Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7877106
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
20 KB
Subscribers
None
View Options
diff --git a/Shower/Couplings/ShowerAlphaQCD.cc b/Shower/Couplings/ShowerAlphaQCD.cc
--- a/Shower/Couplings/ShowerAlphaQCD.cc
+++ b/Shower/Couplings/ShowerAlphaQCD.cc
@@ -1,372 +1,412 @@
// -*- C++ -*-
//
// ShowerAlphaQCD.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ShowerAlphaQCD class.
//
#include "ShowerAlphaQCD.h"
#include "ThePEG/PDT/ParticleData.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Command.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Utilities/Throw.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Config/Constants.h"
using namespace Herwig;
DescribeClass<ShowerAlphaQCD,ShowerAlpha>
describeShowerAlphaQCD("Herwig::ShowerAlphaQCD","HwShower.so");
IBPtr ShowerAlphaQCD::clone() const {
return new_ptr(*this);
}
IBPtr ShowerAlphaQCD::fullclone() const {
return new_ptr(*this);
}
void ShowerAlphaQCD::persistentOutput(PersistentOStream & os) const {
os << _asType << _asMaxNP << ounit(_qmin,GeV) << _nloop << _lambdaopt << _thresopt
<< ounit(_lambdain,GeV) << _alphain << _inopt
<< _tolerance << _maxtry << _alphamin
<< ounit(_thresholds,GeV) << ounit(_lambda,GeV);
}
void ShowerAlphaQCD::persistentInput(PersistentIStream & is, int) {
is >> _asType >> _asMaxNP >> iunit(_qmin,GeV) >> _nloop >> _lambdaopt >> _thresopt
>> iunit(_lambdain,GeV) >> _alphain >> _inopt
>> _tolerance >> _maxtry >> _alphamin
>> iunit(_thresholds,GeV) >> iunit(_lambda,GeV);
}
void ShowerAlphaQCD::Init() {
static ClassDocumentation<ShowerAlphaQCD> documentation
("This (concrete) class describes the QCD alpha running.");
static Switch<ShowerAlphaQCD, int> intAsType
("NPAlphaS",
"Behaviour of AlphaS in the NP region",
&ShowerAlphaQCD::_asType, 1, false, false);
static SwitchOption intAsTypeZero
(intAsType, "Zero","zero below Q_min", 1);
static SwitchOption intAsTypeConst
(intAsType, "Const","const as(qmin) below Q_min", 2);
static SwitchOption intAsTypeLin
(intAsType, "Linear","growing linearly below Q_min", 3);
static SwitchOption intAsTypeQuad
(intAsType, "Quadratic","growing quadratically below Q_min", 4);
static SwitchOption intAsTypeExx1
(intAsType, "Exx1", "quadratic from AlphaMaxNP down to as(Q_min)", 5);
static SwitchOption intAsTypeExx2
(intAsType, "Exx2", "const = AlphaMaxNP below Q_min", 6);
// default such that as(qmin) = 1 in the current parametrization.
// min = Lambda3
static Parameter<ShowerAlphaQCD,Energy> intQmin
("Qmin", "Q < Qmin is treated with NP parametrization as of (unit [GeV])",
&ShowerAlphaQCD::_qmin, GeV, 0.630882*GeV, 0.330445*GeV,
100.0*GeV,false,false,false);
static Parameter<ShowerAlphaQCD,double> interfaceAlphaMaxNP
("AlphaMaxNP",
"Max value of alpha in NP region, only relevant if NPAlphaS = 5,6",
&ShowerAlphaQCD::_asMaxNP, 1.0, 0., 100.0,
false, false, Interface::limited);
static Parameter<ShowerAlphaQCD,unsigned int> interfaceNumberOfLoops
("NumberOfLoops",
"The number of loops to use in the alpha_S calculation",
&ShowerAlphaQCD::_nloop, 3, 1, 3,
false, false, Interface::limited);
static Switch<ShowerAlphaQCD,bool> interfaceLambdaOption
("LambdaOption",
"Option for the calculation of the Lambda used in the simulation from the input"
" Lambda_MSbar",
&ShowerAlphaQCD::_lambdaopt, false, false, false);
static SwitchOption interfaceLambdaOptionfalse
(interfaceLambdaOption,
"Same",
"Use the same value",
false);
static SwitchOption interfaceLambdaOptionConvert
(interfaceLambdaOption,
"Convert",
"Use the conversion to the Herwig scheme from NPB349, 635",
true);
static Parameter<ShowerAlphaQCD,Energy> interfaceLambdaQCD
("LambdaQCD",
"Input value of Lambda_MSBar",
&ShowerAlphaQCD::_lambdain, MeV, 0.208364*GeV, 100.0*MeV, 500.0*MeV,
false, false, Interface::limited);
static Parameter<ShowerAlphaQCD,double> interfaceAlphaMZ
("AlphaMZ",
"The input value of the strong coupling at the Z mass ",
&ShowerAlphaQCD::_alphain, 0.118, 0.1, 0.2,
false, false, Interface::limited);
static Switch<ShowerAlphaQCD,bool> interfaceInputOption
("InputOption",
"Option for inputing the initial value of the coupling",
&ShowerAlphaQCD::_inopt, true, false, false);
static SwitchOption interfaceInputOptionAlphaMZ
(interfaceInputOption,
"AlphaMZ",
"Use the value of alpha at MZ to calculate the coupling",
true);
static SwitchOption interfaceInputOptionLambdaQCD
(interfaceInputOption,
"LambdaQCD",
"Use the input value of Lambda to calculate the coupling",
false);
static Parameter<ShowerAlphaQCD,double> interfaceTolerance
("Tolerance",
"The tolerance for discontinuities in alphaS at thresholds.",
&ShowerAlphaQCD::_tolerance, 1e-10, 1e-20, 1e-4,
false, false, Interface::limited);
static Parameter<ShowerAlphaQCD,unsigned int> interfaceMaximumIterations
("MaximumIterations",
"The maximum number of iterations for the Newton-Raphson method to converge.",
&ShowerAlphaQCD::_maxtry, 100, 10, 1000,
false, false, Interface::limited);
static Switch<ShowerAlphaQCD,bool> interfaceThresholdOption
("ThresholdOption",
"Whether to use the consistuent or normal masses for the thresholds",
&ShowerAlphaQCD::_thresopt, true, false, false);
static SwitchOption interfaceThresholdOptionCurrent
(interfaceThresholdOption,
"Current",
"Use the current masses",
true);
static SwitchOption interfaceThresholdOptionConstituent
(interfaceThresholdOption,
"Constituent",
"Use the constitent masses.",
false);
static Command<ShowerAlphaQCD> interfaceValue
("Value",
"",
&ShowerAlphaQCD::value, false);
+ static Command<ShowerAlphaQCD> interfacecheck
+ ("check",
+ "check",
+ &ShowerAlphaQCD::check, false);
+
+
}
void ShowerAlphaQCD::doinit() {
ShowerAlpha::doinit();
// calculate the value of 5-flavour lambda
// evaluate the initial
// value of Lambda from alphas if needed using Newton-Raphson
if(_inopt) {
_lambda[2]=computeLambda(getParticleData(ParticleID::Z0)->mass(),_alphain,5);
}
// otherwise it was an input parameter
else{_lambda[2]=_lambdain;}
// convert lambda to the Monte Carlo scheme if needed
using Constants::pi;
if(_lambdaopt) _lambda[2] *=exp(0.5*(67.-3.*sqr(pi)-50./3.)/23.)/sqrt(2.);
// compute the threshold matching
// top threshold
for(int ix=1;ix<4;++ix) {
if(_thresopt)
_thresholds[ix]=getParticleData(ix+3)->mass();
else
_thresholds[ix]=getParticleData(ix+3)->constituentMass();
}
// compute 6 flavour lambda by matching at top mass using Newton Raphson
_lambda[3]=computeLambda(_thresholds[3],alphaS(_thresholds[3],_lambda[2],5),6);
// bottom threshold
// compute 4 flavour lambda by matching at bottom mass using Newton Raphson
_lambda[1]=computeLambda(_thresholds[2],alphaS(_thresholds[2],_lambda[2],5),4);
// charm threshold
// compute 3 flavour lambda by matching at charm mass using Newton Raphson
_lambda[0]=computeLambda(_thresholds[1],alphaS(_thresholds[1],_lambda[1],4),3);
// final threshold is qmin
_thresholds[0]=_qmin;
// compute the maximum value of as
if ( _asType < 5 ) _alphamin = value(sqr(_qmin)+1.0e-8*sqr(MeV)); // approx as = 1
else _alphamin = max(_asMaxNP, value(sqr(_qmin)+1.0e-8*sqr(MeV)));
// check consistency lambda_3 < qmin
if(_lambda[0]>_qmin)
Throw<InitException>() << "The value of Qmin is less than Lambda_3 in"
<< " ShowerAlphaQCD::doinit " << Exception::abortnow;
}
+string ShowerAlphaQCD::check(string args) {
+
+ doinit();
+
+ istringstream argin(args);
+
+ double Q_low, Q_high;
+ long n_steps;
+
+ argin >> Q_low >> Q_high >> n_steps;
+
+ string fname;
+ argin >> fname;
+
+ cout << "checking alpha_s in range [" << Q_low << "," << Q_high << "] GeV in "
+ << n_steps << " steps.\nResults are written to " << fname << "\n";
+
+ double step_width = (Q_high-Q_low)/n_steps;
+
+ ofstream out (fname.c_str());
+
+ for (long k = 0; k <= n_steps; ++k) {
+
+ Energy Q = Q_low*GeV + k*step_width*GeV;
+
+ out << (Q/GeV) << " " << value(Q*Q) << "\n";
+
+ }
+
+ return "alpha_s check finished";
+
+}
+
+
double ShowerAlphaQCD::value(const Energy2 scale) const {
pair<short,Energy> nflam;
Energy q = sqrt(scale);
double val(0.);
// special handling if the scale is less than Qmin
if (q < _qmin) {
nflam = getLamNfTwoLoop(_qmin);
double val0 = alphaS(_qmin, nflam.second, nflam.first);
switch (_asType) {
case 1:
// flat, zero; the default type with no NP effects.
val = 0.;
break;
case 2:
// flat, non-zero alpha_s = alpha_s(q2min).
val = val0;
break;
case 3:
// linear in q
val = val0*q/_qmin;
break;
case 4:
// quadratic in q
val = val0*sqr(q/_qmin);
break;
case 5:
// quadratic in q, starting off at asMaxNP, ending on as(qmin)
val = (val0 - _asMaxNP)*sqr(q/_qmin) + _asMaxNP;
break;
case 6:
// just asMaxNP and constant
val = _asMaxNP;
break;
}
} else {
// the 'ordinary' case
nflam = getLamNfTwoLoop(q);
val = alphaS(q, nflam.second, nflam.first);
}
return scaleFactor() * val;
}
double ShowerAlphaQCD::overestimateValue() const {
return scaleFactor() * _alphamin;
}
double ShowerAlphaQCD::ratio(const Energy2 scale) const {
pair<short,Energy> nflam;
Energy q = sqrt(scale);
double val(0.);
// special handling if the scale is less than Qmin
if (q < _qmin) {
nflam = getLamNfTwoLoop(_qmin);
double val0 = alphaS(_qmin, nflam.second, nflam.first);
switch (_asType) {
case 1:
// flat, zero; the default type with no NP effects.
val = 0.;
break;
case 2:
// flat, non-zero alpha_s = alpha_s(q2min).
val = val0;
break;
case 3:
// linear in q
val = val0*q/_qmin;
break;
case 4:
// quadratic in q
val = val0*sqr(q/_qmin);
break;
case 5:
// quadratic in q, starting off at asMaxNP, ending on as(qmin)
val = (val0 - _asMaxNP)*sqr(q/_qmin) + _asMaxNP;
break;
case 6:
// just asMaxNP and constant
val = _asMaxNP;
break;
}
} else {
// the 'ordinary' case
nflam = getLamNfTwoLoop(q);
val = alphaS(q, nflam.second, nflam.first);
}
// denominator
return val/_alphamin;
}
string ShowerAlphaQCD::value (string scale) {
istringstream readscale(scale);
double inScale; readscale >> inScale;
Energy theScale = inScale * GeV;
initialize();
ostringstream showvalue ("");
showvalue << "alpha_s (" << theScale/GeV << " GeV) = "
<< value (sqr(theScale));
return showvalue.str();
}
pair<short, Energy> ShowerAlphaQCD::getLamNfTwoLoop(Energy q) const {
short nf = 6;
// get lambda and nf according to the thresholds
if (q < _thresholds[1]) nf = 3;
else if (q < _thresholds[2]) nf = 4;
else if (q < _thresholds[3]) nf = 5;
return pair<short,Energy>(nf, _lambda[nf-3]);
}
Energy ShowerAlphaQCD::computeLambda(Energy match,
double alpha,
unsigned int nflav) const {
Energy lamtest=200.0*MeV;
double xtest;
unsigned int ntry=0;
do {
++ntry;
xtest = log(sqr(match/lamtest));
xtest += (alpha-alphaS(match,lamtest,nflav))/derivativealphaS(match,lamtest,nflav);
Energy newLambda = match/exp(0.5*xtest);
lamtest = newLambda<match ? newLambda : 0.5*(lamtest+match);
}
while(abs(alpha-alphaS(match,lamtest,nflav)) > _tolerance && ntry < _maxtry);
return lamtest;
}
double ShowerAlphaQCD::derivativealphaS(Energy q, Energy lam, int nf) const {
using Constants::pi;
double lx = log(sqr(q/lam));
double b0 = 11. - 2./3.*nf;
double b1 = 51. - 19./3.*nf;
double b2 = 2857. - 5033./9.*nf + 325./27.*sqr(nf);
if(_nloop==1)
return -4.*pi/(b0*sqr(lx));
else if(_nloop==2)
return -4.*pi/(b0*sqr(lx))*(1.+2.*b1/sqr(b0)/lx*(1.-2.*log(lx)));
else
return -4.*pi/(b0*sqr(lx))*
(1. + 2.*b1/sqr(b0)/lx*(1.-2.*log(lx))
+ 4.*sqr(b1)/(sqr(sqr(b0))*sqr(lx))*(1. - 2.*log(lx)
+ 3.*(sqr(log(lx) - 0.5)+b2*b0/(8.*sqr(b1))-1.25)));
}
double ShowerAlphaQCD::alphaS(Energy q, Energy lam, int nf) const {
using Constants::pi;
double lx(log(sqr(q/lam)));
double b0 = 11. - 2./3.*nf;
double b1 = 51. - 19./3.*nf;
double b2 = 2857. - 5033./9.*nf + 325./27.*sqr(nf);
// one loop
if(_nloop==1)
{return 4.*pi/(b0*lx);}
// two loop
else if(_nloop==2) {
return 4.*pi/(b0*lx)*(1.-2.*b1/sqr(b0)*log(lx)/lx);
}
// three loop
else
{return 4.*pi/(b0*lx)*(1.-2.*b1/sqr(b0)*log(lx)/lx +
4.*sqr(b1)/(sqr(sqr(b0))*sqr(lx))*
(sqr(log(lx) - 0.5) + b2*b0/(8.*sqr(b1)) - 5./4.));}
}
diff --git a/Shower/Couplings/ShowerAlphaQCD.h b/Shower/Couplings/ShowerAlphaQCD.h
--- a/Shower/Couplings/ShowerAlphaQCD.h
+++ b/Shower/Couplings/ShowerAlphaQCD.h
@@ -1,278 +1,285 @@
// -*- C++ -*-
//
// ShowerAlphaQCD.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_ShowerAlphaQCD_H
#define HERWIG_ShowerAlphaQCD_H
//
// This is the declaration of the ShowerAlphaQCD class.
//
#include "ShowerAlpha.h"
namespace Herwig {
using namespace ThePEG;
/** \ingroup Shower
*
* This concrete class provides the definition of the
* pure virtual function value() and overestimateValue() for the
* strong coupling.
*
* A number of different options for the running of the coupling
* and its initial definition are supported.
*
* @see \ref ShowerAlphaQCDInterfaces "The interfaces"
* defined for ShowerAlphaQCD.
*/
class ShowerAlphaQCD: public ShowerAlpha {
public:
/**
* The default constructor.
*/
ShowerAlphaQCD() : ShowerAlpha(),
_qmin(0.630882*GeV), _asType(1), _asMaxNP(1.0),
_thresholds(4), _lambda(4),
_nloop(3),_lambdaopt(false),_thresopt(false),
_lambdain(0.208364*GeV),_alphain(0.118),_inopt(true),_tolerance(1e-10),
_maxtry(100),_alphamin(0.) {}
public:
/**
* Methods to return the coupling
*/
//@{
/**
* It returns the running coupling value evaluated at the input scale
* multiplied by the scale factor scaleFactor().
* @param scale The scale
* @return The coupling
*/
virtual double value(const Energy2 scale) const;
/**
* It returns the running coupling value evaluated at the input scale
* multiplied by the scale factor scaleFactor().
*/
virtual double overestimateValue() const;
/**
* Return the ratio of the coupling at the scale to the overestimated value
*/
virtual double ratio(const Energy2 scale) const;
/**
* Initialize this coupling.
*/
virtual void initialize() { doinit(); }
/**
* A command to initialize the coupling and write
* its value at the scale given by the argument (in GeV)
*/
string value(string);
+ /**
+ * Match thresholds and write alpha_s
+ * specified file; arguments are
+ * Q_low/GeV Q_high/GeV n_steps filename
+ */
+ string check(string args);
+
//@}
/**
* Get the value of \f$\Lambda_{\rm QCd}\f$
* @param nf number of flavours
*/
Energy lambdaQCD(unsigned int nf) {
if (nf <= 3) return _lambda[0];
else if (nf==4 || nf==5) return _lambda[nf-3];
else return _lambda[3];
}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
//@}
private:
/**
* Member functions which calculate the coupling
*/
//@{
/**
* The 1,2,3-loop parametrization of \f$\alpha_S\f$.
* @param q The scale
* @param lam \f$\Lambda_{\rm QCD}\f$
* @param nf The number of flavours
*/
double alphaS(Energy q, Energy lam, int nf) const;
/**
* The derivative of \f$\alpha_S\f$ with respect to \f$\ln(Q^2/\Lambda^2)\f$
* @param q The scale
* @param lam \f$\Lambda_{\rm QCD}\f$
* @param nf The number of flavours
*/
double derivativealphaS(Energy q, Energy lam, int nf) const;
/**
* Compute the value of \f$Lambda\f$ needed to get the input value of
* the strong coupling at the scale given for the given number of flavours
* using the Newton-Raphson method
* @param match The scale for the coupling
* @param alpha The input coupling
* @param nflav The number of flavours
*/
Energy computeLambda(Energy match, double alpha, unsigned int nflav) const;
/**
* Return the value of \f$\Lambda\f$ and the number of flavours at the scale.
* @param q The scale
* @return The number of flavours at the scale and \f$\Lambda\f$.
*/
pair<short, Energy> getLamNfTwoLoop(Energy q) const;
//@}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
ShowerAlphaQCD & operator=(const ShowerAlphaQCD &);
private:
/**
* Minimum value of the scale
*/
Energy _qmin;
/**
* Parameter controlling the behaviour of \f$\alpha_S\f$ in the
* non-perturbative region.
*/
int _asType;
/**
* Another parameter, a possible (maximum) value of alpha in the
* non-perturbative region.
*/
double _asMaxNP;
/**
* Thresholds for the different number of flavours
*/
vector<Energy> _thresholds;
/**
* \f$\Lambda\f$ for the different number of flavours
*/
vector<Energy> _lambda;
/**
* Option for the number of loops
*/
unsigned int _nloop;
/**
* Option for the translation between \f$\Lambda_{\bar{MS}}\f$ and
* \f$\Lambda_{\rm Herwig}\f$
*/
bool _lambdaopt;
/**
* Option for the threshold masses
*/
bool _thresopt;
/**
* Input value of Lambda
*/
Energy _lambdain;
/**
* Input value of \f$alpha_S(M_Z)\f$
*/
double _alphain;
/**
* Option for the calculation of Lambda from input parameters
*/
bool _inopt;
/**
* Tolerance for discontinuities at the thresholds
*/
double _tolerance;
/**
* Maximum number of iterations for the Newton-Raphson method to converge
*/
unsigned int _maxtry;
/**
* The minimum value of the coupling
*/
double _alphamin;
};
}
#endif /* HERWIG_ShowerAlphaQCD_H */
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 2:50 PM (1 d, 14 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3804825
Default Alt Text
(20 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment