Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7878439
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
78 KB
Subscribers
None
View Options
diff --git a/Hadronization/ClusterFissioner.cc b/Hadronization/ClusterFissioner.cc
--- a/Hadronization/ClusterFissioner.cc
+++ b/Hadronization/ClusterFissioner.cc
@@ -1,1740 +1,1740 @@
// -*- C++ -*-
//
// ClusterFissioner.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2019 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// Thisk is the implementation of the non-inlined, non-templated member
// functions of the ClusterFissioner class.
//
#include "ClusterFissioner.h"
#include <ThePEG/Interface/ClassDocumentation.h>
#include <ThePEG/Interface/Reference.h>
#include <ThePEG/Interface/Parameter.h>
#include <ThePEG/Interface/Switch.h>
#include <ThePEG/Persistency/PersistentOStream.h>
#include <ThePEG/Persistency/PersistentIStream.h>
#include <ThePEG/PDT/EnumParticles.h>
#include "Herwig/Utilities/Kinematics.h"
#include "Cluster.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include <ThePEG/Utilities/DescribeClass.h>
#include "ThePEG/Interface/ParMap.h"
#include "Herwig/Utilities/AlphaS.h"
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/lu.hpp>
#include <cassert>
#include <vector>
using namespace Herwig;
DescribeClass<ClusterFissioner,Interfaced>
describeClusterFissioner("Herwig::ClusterFissioner","Herwig.so");
ClusterFissioner::ClusterFissioner() :
_clMaxLight(3.35*GeV),
_clMaxDiquark(3.35*GeV),
_clMaxExotic(3.35*GeV),
_clPowLight(2.0),
_clPowDiquark(2.0),
_clPowExotic(2.0),
_pSplitLight(1.0),
_pSplitExotic(1.0),
_phaseSpaceWeights(0),
_dim(4),
_fissionCluster(0),
_kinematicThresholdChoice(0),
_pwtDIquark(0.0),
_diquarkClusterFission(0),
_btClM(1.0*GeV),
_iopRem(1),
_kappa(1.0e15*GeV/meter),
_enhanceSProb(0),
_m0Fission(2.*GeV),
_massMeasure(0),
_probPowFactor(4.0),
_probShift(0.0),
_kinThresholdShift(1.0*sqr(GeV)),
_strictDiquarkKinematics(0),
_covariantBoost(false),
_hadronizingStrangeDiquarks(2),
_writeOut(0)
{
}
ClusterFissioner::~ClusterFissioner(){
}
IBPtr ClusterFissioner::clone() const {
return new_ptr(*this);
}
IBPtr ClusterFissioner::fullclone() const {
return new_ptr(*this);
}
void ClusterFissioner::persistentOutput(PersistentOStream & os) const {
os << ounit(_clMaxLight,GeV) << ounit(_clMaxHeavy,GeV) << ounit(_clMaxDiquark,GeV) << ounit(_clMaxExotic,GeV)
<< _clPowLight << _clPowHeavy << _clPowDiquark << _clPowExotic
<< _pSplitLight << _pSplitHeavy << _pSplitExotic
<< _fissionCluster << _fissionPwt
<< _pwtDIquark
<< _diquarkClusterFission
<< ounit(_btClM,GeV)
<< _iopRem << ounit(_kappa, GeV/meter)
<< _enhanceSProb << ounit(_m0Fission,GeV) << _massMeasure
<< _dim << _phaseSpaceWeights
<< _hadronSpectrum << _kinematicThresholdChoice
<< _probPowFactor << _probShift << ounit(_kinThresholdShift,sqr(GeV))
<< _strictDiquarkKinematics
<< _covariantBoost
<< _hadronizingStrangeDiquarks
<< _writeOut
;
}
void ClusterFissioner::persistentInput(PersistentIStream & is, int) {
is >> iunit(_clMaxLight,GeV) >> iunit(_clMaxHeavy,GeV) >> iunit(_clMaxDiquark,GeV) >> iunit(_clMaxExotic,GeV)
>> _clPowLight >> _clPowHeavy >> _clPowDiquark >> _clPowExotic
>> _pSplitLight >> _pSplitHeavy >> _pSplitExotic
>> _fissionCluster >> _fissionPwt
>> _pwtDIquark
>> _diquarkClusterFission
>> iunit(_btClM,GeV)
>> _iopRem >> iunit(_kappa, GeV/meter)
>> _enhanceSProb >> iunit(_m0Fission,GeV) >> _massMeasure
>> _dim >> _phaseSpaceWeights
>> _hadronSpectrum >> _kinematicThresholdChoice
>> _probPowFactor >> _probShift >> iunit(_kinThresholdShift,sqr(GeV))
>> _strictDiquarkKinematics
>> _covariantBoost
>> _hadronizingStrangeDiquarks
>> _writeOut
;
}
/*
namespace{
void printV(Lorentz5Momentum p) {
std::cout << "("<<p.e()/GeV<<"|"<<p.vect().x()/GeV<<","<<p.vect().y()/GeV<<","<<p.vect().z()/GeV<<") Mass = "<<p.mass()/GeV<<" m = "<<p.m()/GeV<<"\n";
}
}
*/
void ClusterFissioner::doinit() {
Interfaced::doinit();
if (_writeOut){
std::ofstream out("data_CluFis.dat", std::ios::out);
out.close();
}
for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
if ( _pSplitHeavy.find(id) == _pSplitHeavy.end() ||
_clPowHeavy.find(id) == _clPowHeavy.end() ||
_clMaxHeavy.find(id) == _clMaxHeavy.end() ){
std::cout << "id = "<<id << std::endl;
throw InitException() << "not all parameters have been set for heavy quark cluster fission";
}
}
// for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
// if (
// _clPowDiquark.find(id) == _clPowDiquark.end() ||
// _clMaxDiquark.find(id) == _clMaxDiquark.end() )
// throw InitException() << "not all parameters have been set for diquarks quark cluster fission";
// }
// for default Pwts not needed to initialize
if (_fissionCluster==0) return;
for ( const long& id : spectrum()->lightHadronizingQuarks() ) {
if ( _fissionPwt.find(id) == _fissionPwt.end() )
// check that all relevant weights are set
throw InitException() << "fission weights for light quarks have not been set";
}
/*
// Not needed since we set Diquark weights from quark weights
for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
if ( _fissionPwt.find(id) == _fissionPwt.end() )
throw InitException() << "fission weights for light diquarks have not been set";
}*/
double pwtDquark=_fissionPwt.find(ParticleID::d)->second;
double pwtUquark=_fissionPwt.find(ParticleID::u)->second;
double pwtSquark=_fissionPwt.find(ParticleID::s)->second;
// ERROR: TODO makeDiquarkID is protected function ?
// _fissionPwt[spectrum()->makeDiquarkID(ParticleID::d,ParticleID::d,3)] = _pwtDIquark * pwtDquark * pwtDquark;
// _fissionPwt[spectrum()->makeDiquarkID(ParticleID::u,ParticleID::d,1)] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark;
// _fissionPwt[spectrum()->makeDiquarkID(ParticleID::u,ParticleID::u,3)] = _pwtDIquark * pwtUquark * pwtUquark;
// _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::d,1)] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark;
// _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::u,1)] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark;
// _fissionPwt[spectrum()->makeDiquarkID(ParticleID::s,ParticleID::s,3)] = _pwtDIquark * pwtSquark * pwtSquark;
// TODO better solution for this magic number alternative
_fissionPwt[1103] = _pwtDIquark * pwtDquark * pwtDquark;
_fissionPwt[2101] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark;
_fissionPwt[2203] = _pwtDIquark * pwtUquark * pwtUquark;
if (_hadronizingStrangeDiquarks>0) {
_fissionPwt[3101] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark;
_fissionPwt[3201] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark;
if (_hadronizingStrangeDiquarks==2) {
_fissionPwt[3303] = _pwtDIquark* pwtSquark * pwtSquark;
}
}
}
void ClusterFissioner::Init() {
static ClassDocumentation<ClusterFissioner> documentation
("Class responsibles for chopping up the clusters");
static Reference<ClusterFissioner,HadronSpectrum> interfaceHadronSpectrum
("HadronSpectrum",
"Set the Hadron spectrum for this cluster fissioner.",
&ClusterFissioner::_hadronSpectrum, false, false, true, false);
// ClMax for light, Bottom, Charm and exotic (e.g. Susy) quarks
static Parameter<ClusterFissioner,Energy>
interfaceClMaxLight ("ClMaxLight","cluster max mass for light quarks (unit [GeV])",
&ClusterFissioner::_clMaxLight, GeV, 3.35*GeV, ZERO, 100.0*GeV,
false,false,false);
static Parameter<ClusterFissioner,Energy>
interfaceClMaxDiquark ("ClMaxDiquark","cluster max mass for light hadronizing diquarks (unit [GeV])",
&ClusterFissioner::_clMaxDiquark, GeV, 3.35*GeV, ZERO, 100.0*GeV,
false,false,false);
static ParMap<ClusterFissioner,Energy> interfaceClMaxHeavy
("ClMaxHeavy",
"ClMax for heavy quarks",
&ClusterFissioner::_clMaxHeavy, GeV, -1, 3.35*GeV, ZERO, 100.0*GeV,
false, false, Interface::upperlim);
// static ParMap<ClusterFissioner,Energy> interfaceClMaxDiquark
// ("ClMaxDiquark",
// "ClMax for light hadronizing diquarks",
// &ClusterFissioner::_clMaxDiquark, GeV, -1, 3.35*GeV, ZERO, 100.0*GeV,
// false, false, Interface::upperlim);
static Parameter<ClusterFissioner,Energy>
interfaceClMaxExotic ("ClMaxExotic","cluster max mass for exotic quarks (unit [GeV])",
&ClusterFissioner::_clMaxExotic, GeV, 3.35*GeV, ZERO, 100.0*GeV,
false,false,false);
// ClPow for light, Bottom, Charm and exotic (e.g. Susy) quarks
static Parameter<ClusterFissioner,double>
interfaceClPowLight ("ClPowLight","cluster mass exponent for light quarks",
&ClusterFissioner::_clPowLight, 0, 2.0, 0.0, 10.0,false,false,false);
static ParMap<ClusterFissioner,double> interfaceClPowHeavy
("ClPowHeavy",
"ClPow for heavy quarks",
&ClusterFissioner::_clPowHeavy, -1, 1.0, 0.0, 10.0,
false, false, Interface::upperlim);
// static ParMap<ClusterFissioner,double> interfaceClPowDiquark
// ("ClPowDiquark",
// "ClPow for light hadronizing diquarks",
// &ClusterFissioner::_clPowDiquark, -1, 1.0, 0.0, 10.0,
// false, false, Interface::upperlim);
static Parameter<ClusterFissioner,double>
interfaceClPowDiquark ("ClPowDiquark","cluster mass exponent for light hadronizing diquarks",
&ClusterFissioner::_clPowDiquark, 0, 2.0, 0.0, 10.0,false,false,false);
static Parameter<ClusterFissioner,double>
interfaceClPowExotic ("ClPowExotic","cluster mass exponent for exotic quarks",
&ClusterFissioner::_clPowExotic, 0, 2.0, 0.0, 10.0,false,false,false);
// PSplit for light, Bottom, Charm and exotic (e.g. Susy) quarks
static Parameter<ClusterFissioner,double>
interfacePSplitLight ("PSplitLight","cluster mass splitting param for light quarks",
&ClusterFissioner::_pSplitLight, 0, 1.0, 0.0, 10.0,false,false,false);
static ParMap<ClusterFissioner,double> interfacePSplitHeavy
("PSplitHeavy",
"PSplit for heavy quarks",
&ClusterFissioner::_pSplitHeavy, -1, 1.0, 0.0, 10.0,
false, false, Interface::upperlim);
static Parameter<ClusterFissioner,double>
interfacePSplitExotic ("PSplitExotic","cluster mass splitting param for exotic quarks",
&ClusterFissioner::_pSplitExotic, 0, 1.0, 0.0, 10.0,false,false,false);
static Switch<ClusterFissioner,int> interfaceFission
("Fission",
"Option for different Fission options",
&ClusterFissioner::_fissionCluster, 1, false, false);
static SwitchOption interfaceFissionDefault
(interfaceFission,
"Default",
"Normal cluster fission which depends on the hadron spectrum class.",
0);
static SwitchOption interfaceFissionNew
(interfaceFission,
"New",
"Alternative cluster fission which does not depend on the hadron spectrum class",
1);
static SwitchOption interfaceFissionNewDiquarkSuppression
(interfaceFission,
"NewDiquarkSuppression",
"Alternative cluster fission which does not depend on the hadron spectrum class"
" and includes a suppression of AlphaS^2(Mc) for Diquark Production during "
"Cluster Fission",
-1);
static Switch<ClusterFissioner,int> interfaceDiquarkClusterFission
("DiquarkClusterFission",
"Allow clusters to fission to 1 or 2 diquark Clusters or Turn off diquark fission completely",
&ClusterFissioner::_diquarkClusterFission, 0, false, false);
static SwitchOption interfaceDiquarkClusterFissionAll
(interfaceDiquarkClusterFission,
"All",
"Allow diquark clusters and baryon clusters to fission to new diquark Clusters",
2);
static SwitchOption interfaceDiquarkClusterFissionOnlyBaryonClusters
(interfaceDiquarkClusterFission,
"OnlyBaryonClusters",
"Allow only baryon clusters to fission to new diquark Clusters",
1);
static SwitchOption interfaceDiquarkClusterFissionNo
(interfaceDiquarkClusterFission,
"No",
"Don't allow clusters to fission to new diquark Clusters",
0);
static SwitchOption interfaceDiquarkClusterFissionOff
(interfaceDiquarkClusterFission,
"Off",
"Don't allow clusters fission to draw diquarks ",
-1);
static ParMap<ClusterFissioner,double> interfaceFissionPwt
("FissionPwt",
"The weights for quarks in the fission process.",
&ClusterFissioner::_fissionPwt, -1, 1.0, 0.0, 10.0,
false, false, Interface::upperlim);
static Switch<ClusterFissioner,int> interfaceRemnantOption
("RemnantOption",
"Option for the treatment of remnant clusters",
&ClusterFissioner::_iopRem, 1, false, false);
static SwitchOption interfaceRemnantOptionSoft
(interfaceRemnantOption,
"Soft",
"Both clusters produced in the fission of the beam cluster"
" are treated as soft clusters.",
0);
static SwitchOption interfaceRemnantOptionHard
(interfaceRemnantOption,
"Hard",
"Only the cluster containing the remnant is treated as a soft cluster.",
1);
static SwitchOption interfaceRemnantOptionVeryHard
(interfaceRemnantOption,
"VeryHard",
"Even remnant clusters are treated as hard, i.e. all clusters the same",
2);
static Parameter<ClusterFissioner,Energy> interfaceBTCLM
("SoftClusterFactor",
"Parameter for the mass spectrum of remnant clusters",
&ClusterFissioner::_btClM, GeV, 1.*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<ClusterFissioner,Tension> interfaceStringTension
("StringTension",
"String tension used in vertex displacement calculation",
&ClusterFissioner::_kappa, GeV/meter,
1.0e15*GeV/meter, ZERO, ZERO,
false, false, Interface::lowerlim);
static Switch<ClusterFissioner,int> interfaceEnhanceSProb
("EnhanceSProb",
"Option for enhancing strangeness",
&ClusterFissioner::_enhanceSProb, 0, false, false);
static SwitchOption interfaceEnhanceSProbNo
(interfaceEnhanceSProb,
"No",
"No strangeness enhancement.",
0);
static SwitchOption interfaceEnhanceSProbScaled
(interfaceEnhanceSProb,
"Scaled",
"Scaled strangeness enhancement",
1);
static SwitchOption interfaceEnhanceSProbExponential
(interfaceEnhanceSProb,
"Exponential",
"Exponential strangeness enhancement",
2);
static Switch<ClusterFissioner,int> interfaceMassMeasure
("MassMeasure",
"Option to use different mass measures",
&ClusterFissioner::_massMeasure,0,false,false);
static SwitchOption interfaceMassMeasureMass
(interfaceMassMeasure,
"Mass",
"Mass Measure",
0);
static SwitchOption interfaceMassMeasureLambda
(interfaceMassMeasure,
"Lambda",
"Lambda Measure",
1);
static Parameter<ClusterFissioner,Energy> interfaceFissionMassScale
("FissionMassScale",
"Cluster fission mass scale",
&ClusterFissioner::_m0Fission, GeV, 2.0*GeV, 0.1*GeV, 50.*GeV,
false, false, Interface::limited);
static Parameter<ClusterFissioner,double> interfaceProbPowFactor
- ("ProbablityPowerFactor",
+ ("ProbabilityPowerFactor",
"Power factor in ClusterFissioner bell probablity function",
&ClusterFissioner::_probPowFactor, 2.0, 0.001, 20.0,
false, false, Interface::limited);
static Parameter<ClusterFissioner,double> interfaceProbShift
- ("ProbablityShift",
+ ("ProbabilityShift",
"Shifts from the center in ClausterFissioner bell probablity function",
&ClusterFissioner::_probShift, 0.0, -10.0, 10.0,
false, false, Interface::limited);
static Parameter<ClusterFissioner,Energy2> interfaceKineticThresholdShift
("KineticThresholdShift",
"Shifts from the kinetic threshold in ClusterFissioner",
&ClusterFissioner::_kinThresholdShift, sqr(GeV), 0.*sqr(GeV), -10.0*sqr(GeV), 10.0*sqr(GeV),
false, false, Interface::limited);
static Switch<ClusterFissioner,int> interfaceKinematicThreshold
("KinematicThreshold",
"Option for using static or dynamic kinematic thresholds in cluster splittings",
&ClusterFissioner::_kinematicThresholdChoice, 0, false, false);
static SwitchOption interfaceKinematicThresholdStatic
(interfaceKinematicThreshold,
"Static",
"Set static kinematic thresholds for cluster splittings.",
0);
static SwitchOption interfaceKinematicThresholdDynamic
(interfaceKinematicThreshold,
"Dynamic",
"Set dynamic kinematic thresholds for cluster splittings.",
1);
static Switch<ClusterFissioner,bool> interfaceCovariantBoost
("CovariantBoost",
"Use single Covariant Boost for Cluster Fission",
&ClusterFissioner::_covariantBoost, false, false, false);
static SwitchOption interfaceCovariantBoostYes
(interfaceCovariantBoost,
"Yes",
"Use Covariant boost",
true);
static SwitchOption interfaceCovariantBoostNo
(interfaceCovariantBoost,
"No",
"Do NOT use Covariant boost",
false);
static Switch<ClusterFissioner,int> interfaceStrictDiquarkKinematics
("StrictDiquarkKinematics",
"Option for selecting different selection criterions of diquarks for ClusterFission",
&ClusterFissioner::_strictDiquarkKinematics, 0, false, false);
static SwitchOption interfaceStrictDiquarkKinematicsLoose
(interfaceStrictDiquarkKinematics,
"Loose",
"No kinematic threshold for diquark selection except for Mass bigger than 2 baryons",
0);
static SwitchOption interfaceStrictDiquarkKinematicsStrict
(interfaceStrictDiquarkKinematics,
"Strict",
"Resulting clusters are at least as heavy as 2 lightest baryons",
1);
static Parameter<ClusterFissioner,double> interfacePwtDIquark
("PwtDIquark",
"specific probability for choosing a d diquark",
&ClusterFissioner::_pwtDIquark, 0.0, 0.0, 10.0,
false, false, Interface::limited);
static Switch<ClusterFissioner,int> interfacePhaseSpaceWeights
("PhaseSpaceWeights",
"Include phase space weights.",
&ClusterFissioner::_phaseSpaceWeights, 0, false, false);
static SwitchOption interfacePhaseSpaceWeightsNo
(interfacePhaseSpaceWeights,
"No",
"Do not include the effect of cluster phase space",
0);
static SwitchOption interfacePhaseSpaceWeightsYes
(interfacePhaseSpaceWeights,
"Yes",
"Do include the effect of cluster fission phase space "
"related to constituent masses."
"Note: Need static Threshold choice",
1);
static SwitchOption interfacePhaseSpaceWeightsUseHadronMasses
(interfacePhaseSpaceWeights,
"UseHadronMasses",
"Do include the effect of cluster fission phase space "
"related to hadron masses."
"Note: Need static Threshold choice",
2);
static SwitchOption interfacePhaseSpaceWeightsNoConstituentMasses
(interfacePhaseSpaceWeights,
"NoConstituentMasses",
"Do not include the effect of cluster fission phase space "
"related to constituent masses."
"Note: Need static Threshold choice",
3);
static Parameter<ClusterFissioner,double>
interfaceDim ("Dimension","Dimension in which phase space weights are calculated",
&ClusterFissioner::_dim, 0, 4.0, 0.0, 10.0,false,false,false);
// Allowing for strange diquarks in the ClusterFission
static Switch<ClusterFissioner,unsigned int> interfaceHadronizingStrangeDiquarks
("HadronizingStrangeDiquarks",
"Option for adding strange diquarks to Cluster Fission (if Fission = New or Hybrid is enabled)",
&ClusterFissioner::_hadronizingStrangeDiquarks, 0, false, false);
static SwitchOption interfaceHadronizingStrangeDiquarksNo
(interfaceHadronizingStrangeDiquarks,
"No",
"No strangeness containing diquarks during Cluster Fission",
0);
static SwitchOption interfaceHadronizingStrangeDiquarksOnlySingleStrange
(interfaceHadronizingStrangeDiquarks,
"OnlySingleStrange",
"Only one strangeness containing diquarks during Cluster Fission i.e. su,sd",
1);
static SwitchOption interfaceHadronizingStrangeDiquarksAll
(interfaceHadronizingStrangeDiquarks,
"All",
"All strangeness containing diquarks during Cluster Fission i.e. su,sd,ss",
2);
}
tPVector ClusterFissioner::fission(ClusterVector & clusters, bool softUEisOn) {
// return if no clusters
if (clusters.empty()) return tPVector();
/*****************
* Loop over the (input) collection of cluster pointers, and store in
* the vector splitClusters all the clusters that need to be split
* (these are beam clusters, if soft underlying event is off, and
* heavy non-beam clusters).
********************/
stack<ClusterPtr> splitClusters;
for(ClusterVector::iterator it = clusters.begin() ;
it != clusters.end() ; ++it) {
/**************
* Skip 3-component clusters that have been redefined (as 2-component
* clusters) or not available clusters. The latter check is indeed
* redundant now, but it is used for possible future extensions in which,
* for some reasons, some of the clusters found by ClusterFinder are tagged
* straight away as not available.
**************/
if((*it)->isRedefined() || !(*it)->isAvailable()) continue;
// if the cluster is a beam cluster add it to the vector of clusters
// to be split or if it is heavy
if((*it)->isBeamCluster() || isHeavy(*it)) splitClusters.push(*it);
}
tPVector finalhadrons;
cut(splitClusters, clusters, finalhadrons, softUEisOn);
return finalhadrons;
}
void ClusterFissioner::cut(stack<ClusterPtr> & clusterStack,
ClusterVector &clusters, tPVector & finalhadrons,
bool softUEisOn) {
/**************************************************
* This method does the splitting of the cluster pointed by cluPtr
* and "recursively" by all of its cluster children, if heavy. All of these
* new children clusters are added (indeed the pointers to them) to the
* collection of cluster pointers collecCluPtr. The method works as follows.
* Initially the vector vecCluPtr contains just the input pointer to the
* cluster to be split. Then it will be filled "recursively" by all
* of the cluster's children that are heavy enough to require, in their turn,
* to be split. In each loop, the last element of the vector vecCluPtr is
* considered (only once because it is then removed from the vector).
* This approach is conceptually recursive, but avoid the overhead of
* a concrete recursive function. Furthermore it requires minimal changes
* in the case that the fission of an heavy cluster could produce more
* than two cluster children as assumed now.
*
* Draw the masses: for normal, non-beam clusters a power-like mass dist
* is used, whereas for beam clusters a fast-decreasing exponential mass
* dist is used instead (to avoid many iterative splitting which could
* produce an unphysical large transverse energy from a supposed soft beam
* remnant process).
****************************************/
// Here we recursively loop over clusters in the stack and cut them
while (!clusterStack.empty()) {
// take the last element of the vector
ClusterPtr iCluster = clusterStack.top(); clusterStack.pop();
// split it
cutType ct = iCluster->numComponents() == 2 ?
cutTwo(iCluster, finalhadrons, softUEisOn) :
cutThree(iCluster, finalhadrons, softUEisOn);
// There are cases when we don't want to split, even if it fails mass test
if(!ct.first.first || !ct.second.first) {
// if an unsplit beam cluster leave if for the underlying event
if(iCluster->isBeamCluster() && softUEisOn)
iCluster->isAvailable(false);
continue;
}
// check if clusters
ClusterPtr one = dynamic_ptr_cast<ClusterPtr>(ct.first.first);
ClusterPtr two = dynamic_ptr_cast<ClusterPtr>(ct.second.first);
// is a beam cluster must be split into two clusters
if(iCluster->isBeamCluster() && (!one||!two) && softUEisOn) {
iCluster->isAvailable(false);
continue;
}
// There should always be a intermediate quark(s) from the splitting
assert(ct.first.second && ct.second.second);
/// \todo sort out motherless quark pairs here. Watch out for 'quark in final state' errors
iCluster->addChild(ct.first.first);
// iCluster->addChild(ct.first.second);
// ct.first.second->addChild(ct.first.first);
iCluster->addChild(ct.second.first);
// iCluster->addChild(ct.second.second);
// ct.second.second->addChild(ct.second.first);
// Sometimes the clusters decay C -> H + C' or C -> H + H' rather then C -> C' + C''
if(one) {
clusters.push_back(one);
if(one->isBeamCluster() && softUEisOn)
one->isAvailable(false);
if(isHeavy(one) && one->isAvailable())
clusterStack.push(one);
}
if(two) {
clusters.push_back(two);
if(two->isBeamCluster() && softUEisOn)
two->isAvailable(false);
if(isHeavy(two) && two->isAvailable())
clusterStack.push(two);
}
}
}
ClusterFissioner::cutType
ClusterFissioner::cutTwo(ClusterPtr & cluster, tPVector & finalhadrons,
bool softUEisOn) {
// need to make sure only 2-cpt clusters get here
assert(cluster->numComponents() == 2);
tPPtr ptrQ1 = cluster->particle(0);
tPPtr ptrQ2 = cluster->particle(1);
Energy Mc = cluster->mass();
assert(ptrQ1);
assert(ptrQ2);
// And check if those particles are from a beam remnant
bool rem1 = cluster->isBeamRemnant(0);
bool rem2 = cluster->isBeamRemnant(1);
// workout which distribution to use
bool soft1(false),soft2(false);
switch (_iopRem) {
case 0:
soft1 = rem1 || rem2;
soft2 = rem2 || rem1;
break;
case 1:
soft1 = rem1;
soft2 = rem2;
break;
}
// Initialization for the exponential ("soft") mass distribution.
static const int max_loop = 1000;
int counter = 0;
Energy Mc1 = ZERO, Mc2 = ZERO,m1=ZERO,m2=ZERO,m=ZERO;
tcPDPtr toHadron1, toHadron2;
PPtr newPtr1 = PPtr ();
PPtr newPtr2 = PPtr ();
bool succeeded = false;
Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
do
{
succeeded = false;
++counter;
// get a flavour for the qqbar pair
drawNewFlavour(newPtr1,newPtr2,cluster);
// check for right ordering
assert (ptrQ2);
assert (newPtr2);
assert (ptrQ2->dataPtr());
assert (newPtr2->dataPtr());
if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) {
swap(newPtr1, newPtr2);
// check again
if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) {
throw Exception()
<< "ClusterFissioner cannot split the cluster ("
<< ptrQ1->PDGName() << ' ' << ptrQ2->PDGName()
<< ") into hadrons.\n" << Exception::runerror;
}
}
// Check that new clusters can produce particles and there is enough
// phase space to choose the drawn flavour
m1 = ptrQ1->data().constituentMass();
m2 = ptrQ2->data().constituentMass();
m = newPtr1->data().constituentMass();
// Do not split in the case there is no phase space available
if(Mc < m1+m + m2+m) continue;
pQ1.setMass(m1);
pQone.setMass(m);
pQtwo.setMass(m);
pQ2.setMass(m2);
// pair<Energy,Energy> res = drawNewMasses(Mc, soft1, soft2, pClu1, pClu2,
// ptrQ1, pQ1, newPtr1, pQone,
// newPtr2, pQtwo, ptrQ2, pQ2);
double weightMasses = drawNewMasses(Mc, soft1, soft2, pClu1, pClu2,
ptrQ1, pQ1, newPtr1, pQone,
newPtr2, pQtwo, ptrQ2, pQ2);
if (weightMasses==0.0)
continue;
// derive the masses of the children
Mc1 = pClu1.mass();
Mc2 = pClu2.mass();
// static kinematic threshold
if(_kinematicThresholdChoice == 0) {
if (Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > Mc) continue;
if (_phaseSpaceWeights==2 &&
( Mc1 < spectrum()->massLightestHadronPair(ptrQ1->dataPtr(),newPtr1->dataPtr())
|| Mc2 < spectrum()->massLightestHadronPair(ptrQ2->dataPtr(),newPtr2->dataPtr()) ))
continue;
// dynamic kinematic threshold
}
else if(_kinematicThresholdChoice == 1) {
bool C1 = ( sqr(Mc1) )/( sqr(m1) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
bool C2 = ( sqr(Mc2) )/( sqr(m2) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
bool C3 = ( sqr(Mc1) + sqr(Mc2) )/( sqr(Mc) ) > 1.0 ? true : false;
if( C1 || C2 || C3 ) continue;
}
if ( _phaseSpaceWeights && phaseSpaceVeto(Mc,Mc1,Mc2,m,m1,m2, ptrQ1, ptrQ2, newPtr1, 0.0) ) {
// reduce counter as it regards only the mass sampling
counter--;
continue;
}
/**************************
* New (not present in Fortran Herwig):
* check whether the fragment masses Mc1 and Mc2 are above the
* threshold for the production of the lightest pair of hadrons with the
* right flavours. If not, then set by hand the mass to the lightest
* single hadron with the right flavours, in order to solve correctly
* the kinematics, and (later in this method) create directly such hadron
* and add it to the children hadrons of the cluster that undergoes the
* fission (i.e. the one pointed by iCluPtr). Notice that in this special
* case, the heavy cluster that undergoes the fission has one single
* cluster child and one single hadron child. We prefer this approach,
* rather than to create a light cluster, with the mass set equal to
* the lightest hadron, and let then the class LightClusterDecayer to do
* the job to decay it to that single hadron, for two reasons:
* First, because the sum of the masses of the two constituents can be,
* in this case, greater than the mass of that hadron, hence it would
* be impossible to solve the kinematics for such two components, and
* therefore we would have a cluster whose components are undefined.
* Second, the algorithm is faster, because it avoids the reshuffling
* procedure that would be necessary if we used LightClusterDecayer
* to decay the light cluster to the lightest hadron.
****************************/
// override chosen masses if needed
toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc1);
if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); }
toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc2);
if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); }
// if a beam cluster not allowed to decay to hadrons
if(cluster->isBeamCluster() && (toHadron1||toHadron2) && softUEisOn)
continue;
// Check if the decay kinematics is still possible: if not then
// force the one-hadron decay for the other cluster as well.
if(Mc1 + Mc2 > Mc) {
if(!toHadron1) {
toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc-Mc2);
if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); }
}
else if(!toHadron2) {
toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc-Mc1);
if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); }
}
}
succeeded = (Mc >= Mc1+Mc2);
}
while (!succeeded && counter < max_loop);
if(counter >= max_loop) {
static const PPtr null = PPtr();
return cutType(PPair(null,null),PPair(null,null));
}
// Determined the (5-components) momenta (all in the LAB frame)
Lorentz5Momentum pClu = cluster->momentum(); // known
Lorentz5Momentum p0Q1 = ptrQ1->momentum(); // known (mom Q1 before fission)
calculateKinematics(pClu,p0Q1,toHadron1,toHadron2,
pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
/******************
* The previous methods have determined the kinematics and positions
* of C -> C1 + C2.
* In the case that one of the two product is light, that means either
* decayOneHadronClu1 or decayOneHadronClu2 is true, then the momenta
* of the components of that light product have not been determined,
* and a (light) cluster will not be created: the heavy father cluster
* decays, in this case, into a single (not-light) cluster and a
* single hadron. In the other, "normal", cases the father cluster
* decays into two clusters, each of which has well defined components.
* Notice that, in the case of components which point to particles, the
* momenta of the components is properly set to the new values, whereas
* we do not change the momenta of the pointed particles, because we
* want to keep all of the information (that is the new momentum of a
* component after the splitting, which is contained in the _momentum
* member of the Component class, and the (old) momentum of that component
* before the splitting, which is contained in the momentum of the
* pointed particle). Please not make confusion of this only apparent
* inconsistency!
********************/
LorentzPoint posC,pos1,pos2;
posC = cluster->vertex();
calculatePositions(pClu, posC, pClu1, pClu2, pos1, pos2);
cutType rval;
if(toHadron1) {
rval.first = produceHadron(toHadron1, newPtr1, pClu1, pos1);
finalhadrons.push_back(rval.first.first);
}
else {
rval.first = produceCluster(ptrQ1, newPtr1, pClu1, pos1, pQ1, pQone, rem1);
}
if(toHadron2) {
rval.second = produceHadron(toHadron2, newPtr2, pClu2, pos2);
finalhadrons.push_back(rval.second.first);
}
else {
rval.second = produceCluster(ptrQ2, newPtr2, pClu2, pos2, pQ2, pQtwo, rem2);
}
return rval;
}
ClusterFissioner::cutType
ClusterFissioner::cutThree(ClusterPtr & cluster, tPVector & finalhadrons,
bool softUEisOn) {
// need to make sure only 3-cpt clusters get here
assert(cluster->numComponents() == 3);
// extract quarks
tPPtr ptrQ[3] = {cluster->particle(0),cluster->particle(1),cluster->particle(2)};
assert( ptrQ[0] && ptrQ[1] && ptrQ[2] );
// find maximum mass pair
Energy mmax(ZERO);
Lorentz5Momentum pDiQuark;
int iq1(-1),iq2(-1);
Lorentz5Momentum psum;
for(int q1=0;q1<3;++q1) {
psum+= ptrQ[q1]->momentum();
for(int q2=q1+1;q2<3;++q2) {
Lorentz5Momentum ptest = ptrQ[q1]->momentum()+ptrQ[q2]->momentum();
ptest.rescaleMass();
Energy mass = ptest.m();
if(mass>mmax) {
mmax = mass;
pDiQuark = ptest;
iq1 = q1;
iq2 = q2;
}
}
}
// and the spectators
int iother(-1);
for(int ix=0;ix<3;++ix) if(ix!=iq1&&ix!=iq2) iother=ix;
assert(iq1>=0&&iq2>=0&&iother>=0);
// And check if those particles are from a beam remnant
bool rem1 = cluster->isBeamRemnant(iq1);
bool rem2 = cluster->isBeamRemnant(iq2);
// workout which distribution to use
bool soft1(false),soft2(false);
switch (_iopRem) {
case 0:
soft1 = rem1 || rem2;
soft2 = rem2 || rem1;
break;
case 1:
soft1 = rem1;
soft2 = rem2;
break;
}
// Initialization for the exponential ("soft") mass distribution.
static const int max_loop = 1000;
int counter = 0;
Energy Mc1 = ZERO, Mc2 = ZERO, m1=ZERO, m2=ZERO, m=ZERO;
tcPDPtr toHadron;
bool toDiQuark(false);
PPtr newPtr1 = PPtr(),newPtr2 = PPtr();
PDPtr diquark;
bool succeeded = false;
Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
do {
succeeded = false;
++counter;
// get a flavour for the qqbar pair
drawNewFlavour(newPtr1,newPtr2,cluster);
// randomly pick which will be (anti)diquark and which a mesonic cluster
if(UseRandom::rndbool()) {
swap(iq1,iq2);
swap(rem1,rem2);
}
// check first order
if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) {
swap(newPtr1,newPtr2);
}
// check again
if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) {
throw Exception()
<< "ClusterFissioner cannot split the cluster ("
<< ptrQ[iq1]->PDGName() << ' ' << ptrQ[iq2]->PDGName()
<< ") into a hadron and diquark.\n" << Exception::runerror;
}
// Check that new clusters can produce particles and there is enough
// phase space to choose the drawn flavour
m1 = ptrQ[iq1]->data().constituentMass();
m2 = ptrQ[iq2]->data().constituentMass();
m = newPtr1->data().constituentMass();
// Do not split in the case there is no phase space available
if(mmax < m1+m + m2+m) continue;
pQ1.setMass(m1);
pQone.setMass(m);
pQtwo.setMass(m);
pQ2.setMass(m2);
double weightMasses = drawNewMasses(mmax, soft1, soft2, pClu1, pClu2,
ptrQ[iq1], pQ1, newPtr1, pQone,
newPtr2, pQtwo, ptrQ[iq1], pQ2);
if (weightMasses == 0.0) continue;
Mc1 = pClu1.mass();
Mc2 = pClu2.mass();
if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > mmax) continue;
if ( _phaseSpaceWeights && phaseSpaceVeto(mmax,Mc1,Mc2,m,m1,m2) ) {
// reduce counter as it regards only the mass sampling
counter--;
continue;
}
// check if need to force meson clster to hadron
toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),Mc1);
if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); }
// check if need to force diquark cluster to be on-shell
toDiQuark = false;
diquark = spectrum()->makeDiquark(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr());
if(Mc2 < diquark->constituentMass()) {
Mc2 = diquark->constituentMass(); pClu2.setMass(Mc2);
toDiQuark = true;
}
// if a beam cluster not allowed to decay to hadrons
if(cluster->isBeamCluster() && toHadron && softUEisOn)
continue;
// Check if the decay kinematics is still possible: if not then
// force the one-hadron decay for the other cluster as well.
if(Mc1 + Mc2 > mmax) {
if(!toHadron) {
toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),mmax-Mc2);
if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); }
}
else if(!toDiQuark) {
Mc2 = _hadronSpectrum->massLightestHadron(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); pClu2.setMass(Mc2);
toDiQuark = true;
}
}
succeeded = (mmax >= Mc1+Mc2);
}
while (!succeeded && counter < max_loop);
// check no of tries
if(counter >= max_loop) return cutType();
// Determine the (5-components) momenta (all in the LAB frame)
Lorentz5Momentum p0Q1 = ptrQ[iq1]->momentum();
calculateKinematics(pDiQuark,p0Q1,toHadron,toDiQuark,
pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
// positions of the new clusters
LorentzPoint pos1,pos2;
Lorentz5Momentum pBaryon = pClu2+ptrQ[iother]->momentum();
calculatePositions(cluster->momentum(), cluster->vertex(), pClu1, pBaryon, pos1, pos2);
// first the mesonic cluster/meson
cutType rval;
if(toHadron) {
rval.first = produceHadron(toHadron, newPtr1, pClu1, pos1);
finalhadrons.push_back(rval.first.first);
}
else {
rval.first = produceCluster(ptrQ[iq1], newPtr1, pClu1, pos1, pQ1, pQone, rem1);
}
if(toDiQuark) {
rem2 |= cluster->isBeamRemnant(iother);
PPtr newDiQuark = diquark->produceParticle(pClu2);
rval.second = produceCluster(newDiQuark, ptrQ[iother], pBaryon, pos2, pClu2,
ptrQ[iother]->momentum(), rem2);
}
else {
rval.second = produceCluster(ptrQ[iq2], newPtr2, pBaryon, pos2, pQ2, pQtwo, rem2,
ptrQ[iother],cluster->isBeamRemnant(iother));
}
cluster->isAvailable(false);
return rval;
}
ClusterFissioner::PPair
ClusterFissioner::produceHadron(tcPDPtr hadron, tPPtr newPtr, const Lorentz5Momentum &a,
const LorentzPoint &b) const {
PPair rval;
if(hadron->coloured()) {
rval.first = (_hadronSpectrum->lightestHadron(hadron,newPtr->dataPtr()))->produceParticle();
}
else
rval.first = hadron->produceParticle();
rval.second = newPtr;
rval.first->set5Momentum(a);
rval.first->setVertex(b);
return rval;
}
ClusterFissioner::PPair ClusterFissioner::produceCluster(tPPtr ptrQ, tPPtr newPtr,
const Lorentz5Momentum & a,
const LorentzPoint & b,
const Lorentz5Momentum & c,
const Lorentz5Momentum & d,
bool isRem,
tPPtr spect, bool remSpect) const {
PPair rval;
rval.second = newPtr;
ClusterPtr cluster = !spect ? new_ptr(Cluster(ptrQ,rval.second)) : new_ptr(Cluster(ptrQ,rval.second,spect));
rval.first = cluster;
cluster->set5Momentum(a);
cluster->setVertex(b);
assert(cluster->particle(0)->id() == ptrQ->id());
cluster->particle(0)->set5Momentum(c);
cluster->particle(1)->set5Momentum(d);
cluster->setBeamRemnant(0,isRem);
if(remSpect) cluster->setBeamRemnant(2,remSpect);
return rval;
}
/**
* Calculate the phase space weight for M1*M2*(2 body PhaseSpace) ignore constituent masses
*/
double ClusterFissioner::weightFlatPhaseSpaceNoConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2) const {
double M_temp = Mc/GeV;
double M1_temp = Mc1/GeV;
double M2_temp = Mc2/GeV;
if (sqr(M_temp)<sqr(M1_temp+M2_temp)) {
// This should be checked before
throw Exception()
<< "ClusterFissioner has not checked Masses properly\n"
<< "Mc = " << M_temp << "\n"
<< "Mc1 = " << M1_temp << "\n"
<< "Mc2 = " << M2_temp << "\n"
<< Exception::warning;
return 0.0;
}
double lam = Kinematics::kaellen(M_temp, M1_temp, M2_temp);
double ratio;
// old weight of Jan without the Jacobi factor M1*M2 of the Mass integration
// double PSweight = pow(lam,_dim-3.)*pow(M1_temp*M2_temp,2.-_dim);
// new weight with the Jacobi factor M1*M2 of the Mass integration
double PSweight = M1_temp*M2_temp*pow(sqrt(lam),_dim-3.);
// overestimate only possible for dim>=3.0
assert(_dim>=3.0);
// old overestimate of Jan without the Jacobi factor M1*M2 of the Mass integration
// double overEstimate = _dim>=4.0 ? pow(M_temp,4.*_dim-14.):pow(M_temp,2*(_dim-3.0))/pow((m1_temp+m_temp)*(m2_temp+m_temp),4.0-_dim);
// new improved overestimate with the Jacobi factor M1*M2 of the Mass integration
double overEstimate = pow(6.0*sqrt(3.0), 3.0 - _dim)*pow(M_temp, 2.*(_dim-2.));
ratio = PSweight/overEstimate;
if (!(ratio>=0)) std::cout << "ratio = " <<ratio<<" M "<<M_temp<<" M1 "<<M1_temp<<" M2 "<<M2_temp<<"\t"<<_dim<<"\t" << lam <<"\t"<< overEstimate<<"\n\n";
if (!(ratio<=1)) std::cout << "ratio = " <<ratio<<" M "<<M_temp<<" M1 "<<M1_temp<<" M2 "<<M2_temp<<"\t"<<_dim<<"\t" << lam <<"\t"<< overEstimate<<"\n\n";
// if (ratio > 0.9) std::cout << "ratio = " << ratio <<"\n";
assert (ratio >= 0);
assert (ratio <= 1);
return ratio;
}
/**
* Calculate the phase space weight for M1*M2*(2 body PhaseSpace)^3
*/
double ClusterFissioner::weightPhaseSpaceConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2,
const Energy m, const Energy m1, const Energy m2, const double power) const {
double M_temp = Mc/GeV;
double M1_temp = Mc1/GeV;
double M2_temp = Mc2/GeV;
double m_temp = m/GeV;
double m1_temp = m1/GeV;
double m2_temp = m2/GeV;
if (sqr(M_temp)<sqr(M1_temp+M2_temp)
|| sqr(M1_temp)<sqr(m1_temp+m_temp)
|| sqr(M2_temp)<sqr(m2_temp+m_temp)
) {
// This should be checked before
throw Exception()
<< "ClusterFissioner has not checked Masses properly\n"
<< "Mc = " << M_temp << "\n"
<< "Mc1 = " << M1_temp << "\n"
<< "Mc2 = " << M2_temp << "\n"
<< "m1 = " << m1_temp << "\n"
<< "m2 = " << m2_temp << "\n"
<< "m = " << m_temp << "\n"
<< Exception::warning;
return 0.0;
}
double lam1 = Kinematics::kaellen(M1_temp, m1_temp, m_temp);
double lam2 = Kinematics::kaellen(M2_temp, m2_temp, m_temp);
double lam3 = Kinematics::kaellen(M_temp, M1_temp, M2_temp);
double ratio;
// old weight of Jan without the Jacobi factor M1*M2 of the Mass integration
// double PSweight = pow(lam1*lam2*lam3,_dim-3.)*pow(M1_temp*M2_temp,2.-_dim);
// new weight with the Jacobi factor M1*M2 of the Mass integration
double PSweight = pow(lam1*lam2*lam3,(_dim-3.)/2.0)*pow(M1_temp*M2_temp,3.-_dim);
// overestimate only possible for dim>=3.0
assert(_dim>=3.0);
// old overestimate of Jan without the Jacobi factor M1*M2 of the Mass integration
// double overEstimate = _dim>=4.0 ? pow(M_temp,4.*_dim-14.):pow(M_temp,2*(_dim-3.0))/pow((m1_temp+m_temp)*(m2_temp+m_temp),4.0-_dim);
// new improved overestimate with the Jacobi factor M1*M2 of the Mass integration
double overEstimate = pow(6.0*sqrt(3.0), 3.0 - _dim)*pow(M_temp, 4.*_dim-12.);
ratio = PSweight/overEstimate;
if (!(ratio>=0)) std::cout << "ratio = " <<ratio<<" M "<<M_temp<<" M1 "<<M1_temp<<" M2 "<<M2_temp<<" m1 "<<m1_temp<<" m2 "<<m2_temp<<" m "<<m_temp<<"\t"<<_dim<<"\t" << lam1<<"\t"<< lam2<<"\t" << lam3 <<"\t"<< overEstimate<<"\n\n";
if (power) {
double powerLawOver = power<0 ? pow(Mc1*Mc2/((m1+m)*(m2+m)),power):pow(Mc1*Mc2/((Mc-(m1+m))*(Mc-(m2+m))),power);
ratio*=powerLawOver;
}
// if (ratio > 0.9) std::cout << "ratio = " << ratio <<"\n";
assert (ratio >= 0);
assert (ratio <= 1);
return ratio;
}
/**
* Calculate the phase space weight for M1*M2*(2 body PhaseSpace)^3
* using Hadron Masses
*/
double ClusterFissioner::weightFlatPhaseSpaceHadronMasses(const Energy Mc, const Energy Mc1, const Energy Mc2, tcPPtr pQ, tcPPtr pQ1, tcPPtr pQ2) const {
auto LHP1 = spectrum()->lightestHadronPair(pQ1->dataPtr(),pQ->dataPtr());
auto LHP2 = spectrum()->lightestHadronPair(pQ2->dataPtr(),pQ->dataPtr());
if (sqr(Mc1)<sqr(LHP1.first->mass()+LHP1.second->mass()))
return true;
if (sqr(Mc2)<sqr(LHP2.first->mass()+LHP2.second->mass()))
return true;
// double weigthHadrons = Kinematics::pstarTwoBodyDecay(Mc1,m1,m)*Kinematics::pstarTwoBodyDecay(Mc2,m2,m)/(Kinematics::pstarTwoBodyDecay(Mc1,LHP1.first->mass(),LHP1.second->mass())*Kinematics::pstarTwoBodyDecay(Mc2,LHP2.first->mass(),LHP2.second->mass()));
// double tot= weightFlatPhaseSpace(Mc, Mc1, Mc2, m, m1, m2)/weigthHadrons;
// if (std::isinf(tot) || std::isnan(tot) || tot<0.0 || tot>1.0)
// std::cout << "tot = " <<
double lam1 = sqrt(Kinematics::kaellen(Mc1/GeV, LHP1.first->mass()/GeV, LHP1.second->mass()/GeV));
double lam2 = sqrt(Kinematics::kaellen(Mc2/GeV, LHP2.first->mass()/GeV, LHP2.second->mass()/GeV));
double lam3 = sqrt(Kinematics::kaellen(Mc/GeV, Mc1/GeV, Mc2/GeV));
double ratio;
// old weight of Jan without the Jacobi factor M1*M2 of the Mass integration
// double PSweight = pow(lam1*lam2*lam3,_dim-3.)*pow(M1_temp*M2_temp,2.-_dim);
// new weight with the Jacobi factor M1*M2 of the Mass integration
double PSweight = pow(lam1*lam2*lam3,_dim-3.)*pow(Mc1*Mc2/GeV2,3.-_dim);
// overestimate only possible for dim>=3.0
assert(_dim>=3.0);
// old overestimate of Jan without the Jacobi factor M1*M2 of the Mass integration
// double overEstimate = _dim>=4.0 ? pow(M_temp,4.*_dim-14.):pow(M_temp,2*(_dim-3.0))/pow((m1_temp+m_temp)*(m2_temp+m_temp),4.0-_dim);
// new improved overestimate with the Jacobi factor M1*M2 of the Mass integration
double overEstimate = pow(6.0*sqrt(3.0), 3.0 - _dim)*pow(Mc/GeV, 4.*_dim-12.);
ratio = PSweight/overEstimate;
// if (!(ratio>=0)) std::cout << "M "<<Mc/GeV<<" M1 "<<Mc1/GeV<<" M2 "<<Mc2/GeV<<" m1 "<<m1_temp<<" m2 "<<m2_temp<<" m "<<m_temp<<"\n\n";
// if (ratio > 0.9) std::cout << "ratio = " << ratio <<"\n";
if (std::isinf(ratio) || std::isnan(ratio) || ratio<0.0 || ratio>1.0)
std::cout << "ratio = " << ratio<<std::endl;
assert (ratio >= 0);
assert (ratio <= 1);
return ratio;
}
/**
* Veto for the phase space weight
* returns true if proposed Masses are rejected
* else returns false
*/
bool ClusterFissioner::phaseSpaceVeto(const Energy Mc, const Energy Mc1, const Energy Mc2,
const Energy m, const Energy m1, const Energy m2, tcPPtr pQ1, tcPPtr pQ2, tcPPtr pQ, const double power) const {
switch (_phaseSpaceWeights)
{
case 1:
return phaseSpaceVetoConstituentMasses(Mc, Mc1, Mc2, m, m1, m2, power);
case 2:
return phaseSpaceVetoHadronPairs(Mc, Mc1, Mc2, pQ, pQ1, pQ2);
case 3:
return phaseSpaceVetoNoConstituentMasses(Mc, Mc1, Mc2);
default:
assert(false);
}
}
/**
* Veto for the phase space weight
* returns true if proposed Masses are rejected
* else returns false
*/
bool ClusterFissioner::phaseSpaceVetoConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2,
const Energy m, const Energy m1, const Energy m2, const double power) const {
return (UseRandom::rnd()>weightPhaseSpaceConstituentMasses(Mc, Mc1, Mc2, m, m1, m2, power));
}
bool ClusterFissioner::phaseSpaceVetoNoConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2) const {
return (UseRandom::rnd()>weightFlatPhaseSpaceNoConstituentMasses(Mc, Mc1, Mc2));
}
bool ClusterFissioner::phaseSpaceVetoHadronPairs(const Energy Mc, const Energy Mc1, const Energy Mc2, tcPPtr pQ, tcPPtr pQ1, tcPPtr pQ2) const {
return (UseRandom::rnd()>weightFlatPhaseSpaceHadronMasses(Mc, Mc1, Mc2, pQ, pQ1, pQ2));
}
/**
* Calculate the masses and possibly kinematics of the cluster
* fission at hand; if calculateKineamtics is perfomring non-trivial
* steps kinematics claulcated here will be overriden. Currentl;y resorts to the default
*/
double ClusterFissioner::drawNewMasses(const Energy Mc, const bool soft1, const bool soft2,
Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
tcPPtr ptrQ1, const Lorentz5Momentum& pQ1,
tcPPtr, const Lorentz5Momentum& pQone,
tcPPtr, const Lorentz5Momentum& pQtwo,
tcPPtr ptrQ2, const Lorentz5Momentum& pQ2) const {
// power for splitting
double exp1 = !spectrum()->isExotic(ptrQ1->dataPtr()) ? _pSplitLight : _pSplitExotic;
double exp2 = !spectrum()->isExotic(ptrQ2->dataPtr()) ? _pSplitLight : _pSplitExotic;
for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
assert(_pSplitHeavy.find(id) != _pSplitHeavy.end());
if ( spectrum()->hasHeavy(id,ptrQ1->dataPtr()) ) exp1 = _pSplitHeavy.find(id)->second;
if ( spectrum()->hasHeavy(id,ptrQ2->dataPtr()) ) exp2 = _pSplitHeavy.find(id)->second;
}
Energy M1 = drawChildMass(Mc,pQ1.mass(),pQ2.mass(),pQone.mass(),exp1,soft1);
Energy M2 = drawChildMass(Mc,pQ2.mass(),pQ1.mass(),pQtwo.mass(),exp2,soft2);
pClu1.setMass(M1);
pClu2.setMass(M2);
return 1.0; // succeeds
}
void ClusterFissioner::drawNewFlavourDiquarks(PPtr& newPtrPos,PPtr& newPtrNeg,
const ClusterPtr & clu) const {
// Flavour is assumed to be only u, d, s, with weights
// (which are not normalized probabilities) given
// by the same weights as used in HadronsSelector for
// the decay of clusters into two hadrons.
unsigned hasDiquarks=0;
assert(clu->numComponents()==2);
tcPDPtr pD1=clu->particle(0)->dataPtr();
tcPDPtr pD2=clu->particle(1)->dataPtr();
bool isDiq1=DiquarkMatcher::Check(pD1->id());
if (isDiq1) hasDiquarks++;
bool isDiq2=DiquarkMatcher::Check(pD2->id());
if (isDiq2) hasDiquarks++;
assert(hasDiquarks<=2);
Energy Mc=(clu->momentum().mass());
// if (fabs(clu->momentum().massError() )>1e-14) std::cout << "Mass inconsistency CF : " << std::scientific << clu->momentum().massError() <<"\n";
// Not allow yet Diquark Clusters
// if ( hasDiquarks>=1 || Mc < spectrum()->massLightestBaryonPair(pD1,pD2) )
// return drawNewFlavour(newPtrPos,newPtrNeg);
Energy minMass;
double weight;
// double factorPS;
Selector<long> choice;
// int countQ=0;
// int countDiQ=0;
// adding quark-antiquark pairs to the selection list
for ( const long& id : spectrum()->lightHadronizingQuarks() ) {
// TODO uncommenting below gives sometimes 0 selection possibility,
// maybe need to be checked in the LightClusterDecayer and ColourReconnector
// if (Mc < spectrum()->massLightestHadronPair(pD1,pD2)) continue;
// countQ++;
minMass=spectrum()->massLightestHadronPair(pD1,pD2);
if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
else if (abs(_fissionCluster)==1) choice.insert(_fissionPwt.find(id)->second,id);
else assert(false);
}
// adding diquark-antidiquark pairs to the selection list
switch (hasDiquarks)
{
case 0:
for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
if (_strictDiquarkKinematics) {
tPDPtr cand = getParticleData(id);
Energy mH1=spectrum()->massLightestHadron(pD2,cand);
Energy mH2=spectrum()->massLightestHadron(cand,pD1);
// factorPS = Kinematics::pstarTwoBodyDecay(Mc,mH1,mH2)/(Mc/2.0);
// factorPS = 1.0;
minMass = mH1 + mH2;
}
else {
minMass = spectrum()->massLightestBaryonPair(pD1,pD2);
// factorPS = 1.0;
}
if (Mc < minMass) continue;
// countDiQ++;
if (_fissionCluster==0) weight = _hadronSpectrum->pwtQuark(id);
else if (abs(_fissionCluster)==1) weight = _fissionPwt.find(id)->second;
else assert(false);
if (_fissionCluster==-1)
weight*=sqr(Herwig::Math::alphaS(Mc, 0.25*GeV,3, 2));
// weight/=factorPS;
choice.insert(weight,id);
}
break;
case 1:
if (_diquarkClusterFission<1) break;
for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
tPDPtr diq = getParticleData(id);
if (isDiq1)
minMass = spectrum()->massLightestHadron(pD2,diq)
+ spectrum()->massLightestBaryonPair(diq,pD1);
else
minMass = spectrum()->massLightestHadron(pD1,diq)
+ spectrum()->massLightestBaryonPair(diq,pD2);
if (Mc < minMass) continue;
// countDiQ++;
if (_fissionCluster==0) weight = _hadronSpectrum->pwtQuark(id);
else if (abs(_fissionCluster)==1) weight = _fissionPwt.find(id)->second;
else assert(false);
if (_fissionCluster==-1)
weight*=sqr(Herwig::Math::alphaS(Mc, 0.25*GeV,3, 2));
choice.insert(weight,id);
}
break;
case 2:
if (_diquarkClusterFission<2) break;
for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
tPDPtr diq = getParticleData(id);
if (Mc < spectrum()->massLightestBaryonPair(pD1,pD2)) {
throw Exception() << "Found Diquark Cluster:\n" << *clu << "\nwith MassCluster = "
<< ounit(Mc,GeV) <<" GeV MassLightestBaryonPair = "
<< ounit(spectrum()->massLightestBaryonPair(pD1,pD2) ,GeV)
<< " GeV cannot decay" << Exception::eventerror;
}
minMass = spectrum()->massLightestBaryonPair(pD1,diq)
+ spectrum()->massLightestBaryonPair(diq,pD2);
if (Mc < minMass) continue;
// countDiQ++;
if (_fissionCluster==0) weight = _hadronSpectrum->pwtQuark(id);
else if (abs(_fissionCluster)==1) weight = _fissionPwt.find(id)->second;
else assert(false);
if (_fissionCluster==-1)
weight*=sqr(Herwig::Math::alphaS(Mc, 0.25*GeV,3, 2));
choice.insert(weight,id);
}
break;
default:
assert(false);
}
assert(choice.size()>0);
long idNew = choice.select(UseRandom::rnd());
newPtrPos = getParticle(idNew);
newPtrNeg = getParticle(-idNew);
assert(newPtrPos);
assert(newPtrNeg);
assert(newPtrPos->dataPtr());
assert(newPtrNeg->dataPtr());
}
void ClusterFissioner::drawNewFlavourQuarks(PPtr& newPtrPos,PPtr& newPtrNeg) const {
// Flavour is assumed to be only u, d, s, with weights
// (which are not normalized probabilities) given
// by the same weights as used in HadronsSelector for
// the decay of clusters into two hadrons.
Selector<long> choice;
switch(abs(_fissionCluster)){
case 0:
for ( const long& id : spectrum()->lightHadronizingQuarks() )
choice.insert(_hadronSpectrum->pwtQuark(id),id);
break;
case 1:
for ( const long& id : spectrum()->lightHadronizingQuarks() )
choice.insert(_fissionPwt.find(id)->second,id);
break;
default :
assert(false);
}
long idNew = choice.select(UseRandom::rnd());
newPtrPos = getParticle(idNew);
newPtrNeg = getParticle(-idNew);
assert (newPtrPos);
assert(newPtrNeg);
assert (newPtrPos->dataPtr());
assert(newPtrNeg->dataPtr());
}
void ClusterFissioner::drawNewFlavourEnhanced(PPtr& newPtrPos,PPtr& newPtrNeg,
Energy2 mass2) const {
if ( spectrum()->gluonId() != ParticleID::g )
throw Exception() << "strange enhancement only working with Standard Model hadronization"
<< Exception::runerror;
// Flavour is assumed to be only u, d, s, with weights
// (which are not normalized probabilities) given
// by the same weights as used in HadronsSelector for
// the decay of clusters into two hadrons.
double prob_d = 0.;
double prob_u = 0.;
double prob_s = 0.;
double scale = abs(double(sqr(_m0Fission)/mass2));
// Choose which splitting weights you wish to use
switch(abs(_fissionCluster)){
// 0: ClusterFissioner and ClusterDecayer use the same weights
case 0:
prob_d = _hadronSpectrum->pwtQuark(ParticleID::d);
prob_u = _hadronSpectrum->pwtQuark(ParticleID::u);
/* Strangeness enhancement:
Case 1: probability scaling
Case 2: Exponential scaling
*/
if (_enhanceSProb == 1)
prob_s = (_maxScale < scale) ? 0. : pow(_hadronSpectrum->pwtQuark(ParticleID::s),scale);
else if (_enhanceSProb == 2)
prob_s = (_maxScale < scale) ? 0. : exp(-scale);
break;
/* 1: ClusterFissioner uses its own unique set of weights,
i.e. decoupled from ClusterDecayer */
case 1:
prob_d = _fissionPwt.find(ParticleID::d)->second;
prob_u = _fissionPwt.find(ParticleID::u)->second;
if (_enhanceSProb == 1)
prob_s = (_maxScale < scale) ? 0. : pow(_fissionPwt.find(ParticleID::s)->second,scale);
else if (_enhanceSProb == 2)
prob_s = (_maxScale < scale) ? 0. : exp(-scale);
break;
default:
assert(false);
}
int choice = UseRandom::rnd3(prob_u, prob_d, prob_s);
long idNew = 0;
switch (choice) {
case 0: idNew = ThePEG::ParticleID::u; break;
case 1: idNew = ThePEG::ParticleID::d; break;
case 2: idNew = ThePEG::ParticleID::s; break;
}
newPtrPos = getParticle(idNew);
newPtrNeg = getParticle(-idNew);
assert (newPtrPos);
assert(newPtrNeg);
assert (newPtrPos->dataPtr());
assert(newPtrNeg->dataPtr());
}
Energy2 ClusterFissioner::clustermass(const ClusterPtr & cluster) const {
Lorentz5Momentum pIn = cluster->momentum();
Energy2 endpointmass2 = sqr(cluster->particle(0)->mass() +
cluster->particle(1)->mass());
Energy2 singletm2 = pIn.m2();
// Return either the cluster mass, or the lambda measure
return (_massMeasure == 0) ? singletm2 : singletm2 - endpointmass2;
}
Energy ClusterFissioner::drawChildMass(const Energy M, const Energy m1,
const Energy m2, const Energy m,
const double expt, const bool soft) const {
/***************************
* This method, given in input the cluster mass Mclu of an heavy cluster C,
* made of consituents of masses m1 and m2, draws the masses Mclu1 and Mclu2
* of, respectively, the children cluster C1, made of constituent masses m1
* and m, and cluster C2, of mass Mclu2 and made of constituent masses m2
* and m. The mass is extracted from one of the two following mass
* distributions:
* --- power-like ("normal" distribution)
* d(Prob) / d(M^exponent) = const
* where the exponent can be different from the two children C1 (exp1)
* and C2 (exponent2).
* --- exponential ("soft" distribution)
* d(Prob) / d(M^2) = exp(-b*M)
* where b = 2.0 / average.
* Such distributions are limited below by the masses of
* the constituents quarks, and above from the mass of decaying cluster C.
* The choice of which of the two mass distributions to use for each of the
* two cluster children is dictated by iRemnant (see below).
* If the number of attempts to extract a pair of mass values that are
* kinematically acceptable is above some fixed number (max_loop, see below)
* the method gives up and returns false; otherwise, when it succeeds, it
* returns true.
*
* These distributions have been modified from HERWIG:
* Before these were:
* Mclu1 = m1 + (Mclu - m1 - m2)*pow( rnd(), 1.0/exponent1 );
* The new one coded here is a more efficient version, same density
* but taking into account 'in phase space from' beforehand
***************************/
// hard cluster
if(!soft) {
return pow(UseRandom::rnd(pow((M-m1-m2-m)*UnitRemoval::InvE, expt),
pow(m*UnitRemoval::InvE, expt)), 1./expt
)*UnitRemoval::E + m1;
}
// Otherwise it uses a soft mass distribution
else {
static const InvEnergy b = 2.0 / _btClM;
Energy max = M-m1-m2-2.0*m;
double rmin = b*max;
rmin = ( rmin < 50 ) ? exp(-rmin) : 0.;
double r1;
do {
r1 = UseRandom::rnd(rmin, 1.0) * UseRandom::rnd(rmin, 1.0);
}
while (r1 < rmin);
return m1 + m - log(r1)/b;
}
}
void ClusterFissioner::calculateKinematics(const Lorentz5Momentum & pClu,
const Lorentz5Momentum & p0Q1,
const bool toHadron1,
const bool toHadron2,
Lorentz5Momentum & pClu1,
Lorentz5Momentum & pClu2,
Lorentz5Momentum & pQ1,
Lorentz5Momentum & pQbar,
Lorentz5Momentum & pQ,
Lorentz5Momentum & pQ2bar) const {
/******************
* This method solves the kinematics of the two body cluster decay:
* C (Q1 Q2bar) ---> C1 (Q1 Qbar) + C2 (Q Q2bar)
* In input we receive the momentum of C, pClu, and the momentum
* of the quark Q1 (constituent of C), p0Q1, both in the LAB frame.
* Furthermore, two boolean variables inform whether the two fission
* products (C1, C2) decay immediately into a single hadron (in which
* case the cluster itself is identify with that hadron) and we do
* not have to solve the kinematics of the components (Q1,Qbar) for
* C1 and (Q,Q2bar) for C2.
* The output is given by the following momenta (all 5-components,
* and all in the LAB frame):
* pClu1 , pClu2 respectively of C1 , C2
* pQ1 , pQbar respectively of Q1 , Qbar in C1
* pQ , pQ2bar respectively of Q , Q2 in C2
* The assumption, suggested from the string model, is that, in C frame,
* C1 and its constituents Q1 and Qbar are collinear, and collinear to
* the direction of Q1 in C (that is before cluster decay); similarly,
* (always in the C frame) C2 and its constituents Q and Q2bar are
* collinear (and therefore anti-collinear with C1,Q1,Qbar).
* The solution is then obtained by using Lorentz boosts, as follows.
* The kinematics of C1 and C2 is solved in their parent C frame,
* and then boosted back in the LAB. The kinematics of Q1 and Qbar
* is solved in their parent C1 frame and then boosted back in the LAB;
* similarly, the kinematics of Q and Q2bar is solved in their parent
* C2 frame and then boosted back in the LAB. In each of the three
* "two-body decay"-like cases, we use the fact that the direction
* of the motion of the decay products is known in the rest frame of
* their parent. This is obvious for the first case in which the
* parent rest frame is C; but it is also true in the other two cases
* where the rest frames are C1 and C2. This is because C1 and C2
* are boosted w.r.t. C in the same direction where their components,
* respectively (Q1,Qbar) and (Q,Q2bar) move in C1 and C2 rest frame
* respectively.
* Of course, although the notation used assumed that C = (Q1 Q2bar)
* where Q1 is a quark and Q2bar an antiquark, indeed everything remain
* unchanged also in all following cases:
* Q1 quark, Q2bar antiquark; --> Q quark;
* Q1 antiquark , Q2bar quark; --> Q antiquark;
* Q1 quark, Q2bar diquark; --> Q quark
* Q1 antiquark, Q2bar anti-diquark; --> Q antiquark
* Q1 diquark, Q2bar quark --> Q antiquark
* Q1 anti-diquark, Q2bar antiquark; --> Q quark
**************************/
// Calculate the unit three-vector, in the C frame, along which
// all of the constituents and children clusters move.
Lorentz5Momentum u(p0Q1);
u.boost( -pClu.boostVector() ); // boost from LAB to C
// the unit three-vector is then u.vect().unit()
// Calculate the momenta of C1 and C2 in the (parent) C frame first,
// where the direction of C1 is u.vect().unit(), and then boost back in the
// LAB frame.
if (pClu.m() < pClu1.mass() + pClu2.mass() ) {
throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (A)"
<< Exception::eventerror;
}
Kinematics::twoBodyDecay(pClu, pClu1.mass(), pClu2.mass(),
u.vect().unit(), pClu1, pClu2);
// In the case that cluster1 does not decay immediately into a single hadron,
// calculate the momenta of Q1 (as constituent of C1) and Qbar in the
// (parent) C1 frame first, where the direction of Q1 is u.vect().unit(),
// and then boost back in the LAB frame.
if(!toHadron1) {
if (pClu1.m() < pQ1.mass() + pQbar.mass() ) {
throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (B)"
<< Exception::eventerror;
}
Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(),
u.vect().unit(), pQ1, pQbar);
}
// In the case that cluster2 does not decay immediately into a single hadron,
// Calculate the momenta of Q and Q2bar (as constituent of C2) in the
// (parent) C2 frame first, where the direction of Q is u.vect().unit(),
// and then boost back in the LAB frame.
if(!toHadron2) {
if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) {
throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (C)"
<< Exception::eventerror;
}
Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(),
u.vect().unit(), pQ, pQ2bar);
}
}
void ClusterFissioner::calculatePositions(const Lorentz5Momentum & pClu,
const LorentzPoint & positionClu,
const Lorentz5Momentum & pClu1,
const Lorentz5Momentum & pClu2,
LorentzPoint & positionClu1,
LorentzPoint & positionClu2) const {
// Determine positions of cluster children.
// See Marc Smith's thesis, page 127, formulas (4.122) and (4.123).
Energy Mclu = pClu.m();
Energy Mclu1 = pClu1.m();
Energy Mclu2 = pClu2.m();
// Calculate the unit three-vector, in the C frame, along which
// children clusters move.
Lorentz5Momentum u(pClu1);
u.boost( -pClu.boostVector() ); // boost from LAB to C frame
// the unit three-vector is then u.vect().unit()
Energy pstarChild = Kinematics::pstarTwoBodyDecay(Mclu,Mclu1,Mclu2);
// First, determine the relative positions of the children clusters
// in the parent cluster reference frame.
Energy2 mag2 = u.vect().mag2();
InvEnergy fact = mag2>ZERO ? 1./sqrt(mag2) : 1./GeV;
Length x1 = ( 0.25*Mclu + 0.5*( pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa;
Length t1 = Mclu/_kappa - x1;
LorentzDistance distanceClu1( x1 * fact * u.vect(), t1 );
Length x2 = (-0.25*Mclu + 0.5*(-pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa;
Length t2 = Mclu/_kappa + x2;
LorentzDistance distanceClu2( x2 * fact * u.vect(), t2 );
// Then, transform such relative positions from the parent cluster
// reference frame to the Lab frame.
distanceClu1.boost( pClu.boostVector() );
distanceClu2.boost( pClu.boostVector() );
// Finally, determine the absolute positions in the Lab frame.
positionClu1 = positionClu + distanceClu1;
positionClu2 = positionClu + distanceClu2;
}
bool ClusterFissioner::ProbablityFunction(double scale, double threshold) {
double cut = UseRandom::rnd(0.0,1.0);
return 1./(1.+pow(abs((threshold-_probShift)/scale),_probPowFactor)) > cut ? true : false;
}
bool ClusterFissioner::ProbablityFunctionTest(double Mass, double threshold) {
double cut = UseRandom::rnd(0.0,1.0);
// double arg = scale/threshold;
// double epsilon = 1e-5;
// if (arg<(1.0+epsilon) ){
// // std::cout << "arg = "<<arg << std::endl;
// arg=1.0+epsilon;
// }
// return 1./(1.+_probPowFactor*pow(log(arg),-2.0)) > cut ? true : false;
if ((Mass-threshold)<=0)
return false;
return 1.0/(1.0 + _probPowFactor*pow(1.0/(Mass-threshold),_clPowLight)) > cut ? true : false;
}
bool ClusterFissioner::isHeavy(tcClusterPtr clu) {
// particle data for constituents
tcPDPtr cptr[3]={tcPDPtr(),tcPDPtr(),tcPDPtr()};
bool hasDiquark=0;
for(size_t ix=0;ix<min(clu->numComponents(),3);++ix) {
cptr[ix]=clu->particle(ix)->dataPtr();
// Assuming diquark masses are ordered with larger id corresponding to larger masses
if (DiquarkMatcher::Check(*(cptr[ix]))) {
hasDiquark=true;
break;
}
}
// different parameters for exotic, bottom and charm clusters
double clpow = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clPowLight : _clPowExotic;
Energy clmax = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clMaxLight : _clMaxExotic;
// if no heavy quark is found in the cluster, but diquarks are present use
// different ClMax and ClPow
if ( hasDiquark) {
clpow = _clPowDiquark;
clmax = _clMaxDiquark;
}
for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
if ( spectrum()->hasHeavy(id,cptr[0],cptr[1],cptr[1])) {
clpow = _clPowHeavy[id];
clmax = _clMaxHeavy[id];
}
}
// required test for SUSY clusters, since aboveCutoff alone
// cannot guarantee (Mc > m1 + m2 + 2*m) in cut()
static const Energy minmass
= getParticleData(ParticleID::d)->constituentMass();
bool aboveCutoff = false, canSplitMinimally = false;
// static kinematic threshold
if(_kinematicThresholdChoice == 0) {
aboveCutoff = (
pow(clu->mass()*UnitRemoval::InvE , clpow)
>
pow(clmax*UnitRemoval::InvE, clpow)
+ pow(clu->sumConstituentMasses()*UnitRemoval::InvE, clpow)
);
canSplitMinimally = clu->mass() > clu->sumConstituentMasses() + 2.0 * minmass;
}
// dynamic kinematic threshold
else if(_kinematicThresholdChoice == 1) {
//some smooth probablity function to create a dynamic thershold
double scale = pow(clu->mass()/GeV , clpow);
double threshold = pow(clmax/GeV, clpow)
+ pow(clu->sumConstituentMasses()/GeV, clpow);
aboveCutoff = ProbablityFunction(scale,threshold);
scale = clu->mass()/GeV;
threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV;
canSplitMinimally = ProbablityFunction(scale,threshold);
}
// probablistic kinematic threshold
else if(_kinematicThresholdChoice == 2) {
//some smooth probablity function to create a dynamic thershold
// double scale = pow(clu->mass()/GeV , clpow);
// double threshold = pow(clmax/GeV, clpow)
// + pow(clu->sumConstituentMasses()/GeV, clpow);
// aboveCutoff = ProbablityFunction(scale,threshold);
double Mass = clu->mass()/GeV;
double threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV;
aboveCutoff = ProbablityFunctionTest(Mass,threshold + clmax/GeV);
canSplitMinimally = Mass - threshold>ZERO;
}
return aboveCutoff && canSplitMinimally;
}
diff --git a/src/defaults/Hadronization.in b/src/defaults/Hadronization.in
--- a/src/defaults/Hadronization.in
+++ b/src/defaults/Hadronization.in
@@ -1,182 +1,182 @@
# -*- ThePEG-repository -*-
############################################################
# Setup of default hadronization
#
# There are no user servicable parts inside.
#
# Anything that follows below should only be touched if you
# know what you're doing.
#############################################################
cd /Herwig/Particles
create ThePEG::ParticleData Cluster
setup Cluster 81 Cluster 0.00990 0.0 0.0 0.0 0 0 0 1
create ThePEG::ParticleData Remnant
setup Remnant 82 Remnant 0.00990 0.0 0.0 0.0 0 0 0 1
mkdir /Herwig/Hadronization
cd /Herwig/Hadronization
create Herwig::ClusterHadronizationHandler ClusterHadHandler
create Herwig::PartonSplitter PartonSplitter
create Herwig::ClusterFinder ClusterFinder
create Herwig::ColourReconnector ColourReconnector
create Herwig::ClusterFissioner ClusterFissioner
create Herwig::SoftClusterFissioner SoftClusterFissioner
create Herwig::LightClusterDecayer LightClusterDecayer
create Herwig::ClusterDecayer ClusterDecayer
create Herwig::HwppSelector SMHadronSpectrum
newdef ClusterHadHandler:PartonSplitter PartonSplitter
newdef ClusterHadHandler:ClusterFinder ClusterFinder
newdef ClusterHadHandler:ColourReconnector ColourReconnector
newdef ClusterHadHandler:ClusterFissioner ClusterFissioner
newdef ClusterHadHandler:LightClusterDecayer LightClusterDecayer
newdef ClusterHadHandler:ClusterDecayer ClusterDecayer
do ClusterHadHandler:UseHandlersForInteraction QCD
newdef ClusterHadHandler:MinVirtuality2 0.1*GeV2
newdef ClusterHadHandler:MaxDisplacement 1.0e-10*millimeter
newdef ClusterHadHandler:UnderlyingEventHandler NULL
newdef PartonSplitter:HadronSpectrum SMHadronSpectrum
newdef ClusterFinder:HadronSpectrum SMHadronSpectrum
newdef ClusterFissioner:HadronSpectrum SMHadronSpectrum
newdef ClusterDecayer:HadronSpectrum SMHadronSpectrum
newdef LightClusterDecayer:HadronSpectrum SMHadronSpectrum
# ColourReconnector Default Parameters
newdef ColourReconnector:HadronSpectrum SMHadronSpectrum
newdef ColourReconnector:ColourReconnection Yes
newdef ColourReconnector:Algorithm Baryonic
# Statistical CR Parameters:
newdef ColourReconnector:AnnealingFactor 0.9
newdef ColourReconnector:AnnealingSteps 50
newdef ColourReconnector:TriesPerStepFactor 5.0
newdef ColourReconnector:InitialTemperature 0.1
# Plain and Baryonic CR Paramters
newdef ColourReconnector:ReconnectionProbability 0.95
newdef ColourReconnector:ReconnectionProbabilityBaryonic 0.7
# BaryonicMesonic and BaryonicMesonic CR Paramters
newdef ColourReconnector:ReconnectionProbability3Mto3M 0.5
newdef ColourReconnector:ReconnectionProbability3MtoBBbar 0.5
newdef ColourReconnector:ReconnectionProbabilityBbarBto3M 0.5
newdef ColourReconnector:ReconnectionProbability2Bto2B 0.05
newdef ColourReconnector:ReconnectionProbabilityMBtoMB 0.5
newdef ColourReconnector:StepFactor 1.0
newdef ColourReconnector:MesonToBaryonFactor 1.333
# General Parameters and switches
newdef ColourReconnector:MaxDistance 1.0e50
newdef ColourReconnector:OctetTreatment Final
newdef ColourReconnector:CR2BeamClusters No
newdef ColourReconnector:Junction Yes
newdef ColourReconnector:LocalCR No
newdef ColourReconnector:CausalCR No
# Debugging
newdef ColourReconnector:Debug No
# set ClusterFissioner parameters
newdef ClusterFissioner:KinematicThreshold Dynamic
newdef ClusterFissioner:KineticThresholdShift 0.08844
-newdef ClusterFissioner:ProbablityPowerFactor 6.486
-newdef ClusterFissioner:ProbablityShift -0.87875
+newdef ClusterFissioner:ProbabilityPowerFactor 6.486
+newdef ClusterFissioner:ProbabilityShift -0.87875
# Clustering parameters for light quarks
newdef ClusterFissioner:ClMaxLight 3.528693*GeV
newdef ClusterFissioner:ClPowLight 1.849375
newdef ClusterFissioner:PSplitLight 0.914156
insert ClusterFissioner:FissionPwt 1 1.0
insert ClusterFissioner:FissionPwt 2 1.0
insert ClusterFissioner:FissionPwt 3 0.374094
newdef ClusterDecayer:ClDirLight 1
newdef ClusterDecayer:ClSmrLight 0.78
# Clustering parameters for b-quarks
insert ClusterFissioner:ClMaxHeavy 5 3.757*GeV
insert ClusterFissioner:ClPowHeavy 5 0.547
insert ClusterFissioner:PSplitHeavy 5 0.625
insert ClusterDecayer:ClDirHeavy 5 1
insert ClusterDecayer:ClSmrHeavy 5 0.078
newdef SMHadronSpectrum:SingleHadronLimitBottom 0.000
# Clustering parameters for c-quarks
insert ClusterFissioner:ClMaxHeavy 4 3.950*GeV
insert ClusterFissioner:ClPowHeavy 4 2.559
insert ClusterFissioner:PSplitHeavy 4 0.994
insert ClusterDecayer:ClDirHeavy 4 1
insert ClusterDecayer:ClSmrHeavy 4 0.163
newdef SMHadronSpectrum:SingleHadronLimitCharm 0.000
# Cluster Paramters for light Diquark Cluster
# currently set according to Light quark defaults
newdef ClusterFissioner:ClMaxDiquark 3.528693*GeV
newdef ClusterFissioner:ClPowDiquark 1.849375
# Clustering parameters for exotic quarks
# (e.g. hadronizing Susy particles)
newdef ClusterFissioner:ClMaxExotic 2.7*GeV
newdef ClusterFissioner:ClPowExotic 1.46
newdef ClusterFissioner:PSplitExotic 1.00
newdef ClusterDecayer:ClDirExotic 1
newdef ClusterDecayer:ClSmrExotic 0.
newdef SMHadronSpectrum:SingleHadronLimitExotic 0.
################################################
# BEG SoftClusterFissioner initialization: #
################################################
newdef SoftClusterFissioner:HadronSpectrum SMHadronSpectrum
newdef SoftClusterFissioner:KinematicThreshold Dynamic
newdef SoftClusterFissioner:KineticThresholdShift 0.08844
-newdef SoftClusterFissioner:ProbablityPowerFactor 6.486
-newdef SoftClusterFissioner:ProbablityShift -0.87875
+newdef SoftClusterFissioner:ProbabilityPowerFactor 6.486
+newdef SoftClusterFissioner:ProbabilityShift -0.87875
# Clustering parameters for light quarks
newdef SoftClusterFissioner:ClMaxLight 3.528693*GeV
newdef SoftClusterFissioner:ClPowLight 1.849375
newdef SoftClusterFissioner:PSplitLight 0.914156
insert SoftClusterFissioner:FissionPwt 1 1.0
insert SoftClusterFissioner:FissionPwt 2 1.0
insert SoftClusterFissioner:FissionPwt 3 0.374094
# Clustering parameters for b-quarks
insert SoftClusterFissioner:ClMaxHeavy 5 3.757*GeV
insert SoftClusterFissioner:ClPowHeavy 5 0.547
insert SoftClusterFissioner:PSplitHeavy 5 0.625
# Clustering parameters for c-quarks
insert SoftClusterFissioner:ClMaxHeavy 4 3.950*GeV
insert SoftClusterFissioner:ClPowHeavy 4 2.559
insert SoftClusterFissioner:PSplitHeavy 4 0.994
# Cluster Paramters for light Diquark Cluster
# currently set according to Light quark defaults
newdef SoftClusterFissioner:ClMaxDiquark 3.528693*GeV
newdef SoftClusterFissioner:ClPowDiquark 1.849375
# Clustering parameters for exotic quarks
# (e.g. hadronizing Susy particles)
newdef SoftClusterFissioner:ClMaxExotic 2.7*GeV
newdef SoftClusterFissioner:ClPowExotic 1.46
newdef SoftClusterFissioner:PSplitExotic 1.00
################################################
# END SoftClusterFissioner initialization: #
################################################
#
insert PartonSplitter:SplitPwt 1 1.0
insert PartonSplitter:SplitPwt 2 1.0
insert PartonSplitter:SplitPwt 3 0.824135
newdef PartonSplitter:Split Light
#
newdef SMHadronSpectrum:PwtDquark 1.0
newdef SMHadronSpectrum:PwtUquark 1.0
newdef SMHadronSpectrum:PwtSquark 0.374094
newdef SMHadronSpectrum:PwtCquark 0.0
newdef SMHadronSpectrum:PwtBquark 0.0
newdef SMHadronSpectrum:PwtDIquark 0.33107
newdef SMHadronSpectrum:SngWt 0.89050
newdef SMHadronSpectrum:DecWt 0.41628
newdef SMHadronSpectrum:Mode 1
newdef SMHadronSpectrum:BelowThreshold All
create Herwig::SpinHadronizer SpinHadronizer
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 6:07 PM (1 d, 19 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805507
Default Alt Text
(78 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment