Page MenuHomeHEPForge

No OneTemporary

diff --git a/Models/UED/UEDBase.cc b/Models/UED/UEDBase.cc
--- a/Models/UED/UEDBase.cc
+++ b/Models/UED/UEDBase.cc
@@ -1,405 +1,469 @@
// -*- C++ -*-
//
// UEDBase.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the UEDBase class.
//
#include "UEDBase.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Repository/Repository.h"
#include "ThePEG/Repository/CurrentGenerator.h"
using namespace Herwig;
UEDBase::UEDBase() : theRadCorr(true), theInvRadius(500.*GeV),
theLambdaR(20.), theMbarH(), theSinThetaOne(0.),
- theVeV(246.*GeV) {}
+ theVeV(246.*GeV), includeSMMass_(true), fixedCouplings_(false), includeGaugeMixing_(true)
+{}
void UEDBase::doinit() {
readDecays(false);
BSMModel::doinit();
//level-1 masses and mixing angle
calculateKKMasses(1);
writeSpectrum();
//add the level-1 vertices.
addVertex(theF1F1Z0Vertex);
addVertex(theF1F1G0Vertex);
addVertex(theF1F0G1Vertex);
addVertex(theG1G1G0Vertex);
addVertex(theG0G0G1G1Vertex);
addVertex(theF1F1P0Vertex);
addVertex(theF1F1W0Vertex);
addVertex(theF1F0W1Vertex);
addVertex(theF1F0H1Vertex);
addVertex(theP0H1H1Vertex);
addVertex(theZ0H1H1Vertex);
addVertex(theW0A1H1Vertex);
addVertex(theZ0A1h1Vertex);
addVertex(theW0W1W1Vertex);
readDecays(true);
if(decayFile()=="") return;
decayRead();
}
void UEDBase::persistentOutput(PersistentOStream & os) const {
os << theRadCorr << ounit(theInvRadius, GeV) << theLambdaR
<< theF1F1Z0Vertex << theF1F1G0Vertex << theF1F0G1Vertex
<< theG1G1G0Vertex << theG0G0G1G1Vertex << theF1F1P0Vertex
<< theF1F1W0Vertex << theF1F0W1Vertex << theF1F0H1Vertex
<< theP0H1H1Vertex << theZ0H1H1Vertex << theW0A1H1Vertex
<< theZ0A1h1Vertex << theW0W1W1Vertex << ounit(theVeV,GeV)
- << ounit(theMbarH, GeV) << theSinThetaOne;
+ << ounit(theMbarH, GeV) << theSinThetaOne << includeSMMass_
+ << fixedCouplings_ << includeGaugeMixing_;
}
void UEDBase::persistentInput(PersistentIStream & is, int) {
is >> theRadCorr >> iunit(theInvRadius, GeV) >> theLambdaR
>> theF1F1Z0Vertex >> theF1F1G0Vertex >> theF1F0G1Vertex
>> theG1G1G0Vertex >> theG0G0G1G1Vertex >> theF1F1P0Vertex
>> theF1F1W0Vertex >> theF1F0W1Vertex >> theF1F0H1Vertex
>> theP0H1H1Vertex >> theZ0H1H1Vertex >> theW0A1H1Vertex
>> theZ0A1h1Vertex >> theW0W1W1Vertex >> iunit(theVeV,GeV)
- >> iunit(theMbarH, GeV) >> theSinThetaOne;
-
+ >> iunit(theMbarH, GeV) >> theSinThetaOne >> includeSMMass_
+ >> fixedCouplings_ >> includeGaugeMixing_;
}
ClassDescription<UEDBase> UEDBase::initUEDBase;
// Definition of the static class description member.
void UEDBase::Init() {
static ClassDocumentation<UEDBase> documentation
("This class implements/stores the necessary information for the simulation"
" of a Universal Extra Dimensions model.",
"Universal extra dimensions model based on \\cite{Cheng:2002iz,Appelquist:2000nn}.",
"%\\cite{Cheng:2002iz}\n"
"\\bibitem{Cheng:2002iz}\n"
" H.~C.~Cheng, K.~T.~Matchev and M.~Schmaltz,\n"
" ``Radiative corrections to Kaluza-Klein masses,''\n"
" Phys.\\ Rev.\\ D {\\bf 66}, 036005 (2002)\n"
" [arXiv:hep-ph/0204342].\n"
" %%CITATION = PHRVA,D66,036005;%%\n"
"%\\cite{Appelquist:2000nn}\n"
"\\bibitem{Appelquist:2000nn}\n"
" T.~Appelquist, H.~C.~Cheng and B.~A.~Dobrescu,\n"
" ``Bounds on universal extra dimensions,''\n"
" Phys.\\ Rev.\\ D {\\bf 64}, 035002 (2001)\n"
" [arXiv:hep-ph/0012100].\n"
" %%CITATION = PHRVA,D64,035002;%%\n"
);
static Switch<UEDBase,bool> interfaceRadiativeCorrections
("RadiativeCorrections",
"Calculate the radiative corrections to the masses",
&UEDBase::theRadCorr, true, false, false);
static SwitchOption interfaceRadiativeCorrectionsYes
(interfaceRadiativeCorrections,
"Yes",
"Calculate the radiative corrections to the masses",
true);
static SwitchOption interfaceRadiativeCorrectionsNo
(interfaceRadiativeCorrections,
"No",
"Leave the masses of the KK particles as n/R",
false);
static Parameter<UEDBase,Energy> interfaceInverseRadius
("InverseRadius",
"The inverse radius of the compactified dimension ",
&UEDBase::theInvRadius, GeV, 500.*GeV, ZERO, ZERO,
true, false, Interface::nolimits);
static Parameter<UEDBase,double> interfaceLambdaR
("LambdaR",
"The product of the cut-off scale and the radius of compactification",
&UEDBase::theLambdaR, 20.0, 0.0, 0,
false, false, Interface::lowerlim);
static Parameter<UEDBase,Energy> interfaceBoundaryMass
("HiggsBoundaryMass",
"The boundary mass for the Higgs",
&UEDBase::theMbarH, GeV, ZERO, ZERO, ZERO,
false, false, Interface::lowerlim);
static Parameter<UEDBase,Energy> interfaceVeV
("HiggsVEV",
"The vacuum expectation value of the Higgs field",
&UEDBase::theVeV, GeV, 246.*GeV, ZERO, ZERO,
true, false, Interface::nolimits);
static Reference<UEDBase,Helicity::AbstractFFVVertex> interfaceF1F1Z
("Vertex/F1F1Z",
"The F1F1Z UED Vertex",
&UEDBase::theF1F1Z0Vertex, false, false, true, false, false);
static Reference<UEDBase,Helicity::AbstractFFVVertex> interfaceF1F1G0
("Vertex/F1F1G0",
"The F1F1G UED Vertex",
&UEDBase::theF1F1G0Vertex, false, false, true, false, false);
static Reference<UEDBase,Helicity::AbstractFFVVertex> interfaceF1F0G1
("Vertex/F1F0G1",
"The F1F0G0 UED Vertex",
&UEDBase::theF1F0G1Vertex, false, false, true, false, false);
static Reference<UEDBase,Helicity::AbstractVVVVertex> interfaceG1G1G0
("Vertex/G1G1G0",
"The G1G1G0 UED Vertex",
&UEDBase::theG1G1G0Vertex, false, false, true, false, false);
static Reference<UEDBase,Helicity::AbstractVVVVVertex> interfaceG0G0G1G1
("Vertex/G0G0G1G1",
"The G0G0G1G1 UED Vertex",
&UEDBase::theG0G0G1G1Vertex, false, false, true, false, false);
static Reference<UEDBase,Helicity::AbstractFFVVertex> interfaceF1F1P
("Vertex/F1F1P",
"The F1F1P UED Vertex",
&UEDBase::theF1F1P0Vertex, false, false, true, false, false);
static Reference<UEDBase,Helicity::AbstractFFVVertex> interfaceF1F1W
("Vertex/F1F1W",
"The F1F1W UED Vertex",
&UEDBase::theF1F1W0Vertex, false, false, true, false, false);
static Reference<UEDBase,Helicity::AbstractFFVVertex> interfaceF1F0W1
("Vertex/F1F0W1",
"The F1F0W1 UED Vertex",
&UEDBase::theF1F0W1Vertex, false, false, true, false, false);
static Reference<UEDBase,Helicity::AbstractFFSVertex> interfaceF1F0H1
("Vertex/F1F0H1",
"The F1F0H1 UED Vertex",
&UEDBase::theF1F0H1Vertex, false, false, true, false, false);
static Reference<UEDBase,Helicity::AbstractVSSVertex> interfaceP0H1H1
("Vertex/P0H1H1",
"The P0H1H1 UED Vertex",
&UEDBase::theP0H1H1Vertex, false, false, true, false, false);
static Reference<UEDBase,Helicity::AbstractVSSVertex> interfaceZ0H1H1
("Vertex/Z0H1H1",
"The Z0H1H1 UED Vertex",
&UEDBase::theZ0H1H1Vertex, false, false, true, false, false);
static Reference<UEDBase,Helicity::AbstractVSSVertex> interfaceW0A1H1
("Vertex/W0A1H1",
"The W0A1H1 UED Vertex",
&UEDBase::theW0A1H1Vertex, false, false, true, false, false);
static Reference<UEDBase,Helicity::AbstractVSSVertex> interfaceZ0A1h1
("Vertex/Z0A1h1",
"The W0A1H1 UED Vertex",
&UEDBase::theZ0A1h1Vertex, false, false, true, false, false);
static Reference<UEDBase,Helicity::AbstractVVVVertex> interfaceW0W1W1
("Vertex/W0W1W1",
"The W0W1W1 UED Vertex",
&UEDBase::theW0W1W1Vertex, false, false, true, false, false);
+
+ static Switch<UEDBase,bool> interfaceIncludeSMMass
+ ("IncludeSMMass",
+ "Whether or not to include the SM mass in the calculation of the masses of the KK states.",
+ &UEDBase::includeSMMass_, true, false, false);
+ static SwitchOption interfaceIncludeSMMassYes
+ (interfaceIncludeSMMass,
+ "Yes",
+ "Include them",
+ true);
+ static SwitchOption interfaceIncludeSMMassNo
+ (interfaceIncludeSMMass,
+ "No",
+ "Don't include them",
+ false);
+
+ static Switch<UEDBase,bool> interfaceFixedCouplings
+ ("FixedCouplings",
+ "Use fixed or running couplings to calculate the masses.",
+ &UEDBase::fixedCouplings_, false, false, false);
+ static SwitchOption interfaceFixedCouplingsYes
+ (interfaceFixedCouplings,
+ "Yes",
+ "Use fixed couplings",
+ true);
+ static SwitchOption interfaceFixedCouplingsNo
+ (interfaceFixedCouplings,
+ "No",
+ "Use running couplings",
+ false);
+
+ static Switch<UEDBase,bool> interfaceIncludeGaugeMixing
+ ("IncludeGaugeMixing",
+ "Whether or not to include mixing between the KK photon"
+ " and Z in the vertices, always included in the mass",
+ &UEDBase::includeGaugeMixing_, true, false, false);
+ static SwitchOption interfaceIncludeGaugeMixingYes
+ (interfaceIncludeGaugeMixing,
+ "Yes",
+ "Include the mixing",
+ true);
+ static SwitchOption interfaceIncludeGaugeMixingNo
+ (interfaceIncludeGaugeMixing,
+ "No",
+ "Don't include the mixing",
+ false);
+
}
void UEDBase::calculateKKMasses(const unsigned int n) {
useMe();
if(n == 0)
throw InitException() << "UEDBase::resetKKMasses - "
<< "Trying to reset masses with KK number == 0!"
<< Exception::warning;
if(theRadCorr) {
fermionMasses(n);
bosonMasses(n);
}
else {
cerr <<
"Warning: Radiative corrections to particle masses have been "
"turned off.\n The masses will be set to (n/R + m_sm)^1/2 and "
"the spectrum will be\n highly degenerate so that no decays "
"will occur.\n This is only meant to be used for debugging "
"purposes.\n";
//set masses to tree level for each kk mode
long level1 = 5000000 + n*100000;
long level2 = 6000000 + n*100000;
Energy2 ndmass2 = sqr(n*theInvRadius);
for ( int i = 1; i < 38; ++i ) {
if(i == 7 || i == 17) i += 4;
if(i == 26) i += 10;
Energy kkmass = sqrt( ndmass2 + sqr(getParticleData(i)->mass()) );
resetMass(level1 + i, kkmass);
if( i < 7 || i == 11 || i == 13 || i == 15 )
resetMass(level2 + i, kkmass);
}
}
}
void UEDBase::bosonMasses(const unsigned int n) {
// Common constants
const Energy2 invRad2 = theInvRadius*theInvRadius;
- const double g_em2 = 4.*Constants::pi*alphaEM(invRad2);
- const double g_s2 = 4.*Constants::pi*alphaS(invRad2);
+ const double g_em2 = fixedCouplings_ ?
+ 4.*Constants::pi*alphaEMMZ() : 4.*Constants::pi*alphaEM(invRad2);
+ const double g_s2 = fixedCouplings_ ?
+ 4.*Constants::pi*alphaS() : 4.*Constants::pi*alphaS(invRad2);
const double g_W2 = g_em2/sin2ThetaW();
-
+ const double g_P2 = g_em2/(1-sin2ThetaW());
//Should probably use a function to calculate zeta.
const double zeta3 = 1.20206;
const Energy2 nmass2 = sqr(n*theInvRadius);
const double pi2 = sqr(Constants::pi);
const double norm = 1./16./pi2;
const double nnlogLR = n*n*log(theLambdaR);
long level = 5000000 + n*100000;
//gluon
Energy2 deltaGB = g_s2*invRad2*norm*(23.*nnlogLR - 3.*zeta3/2./pi2 );
resetMass(level + 21, sqrt(nmass2 + deltaGB));
//W+/-
Energy2 deltaGW = g_W2*invRad2*norm*( 15.*nnlogLR - 5.*zeta3/2./pi2 );
Energy2 mw2 = sqr(getParticleData(24)->mass());
resetMass(level + 24, sqrt(mw2 + nmass2 + deltaGW));
//Z and gamma are a mixture of Bn and W3n
- deltaGB = -g_em2*invRad2*norm*( 39.*zeta3/2./pi2 + nnlogLR/3. );
+ deltaGB = -g_P2*invRad2*norm*( 39.*zeta3/2./pi2 + nnlogLR/3. );
Energy2 mz2 = sqr(getParticleData(23)->mass());
Energy2 fp = 0.5*(mz2 + deltaGB + deltaGW + 2.*nmass2);
Energy2 sp = 0.5*sqrt( sqr(deltaGB - deltaGW - 2.*mw2 + mz2)
- 4.*mw2*(mw2 - mz2) );
resetMass(level + 22, sqrt(fp - sp));
resetMass(level + 23, sqrt(fp + sp));
//mixing angle will now depend on both Z* and gamma* mass
//Derived expression:
//
// cos^2_theta_N = ( (n/R)^2 + delta_GW + mw^2 - m_gam*^2)/(m_z*^2 - m_gam*^2)
//
- double cn2 = (nmass2 + deltaGW + mw2 - fp + sp)/2./sp;
- double sn = sqrt(1. - cn2);
- theMixingAngles.insert(make_pair(n, sn));
- if( n == 1 ) theSinThetaOne = sn;
-
+ if(includeGaugeMixing_) {
+ double cn2 = (nmass2 + deltaGW + mw2 - fp + sp)/2./sp;
+ double sn = sqrt(1. - cn2);
+ theMixingAngles.insert(make_pair(n, sn));
+ if( n == 1 ) theSinThetaOne = sn;
+ }
+ else {
+ theMixingAngles.insert(make_pair(n,0.));
+ if( n == 1 ) theSinThetaOne = 0.;
+ }
//scalars
Energy2 mh2 = sqr(getParticleData(25)->mass());
- double lambda_H = mh2/theVeV/theVeV;
- deltaGB = nnlogLR*norm*invRad2*(3.*g_W2 + (3.*g_em2/2.) - 2.*lambda_H)
+ double lambda_H = mh2/sqr(theVeV);
+ deltaGB = nnlogLR*norm*invRad2*(3.*g_W2 + (3.*g_P2/2.) - 2.*lambda_H)
+ sqr(theMbarH);
//H0
Energy2 new_m2 = nmass2 + deltaGB;
resetMass(level + 25, sqrt( mh2 + new_m2 ));
//A0
resetMass(level + 36, sqrt( mz2 + new_m2 ));
//H+
resetMass(level + 37, sqrt( mw2 + new_m2 ));
}
void UEDBase::fermionMasses(const unsigned int n) {
const Energy2 invRad2 = theInvRadius*theInvRadius;
- const double g_em2 = 4.*Constants::pi*alphaEM(invRad2);
- const double g_s2 = 4.*Constants::pi*alphaS(invRad2);
+ const double g_em2 = fixedCouplings_ ?
+ 4.*Constants::pi*alphaEMMZ() : 4.*Constants::pi*alphaEM(invRad2);
+ const double g_s2 = fixedCouplings_ ?
+ 4.*Constants::pi*alphaS() : 4.*Constants::pi*alphaS(invRad2);
const double g_W2 = g_em2/sin2ThetaW();
+ const double g_P2 = g_em2/(1-sin2ThetaW());
const Energy nmass = n*theInvRadius;
const Energy norm =
nmass*log(theLambdaR)/16./Constants::pi/Constants::pi;
const Energy topMass = getParticleData(6)->mass();
const double ht = sqrt(2)*topMass/theVeV;
//doublets
- Energy deltaL = norm*(6.*g_s2 + (27.*g_W2/8.) + (g_em2/8.));
+ Energy deltaL = norm*(6.*g_s2 + (27.*g_W2/8.) + (g_P2/8.));
Energy deltaQ = deltaL;
Energy2 shift = sqr(nmass + deltaL);
long level = 5000000 + n*100000;
for(long i = 1; i < 17; ++i) {
- if(i == 6) {
- i += 5;
- deltaL = norm*( (27.*g_W2/8.) + (9.*g_em2/8.) );
+ if(i == 5) {
+ i += 6;
+ deltaL = norm*( (27.*g_W2/8.) + (9.*g_P2/8.) );
shift = sqr(nmass + deltaL);
}
- Energy2 new_m2 = sqr(getParticleData(i)->mass()) + shift;
+ Energy2 new_m2 = includeSMMass_ ? sqr(getParticleData(i)->mass()) + shift : shift;
resetMass(level + i, sqrt(new_m2));
}
//singlet shifts
- const Energy deltaU = norm*(6.*g_s2 + 2.*g_em2);
- const Energy deltaD = norm*(6.*g_s2 + 0.5*g_em2);
+ const Energy deltaU = norm*(6.*g_s2 + 2.*g_P2);
+ const Energy deltaD = norm*(6.*g_s2 + 0.5*g_P2);
const Energy2 shiftU = sqr(nmass + deltaU);
const Energy2 shiftD = sqr(nmass + deltaD);
//Top quarks seperately as they have different corrections
const Energy2 mt2 = sqr(topMass);
const Energy delta_Q3 = -3.*ht*ht*norm/2.;
const Energy deltaTD = deltaQ + delta_Q3;
const Energy deltaTS = deltaU + 2.*delta_Q3;
-
- Energy second_term =
- 0.5*sqrt( sqr(2.*nmass + deltaTS + deltaTD) + 4.*mt2 );
+ Energy second_term = 0.5*sqrt( sqr(2.*nmass + deltaTS + deltaTD) + 4.*mt2 );
//doublet
- resetMass(level + 6, abs(0.5*(deltaTD - deltaTS) - second_term) );
+ resetMass(level + 6, abs(0.5*(deltaTD - deltaTS) - second_term) );
//singlet
- level += 1000000;
- resetMass(level + 6, 0.5*(deltaTD - deltaTS) + second_term);
+ resetMass(level + 1000000 + 6, 0.5*(deltaTD - deltaTS) + second_term);
+ //Bottom quarks
+ const Energy2 mb2 = sqr(getParticleData(5)->mass());
+ const Energy deltaBS = deltaD;
+ second_term = 0.5*sqrt( sqr(2.*nmass + deltaBS + deltaTD) + 4.*mb2 );
+ //doublet
+ resetMass(level + 1000000 + 5, abs(0.5*(deltaTD - deltaBS) - second_term) );
+ //singlet
+ resetMass(level + 5, 0.5*(deltaTD - deltaBS) + second_term);
// others
//lepton
- Energy delta = 9.*norm*g_em2/2.;
+ Energy delta = 9.*norm*g_P2/2.;
shift = sqr(nmass + delta);
+ level += 1000000;
for(long i = 1; i < 17; ) {
- if(i == 6) i += 5;
+ if(i == 5) i += 6;
Energy2 smMass2(sqr(getParticleData(i)->mass()));
if(i < 6) {
- Energy2 new_m2;
- if( i % 2 == 0)
- new_m2 = smMass2 + shiftU;
- else
- new_m2 = smMass2 + shiftD;
+ Energy2 new_m2 = includeSMMass_ ? smMass2 : ZERO;
+ if( i % 2 == 0) new_m2 = shiftU;
+ else new_m2 = shiftD;
resetMass(level + i, sqrt(new_m2));
++i;
}
else {
- resetMass(level + i, sqrt(smMass2 + shift));
+ if(includeSMMass_)
+ resetMass(level + i, sqrt(smMass2 + shift));
+ else
+ resetMass(level + i, sqrt(shift));
i += 2;
}
-
}
-
}
void UEDBase::resetMass(long id, Energy mass) {
theMasses.push_back(make_pair(id, mass));
StandardModel::resetMass(id,mass);
}
void UEDBase::writeSpectrum() {
sort(theMasses.begin(), theMasses.end(), lowerMass);
ostream & ofs = CurrentGenerator::current().misc();
ofs << "# MUED Model Particle Spectrum\n"
<< "# R^-1: " << theInvRadius/GeV << " GeV\n"
<< "# Lambda * R: " << theLambdaR << "\n"
<< "# Higgs Mass: " << getParticleData(25)->mass()/GeV << " GeV\n";
ofs << "#\n# ID\t\t\tMass(GeV)\n";
while (!theMasses.empty()) {
IDMassPair tmp = theMasses.back();
tcPDPtr data = getParticleData(tmp.first);
ofs << tmp.first << "\t\t\t" << tmp.second/GeV << "\t\t" << (data? data->PDGName() : "")
<< endl;
theMasses.pop_back();
}
ofs << "#\n";
}
double UEDBase::sinThetaN(const unsigned int n) const {
WAMap::const_iterator pos = theMixingAngles.find(n);
if(pos != theMixingAngles.end())
return pos->second;
else {
throw Exception() << "UEDBase::sinThetaN() - A mixing angle has "
<< "been requested for a level that does not "
<< "exist. Check that the radiative corrections "
<< "for the " << n << "th level have been "
<< "calculated." << Exception::warning;
return 0.0;
}
}
diff --git a/Models/UED/UEDBase.h b/Models/UED/UEDBase.h
--- a/Models/UED/UEDBase.h
+++ b/Models/UED/UEDBase.h
@@ -1,367 +1,382 @@
// -*- C++ -*-
//
// UEDBase.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_UEDBase_H
#define HERWIG_UEDBase_H
//
// This is the declaration of the UEDBase class.
//
#include "Herwig++/Models/General/BSMModel.h"
#include "ThePEG/Helicity/Vertex/AbstractFFVVertex.h"
#include "ThePEG/Helicity/Vertex/AbstractFFSVertex.h"
#include "ThePEG/Helicity/Vertex/AbstractVVVVertex.h"
#include "ThePEG/Helicity/Vertex/AbstractVSSVertex.h"
#include "UEDBase.fh"
namespace Herwig {
using namespace ThePEG;
/**
* This class serves as a base class for all UED models. It stores the
* values of the inverse radius and the product \f$\Lambda R \f$ and has functions
* to calculate the radiative corrections to the nth level KK excitations.
*
* To use this class for n > 1 simply inherit off it, calculate the necessary masses
* using the provided functions for the new excitations and add the
* appropriate vertices.
*
* @see \ref UEDBaseInterfaces "The interfaces"
* defined for UEDBase.
*/
class UEDBase: public BSMModel {
public:
/** Typedef for ID-Mass pair. */
typedef pair<long, Energy> IDMassPair;
/** Typedef for unsigned int/double map to store Weinburg angles.*/
typedef map<unsigned int, double> WAMap;
public:
/**
* The default constructor.
*/
UEDBase();
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
public:
/** @name Public Access Functions.*/
//@{
/**
* Return the compactification radius
*/
InvEnergy compactRadius() const {
return 1./theInvRadius;
}
/**
* Return the Weinburg mixing angle for any level.
*/
double sinThetaN(const unsigned int n) const;
/**
* Return the Weinburg mixing angle for \f$n = 1\f$
*/
double sinThetaOne() const {
return theSinThetaOne;
}
//@}
protected:
/**
* Add a new ID,mass pair to the mass storage
* @param elem The element to add in to storage
*/
void addMassElement(IDMassPair elem) {
theMasses.push_back(elem);
}
/**
* Add a new mixing angle to the storage
* @param n The level
* @param val The value
*/
void addMixingAngle(const unsigned int n,
const double val) {
theMixingAngles.insert(make_pair(n, val));
}
private:
/** @name Utility Functions for calculating masses. */
//@{
/**
* Calculate the radiative corrections to the masses of the KK excitations
* @param n The KK-level for which to calculate the masses.
*/
void calculateKKMasses(const unsigned int n);
/**
* Calculate the radiative corrections to the spin-0 and spin-1
* masses of the KK excitations
* @param n The KK-level for which to calculate the masses.
*/
void bosonMasses(const unsigned int n);
/**
* Calculate the radiative corrections to the spin-1/2
* masses of the KK excitations.
* @param n The KK-level for which to calculate the masses.
*/
void fermionMasses(const unsigned int n);
/**
* Reset the mass of the ParticleData object
*@param id The id of the particles mass to reset
*@param value The new mass
*/
void resetMass(long id, Energy value);
/**
* Calculate the Weinburg Mixing angle for the appropriate level.
* @param n The KK-level for which to calculate the mixing angle.
*/
double calculateMixingAngle(const unsigned int n);
//@}
/**
* Write out a spectrum file ordered in mass (name can be set by an interface).
*/
void writeSpectrum();
/**
* A predicate for sorting the list of masses.
*/
static bool lowerMass(const pair<long, Energy> & p1,
const pair<long, Energy> & p2) {
return p1.second < p2.second;
}
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const {return new_ptr(*this);}
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const {return new_ptr(*this);}
//@}
protected:
/** @name Standard Interfaced functions. */
//@{
virtual void doinit();
//@}
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static ClassDescription<UEDBase> initUEDBase;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
UEDBase & operator=(const UEDBase &);
private:
/**
* Whether to calculate the radiative corrections to the KK masses
*/
bool theRadCorr;
/**
* Store the radius of the compactified dimension.
*/
Energy theInvRadius;
/**
* The value of \f$\Lambda R \f$.
*/
double theLambdaR;
/**
* The boundary mass term for the Higgs.
*/
Energy theMbarH;
/**
* The values of \f$\sin\theta_N\f$
*/
WAMap theMixingAngles;
/**
* Store \f$\sin\theta_1\f$ for faster access
*/
double theSinThetaOne;
/**
* Store the masses of the new particles
*/
vector<IDMassPair> theMasses;
/**
* The value of the vacuum expectation value of the higgs field.
*/
Energy theVeV;
+
+ /**
+ * Include SM masses in calculation of KK masses
+ */
+ bool includeSMMass_;
+
+ /**
+ * Use fixed couplings for the mass calculation
+ */
+ bool fixedCouplings_;
+
+ /**
+ * Include gauge boson mixing
+ */
+ bool includeGaugeMixing_;
/** @name The level 1 UED vertices. */
//@{
/**
* The \f$\bar{f}^{(1)}f^{(1)}Z^{(0)}\f$
*/
AbstractFFVVertexPtr theF1F1Z0Vertex;
/**
* The \f$\bar{f}^{(1)}f^{(1)}g^{(0)}\f$
*/
AbstractFFVVertexPtr theF1F1G0Vertex;
/**
* The \f$\bar{f}^{(1)}f^{(0)}g^{(1)}\f$
*/
AbstractFFVVertexPtr theF1F0G1Vertex;
/**
* The \f$g^{(1)}g^{(1)}g\f$ vertex
*/
AbstractVVVVertexPtr theG1G1G0Vertex;
/**
* The \f$g\,g\,g^{(1)},g^{(1)}\f$ vertex
*/
AbstractVVVVVertexPtr theG0G0G1G1Vertex;
/**
* The \f$\bar{f}^{(1)}f^{(1)}\gamma\f$
*/
AbstractFFVVertexPtr theF1F1P0Vertex;
/**
* The \f$\bar{f}^{(1)}f^{(1)}W\f$
*/
AbstractFFVVertexPtr theF1F1W0Vertex;
/**
* The \f$\bar{f}^{(1)}f^{(0)}W^{(1)}\f$
*/
AbstractFFVVertexPtr theF1F0W1Vertex;
/**
* The \f$\bar{f}^{(1)}f^{(0)}H^{(1)}\f$
*/
AbstractFFSVertexPtr theF1F0H1Vertex;
/**
* The \f$ A^\mu_{(0)}H^+_{(1)}H-_{(1)}\f$
*/
AbstractVSSVertexPtr theP0H1H1Vertex;
/**
* The \f$ Z^\mu_{(0)}H^+_{(1)}H-_{(1)}\f$
*/
AbstractVSSVertexPtr theZ0H1H1Vertex;
/**
* The \f$ W^\pm_{\mu(0)}A_{(1)}H^\mp_{(1)}\f$
*/
AbstractVSSVertexPtr theW0A1H1Vertex;
/**
* The \f$ Z^\mu_{\mu(0)}A_{(1)}h_{(1)}\f$
*/
AbstractVSSVertexPtr theZ0A1h1Vertex;
/**
* The \f$W^{(1)}Z^{(1)}W_{(0)}\f$ vertex
*/
AbstractVVVVertexPtr theW0W1W1Vertex;
//@}
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of UEDBase. */
template <>
struct BaseClassTrait<Herwig::UEDBase,1> {
/** Typedef of the first base class of UEDBase. */
typedef Herwig::BSMModel NthBase;
};
/** This template specialization informs ThePEG about the name of
* the UEDBase class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::UEDBase>
: public ClassTraitsBase<Herwig::UEDBase> {
/** Return a platform-independent class name */
static string className() { return "Herwig::UEDBase"; }
/**
* The name of a file containing the dynamic library where the class
* UEDBase is implemented. It may also include several, space-separated,
* libraries if the class UEDBase depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "HwUED.so"; }
};
/** @endcond */
}
#endif /* HERWIG_UEDBase_H */

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 4:20 PM (1 d, 15 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805124
Default Alt Text
(27 KB)

Event Timeline