Page MenuHomeHEPForge

ExclusiveFinalStateGenerator.cpp
No OneTemporary

ExclusiveFinalStateGenerator.cpp

//==============================================================================
// ExclusiveFinalStateGenerator.cpp
//
// Copyright (C) 2010-2013 Tobias Toll and Thomas Ullrich
//
// This file is part of Sartre version: 1.00
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation.
// This program is distributed in the hope that it will be useful,
// but without any warranty; without even the implied warranty of
// merchantability or fitness for a particular purpose. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Author: Thomas Ullrich
// Last update:
// $Date: 2013-01-14 21:47:05 +0000 (Mon, 14 Jan 2013) $
// $Author: thomas.ullrich@bnl.gov $
//==============================================================================
#include "ExclusiveFinalStateGenerator.h"
#include "EventGeneratorSettings.h"
#include "Kinematics.h"
#include "Event.h"
#include "Math/BrentRootFinder.h"
#include "Math/GSLRootFinder.h"
#include "Math/RootFinderAlgorithms.h"
#include "Math/IFunction.h"
#include <cmath>
#include <algorithm>
#include <limits>
#include <iomanip>
#define PR(x) cout << #x << " = " << (x) << endl;
//-------------------------------------------------------------------------------
//
// Helper class needed to find root in
// ExclusiveFinalStateGenerator::generate()
//
//-------------------------------------------------------------------------------
class ScatteredProtonEnergyFormula : public ROOT::Math::IBaseFunctionOneDim
{
public:
double DoEval(double) const;
ROOT::Math::IBaseFunctionOneDim* Clone() const;
void calculateValidRange(double&, double&);
public:
double mT;
double mVmMass2;
double mMY2;
double mPhi; // azimuthal angle for scattered proton
TLorentzVector mProtonIn;
TLorentzVector mVirtualPhoton;
};
ROOT::Math::IBaseFunctionOneDim* ScatteredProtonEnergyFormula::Clone() const
{
return new ScatteredProtonEnergyFormula();
}
double ScatteredProtonEnergyFormula::DoEval(double Ep) const
{
double m2 = mProtonIn.M2();
double pzp = (mT - m2 - mMY2 + 2*mProtonIn.E() * Ep)/(2*mProtonIn.Pz());
double term = Ep*Ep-pzp*pzp-mMY2;
if (term < 0) return 99999; // out of kinematically allowed range
double ptp = sqrt(term);
TLorentzVector p_out(ptp*cos(mPhi), ptp*sin(mPhi), pzp, Ep);
double f = (mVirtualPhoton + mProtonIn - p_out)*(mVirtualPhoton + mProtonIn - p_out) - mVmMass2;
return f;
}
void ScatteredProtonEnergyFormula::calculateValidRange(double& lower, double& upper)
{
double m2 = mProtonIn.M2();
double term1 = mT-m2-mMY2;
double termA = mProtonIn.E()*term1;
double termB = sqrt(mProtonIn.Pz()*mProtonIn.Pz()*(term1*term1-4*m2*mMY2));
double termC = -2*m2;
lower = (termA+termB)/termC;
upper = (termA-termB)/termC;
if (lower > upper) swap(lower, upper);
lower += numeric_limits<float>::epsilon();
upper -= numeric_limits<float>::epsilon();
}
//-------------------------------------------------------------------------------
//
// Implementation of ExclusiveFinalStateGenerator
//
//-------------------------------------------------------------------------------
ExclusiveFinalStateGenerator::ExclusiveFinalStateGenerator() {/* no op */}
ExclusiveFinalStateGenerator::~ExclusiveFinalStateGenerator() {/* no op */}
bool ExclusiveFinalStateGenerator::generate(int id, double t, double y, double Q2,
bool isIncoherent, int A, Event *event)
{
//
// Get generator settings and the random generator
//
EventGeneratorSettings *settings = EventGeneratorSettings::instance();
TRandom3 *rndm = settings->randomGenerator();
//
// The beam particles must be present in the event list
//
int ePos = -1;
int hPos = -1;
bool parentsOK = true;
if (event->particles.size() == 2) {
if (abs(event->particles[0].pdgId) == 11) {
ePos = 0;
hPos = 1;
}
else if (abs(event->particles[1].pdgId) == 11) {
ePos = 1;
hPos = 0;
}
else
parentsOK = false;
}
else
parentsOK = false;
if (!parentsOK) {
cout << "ExclusiveFinalStateGenerator::generate(): error, no beam particles in event list." << endl;
return false;
}
//
// Store arguments locally
// (Some could also be obtained from the event structure)
//
mA = A;
mT = t;
if (mT > 0) mT = -mT; // ensure t<0
mQ2 = Q2;
mY = y;
mIsIncoherent = isIncoherent;
mElectronBeam = event->particles[ePos].p;
mHadronBeam = event->particles[hPos].p;
mMassVM = settings->lookupPDG(id)->Mass();
mS = Kinematics::s(mElectronBeam, mHadronBeam);
//
// Constants
//
double const twopi = 2*M_PI;
double const hMass2 = mHadronBeam.M2();
//
// Incoherent diffarction
//
// Generate hadron dissociation mass according to
// dN/dM2 ~ 1/M2. Lower bound is of course the hadron
// mass and upper bound is some arbitrary value (for now).
//
// Note that we calculate and quote eA kinematics always in
// units of 'per nucleon'. Our model of incoherence is that the
// difference of the diffractive mass of one (1) proton out
// of the nucleus gives the final excitation energy E*.
// Hence we have to calculate E* and divide it by A to keep
// the kinematic consistent.
//
if (mIsIncoherent && mA > 1) {
const double lower = hMass2;
const double upper = 9; // GeV2
mMY2 = lower*upper/(upper - rndm->Uniform()*(upper-lower));
double MY_per_nucleon = (sqrt(hMass2)*(mA-1) + sqrt(mMY2))/mA;
mMY2 = MY_per_nucleon*MY_per_nucleon;
if (mMY2 < hMass2) mMY2 = hMass2;
}
else {
mMY2 = hMass2;
}
//
// Re-engineer scattered electron
//
// e'=(E', pt', pz') -> 3 unknowns
//
// Three equations:
// 1: me*me=E'*E'-pt'*pt'-pz'*pz'
// 2: Q2=-(e-e')^2=-2*me*me + 2*(E*E'-pz*pz')
// 3: W2=(P+e-e')^2=mp2+2*me2+2*(Ep*E-Pz*pz)-2*(Ep*E'-Pz*pz')-2*(E*E'-pz*pz')
//
double Ee=mElectronBeam.E();
double Pe=mElectronBeam.Pz();
double Ep=mHadronBeam.E();
double Pp=mHadronBeam.Pz();
double W=event->W;
double W2=W*W;
// Take masses from the beams in case they are not actually electrons or protons
double me2=mElectronBeam.M2();
double mp2=mHadronBeam.M2();
//
// What we want for each particle:
//
double E, pz, pt, px, py, phi;
//
// Equations 2 and 3 yield:
//
E = Pe*(W2-mp2-2*Ee*Ep) + (Pp+Pe)*Q2 + 2*Pe*Pe*Pp + 2*me2*Pp;
E /= 2*(Ee*Pp-Ep*Pe);
pz = Ee*(W2-mp2) + (Ep+Ee)*Q2 + 2*Ee*Pe*Pp + 2*Ep*me2 - 2*Ee*Ee*Ep;
pz /= 2*(Ee*Pp-Ep*Pe);
//
// Equation 1:
//
pt = sqrt(E*E-pz*pz-me2);
phi = rndm->Uniform(twopi);
TLorentzVector theScatteredElectron(pt*sin(phi), pt*cos(phi), pz, E);
//
// Re-engineer virtual photon
//
// gamma=E-E'
E=mElectronBeam.E()-theScatteredElectron.E();
pz=mElectronBeam.Pz()-theScatteredElectron.Pz();
px=mElectronBeam.Px()-theScatteredElectron.Px();
py=mElectronBeam.Py()-theScatteredElectron.Py();
TLorentzVector theVirtualPhoton = TLorentzVector(px, py, pz, E);
//
// Re-engineer scattered proton/dissociated proton
//
// No analytic solution. Need to run a root finder that does
// not need derivates but uses a bracketing algorithm (Brent).
// Correct brackets are crucial since ScatteredProtonEnergyFormula
// produces sqrt(-x) if outside the kinematically allowed range (it
// actually catches it and returns a large positive number, 0 doesn't
// work).
//
//
// Setup formula to solve root
//
phi = rndm->Uniform(twopi);
ScatteredProtonEnergyFormula formula;
formula.mT = mT;
formula.mVmMass2 = mMassVM*mMassVM;
formula.mPhi = phi;
formula.mProtonIn = mHadronBeam;
formula.mVirtualPhoton = theVirtualPhoton;
formula.mMY2 = mMY2;
//
// Find correct brackets to start with
//
double lower, upper;
formula.calculateValidRange(lower, upper);
if (upper > mHadronBeam.E() + theVirtualPhoton.E()) // limit excessive values
upper = mHadronBeam.E() + theVirtualPhoton.E(); // make it easier for Brent
//
// Run root finder
//
ROOT::Math::BrentRootFinder rootfinder;
rootfinder.SetFunction(formula, lower, upper);
rootfinder.Solve(10000, 0, 1.e-12);
E = rootfinder.Root();
if (/* rootfinder.Status() || */ fabs(formula(E)) > 1e-6) {
if (settings->verboseLevel() > 2) cout << "ExclusiveFinalStateGenerator::generate(): error, cannot find root. No final state defined." << endl;
return false;
}
//
// Outgoing proton (hadron) system
//
pz = (mT- hMass2 - mMY2 + 2*mHadronBeam.E()*E)/(2*mHadronBeam.Pz());
pt = sqrt(E*E-pz*pz-mMY2);
px = pt*cos(phi);
py = pt*sin(phi);
TLorentzVector theScatteredProton(px, py, pz, E);
//
// Finally the vector meson
//
TLorentzVector theVectorMeson((mHadronBeam + mElectronBeam) - (theScatteredElectron + theScatteredProton));
//
// Check for numerical glitches
//
if (!isValid(theScatteredElectron)) {
if (settings->verboseLevel() > 2) cout << "ExclusiveFinalStateGenerator::generate(): error, scattered electron 4-vector is invalid." << endl;
return false;
}
if (!isValid(theScatteredProton)) {
if (settings->verboseLevel() > 2) cout << "ExclusiveFinalStateGenerator::generate(): error, scattered hadron 4-vector is invalid." << endl;
return false;
}
if (!isValid(theVectorMeson)) {
if (settings->verboseLevel() > 2) cout << "ExclusiveFinalStateGenerator::generate(): error, vector meson 4-vector is invalid." << endl;
return false;
}
//
// Add particles to event record
//
event->particles.resize(2+5);
unsigned int eOut = 2;
unsigned int gamma = 3;
unsigned int vm = 4;
unsigned int pomeron = 5;
unsigned int hOut = 6;
// Global indices
event->particles[eOut].index = eOut;
event->particles[gamma].index = gamma;
event->particles[vm].index = vm;
event->particles[pomeron].index = pomeron;
event->particles[hOut].index = hOut;
// 4-vectors
event->particles[eOut].p = theScatteredElectron;
event->particles[hOut].p = theScatteredProton;
event->particles[gamma].p = theVirtualPhoton;
event->particles[vm].p = theVectorMeson;
event->particles[pomeron].p = theScatteredProton - mHadronBeam;
// PDG Ids
event->particles[eOut].pdgId = event->particles[ePos].pdgId; // same as incoming
event->particles[hOut].pdgId = event->particles[hPos].pdgId; // same as incoming (breakup happens somewhere else)
event->particles[gamma].pdgId = 22;
event->particles[vm].pdgId = id;
event->particles[pomeron].pdgId = 990;
// status
//
// HepMC conventions (February 2009).
// 0 : an empty entry, with no meaningful information
// 1 : a final-state particle, i.e. a particle that is not decayed further by
// the generator (may also include unstable particles that are to be decayed later);
// 2 : a decayed hadron or tau or mu lepton
// 3 : a documentation entry (not used in PYTHIA);
// 4 : an incoming beam particle;
// 11 - 200 : an intermediate (decayed/branched/...) particle that does not
// fulfill the criteria of status code 2
event->particles[ePos].status = 4;
event->particles[hPos].status = 4;
event->particles[eOut].status = 1;
event->particles[hOut].status = mIsIncoherent ? 2 : 1;
event->particles[gamma].status = 2;
event->particles[vm].status = 1;
event->particles[pomeron].status = 2;
// parents (ignore dipole)
event->particles[eOut].parents.push_back(ePos);
event->particles[gamma].parents.push_back(ePos);
event->particles[hOut].parents.push_back(hPos);
event->particles[hOut].parents.push_back(pomeron);
event->particles[pomeron].parents.push_back(gamma);
event->particles[pomeron].parents.push_back(gamma);
event->particles[vm].parents.push_back(gamma);
// daughters (again ignore dipole)
event->particles[ePos].daughters.push_back(eOut);
event->particles[ePos].daughters.push_back(gamma);
event->particles[gamma].daughters.push_back(vm);
event->particles[gamma].daughters.push_back(pomeron);
event->particles[pomeron].daughters.push_back(hOut);
event->particles[hPos].daughters.push_back(hOut);
return true;
}

File Metadata

Mime Type
text/x-c++
Expires
Sat, Dec 21, 5:05 PM (18 h, 51 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4011540
Default Alt Text
ExclusiveFinalStateGenerator.cpp (14 KB)

Event Timeline