Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7878283
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
115 KB
Subscribers
None
View Options
diff --git a/src/FitBase/Measurement2D.cxx b/src/FitBase/Measurement2D.cxx
index 1758988..21417e6 100644
--- a/src/FitBase/Measurement2D.cxx
+++ b/src/FitBase/Measurement2D.cxx
@@ -1,2139 +1,2139 @@
// Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret
/*******************************************************************************
* This file is part of NUISANCE.
*
* NUISANCE is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* NUISANCE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with NUISANCE. If not, see <http://www.gnu.org/licenses/>.
*******************************************************************************/
#include "Measurement2D.h"
#include "TDecompChol.h"
//********************************************************************
Measurement2D::Measurement2D(void) {
//********************************************************************
covar = NULL;
fDecomp = NULL;
fFullCovar = NULL;
fMCHist = NULL;
fMCFine = NULL;
fDataHist = NULL;
fMCHist_X = NULL;
fMCHist_Y = NULL;
fDataHist_X = NULL;
fDataHist_Y = NULL;
fMaskHist = NULL;
fMapHist = NULL;
fDataOrig = NULL;
fDataTrue = NULL;
fMCWeighted = NULL;
fResidualHist = NULL;
fChi2LessBinHist = NULL;
fDefaultTypes = "FIX/FULL/CHI2";
fAllowedTypes =
"FIX,FREE,SHAPE/FULL,DIAG/CHI2/NORM/ENUCORR/Q2CORR/ENU1D/FITPROJX/"
"FITPROJY";
fIsFix = false;
fIsShape = false;
fIsFree = false;
fIsDiag = false;
fIsFull = false;
fAddNormPen = false;
fIsMask = false;
fIsChi2SVD = false;
fIsRawEvents = false;
fIsDifXSec = false;
fIsEnu = false;
// XSec Scalings
fScaleFactor = -1.0;
fCurrentNorm = 1.0;
// Histograms
fDataHist = NULL;
fDataTrue = NULL;
fMCHist = NULL;
fMCFine = NULL;
fMCWeighted = NULL;
fMaskHist = NULL;
// Covar
covar = NULL;
fFullCovar = NULL;
fCovar = NULL;
fInvert = NULL;
fDecomp = NULL;
// Fake Data
fFakeDataInput = "";
fFakeDataFile = NULL;
// Options
fDefaultTypes = "FIX/FULL/CHI2";
fAllowedTypes =
"FIX,FREE,SHAPE/FULL,DIAG/CHI2/NORM/ENUCORR/Q2CORR/ENU1D/MASK";
fIsFix = false;
fIsShape = false;
fIsFree = false;
fIsDiag = false;
fIsFull = false;
fAddNormPen = false;
fIsMask = false;
fIsChi2SVD = false;
fIsRawEvents = false;
fIsDifXSec = false;
fIsEnu1D = false;
fIsWriting = false;
// Inputs
fInput = NULL;
fRW = NULL;
// Extra Histograms
fMCHist_Modes = NULL;
}
//********************************************************************
Measurement2D::~Measurement2D(void) {
//********************************************************************
if (fDataHist)
delete fDataHist;
if (fDataTrue)
delete fDataTrue;
if (fMCHist)
delete fMCHist;
if (fMCFine)
delete fMCFine;
if (fMCWeighted)
delete fMCWeighted;
if (fMaskHist)
delete fMaskHist;
if (covar)
delete covar;
if (fFullCovar)
delete fFullCovar;
if (fCovar)
delete fCovar;
if (fInvert)
delete fInvert;
if (fDecomp)
delete fDecomp;
delete fResidualHist;
delete fChi2LessBinHist;
}
//********************************************************************
void Measurement2D::FinaliseSampleSettings() {
//********************************************************************
MeasurementBase::FinaliseSampleSettings();
// Setup naming + renaming
fName = fSettings.GetName();
fSettings.SetS("originalname", fName);
if (fSettings.Has("rename")) {
fName = fSettings.GetS("rename");
fSettings.SetS("name", fName);
}
// Setup all other options
NUIS_LOG(SAM, "Finalising Sample Settings: " << fName);
if ((fSettings.GetS("originalname").find("Evt") != std::string::npos)) {
fIsRawEvents = true;
NUIS_LOG(SAM,
"Found event rate measurement but using poisson likelihoods.");
}
if (fSettings.GetS("originalname").find("Enu") != std::string::npos) {
fIsEnu1D = true;
NUIS_LOG(SAM, "::" << fName << "::");
NUIS_LOG(SAM,
"Found XSec Enu measurement, applying flux integrated scaling, "
<< "not flux averaged!");
}
if (fIsEnu1D && fIsRawEvents) {
NUIS_ERR(FTL, "Found 2D Enu XSec distribution AND fIsRawEvents, is this "
"really correct?!");
NUIS_ERR(FTL, "Check experiment constructor for " << fName
<< " and correct this!");
NUIS_ABORT("I live in " << __FILE__ << ":" << __LINE__);
}
if (!fRW)
fRW = FitBase::GetRW();
if (!fInput)
SetupInputs(fSettings.GetS("input"));
// Setup options
SetFitOptions(fDefaultTypes); // defaults
SetFitOptions(fSettings.GetS("type")); // user specified
EnuMin = GeneralUtils::StrToDbl(fSettings.GetS("enu_min"));
EnuMax = GeneralUtils::StrToDbl(fSettings.GetS("enu_max"));
}
void Measurement2D::CreateDataHistogram(int dimx, double *binx, int dimy,
double *biny) {
if (fDataHist)
delete fDataHist;
NUIS_LOG(SAM, "Creating Data Histogram dim : " << dimx << " " << dimy);
fDataHist = new TH2D((fSettings.GetName() + "_data").c_str(),
(fSettings.GetFullTitles()).c_str(), dimx - 1, binx,
dimy - 1, biny);
}
void Measurement2D::SetDataFromTextFile(std::string data, std::string binx,
std::string biny) {
// Get the data hist
fDataHist = PlotUtils::GetTH2DFromTextFile(data, binx, biny);
// Set the name properly
fDataHist->SetName((fSettings.GetName() + "_data").c_str());
fDataHist->SetTitle(fSettings.GetFullTitles().c_str());
}
void Measurement2D::SetDataFromRootFile(std::string datfile,
std::string histname) {
NUIS_LOG(SAM, "Reading data from root file: " << datfile << ";" << histname);
fDataHist = PlotUtils::GetTH2DFromRootFile(datfile, histname);
fDataHist->SetNameTitle((fSettings.GetName() + "_data").c_str(),
(fSettings.GetFullTitles()).c_str());
}
void Measurement2D::SetDataValuesFromTextFile(std::string datfile, TH2D *hist) {
NUIS_LOG(SAM, "Setting data values from text file");
if (!hist)
hist = fDataHist;
// Read TH2D From textfile
TH2D *valhist = (TH2D *)hist->Clone();
valhist->Reset();
PlotUtils::Set2DHistFromText(datfile, valhist, 1.0, true);
NUIS_LOG(SAM, " -> Filling values from read hist.");
for (int i = 0; i < valhist->GetNbinsX(); i++) {
for (int j = 0; j < valhist->GetNbinsY(); j++) {
hist->SetBinContent(i + 1, j + 1, valhist->GetBinContent(i + 1, j + 1));
}
}
NUIS_LOG(SAM, " --> Done");
}
void Measurement2D::SetDataErrorsFromTextFile(std::string datfile, TH2D *hist) {
NUIS_LOG(SAM, "Setting data errors from text file");
if (!hist)
hist = fDataHist;
// Read TH2D From textfile
TH2D *valhist = (TH2D *)hist->Clone();
valhist->Reset();
PlotUtils::Set2DHistFromText(datfile, valhist, 1.0);
// Fill Errors
NUIS_LOG(SAM, " -> Filling errors from read hist.");
for (int i = 0; i < valhist->GetNbinsX(); i++) {
for (int j = 0; j < valhist->GetNbinsY(); j++) {
hist->SetBinError(i + 1, j + 1, valhist->GetBinContent(i + 1, j + 1));
}
}
NUIS_LOG(SAM, " --> Done");
}
void Measurement2D::SetMapValuesFromText(std::string dataFile) {
TH2D *hist = fDataHist;
std::vector<double> edgex;
std::vector<double> edgey;
for (int i = 0; i <= hist->GetNbinsX(); i++)
edgex.push_back(hist->GetXaxis()->GetBinLowEdge(i + 1));
for (int i = 0; i <= hist->GetNbinsY(); i++)
edgey.push_back(hist->GetYaxis()->GetBinLowEdge(i + 1));
fMapHist = new TH2I((fName + "_map").c_str(), (fName + fPlotTitles).c_str(),
edgex.size() - 1, &edgex[0], edgey.size() - 1, &edgey[0]);
NUIS_LOG(SAM, "Reading map from: " << dataFile);
PlotUtils::Set2DHistFromText(dataFile, fMapHist, 1.0);
}
//********************************************************************
void Measurement2D::SetPoissonErrors() {
//********************************************************************
if (!fDataHist) {
NUIS_ERR(FTL, "Need a data hist to setup possion errors! ");
NUIS_ABORT("Setup Data First!");
}
for (int i = 0; i < fDataHist->GetNbinsX() + 1; i++) {
fDataHist->SetBinError(i + 1, sqrt(fDataHist->GetBinContent(i + 1)));
}
}
//********************************************************************
void Measurement2D::SetCovarFromDiagonal(TH2D *data) {
//********************************************************************
if (!data and fDataHist) {
data = fDataHist;
}
if (data) {
NUIS_LOG(SAM, "Setting diagonal covariance for: " << data->GetName());
fFullCovar = StatUtils::MakeDiagonalCovarMatrix(data);
covar = StatUtils::GetInvert(fFullCovar,true);
fDecomp = StatUtils::GetDecomp(fFullCovar);
} else {
NUIS_ABORT("No data input provided to set diagonal covar from!");
}
// if (!fIsDiag) {
// ERR(FTL) << "SetCovarMatrixFromDiag called for measurement "
// << "that is not set as diagonal." << std::endl;
// throw;
// }
}
//********************************************************************
void Measurement2D::SetCovarFromTextFile(std::string covfile, int dim) {
//********************************************************************
if (dim == -1) {
dim = this->GetNDOF();
}
NUIS_LOG(SAM, "Reading covariance from text file: " << covfile << " " << dim);
fFullCovar = StatUtils::GetCovarFromTextFile(covfile, dim);
covar = StatUtils::GetInvert(fFullCovar,true);
fDecomp = StatUtils::GetDecomp(fFullCovar);
}
//********************************************************************
void Measurement2D::SetCovarFromRootFile(std::string covfile,
std::string histname) {
//********************************************************************
NUIS_LOG(SAM,
"Reading covariance from text file: " << covfile << ";" << histname);
fFullCovar = StatUtils::GetCovarFromRootFile(covfile, histname);
covar = StatUtils::GetInvert(fFullCovar,true);
fDecomp = StatUtils::GetDecomp(fFullCovar);
}
//********************************************************************
void Measurement2D::SetCovarInvertFromTextFile(std::string covfile, int dim) {
//********************************************************************
if (dim == -1) {
dim = this->GetNDOF();
}
NUIS_LOG(SAM, "Reading inverted covariance from text file: " << covfile);
covar = StatUtils::GetCovarFromTextFile(covfile, dim);
fFullCovar = StatUtils::GetInvert(covar,true);
fDecomp = StatUtils::GetDecomp(fFullCovar);
}
//********************************************************************
void Measurement2D::SetCovarInvertFromRootFile(std::string covfile,
std::string histname) {
//********************************************************************
NUIS_LOG(SAM, "Reading inverted covariance from text file: " << covfile << ";"
<< histname);
covar = StatUtils::GetCovarFromRootFile(covfile, histname);
fFullCovar = StatUtils::GetInvert(covar,true);
fDecomp = StatUtils::GetDecomp(fFullCovar);
}
//********************************************************************
void Measurement2D::SetCorrelationFromTextFile(std::string covfile, int dim) {
//********************************************************************
if (dim == -1)
dim = this->GetNDOF();
NUIS_LOG(SAM, "Reading data correlations from text file: " << covfile << ";"
<< dim);
TMatrixDSym *correlation = StatUtils::GetCovarFromTextFile(covfile, dim);
if (!fDataHist) {
NUIS_ABORT("Trying to set correlations from text file but there is no "
"data to build it from. \n"
<< "In constructor make sure data is set before "
"SetCorrelationFromTextFile is called. \n");
}
// Fill covar from data errors and correlations
fFullCovar = new TMatrixDSym(dim);
for (int i = 0; i < fDataHist->GetNbinsX(); i++) {
for (int j = 0; j < fDataHist->GetNbinsX(); j++) {
(*fFullCovar)(i, j) = (*correlation)(i, j) *
fDataHist->GetBinError(i + 1) *
fDataHist->GetBinError(j + 1) * 1.E76;
}
}
// Fill other covars.
covar = StatUtils::GetInvert(fFullCovar,true);
fDecomp = StatUtils::GetDecomp(fFullCovar);
delete correlation;
}
//********************************************************************
void Measurement2D::SetCorrelationFromRootFile(std::string covfile,
std::string histname) {
//********************************************************************
NUIS_LOG(SAM, "Reading data correlations from text file: " << covfile << ";"
<< histname);
TMatrixDSym *correlation = StatUtils::GetCovarFromRootFile(covfile, histname);
if (!fDataHist) {
NUIS_ABORT("Trying to set correlations from text file but there is no "
"data to build it from. \n"
<< "In constructor make sure data is set before "
"SetCorrelationFromTextFile is called. \n");
}
// Fill covar from data errors and correlations
fFullCovar = new TMatrixDSym(fDataHist->GetNbinsX());
for (int i = 0; i < fDataHist->GetNbinsX(); i++) {
for (int j = 0; j < fDataHist->GetNbinsX(); j++) {
(*fFullCovar)(i, j) = (*correlation)(i, j) *
fDataHist->GetBinError(i + 1) *
fDataHist->GetBinError(j + 1) * 1.E76;
}
}
// Fill other covars.
covar = StatUtils::GetInvert(fFullCovar,true);
fDecomp = StatUtils::GetDecomp(fFullCovar);
delete correlation;
}
//********************************************************************
void Measurement2D::SetCholDecompFromTextFile(std::string covfile, int dim) {
//********************************************************************
if (dim == -1) {
dim = this->GetNDOF();
}
NUIS_LOG(SAM, "Reading cholesky from text file: " << covfile << " " << dim);
TMatrixD *temp = StatUtils::GetMatrixFromTextFile(covfile, dim, dim);
TMatrixD *trans = (TMatrixD *)temp->Clone();
trans->T();
(*trans) *= (*temp);
fFullCovar = new TMatrixDSym(dim, trans->GetMatrixArray(), "");
covar = StatUtils::GetInvert(fFullCovar,true);
fDecomp = StatUtils::GetDecomp(fFullCovar);
delete temp;
delete trans;
}
//********************************************************************
void Measurement2D::SetCholDecompFromRootFile(std::string covfile,
std::string histname) {
//********************************************************************
NUIS_LOG(SAM, "Reading cholesky decomp from root file: " << covfile << ";"
<< histname);
TMatrixD *temp = StatUtils::GetMatrixFromRootFile(covfile, histname);
TMatrixD *trans = (TMatrixD *)temp->Clone();
trans->T();
(*trans) *= (*temp);
fFullCovar = new TMatrixDSym(temp->GetNrows(), trans->GetMatrixArray(), "");
covar = StatUtils::GetInvert(fFullCovar,true);
fDecomp = StatUtils::GetDecomp(fFullCovar);
delete temp;
delete trans;
}
void Measurement2D::SetShapeCovar() {
// Return if this is missing any pre-requisites
if (!fFullCovar)
return;
if (!fDataHist)
return;
// Also return if it's bloody stupid under the circumstances
if (fIsDiag)
return;
fShapeCovar =
StatUtils::ExtractShapeOnlyCovar(fFullCovar, fDataHist, fMapHist);
return;
}
//********************************************************************
void Measurement2D::ScaleData(double scale) {
//********************************************************************
fDataHist->Scale(scale);
}
//********************************************************************
void Measurement2D::ScaleDataErrors(double scale) {
//********************************************************************
for (int i = 0; i < fDataHist->GetNbinsX(); i++) {
for (int j = 0; j < fDataHist->GetNbinsY(); j++) {
fDataHist->SetBinError(i + 1, j + 1,
fDataHist->GetBinError(i + 1, j + 1) * scale);
}
}
}
//********************************************************************
void Measurement2D::ScaleCovar(double scale) {
//********************************************************************
(*fFullCovar) *= scale;
(*covar) *= 1.0 / scale;
(*fDecomp) *= sqrt(scale);
}
//********************************************************************
void Measurement2D::SetBinMask(std::string maskfile) {
//********************************************************************
if (!fIsMask)
return;
NUIS_LOG(SAM, "Reading bin mask from file: " << maskfile);
// Create a mask histogram with dim of data
int nbinsx = fDataHist->GetNbinsX();
int nbinxy = fDataHist->GetNbinsY();
fMaskHist = new TH2I((fSettings.GetName() + "_BINMASK").c_str(),
(fSettings.GetName() + "_BINMASK; Bin; Mask?").c_str(),
nbinsx, 0, nbinsx, nbinxy, 0, nbinxy);
std::string line;
std::ifstream mask(maskfile.c_str(), std::ifstream::in);
if (!mask.is_open()) {
NUIS_LOG(FTL, " Cannot find mask file.");
throw;
}
while (std::getline(mask >> std::ws, line, '\n')) {
std::vector<int> entries = GeneralUtils::ParseToInt(line, " ");
// Skip lines with poorly formatted lines
if (entries.size() < 2) {
NUIS_LOG(WRN,
"Measurement2D::SetBinMask(), couldn't parse line: " << line);
continue;
}
// The first index should be the bin number, the second should be the mask
// value.
int val = 0;
if (entries[2] > 0)
val = 1;
fMaskHist->SetBinContent(entries[0], entries[1], val);
}
// Apply masking by setting masked data bins to zero
PlotUtils::MaskBins(fDataHist, fMaskHist);
return;
}
//********************************************************************
void Measurement2D::FinaliseMeasurement() {
//********************************************************************
NUIS_LOG(SAM, "Finalising Measurement: " << fName);
if (fSettings.GetB("onlymc")) {
if (fDataHist)
delete fDataHist;
fDataHist = new TH2D("empty_data", "empty_data", 1, 0.0, 1.0, 1, 0.0, 1.0);
}
// Make sure data is setup
if (!fDataHist) {
NUIS_ABORT("No data has been setup inside " << fName << " constructor!");
}
// Make sure covariances are setup
if (!fFullCovar) {
fIsDiag = true;
SetCovarFromDiagonal(fDataHist);
} else if (fIsDiag) { // Have covariance but also set Diag
NUIS_LOG(SAM, "Have full covariance for sample "
<< GetName()
<< " but only using diagonal elements for likelihood");
size_t nbins = fFullCovar->GetNcols();
- for (int i = 0; i < nbins; ++i) {
- for (int j = 0; j < nbins; ++j) {
+ for (size_t i = 0; i < nbins; ++i) {
+ for (size_t j = 0; j < nbins; ++j) {
if (i != j) {
(*fFullCovar)[i][j] = 0;
}
}
}
delete covar;
covar = NULL;
delete fDecomp;
fDecomp = NULL;
}
if (!covar) {
covar = StatUtils::GetInvert(fFullCovar,true);
}
if (!fDecomp) {
fDecomp = StatUtils::GetDecomp(fFullCovar);
}
// If shape only, set covar and fDecomp using the shape-only matrix (if set)
if (fIsShape && fShapeCovar && FitPar::Config().GetParB("UseShapeCovar")) {
if (covar)
delete covar;
covar = StatUtils::GetInvert(fShapeCovar,true);
if (fDecomp)
delete fDecomp;
fDecomp = StatUtils::GetDecomp(fFullCovar);
fUseShapeNormDecomp = FitPar::Config().GetParB("UseShapeNormDecomp");
if (fUseShapeNormDecomp) {
fNormError = 0;
// From https://arxiv.org/pdf/2003.00088.pdf
for (int i = 0; i < fFullCovar->GetNcols(); ++i) {
for (int j = 0; j < fFullCovar->GetNcols(); ++j) {
fNormError += (*fFullCovar)[i][j];
}
}
NUIS_LOG(SAM, "Sample: " << fName
<< ", using shape/norm decomp with norm error: "
<< fNormError);
}
}
// Setup fMCHist from data
fMCHist = (TH2D *)fDataHist->Clone();
fMCHist->SetNameTitle((fSettings.GetName() + "_MC").c_str(),
(fSettings.GetFullTitles()).c_str());
fMCHist->Reset();
// Setup fMCFine
fMCFine = new TH2D(
"mcfine", "mcfine", fDataHist->GetNbinsX() * 6,
fMCHist->GetXaxis()->GetBinLowEdge(1),
fMCHist->GetXaxis()->GetBinLowEdge(fDataHist->GetNbinsX() + 1),
fDataHist->GetNbinsY() * 6, fMCHist->GetYaxis()->GetBinLowEdge(1),
fMCHist->GetYaxis()->GetBinLowEdge(fDataHist->GetNbinsY() + 1));
fMCFine->SetNameTitle((fSettings.GetName() + "_MC_FINE").c_str(),
(fSettings.GetFullTitles()).c_str());
fMCFine->Reset();
// Setup MC Stat
fMCStat = (TH2D *)fMCHist->Clone();
fMCStat->Reset();
// Search drawopts for possible types to include by default
std::string drawopts = FitPar::Config().GetParS("drawopts");
if (drawopts.find("MODES") != std::string::npos) {
fMCHist_Modes = new TrueModeStack((fSettings.GetName() + "_MODES").c_str(),
("True Channels"), fMCHist);
SetAutoProcessTH1(fMCHist_Modes);
}
if (fSettings.Has("maskfile") && fSettings.Has("maskhist")) {
fMaskHist = PlotUtils::GetTH2FromRootFile<TH2I>(fSettings.GetS("maskfile"),
fSettings.GetS("maskhist"));
fIsMask = bool(fMaskHist);
NUIS_LOG(SAM, "Loaded mask histogram: " << fSettings.GetS("maskhist")
<< " from "
<< fSettings.GetS("maskfile"));
} else if (fIsMask) { // Setup bin masks using sample name
std::string curname = fName;
std::string origname = fSettings.GetS("originalname");
// Check rename.mask
std::string maskloc = FitPar::Config().GetParDIR(curname + ".mask");
// Check origname.mask
if (maskloc.empty())
maskloc = FitPar::Config().GetParDIR(origname + ".mask");
// Check database
if (maskloc.empty()) {
maskloc = FitPar::GetDataBase() + "/masks/" + origname + ".mask";
}
// Setup Bin Mask
SetBinMask(maskloc);
}
if (fScaleFactor < 0) {
NUIS_ERR(FTL, "I found a negative fScaleFactor in " << __FILE__ << ":"
<< __LINE__);
NUIS_ERR(FTL, "fScaleFactor = " << fScaleFactor);
NUIS_ABORT("EXITING");
}
if (fAddNormPen) {
if (!fUseShapeNormDecomp) {
fNormError = fSettings.GetNormError();
}
if (fNormError <= 0.0) {
NUIS_ERR(FTL, "Norm error for class " << fName << " is 0.0!");
NUIS_ABORT("If you want to use it please add fNormError=VAL");
}
}
// Create and fill Weighted Histogram
if (!fMCWeighted) {
fMCWeighted = (TH2D *)fMCHist->Clone();
fMCWeighted->SetNameTitle((fName + "_MCWGHTS").c_str(),
(fName + "_MCWGHTS" + fPlotTitles).c_str());
fMCWeighted->GetYaxis()->SetTitle("Weighted Events");
}
if (!fMapHist)
fMapHist = StatUtils::GenerateMap(fDataHist);
}
//********************************************************************
void Measurement2D::SetFitOptions(std::string opt) {
//********************************************************************
// Do nothing if default given
if (opt == "DEFAULT")
return;
// CHECK Conflicting Fit Options
std::vector<std::string> fit_option_allow =
GeneralUtils::ParseToStr(fAllowedTypes, "/");
for (UInt_t i = 0; i < fit_option_allow.size(); i++) {
std::vector<std::string> fit_option_section =
GeneralUtils::ParseToStr(fit_option_allow.at(i), ",");
bool found_option = false;
for (UInt_t j = 0; j < fit_option_section.size(); j++) {
std::string av_opt = fit_option_section.at(j);
if (!found_option and opt.find(av_opt) != std::string::npos) {
found_option = true;
} else if (found_option and opt.find(av_opt) != std::string::npos) {
NUIS_ABORT(
"ERROR: Conflicting fit options provided: "
<< opt << std::endl
<< "Conflicting group = " << fit_option_section.at(i) << std::endl
<< "You should only supply one of these options in card file.");
}
}
}
// Check all options are allowed
std::vector<std::string> fit_options_input =
GeneralUtils::ParseToStr(opt, "/");
for (UInt_t i = 0; i < fit_options_input.size(); i++) {
if (fAllowedTypes.find(fit_options_input.at(i)) == std::string::npos) {
NUIS_ERR(FTL, "ERROR: Fit Option '"
<< fit_options_input.at(i)
<< "' Provided is not allowed for this measurement.");
NUIS_ERR(FTL, "Fit Options should be provided as a '/' seperated list "
"(e.g. FREE/DIAG/NORM)");
NUIS_ABORT("Available options for " << fName << " are '" << fAllowedTypes
<< "'");
}
}
// Set TYPE
fFitType = opt;
// FIX,SHAPE,FREE
if (opt.find("FIX") != std::string::npos) {
fIsFree = fIsShape = false;
fIsFix = true;
} else if (opt.find("SHAPE") != std::string::npos) {
fIsFree = fIsFix = false;
fIsShape = true;
} else if (opt.find("FREE") != std::string::npos) {
fIsFix = fIsShape = false;
fIsFree = true;
}
// DIAG,FULL (or default to full)
if (opt.find("DIAG") != std::string::npos) {
fIsDiag = true;
fIsFull = false;
} else if (opt.find("FULL") != std::string::npos) {
fIsDiag = false;
fIsFull = true;
}
// CHI2/LL (OTHERS?)
if (opt.find("LOG") != std::string::npos) {
fIsChi2 = false;
NUIS_ERR(FTL, "No other LIKELIHOODS properly supported!");
NUIS_ABORT("Try to use a chi2!");
} else {
fIsChi2 = true;
}
// EXTRAS
if (opt.find("RAW") != std::string::npos)
fIsRawEvents = true;
if (opt.find("DIF") != std::string::npos)
fIsDifXSec = true;
if (opt.find("ENU1D") != std::string::npos)
fIsEnu1D = true;
if (opt.find("NORM") != std::string::npos)
fAddNormPen = true;
if (opt.find("MASK") != std::string::npos)
fIsMask = true;
// Set TYPE
fFitType = opt;
// FIX,SHAPE,FREE
if (opt.find("FIX") != std::string::npos) {
fIsFree = fIsShape = false;
fIsFix = true;
} else if (opt.find("SHAPE") != std::string::npos) {
fIsFree = fIsFix = false;
fIsShape = true;
} else if (opt.find("FREE") != std::string::npos) {
fIsFix = fIsShape = false;
fIsFree = true;
}
// DIAG,FULL (or default to full)
if (opt.find("DIAG") != std::string::npos) {
fIsDiag = true;
fIsFull = false;
} else if (opt.find("FULL") != std::string::npos) {
fIsDiag = false;
fIsFull = true;
}
// CHI2/LL (OTHERS?)
if (opt.find("LOG") != std::string::npos)
fIsChi2 = false;
else
fIsChi2 = true;
// EXTRAS
if (opt.find("RAW") != std::string::npos)
fIsRawEvents = true;
if (opt.find("DIF") != std::string::npos)
fIsDifXSec = true;
if (opt.find("ENU1D") != std::string::npos)
fIsEnu = true;
if (opt.find("NORM") != std::string::npos)
fAddNormPen = true;
if (opt.find("MASK") != std::string::npos)
fIsMask = true;
fIsProjFitX = (opt.find("FITPROJX") != std::string::npos);
fIsProjFitY = (opt.find("FITPROJY") != std::string::npos);
return;
};
/*
Reconfigure LOOP
*/
//********************************************************************
void Measurement2D::ResetAll() {
//********************************************************************
fMCHist->Reset();
fMCFine->Reset();
fMCStat->Reset();
return;
};
//********************************************************************
void Measurement2D::FillHistograms() {
//********************************************************************
if (Signal) {
fMCHist->Fill(fXVar, fYVar, Weight);
fMCFine->Fill(fXVar, fYVar, Weight);
fMCStat->Fill(fXVar, fYVar, 1.0);
if (fMCHist_Modes)
fMCHist_Modes->Fill(Mode, fXVar, fYVar, Weight);
}
return;
};
//********************************************************************
void Measurement2D::ScaleEvents() {
//********************************************************************
// Fill MCWeighted;
// for (int i = 0; i < fMCHist->GetNbinsX(); i++) {
// fMCWeighted->SetBinContent(i + 1, fMCHist->GetBinContent(i + 1));
// fMCWeighted->SetBinError(i + 1, fMCHist->GetBinError(i + 1));
// }
// Setup Stat ratios for MC and MC Fine
double *statratio = new double[fMCHist->GetNbinsX()];
for (int i = 0; i < fMCHist->GetNbinsX(); i++) {
if (fMCHist->GetBinContent(i + 1) != 0) {
statratio[i] =
fMCHist->GetBinError(i + 1) / fMCHist->GetBinContent(i + 1);
} else {
statratio[i] = 0.0;
}
}
double *statratiofine = new double[fMCFine->GetNbinsX()];
for (int i = 0; i < fMCFine->GetNbinsX(); i++) {
if (fMCFine->GetBinContent(i + 1) != 0) {
statratiofine[i] =
fMCFine->GetBinError(i + 1) / fMCFine->GetBinContent(i + 1);
} else {
statratiofine[i] = 0.0;
}
}
// Scaling for raw event rates
if (fIsRawEvents) {
double datamcratio = fDataHist->Integral() / fMCHist->Integral();
fMCHist->Scale(datamcratio);
fMCFine->Scale(datamcratio);
if (fMCHist_Modes)
fMCHist_Modes->Scale(datamcratio);
// Scaling for XSec as function of Enu
} else if (fIsEnu1D) {
PlotUtils::FluxUnfoldedScaling(fMCHist, GetFluxHistogram(),
GetEventHistogram(), fScaleFactor);
PlotUtils::FluxUnfoldedScaling(fMCFine, GetFluxHistogram(),
GetEventHistogram(), fScaleFactor);
// if (fMCHist_Modes) {
// PlotUtils::FluxUnfoldedScaling(fMCHist_Modes, GetFluxHistogram(),
// GetEventHistogram(), fScaleFactor,
// fNEvents);
// }
// Any other differential scaling
} else {
fMCHist->Scale(fScaleFactor, "width");
fMCFine->Scale(fScaleFactor, "width");
// if (fMCHist_Modes) fMCHist_Modes->Scale(fScaleFactor, "width");
}
// Proper error scaling - ROOT Freaks out with xsec weights sometimes
for (int i = 0; i < fMCStat->GetNbinsX(); i++) {
fMCHist->SetBinError(i + 1, fMCHist->GetBinContent(i + 1) * statratio[i]);
}
for (int i = 0; i < fMCFine->GetNbinsX(); i++) {
fMCFine->SetBinError(i + 1,
fMCFine->GetBinContent(i + 1) * statratiofine[i]);
}
// Clean up
delete statratio;
delete statratiofine;
return;
};
//********************************************************************
void Measurement2D::ApplyNormScale(double norm) {
//********************************************************************
fCurrentNorm = norm;
fMCHist->Scale(1.0 / norm);
fMCFine->Scale(1.0 / norm);
return;
};
/*
Statistic Functions - Outsources to StatUtils
*/
//********************************************************************
int Measurement2D::GetNDOF() {
//********************************************************************
// Just incase it has gone...
if (!fDataHist)
return -1;
int nDOF = 0;
// If datahist has no errors make sure we don't include those bins as they are
// not data points
for (int xBin = 0; xBin < fDataHist->GetNbinsX(); ++xBin) {
for (int yBin = 0; yBin < fDataHist->GetNbinsY(); ++yBin) {
if (fDataHist->GetBinError(xBin + 1, yBin + 1) != 0)
++nDOF;
}
}
// Account for possible bin masking
int nMasked = 0;
if (fMaskHist and fIsMask)
if (fMaskHist->Integral() > 0)
for (int xBin = 0; xBin < fMaskHist->GetNbinsX() + 1; ++xBin)
for (int yBin = 0; yBin < fMaskHist->GetNbinsY() + 1; ++yBin)
if (fMaskHist->GetBinContent(xBin, yBin) > 0.5)
++nMasked;
// Take away those masked DOF
if (fIsMask) {
nDOF -= nMasked;
}
return nDOF;
}
//********************************************************************
double Measurement2D::GetLikelihood() {
//********************************************************************
// If this is for a ratio, there is no data histogram to compare to!
if (fNoData || !fDataHist)
return 0.;
// Fix weird masking bug
if (!fIsMask) {
if (fMaskHist) {
fMaskHist = NULL;
}
} else {
if (fMaskHist) {
PlotUtils::MaskBins(fMCHist, fMaskHist);
}
}
// if (fIsProjFitX or fIsProjFitY) return GetProjectedChi2();
// Scale up the results to match each other (Not using width might be
// inconsistent with Meas1D)
double scaleF = fDataHist->Integral() / fMCHist->Integral();
if (fIsShape) {
fMCHist->Scale(scaleF);
fMCFine->Scale(scaleF);
// PlotUtils::ScaleNeutModeArray((TH1**)fMCHist_PDG, scaleF);
}
if (!fMapHist) {
fMapHist = StatUtils::GenerateMap(fDataHist);
}
// Get the chi2 from either covar or diagonals
double chi2 = 0.0;
if (fIsChi2) {
if (fIsDiag) {
chi2 =
StatUtils::GetChi2FromDiag(fDataHist, fMCHist, fMapHist, fMaskHist);
} else {
chi2 = StatUtils::GetChi2FromCov(fDataHist, fMCHist, covar, fMapHist,
fMaskHist,
fIsWriting ? fResidualHist : NULL);
if (fChi2LessBinHist && fIsWriting) {
NUIS_LOG(SAM, "Building n-1 chi2 contribution plot for " << GetName());
for (int xi = 0; xi < fDataHist->GetNbinsX(); ++xi) {
for (int yi = 0; yi < fDataHist->GetNbinsY(); ++yi) {
TH2I *binmask =
fMaskHist
? static_cast<TH2I *>(fMaskHist->Clone("mask"))
: new TH2I("mask", "", fDataHist->GetNbinsX(), 0,
fDataHist->GetNbinsX(), fDataHist->GetNbinsY(),
0, fDataHist->GetNbinsY());
binmask->SetDirectory(NULL);
binmask->SetBinContent(xi + 1, yi + 1, 1);
fChi2LessBinHist->SetBinContent(
xi + 1, yi + 1,
StatUtils::GetChi2FromCov(fDataHist, fMCHist, covar, fMapHist,
binmask));
delete binmask;
}
}
}
}
}
// Add a normal penalty term
if (fAddNormPen) {
if (fUseShapeNormDecomp) { // if shape norm, then add the norm penalty from
// https://arxiv.org/pdf/2003.00088.pdf
TH2 *masked_data = StatUtils::ApplyHistogramMasking(fDataHist, fMaskHist);
TH2 *masked_mc = StatUtils::ApplyHistogramMasking(fMCHist, fMaskHist);
masked_mc->Scale(scaleF);
NUIS_LOG(REC, "ShapeNormDecomp: mcinteg: "
<< masked_mc->Integral() * 1E38
<< ", datainteg: " << masked_data->Integral() * 1E38
<< ", normerror: " << fNormError);
double normpen =
std::pow((masked_data->Integral() - masked_mc->Integral()) * 1E38,
2) /
fNormError;
masked_data->SetDirectory(NULL);
delete masked_data;
masked_mc->SetDirectory(NULL);
delete masked_mc;
NUIS_LOG(REC, "Using Shape/Norm decomposition: Norm penalty "
<< normpen << " on shape penalty of " << chi2);
chi2 += normpen;
} else {
chi2 += (1 - (fCurrentNorm)) * (1 - (fCurrentNorm)) /
(fNormError * fNormError);
NUIS_LOG(SAM, "Norm penalty = " << (1 - (fCurrentNorm)) *
(1 - (fCurrentNorm)) /
(fNormError * fNormError));
}
}
// Adjust the shape back to where it was.
if (fIsShape and !FitPar::Config().GetParB("saveshapescaling")) {
fMCHist->Scale(1. / scaleF);
fMCFine->Scale(1. / scaleF);
}
fLikelihood = chi2;
return chi2;
}
/*
Fake Data Functions
*/
//********************************************************************
void Measurement2D::SetFakeDataValues(std::string fakeOption) {
//********************************************************************
// Setup original/datatrue
TH2D *tempdata = (TH2D *)fDataHist->Clone();
if (!fIsFakeData) {
fIsFakeData = true;
// Make a copy of the original data histogram.
if (!fDataOrig)
fDataOrig = (TH2D *)fDataHist->Clone((fName + "_data_original").c_str());
} else {
ResetFakeData();
}
// Setup Inputs
fFakeDataInput = fakeOption;
NUIS_LOG(SAM, "Setting fake data from : " << fFakeDataInput);
// From MC
if (fFakeDataInput.compare("MC") == 0) {
fDataHist = (TH2D *)fMCHist->Clone((fName + "_MC").c_str());
// Fake File
} else {
if (!fFakeDataFile)
fFakeDataFile = new TFile(fFakeDataInput.c_str(), "READ");
fDataHist = (TH2D *)fFakeDataFile->Get((fName + "_MC").c_str());
}
// Setup Data Hist
fDataHist->SetNameTitle((fName + "_FAKE").c_str(),
(fName + fPlotTitles).c_str());
// Replace Data True
if (fDataTrue)
delete fDataTrue;
fDataTrue = (TH2D *)fDataHist->Clone();
fDataTrue->SetNameTitle((fName + "_FAKE_TRUE").c_str(),
(fName + fPlotTitles).c_str());
// Make a new covariance for fake data hist.
int nbins = fDataHist->GetNbinsX() * fDataHist->GetNbinsY();
double alpha_i = 0.0;
double alpha_j = 0.0;
for (int i = 0; i < nbins; i++) {
for (int j = 0; j < nbins; j++) {
if (tempdata->GetBinContent(i + 1) && tempdata->GetBinContent(j + 1)) {
alpha_i =
fDataHist->GetBinContent(i + 1) / tempdata->GetBinContent(i + 1);
alpha_j =
fDataHist->GetBinContent(j + 1) / tempdata->GetBinContent(j + 1);
} else {
alpha_i = 0.0;
alpha_j = 0.0;
}
(*fFullCovar)(i, j) = alpha_i * alpha_j * (*fFullCovar)(i, j);
}
}
// Setup Covariances
if (covar)
delete covar;
covar = StatUtils::GetInvert(fFullCovar,true);
if (fDecomp)
delete fDecomp;
fDecomp = StatUtils::GetDecomp(fFullCovar);
delete tempdata;
return;
};
//********************************************************************
void Measurement2D::ResetFakeData() {
//********************************************************************
if (fIsFakeData) {
if (fDataHist)
delete fDataHist;
fDataHist =
(TH2D *)fDataTrue->Clone((fSettings.GetName() + "_FKDAT").c_str());
}
}
//********************************************************************
void Measurement2D::ResetData() {
//********************************************************************
if (fIsFakeData) {
if (fDataHist)
delete fDataHist;
fDataHist =
(TH2D *)fDataOrig->Clone((fSettings.GetName() + "_data").c_str());
}
fIsFakeData = false;
}
//********************************************************************
void Measurement2D::ThrowCovariance() {
//********************************************************************
// Take a fDecomposition and use it to throw the current dataset.
// Requires fDataTrue also be set incase used repeatedly.
if (fDataHist)
delete fDataHist;
fDataHist = StatUtils::ThrowHistogram(fDataTrue, fFullCovar);
return;
};
//********************************************************************
void Measurement2D::ThrowDataToy() {
//********************************************************************
if (!fDataTrue)
fDataTrue = (TH2D *)fDataHist->Clone();
if (fMCHist)
delete fMCHist;
fMCHist = StatUtils::ThrowHistogram(fDataTrue, fFullCovar);
}
/*
Access Functions
*/
//********************************************************************
TH2D *Measurement2D::GetMCHistogram() {
//********************************************************************
if (!fMCHist)
return fMCHist;
std::ostringstream chi2;
chi2 << std::setprecision(5) << this->GetLikelihood();
int linecolor = kRed;
int linestyle = 1;
int linewidth = 1;
int fillcolor = 0;
int fillstyle = 1001;
if (fSettings.Has("linecolor"))
linecolor = fSettings.GetI("linecolor");
if (fSettings.Has("linestyle"))
linestyle = fSettings.GetI("linestyle");
if (fSettings.Has("linewidth"))
linewidth = fSettings.GetI("linewidth");
if (fSettings.Has("fillcolor"))
fillcolor = fSettings.GetI("fillcolor");
if (fSettings.Has("fillstyle"))
fillstyle = fSettings.GetI("fillstyle");
fMCHist->SetTitle(chi2.str().c_str());
fMCHist->SetLineColor(linecolor);
fMCHist->SetLineStyle(linestyle);
fMCHist->SetLineWidth(linewidth);
fMCHist->SetFillColor(fillcolor);
fMCHist->SetFillStyle(fillstyle);
return fMCHist;
};
//********************************************************************
TH2D *Measurement2D::GetDataHistogram() {
//********************************************************************
if (!fDataHist)
return fDataHist;
int datacolor = kBlack;
int datastyle = 1;
int datawidth = 1;
if (fSettings.Has("datacolor"))
datacolor = fSettings.GetI("datacolor");
if (fSettings.Has("datastyle"))
datastyle = fSettings.GetI("datastyle");
if (fSettings.Has("datawidth"))
datawidth = fSettings.GetI("datawidth");
fDataHist->SetLineColor(datacolor);
fDataHist->SetLineWidth(datawidth);
fDataHist->SetMarkerStyle(datastyle);
return fDataHist;
};
/*
Write Functions
*/
// Save all the histograms at once
//********************************************************************
void Measurement2D::Write(std::string drawOpt) {
//********************************************************************
// Get Draw Options
drawOpt = FitPar::Config().GetParS("drawopts");
// Write Settigns
if (drawOpt.find("SETTINGS") != std::string::npos) {
fSettings.Set("#chi^{2}", fLikelihood);
fSettings.Set("NDOF", this->GetNDOF());
fSettings.Set("#chi^{2}/NDOF", fLikelihood / this->GetNDOF());
fSettings.Write();
}
// // Likelihood residual plots
// if (drawOpt.find("RESIDUAL") != std::string::npos) {
// WriteResidualPlots();
//}
// // RATIO
// if (drawOpt.find("CANVMC") != std::string::npos) {
// TCanvas* c1 = WriteMCCanvas(fDataHist, fMCHist);
// c1->Write();
// delete c1;
// }
// // PDG
// if (drawOpt.find("CANVPDG") != std::string::npos && fMCHist_Modes) {
// TCanvas* c2 = WritePDGCanvas(fDataHist, fMCHist, fMCHist_Modes);
// c2->Write();
// delete c2;
// }
/// 2D VERSION
// If null pointer return
if (!fMCHist and !fDataHist) {
NUIS_LOG(SAM, fName << "Incomplete histogram set!");
return;
}
// Config::Get().out->cd();
// Get Draw Options
drawOpt = FitPar::Config().GetParS("drawopts");
bool drawData = (drawOpt.find("DATA") != std::string::npos);
bool drawNormal = (drawOpt.find("MC") != std::string::npos);
bool drawEvents = (drawOpt.find("EVT") != std::string::npos);
bool drawFine = (drawOpt.find("FINE") != std::string::npos);
bool drawRatio = (drawOpt.find("RATIO") != std::string::npos);
// bool drawModes = (drawOpt.find("MODES") != std::string::npos);
bool drawShape = (drawOpt.find("SHAPE") != std::string::npos);
bool residual = (drawOpt.find("RESIDUAL") != std::string::npos);
bool drawMatrix = (drawOpt.find("MATRIX") != std::string::npos);
bool drawFlux = (drawOpt.find("FLUX") != std::string::npos);
bool drawMask = (drawOpt.find("MASK") != std::string::npos);
bool drawMap = (drawOpt.find("MAP") != std::string::npos);
bool drawProj = (drawOpt.find("PROJ") != std::string::npos);
// bool drawCanvPDG = (drawOpt.find("CANVPDG") != std::string::npos);
bool drawCov = (drawOpt.find("COV") != std::string::npos);
bool drawSliceMC = (drawOpt.find("CANVSLICEMC") != std::string::npos);
bool drawWeighted =
(drawOpt.find("WEIGHTS") != std::string::npos && fMCWeighted);
if (FitPar::Config().GetParB("EventManager")) {
drawFlux = false;
drawEvents = false;
}
// Save standard plots
if (drawData) {
GetDataList().at(0)->Write();
// Generate a simple map
if (!fMapHist)
fMapHist = StatUtils::GenerateMap(fDataHist);
// Convert to 1D Lists
TH1D *data_1D = StatUtils::MapToTH1D(fDataHist, fMapHist);
data_1D->Write();
delete data_1D;
}
if (drawNormal) {
GetMCList().at(0)->Write();
if (!fMapHist)
fMapHist = StatUtils::GenerateMap(fDataHist);
TH1D *mc_1D = StatUtils::MapToTH1D(fMCHist, fMapHist);
mc_1D->SetLineColor(kRed);
mc_1D->Write();
delete mc_1D;
}
if (fIsChi2 && !fIsDiag) {
fResidualHist = (TH2D *)fMCHist->Clone((fName + "_RESIDUAL").c_str());
fResidualHist->GetYaxis()->SetTitle("#Delta#chi^{2}");
fResidualHist->Reset();
fChi2LessBinHist =
(TH2D *)fMCHist->Clone((fName + "_Chi2NMinusOne").c_str());
fChi2LessBinHist->GetYaxis()->SetTitle("Total #chi^{2} without bin_{i}");
fChi2LessBinHist->Reset();
fIsWriting = true;
(void)GetLikelihood();
fIsWriting = false;
fResidualHist->Write((fName + "_RESIDUAL").c_str());
fChi2LessBinHist->Write((fName + "_Chi2NMinusOne").c_str());
if (fMapHist) {
TH1D *ResidualHist_1D = StatUtils::MapToTH1D(fResidualHist, fMapHist);
TH1D *Chi2LessBinHist_1D =
StatUtils::MapToTH1D(fChi2LessBinHist, fMapHist);
ResidualHist_1D->Write((fName + "_RESIDUAL_1D").c_str());
Chi2LessBinHist_1D->Write((fName + "_Chi2NMinusOne_1D").c_str());
}
}
// Write Weighted Histogram
if (drawWeighted)
fMCWeighted->Write();
if (drawCov) {
TH2D(*fFullCovar).Write((fName + "_COV").c_str());
}
if (drawOpt.find("INVCOV") != std::string::npos) {
TH2D(*covar).Write((fName + "_INVCOV").c_str());
}
// Save only mc and data if splines
if (fEventType == 4 or fEventType == 3) {
return;
}
// Draw Extra plots
if (drawFine)
this->GetFineList().at(0)->Write();
if (drawFlux and GetFluxHistogram()) {
GetFluxHistogram()->Write();
}
if (drawEvents and GetEventHistogram()) {
GetEventHistogram()->Write();
}
if (fIsMask and drawMask) {
fMaskHist->Write((fName + "_MSK").c_str()); //< save mask
TH1I *mask_1D = StatUtils::MapToMask(fMaskHist, fMapHist);
if (mask_1D) {
mask_1D->Write();
TMatrixDSym *calc_cov =
StatUtils::ApplyInvertedMatrixMasking(covar, mask_1D);
TH1D *data_1D = StatUtils::MapToTH1D(fDataHist, fMapHist);
TH1D *mc_1D = StatUtils::MapToTH1D(fMCHist, fMapHist);
TH1D *calc_data = StatUtils::ApplyHistogramMasking(data_1D, mask_1D);
TH1D *calc_mc = StatUtils::ApplyHistogramMasking(mc_1D, mask_1D);
TH2D *bin_cov = new TH2D(*calc_cov);
bin_cov->Write();
calc_data->Write();
calc_mc->Write();
delete mask_1D;
delete calc_cov;
delete calc_data;
delete calc_mc;
delete bin_cov;
delete data_1D;
delete mc_1D;
}
}
if (drawMap)
fMapHist->Write((fName + "_MAP").c_str()); //< save map
// // Save neut stack
// if (drawModes) {
// THStack combo_fMCHist_PDG = PlotUtils::GetNeutModeStack(
// (fName + "_MC_PDG").c_str(),
// (TH1**)fMCHist_PDG, 0);
// combo_fMCHist_PDG.Write();
// }
// Save Matrix plots
if (drawMatrix and fFullCovar and covar and fDecomp) {
TH2D cov = TH2D((*fFullCovar));
cov.SetNameTitle((fName + "_cov").c_str(),
(fName + "_cov;Bins; Bins;").c_str());
cov.Write();
TH2D covinv = TH2D((*this->covar));
covinv.SetNameTitle((fName + "_covinv").c_str(),
(fName + "_cov;Bins; Bins;").c_str());
covinv.Write();
TH2D covdec = TH2D((*fDecomp));
covdec.SetNameTitle((fName + "_covdec").c_str(),
(fName + "_cov;Bins; Bins;").c_str());
covdec.Write();
}
// Save ratio plots if required
if (drawRatio) {
// Needed for error bars
for (int i = 0; i < fMCHist->GetNbinsX() * fMCHist->GetNbinsY(); i++)
fMCHist->SetBinError(i + 1, 0.0);
fDataHist->GetSumw2();
fMCHist->GetSumw2();
// Create Ratio Histograms
TH2D *dataRatio = (TH2D *)fDataHist->Clone((fName + "_data_RATIO").c_str());
TH2D *mcRatio = (TH2D *)fMCHist->Clone((fName + "_MC_RATIO").c_str());
mcRatio->Divide(fMCHist);
dataRatio->Divide(fMCHist);
// Cancel bin errors on MC
for (int i = 0; i < mcRatio->GetNbinsX() * mcRatio->GetNbinsY(); i++) {
mcRatio->SetBinError(i + 1, fMCHist->GetBinError(i + 1) /
fMCHist->GetBinContent(i + 1));
}
mcRatio->SetMinimum(0);
mcRatio->SetMaximum(2);
dataRatio->SetMinimum(0);
dataRatio->SetMaximum(2);
mcRatio->Write();
dataRatio->Write();
delete mcRatio;
delete dataRatio;
}
// Save Shape Plots if required
if (drawShape) {
// Create Shape Histogram
TH2D *mcShape = (TH2D *)fMCHist->Clone((fName + "_MC_SHAPE").c_str());
double shapeScale = 1.0;
if (fIsRawEvents) {
shapeScale = fDataHist->Integral() / fMCHist->Integral();
} else {
shapeScale = fDataHist->Integral("width") / fMCHist->Integral("width");
}
mcShape->Scale(shapeScale);
mcShape->SetLineWidth(3);
mcShape->SetLineStyle(7); // dashes
mcShape->Write();
// Save shape ratios
if (drawRatio) {
// Needed for error bars
mcShape->GetSumw2();
// Create shape ratio histograms
TH2D *mcShapeRatio =
(TH2D *)mcShape->Clone((fName + "_MC_SHAPE_RATIO").c_str());
TH2D *dataShapeRatio =
(TH2D *)fDataHist->Clone((fName + "_data_SHAPE_RATIO").c_str());
// Divide the histograms
mcShapeRatio->Divide(mcShape);
dataShapeRatio->Divide(mcShape);
// Colour the shape ratio plots
mcShapeRatio->SetLineWidth(3);
mcShapeRatio->SetLineStyle(7); // dashes
mcShapeRatio->Write();
dataShapeRatio->Write();
delete mcShapeRatio;
delete dataShapeRatio;
}
delete mcShape;
}
// Save residual calculations of what contributed to the chi2 values.
if (residual) {
}
if (fIsProjFitX || fIsProjFitY || drawProj) {
// If not already made, make the projections
if (!fMCHist_X) {
PlotUtils::MatchEmptyBins(fDataHist, fMCHist);
fMCHist_X = PlotUtils::GetProjectionX(fMCHist, fMaskHist);
fMCHist_Y = PlotUtils::GetProjectionY(fMCHist, fMaskHist);
fDataHist_X = PlotUtils::GetProjectionX(fDataHist, fMaskHist);
fDataHist_Y = PlotUtils::GetProjectionY(fDataHist, fMaskHist);
// This is not the correct way of doing it
// double chi2X = StatUtils::GetChi2FromDiag(fDataHist_X, fMCHist_X);
// double chi2Y = StatUtils::GetChi2FromDiag(fDataHist_Y, fMCHist_Y);
// fMCHist_X->SetTitle(Form("%f", chi2X));
// fMCHist_Y->SetTitle(Form("%f", chi2Y));
}
// Save the histograms
fDataHist_X->Write();
fMCHist_X->Write();
fDataHist_Y->Write();
fMCHist_Y->Write();
}
if (drawSliceMC) {
TCanvas *c1 = new TCanvas((fName + "_MC_CANV_Y").c_str(),
(fName + "_MC_CANV_Y").c_str(), 1024, 1024);
c1->Divide(2, int(fDataHist->GetNbinsY() / 3. + 1));
TH2D *mcShape = (TH2D *)fMCHist->Clone((fName + "_MC_SHAPE").c_str());
double shapeScale =
fDataHist->Integral("width") / fMCHist->Integral("width");
mcShape->Scale(shapeScale);
mcShape->SetLineStyle(7);
c1->cd(1);
TLegend *leg = new TLegend(0.0, 0.0, 1.0, 1.0);
leg->AddEntry(fDataHist, (fName + " Data").c_str(), "lep");
leg->AddEntry(fMCHist, (fName + " MC").c_str(), "l");
leg->AddEntry(mcShape, (fName + " Shape").c_str(), "l");
leg->SetLineColor(0);
leg->SetLineStyle(0);
leg->SetFillColor(0);
leg->SetLineStyle(0);
leg->Draw("SAME");
// Make Y slices
for (int i = 1; i < fDataHist->GetNbinsY() + 1; i++) {
c1->cd(i + 1);
TH1D *fDataHist_SliceY = PlotUtils::GetSliceY(fDataHist, i);
fDataHist_SliceY->Draw("E1");
TH1D *fMCHist_SliceY = PlotUtils::GetSliceY(fMCHist, i);
fMCHist_SliceY->Draw("SAME");
TH1D *mcShape_SliceY = PlotUtils::GetSliceY(mcShape, i);
mcShape_SliceY->Draw("SAME");
mcShape_SliceY->SetLineStyle(mcShape->GetLineStyle());
}
c1->Write();
delete c1;
delete leg;
TCanvas *c2 = new TCanvas((fName + "_MC_CANV_X").c_str(),
(fName + "_MC_CANV_X").c_str(), 1024, 1024);
c2->Divide(2, int(fDataHist->GetNbinsX() / 3. + 1));
mcShape = (TH2D *)fMCHist->Clone((fName + "_MC_SHAPE").c_str());
shapeScale = fDataHist->Integral("width") / fMCHist->Integral("width");
mcShape->Scale(shapeScale);
mcShape->SetLineStyle(7);
c2->cd(1);
TLegend *leg2 = new TLegend(0.0, 0.0, 1.0, 1.0);
leg2->AddEntry(fDataHist, (fName + " Data").c_str(), "lep");
leg2->AddEntry(fMCHist, (fName + " MC").c_str(), "l");
leg2->AddEntry(mcShape, (fName + " Shape").c_str(), "l");
leg2->SetLineColor(0);
leg2->SetLineStyle(0);
leg2->SetFillColor(0);
leg2->SetLineStyle(0);
leg2->Draw("SAME");
// Make Y slices
for (int i = 1; i < fDataHist->GetNbinsX() + 1; i++) {
c2->cd(i + 1);
TH1D *fDataHist_SliceX = PlotUtils::GetSliceX(fDataHist, i);
fDataHist_SliceX->Draw("E1");
TH1D *fMCHist_SliceX = PlotUtils::GetSliceX(fMCHist, i);
fMCHist_SliceX->Draw("SAME");
TH1D *mcShape_SliceX = PlotUtils::GetSliceX(mcShape, i);
mcShape_SliceX->Draw("SAME");
mcShape_SliceX->SetLineStyle(mcShape->GetLineStyle());
}
c2->Write();
delete c2;
delete leg2;
}
// Write Extra Histograms
AutoWriteExtraTH1();
WriteExtraHistograms();
// Returning
NUIS_LOG(SAM, "Written Histograms: " << fName);
return;
}
/*
Setup Functions
*/
//********************************************************************
void Measurement2D::SetupMeasurement(std::string inputfile, std::string type,
FitWeight *rw, std::string fkdt) {
//********************************************************************
// Check if name contains Evt, indicating that it is a raw number of events
// measurements and should thus be treated as once
fIsRawEvents = false;
if ((fName.find("Evt") != std::string::npos) && fIsRawEvents == false) {
fIsRawEvents = true;
NUIS_LOG(SAM, "Found event rate measurement but fIsRawEvents == false!");
NUIS_LOG(SAM, "Overriding this and setting fIsRawEvents == true!");
}
fIsEnu = false;
if ((fName.find("XSec") != std::string::npos) &&
(fName.find("Enu") != std::string::npos)) {
fIsEnu = true;
NUIS_LOG(SAM, "::" << fName << "::");
NUIS_LOG(SAM,
"Found XSec Enu measurement, applying flux integrated scaling, "
"not flux averaged!");
if (FitPar::Config().GetParB("EventManager")) {
NUIS_ERR(FTL, "Enu Measurements do not yet work with the Event Manager!");
NUIS_ERR(FTL, "If you want decent flux unfolded results please run in "
"series mode (-q EventManager=0)");
sleep(2);
throw;
}
}
if (fIsEnu && fIsRawEvents) {
NUIS_ERR(FTL, "Found 1D Enu XSec distribution AND fIsRawEvents, is this "
"really correct?!");
NUIS_ERR(FTL, "Check experiment constructor for " << fName
<< " and correct this!");
NUIS_ABORT("I live in " << __FILE__ << ":" << __LINE__);
}
// Reset everything to NULL
fRW = rw;
// Setting up 2D Inputs
this->SetupInputs(inputfile);
// Set Default Options
SetFitOptions(fDefaultTypes);
// Set Passed Options
SetFitOptions(type);
}
//********************************************************************
void Measurement2D::SetupDefaultHist() {
//********************************************************************
// Setup fMCHist
fMCHist = (TH2D *)fDataHist->Clone();
fMCHist->SetNameTitle((fName + "_MC").c_str(),
(fName + "_MC" + fPlotTitles).c_str());
// Setup fMCFine
Int_t nBinsX = fMCHist->GetNbinsX();
Int_t nBinsY = fMCHist->GetNbinsY();
fMCFine = new TH2D((fName + "_MC_FINE").c_str(),
(fName + "_MC_FINE" + fPlotTitles).c_str(), nBinsX * 3,
fMCHist->GetXaxis()->GetBinLowEdge(1),
fMCHist->GetXaxis()->GetBinLowEdge(nBinsX + 1), nBinsY * 3,
fMCHist->GetYaxis()->GetBinLowEdge(1),
fMCHist->GetYaxis()->GetBinLowEdge(nBinsY + 1));
// Setup MC Stat
fMCStat = (TH2D *)fMCHist->Clone();
fMCStat->Reset();
// Setup the NEUT Mode Array
// PlotUtils::CreateNeutModeArray(fMCHist, (TH1**)fMCHist_PDG);
// Setup bin masks using sample name
if (fIsMask) {
std::string maskloc = FitPar::Config().GetParDIR(fName + ".mask");
if (maskloc.empty()) {
maskloc = FitPar::GetDataBase() + "/masks/" + fName + ".mask";
}
SetBinMask(maskloc);
}
return;
}
//********************************************************************
void Measurement2D::SetDataValues(std::string dataFile, std::string TH2Dname) {
//********************************************************************
if (dataFile.find(".root") == std::string::npos) {
NUIS_ERR(FTL, "Error! " << dataFile << " is not a .root file");
NUIS_ERR(FTL, "Currently only .root file reading is supported (MiniBooNE "
"CC1pi+ 2D), but implementing .txt should be dirt easy");
NUIS_ABORT("See me at " << __FILE__ << ":" << __LINE__);
} else {
TFile *inFile = new TFile(dataFile.c_str(), "READ");
fDataHist = (TH2D *)(inFile->Get(TH2Dname.c_str())->Clone());
fDataHist->SetDirectory(0);
fDataHist->SetNameTitle((fName + "_data").c_str(),
(fName + "_MC" + fPlotTitles).c_str());
delete inFile;
}
return;
}
//********************************************************************
void Measurement2D::SetDataValues(std::string dataFile, double dataNorm,
std::string errorFile, double errorNorm) {
//********************************************************************
// Make a counter to track the line number
int yBin = 0;
std::string line;
std::ifstream data(dataFile.c_str(), std::ifstream::in);
fDataHist = new TH2D((fName + "_data").c_str(), (fName + fPlotTitles).c_str(),
fNDataPointsX - 1, fXBins, fNDataPointsY - 1, fYBins);
if (data.is_open()) {
NUIS_LOG(SAM, "Reading data from: " << dataFile.c_str());
}
while (std::getline(data >> std::ws, line, '\n')) {
int xBin = 0;
// Loop over entries and insert them into the histogram
std::vector<double> entries = GeneralUtils::ParseToDbl(line, " ");
for (std::vector<double>::iterator iter = entries.begin();
iter != entries.end(); iter++) {
fDataHist->SetBinContent(xBin + 1, yBin + 1, (*iter) * dataNorm);
xBin++;
}
yBin++;
}
yBin = 0;
std::ifstream error(errorFile.c_str(), std::ifstream::in);
if (error.is_open()) {
NUIS_LOG(SAM, "Reading errors from: " << errorFile.c_str());
}
while (std::getline(error >> std::ws, line, '\n')) {
int xBin = 0;
// Loop over entries and insert them into the histogram
std::vector<double> entries = GeneralUtils::ParseToDbl(line, " ");
for (std::vector<double>::iterator iter = entries.begin();
iter != entries.end(); iter++) {
fDataHist->SetBinError(xBin + 1, yBin + 1, (*iter) * errorNorm);
xBin++;
}
yBin++;
}
return;
};
//********************************************************************
void Measurement2D::SetDataValuesFromText(std::string dataFile,
double dataNorm) {
//********************************************************************
fDataHist = new TH2D((fName + "_data").c_str(), (fName + fPlotTitles).c_str(),
fNDataPointsX - 1, fXBins, fNDataPointsY - 1, fYBins);
NUIS_LOG(SAM, "Reading data from: " << dataFile);
PlotUtils::Set2DHistFromText(dataFile, fDataHist, dataNorm, true);
return;
};
//********************************************************************
void Measurement2D::SetCovarMatrix(std::string covarFile) {
//********************************************************************
// Used to read a covariance matrix from a root file
TFile *tempFile = new TFile(covarFile.c_str(), "READ");
// Make plots that we want
TH2D *covarPlot = new TH2D();
TH2D *fFullCovarPlot = new TH2D();
// Get covariance options for fake data studies
std::string covName = "";
std::string covOption = FitPar::Config().GetParS("throw_covariance");
// Which matrix to get?
if (fIsShape || fIsFree)
covName = "shp_";
if (fIsDiag)
covName += "diag";
else
covName += "full";
covarPlot = (TH2D *)tempFile->Get((covName + "cov").c_str());
// Throw either the sub matrix or the full matrix
if (!covOption.compare("SUB"))
fFullCovarPlot = (TH2D *)tempFile->Get((covName + "cov").c_str());
else if (!covOption.compare("FULL"))
fFullCovarPlot = (TH2D *)tempFile->Get("fullcov");
else {
NUIS_ERR(WRN, " Incorrect thrown_covariance option in parameters.");
}
// Bin masking?
int dim = int(fDataHist->GetNbinsX()); //-this->masked->Integral());
int covdim = int(fDataHist->GetNbinsX());
// Make new covars
this->covar = new TMatrixDSym(dim);
fFullCovar = new TMatrixDSym(dim);
fDecomp = new TMatrixDSym(dim);
// Full covariance values
int row, column = 0;
row = 0;
column = 0;
for (Int_t i = 0; i < covdim; i++) {
// masking can be dodgy
// if (this->masked->GetBinContent(i+1) > 0) continue;
for (Int_t j = 0; j < covdim; j++) {
// if (this->masked->GetBinContent(j+1) > 0) continue;
(*this->covar)(row, column) = covarPlot->GetBinContent(i + 1, j + 1);
(*fFullCovar)(row, column) = fFullCovarPlot->GetBinContent(i + 1, j + 1);
column++;
}
column = 0;
row++;
}
// Set bin errors on data
if (!fIsDiag) {
for (Int_t i = 0; i < fDataHist->GetNbinsX(); i++) {
fDataHist->SetBinError(
i + 1, sqrt((covarPlot->GetBinContent(i + 1, i + 1))) * 1E-38);
}
}
TDecompSVD LU = TDecompSVD(*this->covar);
this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), "");
tempFile->Close();
delete tempFile;
return;
};
//********************************************************************
void Measurement2D::SetCovarMatrixFromText(std::string covarFile, int dim) {
//********************************************************************
// Make a counter to track the line number
int row = 0;
std::string line;
std::ifstream covar(covarFile.c_str(), std::ifstream::in);
this->covar = new TMatrixDSym(dim);
fFullCovar = new TMatrixDSym(dim);
if (covar.is_open()) {
NUIS_LOG(SAM, "Reading covariance matrix from file: " << covarFile);
}
while (std::getline(covar >> std::ws, line, '\n')) {
int column = 0;
// Loop over entries and insert them into matrix
// Multiply by the errors to get the covariance, rather than the correlation
// matrix
std::vector<double> entries = GeneralUtils::ParseToDbl(line, " ");
for (std::vector<double>::iterator iter = entries.begin();
iter != entries.end(); iter++) {
double val = (*iter) * fDataHist->GetBinError(row + 1) * 1E38 *
fDataHist->GetBinError(column + 1) * 1E38;
(*this->covar)(row, column) = val;
(*fFullCovar)(row, column) = val;
column++;
}
row++;
}
// Robust matrix inversion method
TDecompSVD LU = TDecompSVD(*this->covar);
this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), "");
return;
};
//********************************************************************
void Measurement2D::SetCovarMatrixFromChol(std::string covarFile, int dim) {
//********************************************************************
// Make a counter to track the line number
int row = 0;
std::string line;
std::ifstream covarread(covarFile.c_str(), std::ifstream::in);
TMatrixD *newcov = new TMatrixD(dim, dim);
if (covarread.is_open()) {
NUIS_LOG(SAM, "Reading covariance matrix from file: " << covarFile);
}
while (std::getline(covarread >> std::ws, line, '\n')) {
int column = 0;
// Loop over entries and insert them into matrix
// Multiply by the errors to get the covariance, rather than the correlation
// matrix
std::vector<double> entries = GeneralUtils::ParseToDbl(line, " ");
for (std::vector<double>::iterator iter = entries.begin();
iter != entries.end(); iter++) {
(*newcov)(row, column) = *iter;
column++;
}
row++;
}
covarread.close();
// Form full covariance
TMatrixD *trans = (TMatrixD *)(newcov)->Clone();
trans->T();
(*trans) *= (*newcov);
fFullCovar = new TMatrixDSym(dim, trans->GetMatrixArray(), "");
delete newcov;
delete trans;
// Robust matrix inversion method
TDecompChol LU = TDecompChol(*this->fFullCovar);
this->covar = new TMatrixDSym(dim, LU.Invert().GetMatrixArray(), "");
return;
};
// //********************************************************************
// void Measurement2D::SetMapValuesFromText(std::string dataFile) {
// //********************************************************************
// fMapHist = new TH2I((fName + "_map").c_str(), (fName +
// fPlotTitles).c_str(),
// fNDataPointsX - 1, fXBins, fNDataPointsY - 1, fYBins);
// LOG(SAM) << "Reading map from: " << dataFile << std::endl;
// PlotUtils::Set2DHistFromText(dataFile, fMapHist, 1.0);
// return;
// };
diff --git a/src/Statistical/StatUtils.cxx b/src/Statistical/StatUtils.cxx
index 84df519..54d3add 100644
--- a/src/Statistical/StatUtils.cxx
+++ b/src/Statistical/StatUtils.cxx
@@ -1,1622 +1,1625 @@
// Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret
/*******************************************************************************
* This file is part of NUISANCE.
*
* NUISANCE is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* NUISANCE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with NUISANCE. If not, see <http://www.gnu.org/licenses/>.
*******************************************************************************/
#include "StatUtils.h"
#include "GeneralUtils.h"
#include "NuisConfig.h"
#include "TH1D.h"
//*******************************************************************
Double_t StatUtils::GetChi2FromDiag(TH1D *data, TH1D *mc, TH1I *mask) {
//*******************************************************************
Double_t Chi2 = 0.0;
TH1D *calc_data = (TH1D *)data->Clone("calc_data");
calc_data->SetDirectory(NULL);
TH1D *calc_mc = (TH1D *)mc->Clone("calc_mc");
calc_mc->SetDirectory(NULL);
// Add MC Error to data if required
if (FitPar::Config().GetParB("addmcerror")) {
for (int i = 0; i < calc_data->GetNbinsX(); i++) {
double dterr = calc_data->GetBinError(i + 1);
double mcerr = calc_mc->GetBinError(i + 1);
if (dterr > 0.0) {
calc_data->SetBinError(i + 1, sqrt(dterr * dterr + mcerr * mcerr));
}
}
}
// Apply masking if required
if (mask) {
calc_data = ApplyHistogramMasking(data, mask);
calc_data->SetDirectory(NULL);
calc_mc = ApplyHistogramMasking(mc, mask);
calc_mc->SetDirectory(NULL);
}
// Iterate over bins in X
for (int i = 0; i < calc_data->GetNbinsX(); i++) {
// Ignore bins with zero data or zero bin error
if (calc_data->GetBinError(i + 1) <= 0.0 ||
calc_data->GetBinContent(i + 1) == 0.0)
continue;
// Take mc data difference
double diff =
calc_data->GetBinContent(i + 1) - calc_mc->GetBinContent(i + 1);
double err = calc_data->GetBinError(i + 1);
Chi2 += (diff * diff) / (err * err);
}
// cleanup
delete calc_data;
delete calc_mc;
return Chi2;
};
//*******************************************************************
Double_t StatUtils::GetChi2FromDiag(TH2D *data, TH2D *mc, TH2I *map,
TH2I *mask) {
//*******************************************************************
// Generate a simple map
bool made_map = false;
if (!map) {
map = GenerateMap(data);
made_map = true;
}
// Convert to 1D Histograms
TH1D *data_1D = MapToTH1D(data, map);
TH1D *mc_1D = MapToTH1D(mc, map);
TH1I *mask_1D = MapToMask(mask, map);
// Calculate 1D chi2 from 1D Plots
Double_t Chi2 = StatUtils::GetChi2FromDiag(data_1D, mc_1D, mask_1D);
// CleanUp
delete data_1D;
delete mc_1D;
delete mask_1D;
if (made_map) {
delete map;
}
return Chi2;
};
//*******************************************************************
Double_t StatUtils::GetChi2FromCov(TH1D *data, TH1D *mc, TMatrixDSym *invcov,
TH1I *mask, double data_scale,
double covar_scale, TH1D *outchi2perbin) {
//*******************************************************************
static bool first = true;
static bool UseSVDDecomp = false;
if (first) {
UseSVDDecomp = FitPar::Config().GetParB("UseSVDInverse");
first = false;
}
Double_t Chi2 = 0.0;
TMatrixDSym *calc_cov = (TMatrixDSym *)invcov->Clone("local_invcov");
TH1D *calc_data = (TH1D *)data->Clone("local_data");
TH1D *calc_mc = (TH1D *)mc->Clone("local_mc");
calc_data->SetDirectory(NULL);
calc_mc->SetDirectory(NULL);
// If a mask if applied we need to apply it before the matrix is inverted
if (mask) {
calc_cov = ApplyInvertedMatrixMasking(invcov, mask);
calc_data = ApplyHistogramMasking(data, mask);
calc_mc = ApplyHistogramMasking(mc, mask);
}
if (data->GetNbinsX() != invcov->GetNcols()) {
NUIS_ERR(WRN, "Inconsistent matrix and data histogram passed to "
"StatUtils::GetChi2FromCov!");
NUIS_ABORT("data_hist has " << data->GetNbinsX() << " matrix has "
<< invcov->GetNcols() << "bins");
}
// Add MC Error to data if required
if (FitPar::Config().GetParB("statutils.addmcerror")) {
// Make temp cov
TMatrixDSym *newcov = StatUtils::GetInvert(calc_cov, true);
// Add MC err to diag
for (int i = 0; i < calc_data->GetNbinsX(); i++) {
double mcerr = calc_mc->GetBinError(i + 1) * sqrt(covar_scale);
double oldval = (*newcov)(i, i);
NUIS_LOG(FIT, "Adding cov stat " << mcerr * mcerr << " to "
<< (*newcov)(i, i));
(*newcov)(i, i) = oldval + mcerr * mcerr;
}
// Reset the calc_cov to new invert
delete calc_cov;
calc_cov = GetInvert(newcov, true);
// Delete the tempcov
delete newcov;
}
calc_data->Scale(data_scale);
calc_mc->Scale(data_scale);
(*calc_cov) *= covar_scale;
// iterate over bins in X (i,j)
NUIS_LOG(DEB, "START Chi2 Calculation=================");
for (int i = 0; i < calc_data->GetNbinsX(); i++) {
double ibin_contrib = 0;
NUIS_LOG(DEB, "[CHI2] i = "
<< i << " ["
<< calc_data->GetXaxis()->GetBinLowEdge(i + 1) << " -- "
<< calc_data->GetXaxis()->GetBinUpEdge(i + 1) << "].");
for (int j = 0; j < calc_data->GetNbinsX(); j++) {
NUIS_LOG(DEB, "[CHI2]\t j = "
<< i << " ["
<< calc_data->GetXaxis()->GetBinLowEdge(j + 1) << " -- "
<< calc_data->GetXaxis()->GetBinUpEdge(j + 1) << "].");
if (((calc_data->GetBinContent(i + 1) != 0) &&
(calc_mc->GetBinContent(i + 1) != 0)) &&
((*calc_cov)(i, j) != 0)) {
NUIS_LOG(DEB, "[CHI2]\t\t Chi2 contribution (i,j) = (" << i << "," << j
<< ")");
NUIS_LOG(DEB, "[CHI2]\t\t Data - MC(i) = "
<< calc_data->GetBinContent(i + 1) << " - "
<< calc_mc->GetBinContent(i + 1) << " = "
<< (calc_data->GetBinContent(i + 1) -
calc_mc->GetBinContent(i + 1)));
NUIS_LOG(DEB, "[CHI2]\t\t Data - MC(j) = "
<< calc_data->GetBinContent(j + 1) << " - "
<< calc_mc->GetBinContent(j + 1) << " = "
<< (calc_data->GetBinContent(j + 1) -
calc_mc->GetBinContent(j + 1)));
NUIS_LOG(DEB, "[CHI2]\t\t Covar = " << (*calc_cov)(i, j));
NUIS_LOG(DEB, "[CHI2]\t\t Cont chi2 = "
<< ((calc_data->GetBinContent(i + 1) -
calc_mc->GetBinContent(i + 1)) *
(*calc_cov)(i, j) *
(calc_data->GetBinContent(j + 1) -
calc_mc->GetBinContent(j + 1)))
<< " " << Chi2);
double bin_cont =
((calc_data->GetBinContent(i + 1) - calc_mc->GetBinContent(i + 1)) *
(*calc_cov)(i, j) *
(calc_data->GetBinContent(j + 1) - calc_mc->GetBinContent(j + 1)));
if (!UseSVDDecomp && (i == j) && ((*calc_cov)(i, j) < 0)) {
NUIS_ABORT("Found negative diagonal covariance element: Covar("
<< i << ", " << j << ") = " << ((*calc_cov)[i][j])
<< ", data = " << calc_data->GetBinContent(i + 1)
<< ", mc = " << calc_mc->GetBinContent(i + 1)
<< " would contribute: " << bin_cont
<< " on top of: " << Chi2);
}
Chi2 += bin_cont;
ibin_contrib += bin_cont;
} else {
NUIS_LOG(DEB, "Skipping chi2 contribution (i,j) = ("
<< i << "," << j
<< "), Data = " << calc_data->GetBinContent(i + 1)
<< ", MC = " << calc_mc->GetBinContent(i + 1)
<< ", Cov = " << (*calc_cov)(i, j));
Chi2 += 0.;
}
}
if (outchi2perbin) {
outchi2perbin->SetBinContent(i + 1, ibin_contrib);
}
}
// Cleanup
delete calc_cov;
delete calc_data;
delete calc_mc;
return Chi2;
}
//*******************************************************************
Double_t StatUtils::GetChi2FromCov(TH2D *data, TH2D *mc, TMatrixDSym *invcov,
TH2I *map, TH2I *mask, TH2D *outchi2perbin) {
//*******************************************************************
// Generate a simple map
bool made_map = false;
if (!map) {
map = StatUtils::GenerateMap(data);
made_map = true;
}
// Convert to 1D Histograms
TH1D *data_1D = MapToTH1D(data, map);
TH1D *mc_1D = MapToTH1D(mc, map);
TH1I *mask_1D = MapToMask(mask, map);
TH1D *outchi2perbin_1D = outchi2perbin ? MapToTH1D(outchi2perbin, map) : NULL;
- NUIS_LOG(SAM, "Calculating 2D covariance: got map ? "
+ NUIS_LOG(DEB, "Calculating 2D covariance: got map ? "
<< (!made_map) << ", Ndata bins: "
<< (data->GetNbinsX() * data->GetNbinsY())
<< ", ncovbins: " << invcov->GetNcols()
<< ", mapped 1D hist NBins: " << data_1D->GetNbinsX());
// Calculate 1D chi2 from 1D Plots
Double_t Chi2 = StatUtils::GetChi2FromCov(data_1D, mc_1D, invcov, mask_1D, 1,
1E76, outchi2perbin_1D);
if (outchi2perbin && outchi2perbin_1D) {
MapFromTH1D(outchi2perbin, outchi2perbin_1D, map);
}
// CleanUp
delete data_1D;
delete mc_1D;
delete mask_1D;
delete outchi2perbin_1D;
if (made_map) {
delete map;
}
return Chi2;
}
//*******************************************************************
Double_t StatUtils::GetChi2FromSVD(TH1D *data, TH1D *mc, TMatrixDSym *cov,
TH1I *mask) {
//*******************************************************************
Double_t Chi2 = 0.0;
TMatrixDSym *calc_cov = (TMatrixDSym *)cov->Clone();
TH1D *calc_data = (TH1D *)data->Clone();
TH1D *calc_mc = (TH1D *)mc->Clone();
// If a mask if applied we need to apply it before the matrix is inverted
if (mask) {
calc_cov = StatUtils::ApplyMatrixMasking(cov, mask);
calc_data = StatUtils::ApplyHistogramMasking(data, mask);
calc_mc = StatUtils::ApplyHistogramMasking(mc, mask);
}
// Decompose matrix
TDecompSVD LU = TDecompSVD((*calc_cov));
LU.Decompose();
TMatrixDSym *cov_U =
new TMatrixDSym(calc_data->GetNbinsX(), LU.GetU().GetMatrixArray(), "");
TVectorD *cov_S = new TVectorD(LU.GetSig());
// Apply basis rotation before adding up chi2
Double_t rotated_difference = 0.0;
for (int i = 0; i < calc_data->GetNbinsX(); i++) {
rotated_difference = 0.0;
// Rotate basis of Data - MC
for (int j = 0; j < calc_data->GetNbinsY(); j++)
rotated_difference +=
(calc_data->GetBinContent(j + 1) - calc_mc->GetBinContent(j + 1)) *
(*cov_U)(j, i);
// Divide by rotated error cov_S
Chi2 += rotated_difference * rotated_difference * 1E76 / (*cov_S)(i);
}
// Cleanup
delete calc_cov;
delete calc_data;
delete calc_mc;
delete cov_U;
delete cov_S;
return Chi2;
}
//*******************************************************************
Double_t StatUtils::GetChi2FromSVD(TH2D *data, TH2D *mc, TMatrixDSym *cov,
TH2I *map, TH2I *mask) {
//*******************************************************************
// Generate a simple map
bool made_map = false;
if (!map) {
made_map = true;
map = StatUtils::GenerateMap(data);
}
// Convert to 1D Histograms
TH1D *data_1D = MapToTH1D(data, map);
TH1D *mc_1D = MapToTH1D(mc, map);
TH1I *mask_1D = MapToMask(mask, map);
// Calculate from 1D
Double_t Chi2 = StatUtils::GetChi2FromSVD(data_1D, mc_1D, cov, mask_1D);
// CleanUp
delete data_1D;
delete mc_1D;
delete mask_1D;
if (made_map) {
delete map;
}
return Chi2;
}
//*******************************************************************
double StatUtils::GetChi2FromEventRate(TH1D *data, TH1D *mc, TH1I *mask) {
//*******************************************************************
// If just an event rate, for chi2 just use Poission Likelihood to calculate
// the chi2 component
double chi2 = 0.0;
TH1D *calc_data = (TH1D *)data->Clone();
TH1D *calc_mc = (TH1D *)mc->Clone();
// Apply masking if required
if (mask) {
calc_data = ApplyHistogramMasking(data, mask);
calc_mc = ApplyHistogramMasking(mc, mask);
}
// Iterate over bins in X
for (int i = 0; i < calc_data->GetNbinsX(); i++) {
double dt = calc_data->GetBinContent(i + 1);
double mc = calc_mc->GetBinContent(i + 1);
if (mc <= 0)
continue;
if (dt <= 0) {
// Only add difference
chi2 += 2 * (mc - dt);
} else {
// Do the chi2 for Poisson distributions
chi2 += 2 * (mc - dt + (dt * log(dt / mc)));
}
/*
LOG(REC)<<"Evt Chi2 cont = "<<i<<" "
<<mc<<" "<<dt<<" "
<<2 * (mc - dt + (dt+0.) * log((dt+0.) / (mc+0.)))
<<" "<<Chi2<<std::endl;
*/
}
// cleanup
delete calc_data;
delete calc_mc;
return chi2;
}
//*******************************************************************
Double_t StatUtils::GetChi2FromEventRate(TH2D *data, TH2D *mc, TH2I *map,
TH2I *mask) {
//*******************************************************************
// Generate a simple map
bool made_map = false;
if (!map) {
made_map = true;
map = StatUtils::GenerateMap(data);
}
// Convert to 1D Histograms
TH1D *data_1D = MapToTH1D(data, map);
TH1D *mc_1D = MapToTH1D(mc, map);
TH1I *mask_1D = MapToMask(mask, map);
// Calculate from 1D
Double_t Chi2 = StatUtils::GetChi2FromEventRate(data_1D, mc_1D, mask_1D);
// CleanUp
delete data_1D;
delete mc_1D;
delete mask_1D;
if (made_map) {
delete map;
}
return Chi2;
}
//*******************************************************************
Double_t StatUtils::GetLikelihoodFromDiag(TH1D *data, TH1D *mc, TH1I *mask) {
//*******************************************************************
// Currently just a placeholder!
(void)data;
(void)mc;
(void)mask;
return 0.0;
};
//*******************************************************************
Double_t StatUtils::GetLikelihoodFromDiag(TH2D *data, TH2D *mc, TH2I *map,
TH2I *mask) {
//*******************************************************************
// Generate a simple map
bool made_map = false;
if (!map) {
made_map = true;
map = StatUtils::GenerateMap(data);
}
// Convert to 1D Histograms
TH1D *data_1D = MapToTH1D(data, map);
TH1D *mc_1D = MapToTH1D(mc, map);
TH1I *mask_1D = MapToMask(mask, map);
// Calculate from 1D
Double_t MLE = StatUtils::GetLikelihoodFromDiag(data_1D, mc_1D, mask_1D);
// CleanUp
delete data_1D;
delete mc_1D;
delete mask_1D;
if (made_map) {
delete map;
}
return MLE;
};
//*******************************************************************
Double_t StatUtils::GetLikelihoodFromCov(TH1D *data, TH1D *mc,
TMatrixDSym *invcov, TH1I *mask) {
//*******************************************************************
// Currently just a placeholder !
(void)data;
(void)mc;
(void)invcov;
(void)mask;
return 0.0;
};
//*******************************************************************
Double_t StatUtils::GetLikelihoodFromCov(TH2D *data, TH2D *mc,
TMatrixDSym *invcov, TH2I *map,
TH2I *mask) {
//*******************************************************************
// Generate a simple map
bool made_map = false;
if (!map) {
made_map = true;
map = StatUtils::GenerateMap(data);
}
// Convert to 1D Histograms
TH1D *data_1D = MapToTH1D(data, map);
TH1D *mc_1D = MapToTH1D(mc, map);
TH1I *mask_1D = MapToMask(mask, map);
// Calculate from 1D
Double_t MLE =
StatUtils::GetLikelihoodFromCov(data_1D, mc_1D, invcov, mask_1D);
// CleanUp
delete data_1D;
delete mc_1D;
delete mask_1D;
if (made_map) {
delete map;
}
return MLE;
};
//*******************************************************************
Double_t StatUtils::GetLikelihoodFromSVD(TH1D *data, TH1D *mc, TMatrixDSym *cov,
TH1I *mask) {
//*******************************************************************
// Currently just a placeholder!
(void)data;
(void)mc;
(void)cov;
(void)mask;
return 0.0;
};
//*******************************************************************
Double_t StatUtils::GetLikelihoodFromSVD(TH2D *data, TH2D *mc, TMatrixDSym *cov,
TH2I *map, TH2I *mask) {
//*******************************************************************
// Generate a simple map
bool made_map = false;
if (!map) {
made_map = true;
map = StatUtils::GenerateMap(data);
}
// Convert to 1D Histograms
TH1D *data_1D = MapToTH1D(data, map);
TH1D *mc_1D = MapToTH1D(mc, map);
TH1I *mask_1D = MapToMask(mask, map);
// Calculate from 1D
Double_t MLE = StatUtils::GetLikelihoodFromSVD(data_1D, mc_1D, cov, mask_1D);
// CleanUp
delete data_1D;
delete mc_1D;
delete mask_1D;
if (made_map) {
delete map;
}
return MLE;
};
//*******************************************************************
Double_t StatUtils::GetLikelihoodFromEventRate(TH1D *data, TH1D *mc,
TH1I *mask) {
//*******************************************************************
// Currently just a placeholder!
(void)data;
(void)mc;
(void)mask;
return 0.0;
};
//*******************************************************************
Double_t StatUtils::GetLikelihoodFromEventRate(TH2D *data, TH2D *mc, TH2I *map,
TH2I *mask) {
//*******************************************************************
// Generate a simple map
bool made_map = false;
if (!map) {
made_map = true;
map = StatUtils::GenerateMap(data);
}
// Convert to 1D Histograms
TH1D *data_1D = MapToTH1D(data, map);
TH1D *mc_1D = MapToTH1D(mc, map);
TH1I *mask_1D = MapToMask(mask, map);
// Calculate from 1D
Double_t MLE = StatUtils::GetChi2FromEventRate(data_1D, mc_1D, mask_1D);
// CleanUp
delete data_1D;
delete mc_1D;
delete mask_1D;
if (made_map) {
delete map;
}
return MLE;
};
//*******************************************************************
Int_t StatUtils::GetNDOF(TH1D *hist, TH1I *mask) {
//*******************************************************************
TH1D *calc_hist = (TH1D *)hist->Clone();
// If a mask is provided we need to apply it before getting NDOF
if (mask) {
calc_hist = StatUtils::ApplyHistogramMasking(hist, mask);
}
// NDOF is defined as total number of bins with non-zero errors
Int_t NDOF = 0;
for (int i = 0; i < calc_hist->GetNbinsX(); i++) {
if (calc_hist->GetBinError(i + 1) > 0.0)
NDOF++;
}
delete calc_hist;
return NDOF;
};
//*******************************************************************
Int_t StatUtils::GetNDOF(TH2D *hist, TH2I *map, TH2I *mask) {
//*******************************************************************
Int_t NDOF = 0;
bool made_map = false;
if (!map) {
made_map = true;
map = StatUtils::GenerateMap(hist);
}
for (int i = 0; i < hist->GetNbinsX(); i++) {
for (int j = 0; j < hist->GetNbinsY(); j++) {
if (mask->GetBinContent(i + 1, j + 1))
continue;
if (map->GetBinContent(i + 1, j + 1) <= 0)
continue;
NDOF++;
}
}
if (made_map) {
delete map;
}
return NDOF;
};
//*******************************************************************
TH1D *StatUtils::ThrowHistogram(TH1D *hist, TMatrixDSym *cov, bool throwdiag,
TH1I *mask) {
//*******************************************************************
TH1D *calc_hist =
(TH1D *)hist->Clone((std::string(hist->GetName()) + "_THROW").c_str());
TMatrixDSym *calc_cov = (TMatrixDSym *)cov->Clone();
Double_t correl_val = 0.0;
// If a mask if applied we need to apply it before the matrix is decomposed
if (mask) {
calc_cov = ApplyMatrixMasking(cov, mask);
calc_hist = ApplyHistogramMasking(calc_hist, mask);
}
// If a covariance is provided we need a preset random vector and a decomp
std::vector<Double_t> rand_val;
TMatrixDSym *decomp_cov = NULL;
if (cov) {
for (int i = 0; i < hist->GetNbinsX(); i++) {
rand_val.push_back(gRandom->Gaus(0.0, 1.0));
}
// Decomp the matrix
decomp_cov = StatUtils::GetDecomp(calc_cov);
}
// iterate over bins
for (int i = 0; i < hist->GetNbinsX(); i++) {
// By Default the errors on the histogram are thrown uncorrelated to the
// other errors
/*
if (throwdiag) {
calc_hist->SetBinContent(i + 1, (calc_hist->GetBinContent(i + 1) + \
gRandom->Gaus(0.0, 1.0) * calc_hist->GetBinError(i + 1)) );
}
*/
// If a covariance is provided that is also thrown
if (cov) {
correl_val = 0.0;
for (int j = 0; j < hist->GetNbinsX(); j++) {
correl_val += rand_val[j] * (*decomp_cov)(j, i);
}
calc_hist->SetBinContent(
i + 1, (calc_hist->GetBinContent(i + 1) + correl_val * 1E-38));
}
}
delete calc_cov;
delete decomp_cov;
// return this new thrown data
return calc_hist;
};
//*******************************************************************
TH2D *StatUtils::ThrowHistogram(TH2D *hist, TMatrixDSym *cov, TH2I *map,
bool throwdiag, TH2I *mask) {
//*******************************************************************
// PLACEHOLDER!!!!!!!!!
// Currently no support for throwing 2D Histograms from a covariance
(void)hist;
(void)cov;
(void)map;
(void)throwdiag;
(void)mask;
// /todo
// Sort maps if required
// Throw the covariance for a 1D plot
// Unmap back to 2D Histogram
return hist;
}
//*******************************************************************
TH1D *StatUtils::ApplyHistogramMasking(TH1D *hist, TH1I *mask) {
//*******************************************************************
if (!mask)
return ((TH1D *)hist->Clone());
// This masking is only sufficient for chi2 calculations, and will have dodgy
// bin edges.
// Get New Bin Count
Int_t NBins = 0;
for (int i = 0; i < hist->GetNbinsX(); i++) {
if (mask->GetBinContent(i + 1))
continue;
NBins++;
}
// Make new hist
std::string newmaskname = std::string(hist->GetName()) + "_MSKD";
TH1D *calc_hist =
new TH1D(newmaskname.c_str(), newmaskname.c_str(), NBins, 0, NBins);
// fill new hist
int binindex = 0;
for (int i = 0; i < hist->GetNbinsX(); i++) {
if (mask->GetBinContent(i + 1)) {
NUIS_LOG(DEB, "Applying mask to bin " << i + 1 << " " << hist->GetName());
continue;
}
calc_hist->SetBinContent(binindex + 1, hist->GetBinContent(i + 1));
calc_hist->SetBinError(binindex + 1, hist->GetBinError(i + 1));
binindex++;
}
return calc_hist;
};
//*******************************************************************
TH2D *StatUtils::ApplyHistogramMasking(TH2D *hist, TH2I *mask) {
//*******************************************************************
TH2D *newhist = (TH2D *)hist->Clone();
if (!mask)
return newhist;
for (int i = 0; i < hist->GetNbinsX(); i++) {
for (int j = 0; j < hist->GetNbinsY(); j++) {
if (mask->GetBinContent(i + 1, j + 1) > 0) {
newhist->SetBinContent(i + 1, j + 1, 0.0);
newhist->SetBinContent(i + 1, j + 1, 0.0);
}
}
}
return newhist;
}
//*******************************************************************
TMatrixDSym *StatUtils::ApplyMatrixMasking(TMatrixDSym *mat, TH1I *mask) {
//*******************************************************************
if (!mask)
return (TMatrixDSym *)(mat->Clone());
// Get New Bin Count
Int_t NBins = 0;
for (int i = 0; i < mask->GetNbinsX(); i++) {
if (mask->GetBinContent(i + 1))
continue;
NBins++;
}
// make new matrix
TMatrixDSym *calc_mat = new TMatrixDSym(NBins);
int col, row;
// Need to mask out bins in the current matrix
row = 0;
for (int i = 0; i < mask->GetNbinsX(); i++) {
col = 0;
// skip if masked
if (mask->GetBinContent(i + 1) > 0.5)
continue;
for (int j = 0; j < mask->GetNbinsX(); j++) {
// skip if masked
if (mask->GetBinContent(j + 1) > 0.5)
continue;
(*calc_mat)(row, col) = (*mat)(i, j);
col++;
}
row++;
}
return calc_mat;
};
//*******************************************************************
TMatrixDSym *StatUtils::ApplyMatrixMasking(TMatrixDSym *mat, TH2D *data,
TH2I *mask, TH2I *map) {
//*******************************************************************
bool made_map = false;
if (!map) {
made_map = true;
map = StatUtils::GenerateMap(data);
}
TH1I *mask_1D = StatUtils::MapToMask(mask, map);
TMatrixDSym *newmat = StatUtils::ApplyMatrixMasking(mat, mask_1D);
if (made_map) {
delete map;
}
delete mask_1D;
return newmat;
}
//*******************************************************************
TMatrixDSym *StatUtils::ApplyInvertedMatrixMasking(TMatrixDSym *mat,
TH1I *mask) {
//*******************************************************************
//TMatrixDSym *new_mat = GetInvert(mat, true);
// Don't rescale the inverted matrix which multiplies the mask!
TMatrixDSym *new_mat = GetInvert(mat);
TMatrixDSym *masked_mat = ApplyMatrixMasking(new_mat, mask);
TMatrixDSym *inverted_mat = GetInvert(masked_mat, true);
delete masked_mat;
delete new_mat;
return inverted_mat;
};
//*******************************************************************
TMatrixDSym *StatUtils::ApplyInvertedMatrixMasking(TMatrixDSym *mat, TH2D *data,
TH2I *mask, TH2I *map) {
//*******************************************************************
bool made_map = false;
if (!map) {
made_map = true;
map = StatUtils::GenerateMap(data);
}
TH1I *mask_1D = StatUtils::MapToMask(mask, map);
TMatrixDSym *newmat = ApplyInvertedMatrixMasking(mat, mask_1D);
if (made_map) {
delete map;
}
delete mask_1D;
return newmat;
}
//*******************************************************************
// bool rescale rescales the matrix when using Cholesky decomp to ensure good decomposition
TMatrixDSym *StatUtils::GetInvert(TMatrixDSym *mat, bool rescale) {
//*******************************************************************
TMatrixDSym *new_mat = (TMatrixDSym *)mat->Clone();
// Check for diagonal
bool non_diagonal = false;
for (int i = 0; i < new_mat->GetNrows(); i++) {
for (int j = 0; j < new_mat->GetNrows(); j++) {
if (i == j)
continue;
if ((*new_mat)(i, j) != 0.0) {
non_diagonal = true;
break;
}
}
}
// If diag, just flip the diag
if (!non_diagonal or new_mat->GetNrows() == 1) {
for (int i = 0; i < new_mat->GetNrows(); i++) {
if ((*new_mat)(i, i) != 0.0)
(*new_mat)(i, i) = 1.0 / (*new_mat)(i, i);
else
(*new_mat)(i, i) = 0.0;
}
return new_mat;
}
static bool first = true;
static bool UseSVDDecomp = false;
if (first) {
UseSVDDecomp = FitPar::Config().GetParB("UseSVDInverse");
first = false;
}
if (UseSVDDecomp) {
// Invert full matrix
TDecompSVD mat_decomp(*new_mat);
if (!mat_decomp.Decompose()) {
NUIS_ABORT("Decomposition failed, matrix singular ?");
} else {
int nrows = new_mat->GetNrows();
delete new_mat;
new_mat =
new TMatrixDSym(nrows, mat_decomp.Invert().GetMatrixArray(), "");
}
// Use Cholesky decomp
} else {
// Check the entries of the Matrix and scale it to be within range
double scaling = 1;
if (rescale) {
double smallest = 999;
for (int i = 0; i < new_mat->GetNrows(); ++i) {
for (int j = 0; j < new_mat->GetNcols(); ++j) {
- if (fabs((*new_mat)(i,j)) < smallest) smallest = fabs((*new_mat)(i,j));
+ if (fabs((*new_mat)(i,j)) < smallest &&
+ (*new_mat)(i,j) != 0) smallest = fabs((*new_mat)(i,j));
}
}
// Now scale the matrix so the smallest entry is 1e-5
scaling = smallest;
(*new_mat) *= 1./scaling;
}
// Invert full matrix
TDecompChol mat_decomp(*new_mat);
if (!mat_decomp.Decompose()) {
NUIS_ERR(FTL, "Decomposition failed, matrix singular ?");
NUIS_ABORT("If you want to use SVD decomposition set <config "
"UseSVDInverse=\"1\" /> in your card file.");
} else {
int nrows = new_mat->GetNrows();
delete new_mat;
new_mat =
new TMatrixDSym(nrows, mat_decomp.Invert().GetMatrixArray(), "");
}
// then scale the matrix back
if (rescale) {
(*new_mat) *= 1./scaling;
}
}
return new_mat;
}
//*******************************************************************
TMatrixDSym *StatUtils::GetDecomp(TMatrixDSym *mat) {
//*******************************************************************
TMatrixDSym *new_mat = (TMatrixDSym *)mat->Clone();
int nrows = new_mat->GetNrows();
// Check for diagonal
bool diagonal = true;
for (int i = 0; i < nrows; i++) {
for (int j = 0; j < nrows; j++) {
if (i == j)
continue;
if ((*new_mat)(i, j) != 0.0) {
diagonal = false;
break;
}
}
}
// If diag, just flip the diag
if (diagonal or nrows == 1) {
for (int i = 0; i < nrows; i++) {
if ((*new_mat)(i, i) > 0.0)
(*new_mat)(i, i) = sqrt((*new_mat)(i, i));
else
(*new_mat)(i, i) = 0.0;
}
return new_mat;
}
TDecompChol LU = TDecompChol(*new_mat);
LU.Decompose();
delete new_mat;
TMatrixDSym *dec_mat = new TMatrixDSym(nrows, LU.GetU().GetMatrixArray(), "");
return dec_mat;
}
//*******************************************************************
void StatUtils::ForceNormIntoCovar(TMatrixDSym *&mat, TH1D *hist, double norm) {
//*******************************************************************
if (!mat)
mat = MakeDiagonalCovarMatrix(hist);
int nbins = mat->GetNrows();
TMatrixDSym *new_mat = new TMatrixDSym(nbins);
for (int i = 0; i < nbins; i++) {
for (int j = 0; j < nbins; j++) {
double valx = hist->GetBinContent(i + 1) * 1E38;
double valy = hist->GetBinContent(j + 1) * 1E38;
(*new_mat)(i, j) = (*mat)(i, j) + norm * norm * valx * valy;
}
}
// Swap the two
delete mat;
mat = new_mat;
return;
};
//*******************************************************************
void StatUtils::ForceNormIntoCovar(TMatrixDSym *mat, TH2D *data, double norm,
TH2I *map) {
//*******************************************************************
bool made_map = false;
if (!map) {
made_map = true;
map = StatUtils::GenerateMap(data);
}
TH1D *data_1D = MapToTH1D(data, map);
StatUtils::ForceNormIntoCovar(mat, data_1D, norm);
delete data_1D;
if (made_map) {
delete map;
}
return;
}
//*******************************************************************
TMatrixDSym *StatUtils::MakeDiagonalCovarMatrix(TH1D *data, double scaleF) {
//*******************************************************************
TMatrixDSym *newmat = new TMatrixDSym(data->GetNbinsX());
for (int i = 0; i < data->GetNbinsX(); i++) {
(*newmat)(i, i) =
data->GetBinError(i + 1) * data->GetBinError(i + 1) * scaleF * scaleF;
}
return newmat;
}
//*******************************************************************
TMatrixDSym *StatUtils::MakeDiagonalCovarMatrix(TH2D *data, TH2I *map,
double scaleF) {
//*******************************************************************
bool made_map = false;
if (!map) {
made_map = true;
map = StatUtils::GenerateMap(data);
}
TH1D *data_1D = MapToTH1D(data, map);
if (made_map) {
delete map;
}
return StatUtils::MakeDiagonalCovarMatrix(data_1D, scaleF);
};
//*******************************************************************
void StatUtils::SetDataErrorFromCov(TH1D *DataHist, TMatrixDSym *cov,
double scale, bool ErrorCheck) {
//*******************************************************************
// Check
if (ErrorCheck) {
if (cov->GetNrows() != DataHist->GetNbinsX()) {
NUIS_ERR(
FTL,
"Nrows in cov don't match nbins in DataHist for SetDataErrorFromCov");
NUIS_ERR(FTL, "Nrows = " << cov->GetNrows());
NUIS_ABORT("Nbins = " << DataHist->GetNbinsX());
}
}
// Set bin errors form cov diag
// Check if the errors are set
bool ErrorsSet = false;
for (int i = 0; i < DataHist->GetNbinsX(); i++) {
if (ErrorsSet == true)
break;
if (DataHist->GetBinError(i + 1) != 0 && DataHist->GetBinContent(i + 1) > 0)
ErrorsSet = true;
}
// Now loop over
if (ErrorsSet && ErrorCheck) {
for (int i = 0; i < DataHist->GetNbinsX(); i++) {
double DataHisterr = DataHist->GetBinError(i + 1);
double coverr = sqrt((*cov)(i, i)) * scale;
// Check that the errors are within 1% of eachother
if (fabs(DataHisterr - coverr) / DataHisterr > 0.01) {
NUIS_ERR(WRN, "Data error does not match covariance error for bin "
<< i + 1 << " ("
<< DataHist->GetXaxis()->GetBinLowEdge(i + 1) << "-"
<< DataHist->GetXaxis()->GetBinLowEdge(i + 2) << ")");
NUIS_ERR(WRN, "Data error: " << DataHisterr);
NUIS_ERR(WRN, "Cov error: " << coverr);
}
}
// Else blindly trust the covariance
} else {
for (int i = 0; i < DataHist->GetNbinsX(); i++) {
DataHist->SetBinError(i + 1, sqrt((*cov)(i, i)) * scale);
}
}
return;
}
//*******************************************************************
void StatUtils::SetDataErrorFromCov(TH2D *data, TMatrixDSym *cov, TH2I *map,
double scale, bool ErrorCheck) {
//*******************************************************************
// Check
if (ErrorCheck) {
if (cov->GetNrows() != data->GetNbinsX() * data->GetNbinsY()) {
NUIS_ERR(FTL, "Nrows in cov don't match nbins in data for "
"SetDataNUIS_ERRorFromCov");
NUIS_ERR(FTL, "Nrows = " << cov->GetNrows());
NUIS_ABORT("Nbins = " << data->GetNbinsX());
}
}
// Set bin errors form cov diag
// Check if the errors are set
bool ErrorsSet = false;
for (int i = 0; i < data->GetNbinsX(); i++) {
for (int j = 0; j < data->GetNbinsX(); j++) {
if (ErrorsSet == true)
break;
if (data->GetBinError(i + 1, j + 1) != 0)
ErrorsSet = true;
}
}
// Create map if required
bool made_map = false;
if (!map) {
made_map = true;
map = StatUtils::GenerateMap(data);
}
// Set Bin Errors from cov diag
int count = 0;
for (int i = 0; i < data->GetNbinsX(); i++) {
for (int j = 0; j < data->GetNbinsY(); j++) {
if (data->GetBinContent(i + 1, j + 1) == 0.0)
continue;
// If we have errors on our histogram the map is good
count = map->GetBinContent(i + 1, j + 1) - 1;
double dataerr = data->GetBinError(i + 1, j + 1);
double coverr = sqrt((*cov)(count, count)) * scale;
// Check that the errors are within 1% of eachother
if (ErrorsSet && ErrorCheck) {
if (fabs(dataerr - coverr) / dataerr > 0.01) {
NUIS_ERR(WRN, "Data error does not match covariance error for bin "
<< i + 1 << " ("
<< data->GetXaxis()->GetBinLowEdge(i + 1) << "-"
<< data->GetXaxis()->GetBinLowEdge(i + 2) << ")");
NUIS_ERR(WRN, "Data error: " << dataerr);
NUIS_ERR(WRN, "Cov error: " << coverr);
}
} else {
data->SetBinError(i + 1, j + 1, sqrt((*cov)(count, count)) * scale);
}
}
}
if (made_map) {
delete map;
}
}
TMatrixDSym *StatUtils::ExtractShapeOnlyCovar(TMatrixDSym *full_covar,
TH1D *data_hist,
double data_scale) {
int nbins = full_covar->GetNrows();
TMatrixDSym *shape_covar = new TMatrixDSym(nbins);
// Check nobody is being silly
if (data_hist->GetNbinsX() != nbins) {
NUIS_ERR(WRN, "Inconsistent matrix and data histogram passed to "
"StatUtils::ExtractShapeOnlyCovar!");
NUIS_ABORT("data_hist has " << data_hist->GetNbinsX() << " matrix has "
<< nbins << "bins");
int err_bins = data_hist->GetNbinsX();
if (nbins > err_bins)
err_bins = nbins;
for (int i = 0; i < err_bins; ++i) {
NUIS_ERR(WRN, "Matrix diag. = " << (*full_covar)(i, i) << " data = "
<< data_hist->GetBinContent(i + 1));
}
return NULL;
}
double total_data = 0;
double total_covar = 0;
// Initial loop to calculate some constants
for (int i = 0; i < nbins; ++i) {
total_data += data_hist->GetBinContent(i + 1) * data_scale;
for (int j = 0; j < nbins; ++j) {
total_covar += (*full_covar)(i, j);
}
}
if (total_data == 0 || total_covar == 0) {
NUIS_ERR(WRN, "Stupid matrix or data histogram passed to "
"StatUtils::ExtractShapeOnlyCovar! Ignoring...");
return NULL;
}
NUIS_LOG(SAM, "Norm error = " << sqrt(total_covar) / total_data);
// Now loop over and calculate the shape-only matrix
for (int i = 0; i < nbins; ++i) {
double data_i = data_hist->GetBinContent(i + 1) * data_scale;
for (int j = 0; j < nbins; ++j) {
double data_j = data_hist->GetBinContent(j + 1) * data_scale;
double norm_term =
data_i * data_j * total_covar / total_data / total_data;
double mix_sum1 = 0;
double mix_sum2 = 0;
for (int k = 0; k < nbins; ++k) {
mix_sum1 += (*full_covar)(k, j);
mix_sum2 += (*full_covar)(i, k);
}
double mix_term1 =
data_i * (mix_sum1 / total_data -
total_covar * data_j / total_data / total_data);
double mix_term2 =
data_j * (mix_sum2 / total_data -
total_covar * data_i / total_data / total_data);
(*shape_covar)(i, j) =
(*full_covar)(i, j) - mix_term1 - mix_term2 - norm_term;
}
}
return shape_covar;
}
TMatrixDSym *StatUtils::ExtractShapeOnlyCovar(TMatrixDSym *full_covar,
TH2D *data_hist, TH2I *map,
double data_scale) {
// Generate a simple map
bool made_map = false;
if (!map) {
map = StatUtils::GenerateMap(data_hist);
made_map = true;
}
// Convert to 1D Histograms
TH1D *data_1D = MapToTH1D(data_hist, map);
// Calculate from 1D
TMatrixDSym *rtn =
StatUtils::ExtractShapeOnlyCovar(full_covar, data_1D, data_scale);
delete data_1D;
if (made_map) {
delete map;
}
return rtn;
}
//*******************************************************************
TH2I *StatUtils::GenerateMap(TH2D *hist) {
//*******************************************************************
std::string maptitle = std::string(hist->GetName()) + "_MAP";
TH2I *map =
new TH2I(maptitle.c_str(), maptitle.c_str(), hist->GetNbinsX(), 0,
hist->GetNbinsX(), hist->GetNbinsY(), 0, hist->GetNbinsY());
Int_t index = 1;
for (int i = 0; i < hist->GetNbinsX(); i++) {
for (int j = 0; j < hist->GetNbinsY(); j++) {
if (hist->GetBinContent(i + 1, j + 1) > 0) {
map->SetBinContent(i + 1, j + 1, index);
index++;
} else {
map->SetBinContent(i + 1, j + 1, 0);
}
}
}
return map;
}
//*******************************************************************
TH1D *StatUtils::MapToTH1D(TH2D *hist, TH2I *map) {
//*******************************************************************
if (!hist)
return NULL;
// Get N bins for 1D plot
- Int_t Nbins = map->GetMaximum();
+ //Int_t Nbins = map->GetMaximum();
+ Int_t Nbins = map->GetXaxis()->GetNbins()*map->GetYaxis()->GetNbins();
std::string name1D = std::string(hist->GetName()) + "_1D";
// Make new 1D Hist
TH1D *newhist = new TH1D(name1D.c_str(), name1D.c_str(), Nbins, 0, Nbins);
// map bin contents
for (int i = 0; i < map->GetNbinsX(); i++) {
for (int j = 0; j < map->GetNbinsY(); j++) {
if (map->GetBinContent(i + 1, j + 1) == 0)
continue;
newhist->SetBinContent(map->GetBinContent(i + 1, j + 1),
hist->GetBinContent(i + 1, j + 1));
newhist->SetBinError(map->GetBinContent(i + 1, j + 1),
hist->GetBinError(i + 1, j + 1));
}
}
// return
return newhist;
}
void StatUtils::MapFromTH1D(TH2 *fillhist, TH1 *fromhist, TH2I *map) {
fillhist->Clear();
for (int i = 0; i < map->GetNbinsX(); i++) {
for (int j = 0; j < map->GetNbinsY(); j++) {
if (map->GetBinContent(i + 1, j + 1) == 0)
continue;
int gb = map->GetBinContent(i + 1, j + 1);
fillhist->SetBinContent(i + 1, j + 1, fromhist->GetBinContent(gb));
fillhist->SetBinError(i + 1, j + 1, fromhist->GetBinError(gb));
}
}
}
//*******************************************************************
TH1I *StatUtils::MapToMask(TH2I *hist, TH2I *map) {
//*******************************************************************
TH1I *newhist = NULL;
if (!hist)
return newhist;
// Get N bins for 1D plot
- Int_t Nbins = map->GetMaximum();
+ //Int_t Nbins = map->GetMaximum();
+ Int_t Nbins = map->GetXaxis()->GetNbins()*map->GetYaxis()->GetNbins();
std::string name1D = std::string(hist->GetName()) + "_1D";
// Make new 1D Hist
newhist = new TH1I(name1D.c_str(), name1D.c_str(), Nbins, 0, Nbins);
// map bin contents
for (int i = 0; i < map->GetNbinsX(); i++) {
for (int j = 0; j < map->GetNbinsY(); j++) {
if (map->GetBinContent(i + 1, j + 1) == 0)
continue;
newhist->SetBinContent(map->GetBinContent(i + 1, j + 1),
hist->GetBinContent(i + 1, j + 1));
}
}
// return
return newhist;
}
TMatrixDSym *StatUtils::GetCovarFromCorrel(TMatrixDSym *correl, TH1D *data) {
int nbins = correl->GetNrows();
TMatrixDSym *covar = new TMatrixDSym(nbins);
for (int i = 0; i < nbins; i++) {
for (int j = 0; j < nbins; j++) {
(*covar)(i, j) =
(*correl)(i, j) * data->GetBinError(i + 1) * data->GetBinError(j + 1);
}
}
return covar;
}
//*******************************************************************
TMatrixD *StatUtils::GetMatrixFromTextFile(std::string covfile, int dimx,
int dimy) {
//*******************************************************************
// Determine dim
if (dimx == -1 and dimy == -1) {
std::string line;
std::ifstream covar(covfile.c_str(), std::ifstream::in);
int row = 0;
while (std::getline(covar >> std::ws, line, '\n')) {
int column = 0;
std::vector<double> entries = GeneralUtils::ParseToDbl(line, " ");
if (entries.size() <= 1) {
NUIS_ERR(WRN, "StatUtils::GetMatrixFromTextFile, matrix only has <= 1 "
"entries on this line: "
<< row);
}
for (std::vector<double>::iterator iter = entries.begin();
iter != entries.end(); iter++) {
column++;
if (column > dimx)
dimx = column;
}
row++;
if (row > dimy)
dimy = row;
}
}
// Or assume symmetric
if (dimx != -1 and dimy == -1) {
dimy = dimx;
}
assert(dimy != -1 && " matrix dimy not set.");
// Make new matrix
TMatrixD *mat = new TMatrixD(dimx, dimy);
std::string line;
std::ifstream covar(covfile.c_str(), std::ifstream::in);
int row = 0;
while (std::getline(covar >> std::ws, line, '\n')) {
int column = 0;
std::vector<double> entries = GeneralUtils::ParseToDbl(line, " ");
if (entries.size() <= 1) {
NUIS_ERR(WRN, "StatUtils::GetMatrixFromTextFile, matrix only has <= 1 "
"entries on this line: "
<< row);
}
for (std::vector<double>::iterator iter = entries.begin();
iter != entries.end(); iter++) {
// Check Rows
// assert(row > mat->GetNrows() && " covar rows doesn't match matrix
// rows.");
// assert(column > mat->GetNcols() && " covar cols doesn't match matrix
// cols.");
// Fill Matrix
(*mat)(row, column) = (*iter);
column++;
}
row++;
}
return mat;
}
//*******************************************************************
TMatrixD *StatUtils::GetMatrixFromRootFile(std::string covfile,
std::string histname) {
//*******************************************************************
std::string inputfile = covfile + ";" + histname;
std::vector<std::string> splitfile = GeneralUtils::ParseToStr(inputfile, ";");
if (splitfile.size() < 2) {
NUIS_ABORT("No object name given!");
}
// Get file
TFile *tempfile = new TFile(splitfile[0].c_str(), "READ");
// Get Object
TObject *obj = tempfile->Get(splitfile[1].c_str());
if (!obj) {
NUIS_ABORT("Object " << splitfile[1] << " doesn't exist!");
}
// Try casting
TMatrixD *mat = dynamic_cast<TMatrixD *>(obj);
if (mat) {
TMatrixD *newmat = (TMatrixD *)mat->Clone();
delete mat;
tempfile->Close();
return newmat;
}
TMatrixDSym *matsym = dynamic_cast<TMatrixDSym *>(obj);
if (matsym) {
TMatrixD *newmat = new TMatrixD(matsym->GetNrows(), matsym->GetNrows());
for (int i = 0; i < matsym->GetNrows(); i++) {
for (int j = 0; j < matsym->GetNrows(); j++) {
(*newmat)(i, j) = (*matsym)(i, j);
}
}
delete matsym;
tempfile->Close();
return newmat;
}
TH2D *mathist = dynamic_cast<TH2D *>(obj);
if (mathist) {
TMatrixD *newmat = new TMatrixD(mathist->GetNbinsX(), mathist->GetNbinsX());
for (int i = 0; i < mathist->GetNbinsX(); i++) {
for (int j = 0; j < mathist->GetNbinsX(); j++) {
(*newmat)(i, j) = mathist->GetBinContent(i + 1, j + 1);
}
}
delete mathist;
tempfile->Close();
return newmat;
}
return NULL;
}
//*******************************************************************
TMatrixDSym *StatUtils::GetCovarFromTextFile(std::string covfile, int dim) {
//*******************************************************************
// Delete TempMat
TMatrixD *tempmat = GetMatrixFromTextFile(covfile, dim, dim);
// Make a symmetric covariance
TMatrixDSym *newmat = new TMatrixDSym(tempmat->GetNrows());
for (int i = 0; i < tempmat->GetNrows(); i++) {
for (int j = 0; j < tempmat->GetNrows(); j++) {
(*newmat)(i, j) = (*tempmat)(i, j);
}
}
delete tempmat;
return newmat;
}
//*******************************************************************
TMatrixDSym *StatUtils::GetCovarFromRootFile(std::string covfile,
std::string histname) {
//*******************************************************************
TMatrixD *tempmat = GetMatrixFromRootFile(covfile, histname);
TMatrixDSym *newmat = new TMatrixDSym(tempmat->GetNrows());
for (int i = 0; i < tempmat->GetNrows(); i++) {
for (int j = 0; j < tempmat->GetNrows(); j++) {
(*newmat)(i, j) = (*tempmat)(i, j);
}
}
delete tempmat;
return newmat;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 5:36 PM (1 d, 14 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3800525
Default Alt Text
(115 KB)
Attached To
rNUISANCEGIT nuisancegit
Event Timeline
Log In to Comment