle->setEvolutionScale(bb.kinematics->scale());
}
// assign the splitting function and shower kinematics
particle->setShowerKinematics(bb.kinematics);
// For the time being we are considering only 1->2 branching
// particles as in Sudakov form factor
tcPDPtr part[2]={getParticleData(bb.ids[0]),
getParticleData(bb.ids[2])};
if(particle->id()!=bb.ids[1]) {
if(part[0]->CC()) part[0]=part[0]->CC();
if(part[1]->CC()) part[1]=part[1]->CC();
}
// Now create the actual particles, make the otherChild a final state
// particle, while the newParent is not
ShowerParticlePtr newParent=new_ptr(ShowerParticle(part[0],false));
ShowerParticlePtr otherChild = new_ptr(ShowerParticle(part[1],true,true));
ShowerParticleVector theChildren;
theChildren.push_back(particle);
theChildren.push_back(otherChild);
//this updates the evolution scale
particle->showerKinematics()->updateParent(newParent, theChildren,true);
// update the history if needed
_currenttree->updateInitialStateShowerProduct(_progenitor,newParent);
_currenttree->addInitialStateBranching(particle,newParent,otherChild);
// for the reconstruction of kinematics, parent/child
// relationships are according to the branching process:
// now continue the shower
++_nis;
bool emitted = _limitEmissions==0 ?
spaceLikeShower(newParent,beam,type) : false;
// now reconstruct the momentum
if(!emitted) {
if(_intrinsic.find(_progenitor)==_intrinsic.end()) {
bb.kinematics->updateLast(newParent,ZERO,ZERO);
}
else {
pair<Energy,double> kt=_intrinsic[_progenitor];
bb.kinematics->updateLast(newParent,
kt.first*cos(kt.second),
kt.first*sin(kt.second));
}
}
particle->showerKinematics()->updateChildren(newParent, theChildren,true);
if(_limitEmissions!=0) return true;
// perform the shower of the final-state particle
timeLikeShower(otherChild,type,true);
// return the emitted
return true;
}
void Evolver::showerDecay(ShowerTreePtr decay) {
_decayme = HwDecayerBasePtr();
_hardme = HwMEBasePtr();
// find the decayer
// try the normal way if possible
tDMPtr dm = decay->incomingLines().begin()->first->original() ->decayMode();
if(!dm) dm = decay->incomingLines().begin()->first->copy() ->decayMode();
if(!dm) dm = decay->incomingLines().begin()->first->progenitor()->decayMode();
// otherwise make a string and look it up
if(!dm) {
string tag = decay->incomingLines().begin()->first->original()->dataPtr()->name()
+ "->";
for(map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
it=decay->outgoingLines().begin();it!=decay->outgoingLines().end();++it) {
if(it!=decay->outgoingLines().begin()) tag += ",";
tag += it->first->original()->dataPtr()->name();
}
tag += ";";
dm = generator()->findDecayMode(tag);
}
if(dm) _decayme = dynamic_ptr_cast<HwDecayerBasePtr>(dm->decayer());
// set the ShowerTree to be showered
currentTree(decay);
decay->applyTransforms();
hardTree(HardTreePtr());
unsigned int interactionTry=0;
bool showerOrder(true);
do {
try {
// extract particles to be shower, set scales and
// perform hard matrix element correction
vector<ShowerProgenitorPtr> particlesToShower=setupShower(false);
setupMaximumScales(currentTree(), particlesToShower);
// compute the minimum mass of the final-state
Energy minmass(ZERO), mIn(ZERO);
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(particlesToShower[ix]->progenitor()->isFinalState()) {
minmass += max( particlesToShower[ix]->progenitor()->mass(),
particlesToShower[ix]->progenitor()->dataPtr()->constituentMass() );
}
else {
mIn = particlesToShower[ix]->progenitor()->mass();
}
}
if ( minmass > mIn ) {
throw Exception() << "Evolver.cc: Mass of decaying particle is "
<< "below constituent masses of decay products."
<< Exception::eventerror;
}
// loop over possible interactions
if(hardTree()) {
if(hardTree()->interaction()!=interactions_[0]) {
showerOrder = false;
swap(interactions_[0],interactions_[1]);
}
}
for(unsigned int inter=0;inter<interactions_.size();++inter) {
// set up for second pass if required
if(inter!=0) {
// construct the decay tree and return if not possible
if(!constructDecayTree(particlesToShower,interactions_[inter]))
throw InteractionVeto();
}
// main showering loop
unsigned int ntry(0);
do {
// clear results of last attempt
if(ntry!=0) {
currentTree()->clear();
setEvolutionPartners(false,interactions_[inter]);
}unsigned int istart=UseRandom::irnd(particlesToShower.size());
unsigned int istop = particlesToShower.size();
// loop over particles with random starting point
for(unsigned int ix=istart;ix<=istop;++ix) {
if(ix==particlesToShower.size()) {
if(istart!=0) {
istop = istart-1;
ix=0;
}
else break;
}
// extract the progenitor
progenitor(particlesToShower[ix]);
// final-state radiation
if(progenitor()->progenitor()->isFinalState()) {
if(!isFSRadiationON()) continue;
// perform shower
progenitor()->hasEmitted(startTimeLikeShower(interactions_[inter]));
}
// initial-state radiation
else {
if(!isISRadiationON()) continue;
// perform shower
// set the scales correctly. The current scale is the maximum scale for
// emission not the starting scale
Energy maxscale=progenitor()->progenitor()->evolutionScale();
Energy startScale=progenitor()->progenitor()->mass();
progenitor()->progenitor()->setEvolutionScale(startScale);
// perform the shower
progenitor()->hasEmitted(startSpaceLikeDecayShower(maxscale,minmass,
interactions_[inter]));
}
}
}
while(!showerModel()->kinematicsReconstructor()->
reconstructDecayJets(decay,interactions_[inter])&&
maximumTries()>++ntry);
if(maximumTries()==ntry)
throw Exception() << "Failed to generate the shower after "
<< ntry << " attempts in Evolver::showerDecay()"
<< Exception::eventerror;
}
// tree has now showered
_currenttree->hasShowered(true);
if(!showerOrder) swap(interactions_[0],interactions_[1]);
hardTree(HardTreePtr());
return;
}
catch (InteractionVeto) {
currentTree()->clear();
++interactionTry;
}
}
while(interactionTry<=5);
if(!showerOrder) swap(interactions_[0],interactions_[1]);
throw Exception() << "Too many tries for QED shower in Evolver::showerDecay()"
<< Exception::eventerror;
}
bool Evolver::spaceLikeDecayShower(tShowerParticlePtr particle,
Energy maxscale,
Energy minmass,ShowerInteraction::Type type) {
// octet -> octet octet reduction factor
double reduction = getReductionFactor(particle);
Branching fb;
while (true) {
fb=_splittingGenerator->chooseDecayBranching(*particle,maxscale,minmass,
reduction*_initialenhance,type);
// return if no radiation
if(!fb.kinematics) return false;
// if not vetoed break
if(!spaceLikeDecayVetoed(fb,particle,type)) break;
// otherwise reset scale and continue
particle->setEvolutionScale(fb.kinematics->scale());
}
// has emitted
// Assign the shower kinematics to the emitting particle.
particle->setShowerKinematics(fb.kinematics);
// For the time being we are considering only 1->2 branching
// Create the ShowerParticle objects for the two children of
// the emitting particle; set the parent/child relationship
// if same as definition create particles, otherwise create cc
tcPDPtr pdata[2];
for(unsigned int ix=0;ix<2;++ix) pdata[ix]=getParticleData(fb.ids[ix+1]);
if(particle->id()!=fb.ids[0]) {
for(unsigned int ix=0;ix<2;++ix) {
tPDPtr cc(pdata[ix]->CC());
if(cc) pdata[ix]=cc;
}
}
ShowerParticleVector theChildren;
theChildren.push_back(new_ptr(ShowerParticle(pdata[0],true)));
theChildren.push_back(new_ptr(ShowerParticle(pdata[1],true)));
// some code moved to updateChildren
particle->showerKinematics()->updateChildren(particle, theChildren,true);
// In the case of splittings which involves coloured particles,
// set properly the colour flow of the branching.
// update the history if needed
_currenttree->updateInitialStateShowerProduct(_progenitor,theChildren[0]);
_currenttree->addInitialStateBranching(particle,theChildren[0],theChildren[1]);
// shower the first particle
spaceLikeDecayShower(theChildren[0],maxscale,minmass,type);
// shower the second particle
timeLikeShower(theChildren[1],type,true);
// branching has happened
return true;
}
vector<ShowerProgenitorPtr> Evolver::setupShower(bool hard) {
// generate POWHEG hard emission if needed
if(_hardEmissionMode==1) hardestEmission(hard);
// set the initial colour partners
setEvolutionPartners(hard,_hardtree ?
_hardtree->interaction() : interactions_[0]);
// get the particles to be showered
map<ShowerProgenitorPtr, ShowerParticlePtr>::const_iterator cit;
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
// generate hard me if needed
if(_hardEmissionMode==0) hardMatrixElementCorrection(hard);
// get the particles to be showered
vector<ShowerProgenitorPtr> particlesToShower;
// incoming particles
for(cit=currentTree()->incomingLines().begin();
cit!=currentTree()->incomingLines().end();++cit)
particlesToShower.push_back(((*cit).first));
assert((particlesToShower.size()==1&&!hard)||
(particlesToShower.size()==2&&hard));
// outgoing particles
for(cjt=currentTree()->outgoingLines().begin();
cjt!=currentTree()->outgoingLines().end();++cjt)
particlesToShower.push_back(((*cjt).first));
// remake the colour partners if needed
if(_hardEmissionMode==0 && _currenttree->hardMatrixElementCorrection()) {
setEvolutionPartners(hard,interactions_[0]);
_currenttree->resetShowerProducts();
}
// return the answer
return particlesToShower;
}
void Evolver::setEvolutionPartners(bool hard,ShowerInteraction::Type type) {
map<ShowerProgenitorPtr, ShowerParticlePtr>::const_iterator cit;
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
vector<ShowerParticlePtr> particles;
// match the particles in the ShowerTree and hardTree
if(hardTree() && !hardTree()->connect(currentTree()))
throw Exception() << "Can't match trees in "
<< "Evolver::setEvolutionPartners()"
<< Exception::eventerror;
// sort out the colour partners
for(cit=currentTree()->incomingLines().begin();
cit!=currentTree()->incomingLines().end();++cit)
particles.push_back(cit->first->progenitor());
// outgoing particles
for(cjt=currentTree()->outgoingLines().begin();
cjt!=currentTree()->outgoingLines().end();++cjt)
particles.push_back(cjt->first->progenitor());
if(hardTree()) {
// find the partner
for(unsigned int ix=0;ix<particles.size();++ix) {
tHardBranchingPtr partner =
hardTree()->particles()[particles[ix]]->colourPartner();
if(!partner) continue;
for(map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
it=hardTree()->particles().begin();
it!=hardTree()->particles().end();++it) {
if(it->second==partner) particles[ix]->setPartner(it->first);
}
if(!particles[ix]->partner())
throw Exception() << "Can't match partners in "
<< "Evolver::setEvolutionPartners()"
<< Exception::eventerror;
}
}
// Set the initial evolution scales
showerModel()->partnerFinder()->
setInitialEvolutionScales(particles,!hard,type,!_hardtree);
}
void Evolver::updateHistory(tShowerParticlePtr particle) {
if(!particle->children().empty()) {
ShowerParticleVector theChildren;
for(unsigned int ix=0;ix<particle->children().size();++ix) {
ShowerParticlePtr part = dynamic_ptr_cast<ShowerParticlePtr>
(particle->children()[ix]);
theChildren.push_back(part);
}
// update the history if needed
if(particle==_currenttree->getFinalStateShowerProduct(_progenitor))
_currenttree->updateFinalStateShowerProduct(_progenitor,
particle,theChildren);
_currenttree->addFinalStateBranching(particle,theChildren);
for(unsigned int ix=0;ix<theChildren.size();++ix)
updateHistory(theChildren[ix]);
}
}
bool Evolver::startTimeLikeShower(ShowerInteraction::Type type) {
if(hardTree()) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit=hardTree()->particles().end(),
mit = hardTree()->particles().find(progenitor()->progenitor());
if( mit != eit && !mit->second->children().empty() ) {
bool output=truncatedTimeLikeShower(progenitor()->progenitor(),
mit->second ,type);
if(output) updateHistory(progenitor()->progenitor());
return output;
}
}
bool output = hardOnly() ? false :
timeLikeShower(progenitor()->progenitor() ,type,true) ;
if(output) updateHistory(progenitor()->progenitor());
return output;
}
bool Evolver::startSpaceLikeShower(PPtr parent, ShowerInteraction::Type type) {
if(hardTree()) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit =hardTree()->particles().end(),
mit = hardTree()->particles().find(progenitor()->progenitor());
if( mit != eit && mit->second->parent() ) {
return truncatedSpaceLikeShower( progenitor()->progenitor(),
parent, mit->second->parent(), type );
}
}
return hardOnly() ? false :
spaceLikeShower(progenitor()->progenitor(),parent,type);
}
bool Evolver::startSpaceLikeDecayShower(Energy maxscale,Energy minimumMass,
ShowerInteraction::Type type) {
if(hardTree()) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit =hardTree()->particles().end(),
mit = hardTree()->particles().find(progenitor()->progenitor());
if( mit != eit && mit->second->parent() ) {
HardBranchingPtr branch=mit->second;
while(branch->parent()) branch=branch->parent();
return truncatedSpaceLikeDecayShower(progenitor()->progenitor(),maxscale,
minimumMass, branch ,type);
}
}
return hardOnly() ? false :
spaceLikeDecayShower(progenitor()->progenitor(),maxscale,minimumMass,type);
}
bool Evolver::timeLikeVetoed(const Branching & fb,
ShowerParticlePtr particle,
ShowerInteraction::Type type) {
// check whether emission was harder than largest pt of hard subprocess
if ( hardVetoFS() && fb.kinematics->pT() > _progenitor->maxHardPt() )
return true;
// soft matrix element correction veto
if( softMEC()) {
if(_hardme && _hardme->hasMECorrection()) {
if(_hardme->softMatrixElementVeto(_progenitor,particle,fb))
return true;
}
else if(_decayme && _decayme->hasMECorrection()) {
if(_decayme->softMatrixElementVeto(_progenitor,particle,fb))
return true;
}
}
// veto on maximum pt
if(fb.kinematics->pT()>_progenitor->maximumpT(type)) return true;
// general vetos
if (fb.kinematics && !_vetoes.empty()) {
bool vetoed=false;
for (vector<ShowerVetoPtr>::iterator v = _vetoes.begin();
v != _vetoes.end(); ++v) {
bool test = (**v).vetoTimeLike(_progenitor,particle,fb);
switch((**v).vetoType()) {
case ShowerVeto::Emission:
vetoed |= test;
break;
case ShowerVeto::Shower:
if(test) throw VetoShower();
break;
case ShowerVeto::Event:
if(test) throw Veto();
break;
}
}
if(vetoed) return true;
}
return false;
}
bool Evolver::spaceLikeVetoed(const Branching & bb,ShowerParticlePtr particle,
ShowerInteraction::Type type) {
// check whether emission was harder than largest pt of hard subprocess
if (hardVetoIS() && bb.kinematics->pT() > _progenitor->maxHardPt())
return true;
// apply the soft correction
if( softMEC() && _hardme && _hardme->hasMECorrection() ) {
if(_hardme->softMatrixElementVeto(_progenitor,particle,bb))
return true;
}
// the more general vetos
// check vs max pt for the shower
if(bb.kinematics->pT()>_progenitor->maximumpT(type)) return true;
if (!_vetoes.empty()) {
bool vetoed=false;
for (vector<ShowerVetoPtr>::iterator v = _vetoes.begin();
v != _vetoes.end(); ++v) {
bool test = (**v).vetoSpaceLike(_progenitor,particle,bb);
switch ((**v).vetoType()) {
case ShowerVeto::Emission:
vetoed |= test;
break;
case ShowerVeto::Shower:
if(test) throw VetoShower();
break;
case ShowerVeto::Event:
if(test) throw Veto();
break;
}
}
if (vetoed) return true;
}
return false;
}
bool Evolver::spaceLikeDecayVetoed( const Branching & fb,
ShowerParticlePtr particle,
ShowerInteraction::Type type ) {
// apply the soft correction
if( softMEC() && _decayme && _decayme->hasMECorrection() ) {
if(_decayme->softMatrixElementVeto(_progenitor,particle,fb))
return true;
}
// veto on hardest pt in the shower
if(fb.kinematics->pT()> _progenitor->maximumpT(type)) return true;
// general vetos
if (!_vetoes.empty()) {
bool vetoed=false;
for (vector<ShowerVetoPtr>::iterator v = _vetoes.begin();
v != _vetoes.end(); ++v) {
bool test = (**v).vetoSpaceLike(_progenitor,particle,fb);
switch((**v).vetoType()) {
case ShowerVeto::Emission:
vetoed |= test;
break;
case ShowerVeto::Shower:
if(test) throw VetoShower();
break;
case ShowerVeto::Event:
if(test) throw Veto();
break;
}
if (vetoed) return true;
}
}
return false;
}
void Evolver::hardestEmission(bool hard) {
if( ( _hardme && _hardme->hasPOWHEGCorrection()) ||
(_decayme && _decayme->hasPOWHEGCorrection())) {
if(_hardme)
_hardtree = _hardme->generateHardest( currentTree(),interactions_ );
else
_hardtree = _decayme->generateHardest( currentTree() );
if(!_hardtree) return;
// join up the two trees
connectTrees(currentTree(),_hardtree,hard);
}
else {
_hardtree = ShowerHandler::currentHandler()->generateCKKW(currentTree());
}
}
bool Evolver::truncatedTimeLikeShower(tShowerParticlePtr particle,
HardBranchingPtr branch,
ShowerInteraction::Type type) {
int ntry=0;
do {
++ntry;
Branching fb;
unsigned int iout=0;
tcPDPtr pdata[2];
while (true) {
// no truncated shower break
if(!isTruncatedShowerON()||hardOnly()) break;
// generate emission
fb=splittingGenerator()->chooseForwardBranching(*particle,1.,type);
// no emission break
if(!fb.kinematics) break;
// check haven't evolved too far
if(fb.kinematics->scale() < branch->scale()) {
fb=Branching();
break;
}
// get the particle data objects
for(unsigned int ix=0;ix<2;++ix) pdata[ix]=getParticleData(fb.ids[ix+1]);
if(particle->id()!=fb.ids[0]) {
for(unsigned int ix=0;ix<2;++ix) {
tPDPtr cc(pdata[ix]->CC());
if(cc) pdata[ix]=cc;
}
}
// find the truncated line
iout=0;
if(pdata[0]->id()!=pdata[1]->id()) {
if(pdata[0]->id()==particle->id()) iout=1;
else if (pdata[1]->id()==particle->id()) iout=2;
}
else if(pdata[0]->id()==particle->id()) {
if(fb.kinematics->z()>0.5) iout=1;
else iout=2;
}
// apply the vetos for the truncated shower
// no flavour changing branchings
if(iout==0) {
particle->setEvolutionScale(fb.kinematics->scale());
continue;
}
double zsplit = iout==1 ? fb.kinematics->z() : 1-fb.kinematics->z();
// only if same interaction for forced branching
// and evolution
if(type==branch->sudakov()->interactionType()) {
if(zsplit < 0.5 || // hardest line veto
fb.kinematics->scale()*zsplit < branch->scale() ) { // angular ordering veto
particle->setEvolutionScale(fb.kinematics->scale());
continue;
}
}
// pt veto
if(fb.kinematics->pT() > progenitor()->maximumpT(type)) {
particle->setEvolutionScale(fb.kinematics->scale());
continue;
}
// should do base class vetos as well
if(timeLikeVetoed(fb,particle,type)) {
particle->setEvolutionScale(fb.kinematics->scale());
continue;
}
break;
}
// if no branching force trunctaed emission
if(!fb.kinematics) {
// construct the kinematics for the hard emission
ShoKinPtr showerKin=
branch->sudakov()->createFinalStateBranching(branch->scale(),
branch->children()[0]->z(),
branch->phi(),
branch->children()[0]->pT());
particle->setEvolutionScale(branch->scale() );
showerKin->initialize( *particle,PPtr() );
IdList idlist(3);
idlist[0] = particle->id();
idlist[1] = branch->children()[0]->branchingParticle()->id();
idlist[2] = branch->children()[1]->branchingParticle()->id();
fb = Branching( showerKin, idlist, branch->sudakov() );
// Assign the shower kinematics to the emitting particle.
particle->setShowerKinematics( fb.kinematics );
// Assign the splitting function to the emitting particle.
// For the time being we are considering only 1->2 branching
// Create the ShowerParticle objects for the two children of
// the emitting particle; set the parent/child relationship
// if same as definition create particles, otherwise create cc
ShowerParticleVector theChildren;
theChildren.push_back(new_ptr(ShowerParticle(branch->children()[0]->
branchingParticle()->dataPtr(),true)));
theChildren.push_back(new_ptr(ShowerParticle(branch->children()[1]->
branchingParticle()->dataPtr(),true)));
particle->showerKinematics()->
updateChildren(particle, theChildren,type==branch->sudakov()->interactionType());
// shower the first particle
if( branch->children()[0]->children().empty() ) {
if( ! hardOnly() )
timeLikeShower(theChildren[0],type,false);
}
else {
truncatedTimeLikeShower( theChildren[0],branch->children()[0],type);
}
// shower the second particle
if( branch->children()[1]->children().empty() ) {
if( ! hardOnly() )
timeLikeShower( theChildren[1] , type,false);
}
else {
truncatedTimeLikeShower( theChildren[1],branch->children()[1] ,type);
}
// that's if for old approach
if(_reconOpt==0) return true;
// branching has happened
particle->showerKinematics()->updateParent(particle, theChildren,true);
// clean up the vetoed emission
if(particle->virtualMass()==ZERO) {
particle->setShowerKinematics(ShoKinPtr());
for(unsigned int ix=0;ix<theChildren.size();++ix)
particle->abandonChild(theChildren[ix]);
theChildren.clear();
}
else return true;
}
// has emitted
// Assign the shower kinematics to the emitting particle.
particle->setShowerKinematics(fb.kinematics);
// Assign the splitting function to the emitting particle.
// For the time being we are considering only 1->2 branching
// Create the ShowerParticle objects for the two children of
// the emitting particle; set the parent/child relationship
// if same as definition create particles, otherwise create cc
ShowerParticleVector theChildren;
theChildren.push_back( new_ptr( ShowerParticle( pdata[0], true ) ) );
theChildren.push_back( new_ptr( ShowerParticle( pdata[1], true ) ) );
particle->showerKinematics()->
updateChildren( particle, theChildren , true);
// shower the first particle
if( iout == 1 ) truncatedTimeLikeShower( theChildren[0], branch , type );
else timeLikeShower( theChildren[0] , type,false);
// shower the second particle
if( iout == 2 ) truncatedTimeLikeShower( theChildren[1], branch , type );
else timeLikeShower( theChildren[1] , type,false);
// that's if for old approach
if(_reconOpt==0) return true;
// branching has happened
particle->showerKinematics()->updateParent(particle, theChildren,true);
// clean up the vetoed emission
if(particle->virtualMass()==ZERO) {
particle->setShowerKinematics(ShoKinPtr());
for(unsigned int ix=0;ix<theChildren.size();++ix)
particle->abandonChild(theChildren[ix]);
theChildren.clear();
}
else return true;
}
while(ntry<50);
return false;
}
bool Evolver::truncatedSpaceLikeShower(tShowerParticlePtr particle, PPtr beam,
HardBranchingPtr branch,
ShowerInteraction::Type type) {
tcPDFPtr pdf;
if(ShowerHandler::currentHandler()->firstPDF().particle() == beamParticle())
pdf = ShowerHandler::currentHandler()->firstPDF().pdf();
if(ShowerHandler::currentHandler()->secondPDF().particle() == beamParticle())
pdf = ShowerHandler::currentHandler()->secondPDF().pdf();
Energy freeze = ShowerHandler::currentHandler()->pdfFreezingScale();
Branching bb;
- // generate branching
+ // parameters of the force branching
+ double z(0.);
+ HardBranchingPtr timelike;
+ for( unsigned int ix = 0; ix < branch->children().size(); ++ix ) {
+ if( branch->children()[ix]->status() ==HardBranching::Outgoing) {
+ timelike = branch->children()[ix];
+ }
+ if( branch->children()[ix]->status() ==HardBranching::Incoming )
+ z = branch->children()[ix]->z();
+ }
+ // generate truncated branching
tcPDPtr part[2];
- while (true) {
- if( !isTruncatedShowerON() || hardOnly() ) break;
- bb = splittingGenerator()->chooseBackwardBranching( *particle,
- beam, 1., beamParticle(),
- type , pdf,freeze);
- if( !bb.kinematics || bb.kinematics->scale() < branch->scale() ) {
- bb = Branching();
+ if(z>=0.&&z<=1.) {
+ while (true) {
+ if( !isTruncatedShowerON() || hardOnly() ) break;
+ bb = splittingGenerator()->chooseBackwardBranching( *particle,
+ beam, 1., beamParticle(),
+ type , pdf,freeze);
+ if( !bb.kinematics || bb.kinematics->scale() < branch->scale() ) {
+ bb = Branching();
+ break;
+ }
+ // particles as in Sudakov form factor
+ part[0] = getParticleData( bb.ids[0] );
+ part[1] = getParticleData( bb.ids[2] );
+
+ //is emitter anti-particle
+ if( particle->id() != bb.ids[1]) {
+ if( part[0]->CC() ) part[0] = part[0]->CC();
+ if( part[1]->CC() ) part[1] = part[1]->CC();
+ }
+ double zsplit = bb.kinematics->z();
+ // apply the vetos for the truncated shower
+ // if doesn't carry most of momentum
+ if(type==branch->sudakov()->interactionType() &&
+ zsplit < 0.5) {
+ particle->setEvolutionScale(bb.kinematics->scale() );
+ continue;
+ }
+ // others
+ if( part[0]->id() != particle->id() || // if particle changes type
+ bb.kinematics->pT() > progenitor()->maximumpT(type) || // pt veto
+ bb.kinematics->scale() < branch->scale()) { // angular ordering veto
+ particle->setEvolutionScale(bb.kinematics->scale() );
+ continue;
+ }
+ // and those from the base class
+ if(spaceLikeVetoed(bb,particle,type)) {
+ particle->setEvolutionScale(bb.kinematics->scale() );
+ continue;
+ }
break;
}
- // particles as in Sudakov form factor
- part[0] = getParticleData( bb.ids[0] );
- part[1] = getParticleData( bb.ids[2] );
-
- //is emitter anti-particle
- if( particle->id() != bb.ids[1]) {
- if( part[0]->CC() ) part[0] = part[0]->CC();
- if( part[1]->CC() ) part[1] = part[1]->CC();
- }
- double zsplit = bb.kinematics->z();
- // apply the vetos for the truncated shower
- // if doesn't carry most of momentum
- if(type==branch->sudakov()->interactionType() &&
- zsplit < 0.5) {
- particle->setEvolutionScale(bb.kinematics->scale() );
- continue;
- }
- // others
- if( part[0]->id() != particle->id() || // if particle changes type
- bb.kinematics->pT() > progenitor()->maximumpT(type) || // pt veto
- bb.kinematics->scale() < branch->scale()) { // angular ordering veto
- particle->setEvolutionScale(bb.kinematics->scale() );
- continue;
- }
- // and those from the base class
- if(spaceLikeVetoed(bb,particle,type)) {
- particle->setEvolutionScale(bb.kinematics->scale() );
- continue;
- }
- break;
}
if( !bb.kinematics ) {
//do the hard emission
- double z(0.);
- HardBranchingPtr timelike;
- for( unsigned int ix = 0; ix < branch->children().size(); ++ix ) {
- if( branch->children()[ix]->status() ==HardBranching::Outgoing) {
- timelike = branch->children()[ix];
- }
- if( branch->children()[ix]->status() ==HardBranching::Incoming )
- z = branch->children()[ix]->z();
- }
ShoKinPtr kinematics =
branch->sudakov()->createInitialStateBranching( branch->scale(), z, branch->phi(),
branch->children()[0]->pT() );
kinematics->initialize( *particle, beam );
// assign the splitting function and shower kinematics
particle->setShowerKinematics( kinematics );
// For the time being we are considering only 1->2 branching
// Now create the actual particles, make the otherChild a final state
// particle, while the newParent is not
ShowerParticlePtr newParent =
new_ptr( ShowerParticle( branch->branchingParticle()->dataPtr(), false ) );
ShowerParticlePtr otherChild =
new_ptr( ShowerParticle( timelike->branchingParticle()->dataPtr(),
true, true ) );
ShowerParticleVector theChildren;
theChildren.push_back( particle );
theChildren.push_back( otherChild );
particle->showerKinematics()->
updateParent( newParent, theChildren, type==branch->sudakov()->interactionType() );
// update the history if needed
currentTree()->updateInitialStateShowerProduct( progenitor(), newParent );
currentTree()->addInitialStateBranching( particle, newParent, otherChild );
// for the reconstruction of kinematics, parent/child
// relationships are according to the branching process:
// now continue the shower
bool emitted=false;
if(!hardOnly()) {
if( branch->parent() ) {
emitted = truncatedSpaceLikeShower( newParent, beam, branch->parent() , type);
}
else {
emitted = spaceLikeShower( newParent, beam , type);
}
}
if( !emitted ) {
if( intrinsicpT().find( progenitor() ) == intrinsicpT().end() ) {
kinematics->updateLast( newParent, ZERO, ZERO );
}
else {
pair<Energy,double> kt = intrinsicpT()[progenitor()];
kinematics->updateLast( newParent,
kt.first*cos( kt.second ),
kt.first*sin( kt.second ) );
}
}
particle->showerKinematics()->
updateChildren( newParent, theChildren,
type==branch->sudakov()->interactionType() );
if(hardOnly()) return true;
// perform the shower of the final-state particle
if( timelike->children().empty() ) {
timeLikeShower( otherChild , type,true);
}
else {
truncatedTimeLikeShower( otherChild, timelike , type);
}
// return the emitted
return true;
}
// assign the splitting function and shower kinematics
particle->setShowerKinematics( bb.kinematics );
// For the time being we are considering only 1->2 branching
// Now create the actual particles, make the otherChild a final state
// particle, while the newParent is not
ShowerParticlePtr newParent = new_ptr( ShowerParticle( part[0], false ) );
ShowerParticlePtr otherChild = new_ptr( ShowerParticle( part[1], true, true ) );
ShowerParticleVector theChildren;
theChildren.push_back( particle );
theChildren.push_back( otherChild );
particle->showerKinematics()->updateParent( newParent, theChildren , true);
// update the history if needed
currentTree()->updateInitialStateShowerProduct( progenitor(), newParent );
currentTree()->addInitialStateBranching( particle, newParent, otherChild );
// for the reconstruction of kinematics, parent/child
// relationships are according to the branching process:
// now continue the shower
bool emitted = truncatedSpaceLikeShower( newParent, beam, branch,type);
// now reconstruct the momentum
if( !emitted ) {
if( intrinsicpT().find( progenitor() ) == intrinsicpT().end() ) {
bb.kinematics->updateLast( newParent, ZERO, ZERO );
}
else {
pair<Energy,double> kt = intrinsicpT()[ progenitor() ];
bb.kinematics->updateLast( newParent,
kt.first*cos( kt.second ),
kt.first*sin( kt.second ) );
}
}
particle->showerKinematics()->updateChildren( newParent, theChildren , true);
// perform the shower of the final-state particle
timeLikeShower( otherChild , type,true);
// return the emitted
return true;
}
bool Evolver::
truncatedSpaceLikeDecayShower(tShowerParticlePtr particle, Energy maxscale,
Energy minmass, HardBranchingPtr branch,
ShowerInteraction::Type type) {
Branching fb;
unsigned int iout=0;
tcPDPtr pdata[2];
while (true) {
// no truncated shower break
if(!isTruncatedShowerON()||hardOnly()) break;
fb=splittingGenerator()->chooseDecayBranching(*particle,maxscale,minmass,1.,type);
// return if no radiation
if(!fb.kinematics) break;
// check haven't evolved too far
if(fb.kinematics->scale() < branch->scale()) {
fb=Branching();
break;
}
// get the particle data objects
for(unsigned int ix=0;ix<2;++ix) pdata[ix]=getParticleData(fb.ids[ix+1]);
if(particle->id()!=fb.ids[0]) {
for(unsigned int ix=0;ix<2;++ix) {
tPDPtr cc(pdata[ix]->CC());
if(cc) pdata[ix]=cc;
}
}
// find the truncated line
iout=0;
if(pdata[0]->id()!=pdata[1]->id()) {
if(pdata[0]->id()==particle->id()) iout=1;
else if (pdata[1]->id()==particle->id()) iout=2;
}
else if(pdata[0]->id()==particle->id()) {
if(fb.kinematics->z()>0.5) iout=1;
else iout=2;
}
// apply the vetos for the truncated shower
// no flavour changing branchings
if(iout==0) {
particle->setEvolutionScale(fb.kinematics->scale());
continue;
}
double zsplit = iout==1 ? fb.kinematics->z() : 1-fb.kinematics->z();
if(type==branch->sudakov()->interactionType()) {
if(zsplit < 0.5 || // hardest line veto
fb.kinematics->scale()*zsplit < branch->scale() ) { // angular ordering veto
particle->setEvolutionScale(fb.kinematics->scale());
continue;
}
}
// pt veto
if(fb.kinematics->pT() > progenitor()->maximumpT(type)) {
particle->setEvolutionScale(fb.kinematics->scale());
continue;
}
// should do base class vetos as well
// if not vetoed break
if(!spaceLikeDecayVetoed(fb,particle,type)) break;
// otherwise reset scale and continue
particle->setEvolutionScale(fb.kinematics->scale());
}
// if no branching set decay matrix and return
if(!fb.kinematics) {
// construct the kinematics for the hard emission
ShoKinPtr showerKin=
branch->sudakov()->createDecayBranching(branch->scale(),
branch->children()[0]->z(),
branch->phi(),
branch->children()[0]->pT());
particle->setEvolutionScale(branch->scale() );
showerKin->initialize( *particle,PPtr() );
IdList idlist(3);
idlist[0] = particle->id();
idlist[1] = branch->children()[0]->branchingParticle()->id();
idlist[2] = branch->children()[1]->branchingParticle()->id();
fb = Branching( showerKin, idlist, branch->sudakov() );
// Assign the shower kinematics to the emitting particle.
particle->setShowerKinematics( fb.kinematics );
// Assign the splitting function to the emitting particle.
// For the time being we are considering only 1->2 branching
// Create the ShowerParticle objects for the two children of
// the emitting particle; set the parent/child relationship
// if same as definition create particles, otherwise create cc
ShowerParticleVector theChildren;
theChildren.push_back(new_ptr(ShowerParticle(branch->children()[0]->
branchingParticle()->dataPtr(),true)));
theChildren.push_back(new_ptr(ShowerParticle(branch->children()[1]->
branchingParticle()->dataPtr(),true)));
particle->showerKinematics()->
updateChildren(particle, theChildren,
type==branch->sudakov()->interactionType());
if(theChildren[0]->id()==particle->id()) {
// update the history if needed
currentTree()->updateInitialStateShowerProduct(progenitor(),theChildren[0]);
currentTree()->addInitialStateBranching(particle,theChildren[0],theChildren[1]);
// shower the space-like particle
if( branch->children()[0]->children().empty() ) {
if( ! hardOnly() ) spaceLikeDecayShower(theChildren[0],maxscale,minmass,type);
}
else {
truncatedSpaceLikeDecayShower( theChildren[0],maxscale,minmass,
branch->children()[0],type);
}
// shower the second particle
if( branch->children()[1]->children().empty() ) {
if( ! hardOnly() ) timeLikeShower( theChildren[1] , type,true);
}
else {
truncatedTimeLikeShower( theChildren[1],branch->children()[1] ,type);
}
}
else {
// update the history if needed
currentTree()->updateInitialStateShowerProduct(progenitor(),theChildren[1]);
currentTree()->addInitialStateBranching(particle,theChildren[0],theChildren[1]);
// shower the space-like particle
if( branch->children()[1]->children().empty() ) {
if( ! hardOnly() ) spaceLikeDecayShower(theChildren[1],maxscale,minmass,type);
}
else {
truncatedSpaceLikeDecayShower( theChildren[1],maxscale,minmass,
branch->children()[1],type);
}
// shower the second particle
if( branch->children()[0]->children().empty() ) {
if( ! hardOnly() ) timeLikeShower( theChildren[0] , type,true);
}
else {
truncatedTimeLikeShower( theChildren[0],branch->children()[0] ,type);
}
}
return true;
}
// has emitted
// Assign the shower kinematics to the emitting particle.
particle->setShowerKinematics(fb.kinematics);
// For the time being we are considering only 1->2 branching
// Create the ShowerParticle objects for the two children of
// the emitting particle; set the parent/child relationship
// if same as definition create particles, otherwise create cc
ShowerParticleVector theChildren;
theChildren.push_back(new_ptr(ShowerParticle(pdata[0],true)));
theChildren.push_back(new_ptr(ShowerParticle(pdata[1],true)));
particle->showerKinematics()->updateChildren(particle, theChildren,true);
// In the case of splittings which involves coloured particles,
// set properly the colour flow of the branching.
// update the history if needed
currentTree()->updateInitialStateShowerProduct(progenitor(),theChildren[0]);
currentTree()->addInitialStateBranching(particle,theChildren[0],theChildren[1]);
// shower the first particle
truncatedSpaceLikeDecayShower(theChildren[0],maxscale,minmass,branch,type);
// shower the second particle
timeLikeShower(theChildren[1],type,true);
// branching has happened
return true;
}
bool Evolver::constructDecayTree(vector<ShowerProgenitorPtr> & particlesToShower,
ShowerInteraction::Type inter) {
Energy ptmax(-GeV);
// get the maximum pt is all ready a hard tree
if(hardTree()) {
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(particlesToShower[ix]->maximumpT(inter)>ptmax&&
particlesToShower[ix]->progenitor()->isFinalState())
ptmax = particlesToShower[ix]->maximumpT(inter);
}
}
vector<HardBranchingPtr> spaceBranchings,allBranchings;
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(particlesToShower[ix]->progenitor()->isFinalState()) {
HardBranchingPtr newBranch;
if(particlesToShower[ix]->hasEmitted()) {
newBranch =
new_ptr(HardBranching(particlesToShower[ix]->progenitor(),
particlesToShower[ix]->progenitor()->
showerKinematics()->SudakovFormFactor(),
HardBranchingPtr(),HardBranching::Outgoing));
constructTimeLikeLine(newBranch,particlesToShower[ix]->progenitor());
}
else {
newBranch =
new_ptr(HardBranching(particlesToShower[ix]->progenitor(),
SudakovPtr(),HardBranchingPtr(),
HardBranching::Outgoing));
}
allBranchings.push_back(newBranch);
}
else {
HardBranchingPtr newBranch;
if(particlesToShower[ix]->hasEmitted()) {
newBranch =
new_ptr(HardBranching(particlesToShower[ix]->progenitor(),
particlesToShower[ix]->progenitor()->
showerKinematics()->SudakovFormFactor(),
HardBranchingPtr(),HardBranching::Decay));
constructTimeLikeLine(newBranch,particlesToShower[ix]->progenitor());
HardBranchingPtr last=newBranch;
do {
for(unsigned int ix=0;ix<last->children().size();++ix) {
if(last->children()[ix]->branchingParticle()->id()==
particlesToShower[ix]->id()) {
last = last->children()[ix];
continue;
}
}
}
while(!last->children().empty());
last->status(HardBranching::Incoming);
spaceBranchings.push_back(newBranch);
allBranchings .push_back(last);
}
else {
newBranch =
new_ptr(HardBranching(particlesToShower[ix]->progenitor(),
SudakovPtr(),HardBranchingPtr(),
HardBranching::Incoming));
spaceBranchings.push_back(newBranch);
allBranchings .push_back(newBranch);
}
}
}
HardTreePtr QCDTree = new_ptr(HardTree(allBranchings,spaceBranchings,inter));
// set the charge partners
ShowerParticleVector particles;
particles.push_back(spaceBranchings.back()->branchingParticle());
for(set<HardBranchingPtr>::iterator cit=QCDTree->branchings().begin();
cit!=QCDTree->branchings().end();++cit) {
if((*cit)->status()==HardBranching::Outgoing)
particles.push_back((*cit)->branchingParticle());
}
// get the partners
showerModel()->partnerFinder()->setInitialEvolutionScales(particles,true,inter,true);
// do the inverse recon
if(!showerModel()->kinematicsReconstructor()->
deconstructDecayJets(QCDTree,this,inter)) {
return false;
}
// clear the old shower
currentTree()->clear();
// set the hard tree
hardTree(QCDTree);
// set the charge partners
setEvolutionPartners(false,inter);
// get the particles to be showered
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator cit;
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
particlesToShower.clear();
// incoming particles
for(cit=currentTree()->incomingLines().begin();
cit!=currentTree()->incomingLines().end();++cit)
particlesToShower.push_back(((*cit).first));
assert(particlesToShower.size()==1);
// outgoing particles
for(cjt=currentTree()->outgoingLines().begin();
cjt!=currentTree()->outgoingLines().end();++cjt) {
particlesToShower.push_back(((*cjt).first));
if(ptmax>ZERO) particlesToShower.back()->maximumpT(ptmax,inter);
}
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit=hardTree()->particles().end(),
mit = hardTree()->particles().find(particlesToShower[ix]->progenitor());
if( mit != eit) {
if(mit->second->status()==HardBranching::Outgoing)
particlesToShower[ix]->progenitor()->set5Momentum(mit->second->pVector());
}
}
return true;
}
void Evolver::constructHardTree(vector<ShowerProgenitorPtr> & particlesToShower,
ShowerInteraction::Type inter) {
bool noEmission = true;
vector<HardBranchingPtr> spaceBranchings,allBranchings;
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(particlesToShower[ix]->progenitor()->isFinalState()) {
HardBranchingPtr newBranch;
if(particlesToShower[ix]->hasEmitted()) {
noEmission = false;
newBranch =
new_ptr(HardBranching(particlesToShower[ix]->progenitor(),
particlesToShower[ix]->progenitor()->
showerKinematics()->SudakovFormFactor(),
HardBranchingPtr(),HardBranching::Outgoing));
constructTimeLikeLine(newBranch,particlesToShower[ix]->progenitor());
}
else {
newBranch =
new_ptr(HardBranching(particlesToShower[ix]->progenitor(),
SudakovPtr(),HardBranchingPtr(),
HardBranching::Outgoing));
}
allBranchings.push_back(newBranch);
}
else {
HardBranchingPtr first,last;
if(!particlesToShower[ix]->progenitor()->parents().empty()) {
noEmission = false;
constructSpaceLikeLine(particlesToShower[ix]->progenitor(),
first,last,SudakovPtr(),
particlesToShower[ix]->original()->parents()[0]);
}
else {
first = new_ptr(HardBranching(particlesToShower[ix]->progenitor(),
SudakovPtr(),HardBranchingPtr(),
HardBranching::Incoming));
if(particlesToShower[ix]->original()->parents().empty())
first->beam(particlesToShower[ix]->original());
else
first->beam(particlesToShower[ix]->original()->parents()[0]);
last = first;
}
spaceBranchings.push_back(first);
allBranchings.push_back(last);
}
}
if(!noEmission) {
HardTreePtr QCDTree = new_ptr(HardTree(allBranchings,spaceBranchings,
inter));
// set the charge partners
ShowerParticleVector particles;
for(set<HardBranchingPtr>::iterator cit=QCDTree->branchings().begin();
cit!=QCDTree->branchings().end();++cit) {
particles.push_back((*cit)->branchingParticle());
}
// get the partners
showerModel()->partnerFinder()->setInitialEvolutionScales(particles,false,
inter,true);
// do the inverse recon
if(!showerModel()->kinematicsReconstructor()->
deconstructHardJets(QCDTree,this,inter))
throw Exception() << "Can't to shower deconstruction for QED shower in"
<< "QEDEvolver::showerHard" << Exception::eventerror;
// set the hard tree
hardTree(QCDTree);
}
// clear the old shower
currentTree()->clear();
// set the charge partners
setEvolutionPartners(true,inter);
// get the particles to be showered
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator cit;
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
particlesToShower.clear();
// incoming particles
for(cit=currentTree()->incomingLines().begin();
cit!=currentTree()->incomingLines().end();++cit)
particlesToShower.push_back(((*cit).first));
assert(particlesToShower.size()==2);
// outgoing particles
for(cjt=currentTree()->outgoingLines().begin();
cjt!=currentTree()->outgoingLines().end();++cjt)
particlesToShower.push_back(((*cjt).first));
// reset momenta
if(hardTree()) {
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit=hardTree()->particles().end(),
mit = hardTree()->particles().find(particlesToShower[ix]->progenitor());
if( mit != eit) {
particlesToShower[ix]->progenitor()->set5Momentum(mit->second->showerMomentum());
}
}
}
}
void Evolver::constructTimeLikeLine(tHardBranchingPtr branch,
tShowerParticlePtr particle) {
for(unsigned int ix=0;ix<particle->children().size();++ix) {
HardBranching::Status status = branch->status();
tShowerParticlePtr child =
dynamic_ptr_cast<ShowerParticlePtr>(particle->children()[ix]);
if(child->children().empty()) {
HardBranchingPtr newBranch =
new_ptr(HardBranching(child,SudakovPtr(),branch,status));
branch->addChild(newBranch);
}
else {
HardBranchingPtr newBranch =
new_ptr(HardBranching(child,child->showerKinematics()->SudakovFormFactor(),
branch,status));
constructTimeLikeLine(newBranch,child);
branch->addChild(newBranch);
}
}
}
void Evolver::constructSpaceLikeLine(tShowerParticlePtr particle,
HardBranchingPtr & first,
HardBranchingPtr & last,
SudakovPtr sud,PPtr beam) {
if(!particle) return;
if(!particle->parents().empty()) {
tShowerParticlePtr parent =
dynamic_ptr_cast<ShowerParticlePtr>(particle->parents()[0]);
SudakovPtr newSud=particle->showerKinematics()->SudakovFormFactor();
constructSpaceLikeLine(parent,first,last,newSud,beam);
}
HardBranchingPtr newBranch =
new_ptr(HardBranching(particle,sud,last,HardBranching::Incoming));
newBranch->beam(beam);
if(!first) {
first=newBranch;
last =newBranch;
return;
}
last->addChild(newBranch);
tShowerParticlePtr timeChild =
dynamic_ptr_cast<ShowerParticlePtr>(particle->parents()[0]->children()[1]);
HardBranchingPtr timeBranch;
if(!timeChild->children().empty()) {
timeBranch =
new_ptr(HardBranching(timeChild,
timeChild->showerKinematics()->SudakovFormFactor(),
last,HardBranching::Outgoing));
constructTimeLikeLine(timeBranch,timeChild);
}
else {
timeBranch =
new_ptr(HardBranching(timeChild,SudakovPtr(),last,HardBranching::Outgoing));
}
last->addChild(timeBranch);
last=newBranch;
}
void Evolver::connectTrees(ShowerTreePtr showerTree,
HardTreePtr hardTree, bool hard ) {
ShowerParticleVector particles;
// find the Sudakovs
for(set<HardBranchingPtr>::iterator cit=hardTree->branchings().begin();
cit!=hardTree->branchings().end();++cit) {
// Sudakovs for ISR
if((**cit).parent()&&(**cit).status()==HardBranching::Incoming) {
++_nis;
IdList br(3);
br[0] = (**cit).parent()->branchingParticle()->id();
br[1] = (**cit). branchingParticle()->id();
br[2] = (**cit).parent()->children()[0]==*cit ?
(**cit).parent()->children()[1]->branchingParticle()->id() :
(**cit).parent()->children()[0]->branchingParticle()->id();
BranchingList branchings = splittingGenerator()->initialStateBranchings();
if(br[1]<0&&br[0]==br[1]) {
br[0] = abs(br[0]);
br[1] = abs(br[1]);
}
else if(br[1]<0) {
br[1] = -br[1];
br[2] = -br[2];
}
long index = abs(br[1]);
SudakovPtr sudakov;
for(BranchingList::const_iterator cjt = branchings.lower_bound(index);
cjt != branchings.upper_bound(index); ++cjt ) {
IdList ids = cjt->second.second;
if(ids[0]==br[0]&&ids[1]==br[1]&&ids[2]==br[2]) {
sudakov=cjt->second.first;
break;
}
}
if(!sudakov) throw Exception() << "Can't find Sudakov for the hard emission in "
<< "Evolver::connectTrees() for ISR"
<< Exception::runerror;
(**cit).parent()->sudakov(sudakov);
}
// Sudakovs for FSR
else if(!(**cit).children().empty()) {
++_nfs;
IdList br(3);
br[0] = (**cit) .branchingParticle()->id();
br[1] = (**cit).children()[0]->branchingParticle()->id();
br[2] = (**cit).children()[1]->branchingParticle()->id();
BranchingList branchings = splittingGenerator()->finalStateBranchings();
if(br[0]<0) {
br[0] = abs(br[0]);
br[1] = abs(br[1]);
br[2] = abs(br[2]);
}
long index = br[0];
SudakovPtr sudakov;
for(BranchingList::const_iterator cjt = branchings.lower_bound(index);
cjt != branchings.upper_bound(index); ++cjt ) {
IdList ids = cjt->second.second;
if(ids[0]==br[0]&&ids[1]==br[1]&&ids[2]==br[2]) {
sudakov=cjt->second.first;
break;
}
}
if(!sudakov) throw Exception() << "Can't find Sudakov for the hard emission in "
<< "Evolver::connectTrees()"
<< Exception::runerror;
(**cit).sudakov(sudakov);
}
}
// calculate the evolution scale
for(set<HardBranchingPtr>::iterator cit=hardTree->branchings().begin();
cit!=hardTree->branchings().end();++cit) {
particles.push_back((*cit)->branchingParticle());
}
showerModel()->partnerFinder()->
setInitialEvolutionScales(particles,!hard,hardTree->interaction(),
!hardTree->partnersSet());
hardTree->partnersSet(true);
// inverse reconstruction
if(hard)
showerModel()->kinematicsReconstructor()->
deconstructHardJets(hardTree,ShowerHandler::currentHandler()->evolver(),
hardTree->interaction());
else
showerModel()->kinematicsReconstructor()->
deconstructDecayJets(hardTree,ShowerHandler::currentHandler()->evolver(),
hardTree->interaction());
// now reset the momenta of the showering particles
vector<ShowerProgenitorPtr> particlesToShower;
for(map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit=showerTree->incomingLines().begin();
cit!=showerTree->incomingLines().end();++cit )
particlesToShower.push_back(cit->first);
// extract the showering particles
for(map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
cit=showerTree->outgoingLines().begin();
cit!=showerTree->outgoingLines().end();++cit )
particlesToShower.push_back(cit->first);
// match them
vector<bool> matched(particlesToShower.size(),false);
for(set<HardBranchingPtr>::const_iterator cit=hardTree->branchings().begin();
cit!=hardTree->branchings().end();++cit) {
Energy2 dmin( 1e30*GeV2 );
int iloc(-1);
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(matched[ix]) continue;
if( (**cit).branchingParticle()->id() != particlesToShower[ix]->progenitor()->id() ) continue;
if( (**cit).branchingParticle()->isFinalState() !=
particlesToShower[ix]->progenitor()->isFinalState() ) continue;
Energy2 dtest =
sqr( particlesToShower[ix]->progenitor()->momentum().x() - (**cit).showerMomentum().x() ) +
sqr( particlesToShower[ix]->progenitor()->momentum().y() - (**cit).showerMomentum().y() ) +
sqr( particlesToShower[ix]->progenitor()->momentum().z() - (**cit).showerMomentum().z() ) +
sqr( particlesToShower[ix]->progenitor()->momentum().t() - (**cit).showerMomentum().t() );
// add mass difference for identical particles (e.g. Z0 Z0 production)
dtest += 1e10*sqr(particlesToShower[ix]->progenitor()->momentum().m()-
(**cit).showerMomentum().m());
if( dtest < dmin ) {
iloc = ix;
dmin = dtest;
}
}
if(iloc<0) throw Exception() << "Failed to match shower and hard trees in Evolver::hardestEmission"
<< Exception::eventerror;
particlesToShower[iloc]->progenitor()->set5Momentum((**cit).showerMomentum());
matched[iloc] = true;
}
// correction boosts for daughter trees
for(map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator
tit = showerTree->treelinks().begin();
tit != showerTree->treelinks().end();++tit) {
ShowerTreePtr decayTree = tit->first;
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit = decayTree->incomingLines().begin();
// reset the momentum of the decay particle
Lorentz5Momentum oldMomentum = cit->first->progenitor()->momentum();
Lorentz5Momentum newMomentum = tit->second.second->momentum();
LorentzRotation boost( oldMomentum.findBoostToCM(),oldMomentum.e()/oldMomentum.mass());
boost.boost (-newMomentum.findBoostToCM(),newMomentum.e()/newMomentum.mass());
decayTree->transform(boost,true);
}
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, Dec 21, 4:41 PM (21 h, 28 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023492
Default Alt Text
(80 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment