Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7879380
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
25 KB
Subscribers
None
View Options
diff --git a/Decay/Perturbative/SMHiggsGGHiggsPPDecayer.cc b/Decay/Perturbative/SMHiggsGGHiggsPPDecayer.cc
--- a/Decay/Perturbative/SMHiggsGGHiggsPPDecayer.cc
+++ b/Decay/Perturbative/SMHiggsGGHiggsPPDecayer.cc
@@ -1,253 +1,416 @@
// -*- C++ -*-
//
// SMHiggsGGHiggsPPDecayer.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SMHiggsGGHiggsPPDecayer class.
//
#include "SMHiggsGGHiggsPPDecayer.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Helicity/WaveFunction/ScalarWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "ThePEG/PDT/DecayMode.h"
#include "Herwig/Decay/GeneralDecayMatrixElement.h"
+#include "Herwig/Utilities/HiggsLoopFunctions.h"
using namespace Herwig;
+using namespace Herwig::HiggsLoopFunctions;
using namespace ThePEG::Helicity;
// The following static variable is needed for the type
// description system in ThePEG.
DescribeClass<SMHiggsGGHiggsPPDecayer,PerturbativeDecayer>
describeHerwigSMHiggsGGHiggsPPDecayer("Herwig::SMHiggsGGHiggsPPDecayer",
"HwPerturbativeHiggsDecay.so");
bool SMHiggsGGHiggsPPDecayer::accept(tcPDPtr parent,
const tPDVector & children) const {
int idp = parent->id();
int id0 = children[0]->id();
int id1 = children[1]->id();
if((idp == ParticleID::h0 &&
id0 == ParticleID::g && id1 == ParticleID::g) ||
(idp == ParticleID::h0 &&
id0 == ParticleID::gamma && id1 == ParticleID::gamma)||
(idp == ParticleID::h0 &&
id0 == ParticleID::Z0 && id1 == ParticleID::gamma)||
(idp == ParticleID::h0 &&
id0 == ParticleID::gamma && id1 == ParticleID::Z0))
return true;
else
return false;
}
ParticleVector SMHiggsGGHiggsPPDecayer::decay(const Particle & parent,
const tPDVector & children) const {
int imode(2);
if(children[0]->id() == ParticleID::gamma &&
children[1]->id() == ParticleID::gamma)
imode = 1;
else if(children[0]->id() ==ParticleID::g)
imode = 0;
ParticleVector out(generate(true,false,imode,parent));
//colour flow
if(children[0]->id() == ParticleID::g &&
children[1]->id() == ParticleID::g) {
out[0]->colourNeighbour(out[1]);
out[0]->antiColourNeighbour(out[1]);
}
return out;
}
void SMHiggsGGHiggsPPDecayer::persistentOutput(PersistentOStream & os) const {
- os << _hggvertex << _hppvertex << _hzpvertex << _h0wgt;
+ os << _hggvertex << _hppvertex << _hzpvertex << _h0wgt
+ << _minloop << _maxloop << _massopt;
}
void SMHiggsGGHiggsPPDecayer::persistentInput(PersistentIStream & is, int) {
- is >> _hggvertex >> _hppvertex >> _hzpvertex >> _h0wgt;
+ is >> _hggvertex >> _hppvertex >> _hzpvertex >> _h0wgt
+ >> _minloop >> _maxloop >> _massopt;
}
void SMHiggsGGHiggsPPDecayer::Init() {
static ClassDocumentation<SMHiggsGGHiggsPPDecayer> documentation
("This is an implentation of h0->gg or h0->gamma,gamma "
"decayer using the SMHGGVertex.");
static Reference<SMHiggsGGHiggsPPDecayer,AbstractVVSVertex>
interfaceSMHGGVertex
("SMHGGVertex",
"Pointer to SMHGGVertex",
&SMHiggsGGHiggsPPDecayer::_hggvertex, false, false, true,
false, false);
static Reference<SMHiggsGGHiggsPPDecayer,AbstractVVSVertex>
interfaceSMHPPVertex
("SMHPPVertex",
"Pointer to SMHPPVertex",
&SMHiggsGGHiggsPPDecayer::_hppvertex, false, false, true,
false, false);
static Reference<SMHiggsGGHiggsPPDecayer,AbstractVVSVertex>
interfaceSMHZPVertex
("SMHZPVertex",
"Pointer to SMHZPVertex",
&SMHiggsGGHiggsPPDecayer::_hzpvertex, false, false, true,
false, false);
static ParVector<SMHiggsGGHiggsPPDecayer,double> interfaceMaxWeights
("MaxWeights",
"Maximum weights for the various decays",
&SMHiggsGGHiggsPPDecayer::_h0wgt, 3, 1.0, 0.0, 10.0,
false, false, Interface::limited);
+ static Parameter<SMHiggsGGHiggsPPDecayer,int> interfaceMinimumInLoop
+ ("MinimumInLoop",
+ "The minimum flavour of the quarks to include in the loops",
+ &SMHiggsGGHiggsPPDecayer::_minloop, 6, 4, 6,
+ false, false, Interface::limited);
+
+ static Parameter<SMHiggsGGHiggsPPDecayer,int> interfaceMaximumInLoop
+ ("MaximumInLoop",
+ "The maximum flavour of the quarks to include in the loops",
+ &SMHiggsGGHiggsPPDecayer::_maxloop, 6, 4, 6,
+ false, false, Interface::limited);
+
+ static Switch<SMHiggsGGHiggsPPDecayer,unsigned int> interfaceMassOption
+ ("MassOption",
+ "Option for the treatment of the masses in the loop diagrams",
+ &SMHiggsGGHiggsPPDecayer::_massopt, 0, false, false);
+ static SwitchOption interfaceMassOptionFull
+ (interfaceMassOption,
+ "Full",
+ "Include the full mass dependence",
+ 0);
+ static SwitchOption interfaceMassOptionLarge
+ (interfaceMassOption,
+ "Large",
+ "Use the heavy mass limit",
+ 1);
}
double SMHiggsGGHiggsPPDecayer::me2(const int,
const Particle & part,
const ParticleVector & decay,
MEOption meopt) const {
if(!ME())
ME(new_ptr(GeneralDecayMatrixElement(PDT::Spin0,PDT::Spin1,PDT::Spin1)));
if(meopt==Initialize) {
ScalarWaveFunction::
calculateWaveFunctions(_rho,const_ptr_cast<tPPtr>(&part),incoming);
_swave = ScalarWaveFunction(part.momentum(),part.dataPtr(),incoming);
}
if(meopt==Terminate) {
ScalarWaveFunction::constructSpinInfo(const_ptr_cast<tPPtr>(&part),
incoming,true);
for(unsigned int ix=0;ix<2;++ix)
VectorWaveFunction::constructSpinInfo(_vwave[ix],decay[ix],
outgoing,true,
decay[ix]->id()!=ParticleID::Z0);
return 0.;
}
for(unsigned int ix=0;ix<2;++ix)
VectorWaveFunction::
calculateWaveFunctions(_vwave[ix],decay[ix],outgoing,decay[ix]->id()!=ParticleID::Z0);
//Set up decay matrix
Energy2 scale(sqr(part.mass()));
unsigned int v1hel,v2hel;
AbstractVVSVertexPtr vertex;
unsigned int vstep1(2),vstep2(2);
double sym(1.);
if(decay[0]->id() == ParticleID::g &&
decay[1]->id() == ParticleID::g) {
vertex = _hggvertex;
sym = 2.;
}
else if(decay[0]->id() == ParticleID::gamma &&
decay[1]->id() == ParticleID::gamma) {
vertex = _hppvertex;
sym = 2.;
}
else if(decay[0]->id() == ParticleID::Z0 &&
decay[1]->id() == ParticleID::gamma) {
vertex = _hzpvertex;
vstep1 = 1;
}
else if(decay[1]->id() == ParticleID::Z0 &&
decay[0]->id() == ParticleID::gamma) {
vertex = _hzpvertex;
vstep2 = 1;
}
else
assert(false);
// loop over the helicities of the outgoing bosons
for(v1hel = 0;v1hel < 3;v1hel+=vstep1) {
for(v2hel = 0;v2hel < 3;v2hel+=vstep2) {
(*ME())(0,v1hel,v2hel) = vertex->evaluate(scale,_vwave[0][v1hel],
_vwave[1][v2hel],_swave);
}
}
//store matrix element
double output = ME()->contract(_rho).real()*UnitRemoval::E2/scale;
//colour factor (N^2 - 1)/4
if(decay[0]->id() == ParticleID::g) output *= 8.;
//symmetric final states
output /= sym;
// return the answer
return output;
}
void SMHiggsGGHiggsPPDecayer::doinit() {
PerturbativeDecayer::doinit();
// get the width generator for the higgs
tPDPtr higgs = getParticleData(ParticleID::h0);
if(_hggvertex) {
_hggvertex->init();
}
else {
throw InitException() << "SMHiggsGGHiggsPPDecayer::doinit() - "
<< "_hggvertex is null";
}
if(_hppvertex) {
_hppvertex->init();
}
else {
throw InitException() << "SMHiggsGGHiggsPPDecayer::doinit() - "
<< "_hppvertex is null";
}
if(_hzpvertex) {
_hzpvertex->init();
}
else {
throw InitException() << "SMHiggsGGHiggsZPDecayer::doinit() - "
<< "_hzpvertex is null";
}
//set up decay modes
DecayPhaseSpaceModePtr mode;
tPDVector extpart(3);
vector<double> wgt(0);
// glu,glu mode
extpart[0] = getParticleData(ParticleID::h0);
extpart[1] = getParticleData(ParticleID::g);
extpart[2] = getParticleData(ParticleID::g);
mode = new_ptr(DecayPhaseSpaceMode(extpart,this));
addMode(mode,_h0wgt[0],wgt);
// gamma,gamma mode
extpart[1] = getParticleData(ParticleID::gamma);
extpart[2] = getParticleData(ParticleID::gamma);
mode = new_ptr(DecayPhaseSpaceMode(extpart,this));
addMode(mode,_h0wgt[1],wgt);
// Z0,gamma mode
extpart[1] = getParticleData(ParticleID::Z0);
extpart[2] = getParticleData(ParticleID::gamma);
mode = new_ptr(DecayPhaseSpaceMode(extpart,this));
addMode(mode,_h0wgt[2],wgt);
}
void SMHiggsGGHiggsPPDecayer::doinitrun() {
_hggvertex->initrun();
_hppvertex->initrun();
_hzpvertex->initrun();
PerturbativeDecayer::doinitrun();
if(initialize()) {
for(unsigned int ix=0;ix<numberModes();++ix) {
_h0wgt[ix] = mode(ix)->maxWeight();
}
}
}
void SMHiggsGGHiggsPPDecayer::dataBaseOutput(ofstream & os,bool header) const {
if(header) os << "update decayers set parameters=\"";
// parameters for the PerturbativeDecayer base class
for(unsigned int ix=0;ix<_h0wgt.size();++ix) {
os << "newdef " << name() << ":MaxWeights " << ix << " "
<< _h0wgt[ix] << "\n";
}
os << "newdef " << name() << ":SMHGGVertex " << _hggvertex->fullName() << "\n";
os << "newdef " << name() << ":SMHPPVertex " << _hppvertex->fullName() << "\n";
os << "newdef " << name() << ":SMHZPVertex " << _hzpvertex->fullName() << "\n";
PerturbativeDecayer::dataBaseOutput(os,false);
if(header) os << "\n\" where BINARY ThePEGName=\""
<< fullName() << "\";" << endl;
}
+
+double SMHiggsGGHiggsPPDecayer::matrixElementRatio(const Particle & inpart, const ParticleVector & decay2,
+ const ParticleVector & decay3, MEOption,
+ ShowerInteraction inter) {
+ assert(inter==ShowerInteraction::QCD);
+ // extract partons and LO momentas
+ vector<cPDPtr> partons(1,inpart.dataPtr());
+ vector<Lorentz5Momentum> lomom(1,inpart.momentum());
+ for(unsigned int ix=0;ix<2;++ix) {
+ partons.push_back(decay2[ix]->dataPtr());
+ lomom.push_back(decay2[ix]->momentum());
+ }
+ vector<Lorentz5Momentum> realmom(1,inpart.momentum());
+ for(unsigned int ix=0;ix<3;++ix) {
+ if(ix==2) partons.push_back(decay3[ix]->dataPtr());
+ realmom.push_back(decay3[ix]->momentum());
+ }
+ Energy2 scale = sqr(inpart.mass());
+ Energy2 lome = loME(inpart.mass());
+ double reme = realME(partons,realmom);
+ double ratio = reme/lome*scale;
+ return ratio;
+}
+
+double SMHiggsGGHiggsPPDecayer::realME(//const vector<cPDPtr> & partons,
+ const vector<cPDPtr> &,
+ const vector<Lorentz5Momentum> & momenta) const {
+ // using std::norm;
+ // ScalarWaveFunction hout(momenta[0],partons[0],outgoing);
+ // LorentzPolarizationVector g[3][2];
+ // // calculate the polarization vectors for the gluons
+ // for(unsigned int iw=0;iw<3;++iw) {
+ // VectorWaveFunction gwave(momenta[iw+1],partons[iw+1],outgoing);
+ // for(unsigned int ix=0;ix<2;++ix) {
+ // //if(iw==2) gwave.reset(10);
+ // //else
+ // gwave.reset(2*ix);
+ // g[iw][ix] = gwave.wave();
+ // }
+ // }
+ Energy2 mh2 = momenta[0].mass2();
+ Energy2 s = (momenta[1]+momenta[2]).m2();
+ Energy2 t = (momenta[1]+momenta[3]).m2();
+ Energy2 u = (momenta[2]+momenta[3]).m2();
+ // calculate the loop functions
+ Complex A4stu(0.),A2stu(0.),A2tsu(0.),A2ust(0.);
+ for(int ix=_minloop;ix<=_maxloop;++ix) {
+ // loop functions
+ if(_massopt==0) {
+ Energy2 mf2=sqr(getParticleData(ix)->mass());
+ A4stu+=A4(s,t,u,mf2);
+ A2stu+=A2(s,t,u,mf2);
+ A2tsu+=A2(t,s,u,mf2);
+ A2ust+=A2(u,s,t,mf2);
+ }
+ else {
+ A4stu=-1./3.;
+ A2stu=-sqr(s/mh2)/3.;
+ A2tsu=-sqr(t/mh2)/3.;
+ A2ust=-sqr(u/mh2)/3.;
+ }
+ }
+ // Complex A3stu=0.5*(A2stu+A2ust+A2tsu-A4stu);
+ // // compute the dot products for the matrix element
+ // // and polarization vector * momenta
+ // Energy2 pdot[3][3];
+ // complex<InvEnergy> eps[3][3][2];
+ // for(unsigned int ig=0;ig<3;++ig) {
+ // for(unsigned int ip=0;ip<3;++ip) {
+ // pdot[ig][ip]=momenta[ig+1]*momenta[ip+1];
+ // for(unsigned int ih=0;ih<2;++ih) {
+ // if(ig!=ip)
+ // eps[ig][ip][ih]=g[ig][ih].dot(momenta[ip+1])/pdot[ig][ip];
+ // else
+ // eps[ig][ip][ih]=ZERO;
+ // }
+ // }
+ // }
+ // prefactors
+ Energy mw(getParticleData(ParticleID::Wplus)->mass());
+ // Energy3 pre=sqr(mh2)/mw;
+ // // compute the matrix element
+ // double output(0.);
+ // complex<InvEnergy2> wdot[3][3];
+ // for(unsigned int ghel1=0;ghel1<2;++ghel1) {
+ // for(unsigned int ghel2=0;ghel2<2;++ghel2) {
+ // for(unsigned int ghel3=0;ghel3<2;++ghel3) {
+ // wdot[0][1]=g[0][ghel1].dot(g[1][ghel2])/pdot[0][1];
+ // wdot[0][2]=g[0][ghel1].dot(g[2][ghel3])/pdot[0][2];
+ // wdot[1][0]=wdot[0][1];
+ // wdot[1][2]=g[1][ghel2].dot(g[2][ghel3])/pdot[1][2];
+ // wdot[2][0]=wdot[0][2];
+ // wdot[2][1]=wdot[1][2];
+ // // last piece
+ // Complex diag=pre*A3stu*(eps[0][2][ghel1]*eps[1][0][ghel2]*eps[2][1][ghel3]-
+ // eps[0][1][ghel1]*eps[1][2][ghel2]*eps[2][0][ghel3]+
+ // (eps[2][0][ghel3]-eps[2][1][ghel3])*wdot[0][1]+
+ // (eps[1][2][ghel2]-eps[1][0][ghel2])*wdot[0][2]+
+ // (eps[0][1][ghel1]-eps[0][2][ghel1])*wdot[1][2]);
+ // // first piece
+ // diag+=pre*(+A2stu*(eps[0][1][ghel1]*eps[1][0][ghel2]-wdot[0][1])*
+ // (eps[2][0][ghel3]-eps[2][1][ghel3])
+ // +A2tsu*(eps[0][2][ghel1]*eps[2][0][ghel3]-wdot[0][2])*
+ // (eps[1][2][ghel2]-eps[1][0][ghel2])
+ // +A2ust*(eps[1][2][ghel2]*eps[2][1][ghel3]-wdot[1][2])*
+ // (eps[0][1][ghel1]-eps[0][2][ghel1]));
+ // output+=norm(diag);
+ // }
+ // }
+ // }
+ // // colour factor and what's left of the prefactor
+ // output *= 6.;
+ double me=4.*24./s/t/u*pow<4,1>(mh2)/sqr(mw)*
+ (norm(A2stu)+norm(A2ust)+norm(A2tsu)+norm(A4stu));
+ return me;
+}
+
+Energy2 SMHiggsGGHiggsPPDecayer::loME(Energy mh) const {
+ Complex loop(0.);
+ Energy2 mh2(sqr(mh));
+ Energy mw(getParticleData(ParticleID::Wplus)->mass());
+ for(int ix=_minloop;ix<=_maxloop;++ix) {
+ // loop functions
+ if(_massopt==0) {
+ Energy2 mf2=sqr(getParticleData(ix)->mass());
+ loop += A1(mh2,mf2);
+ }
+ else {
+ loop += 2./3.;
+ }
+ }
+ return 1./Constants::pi*sqr(mh2)/sqr(mw)*norm(loop);
+}
diff --git a/Decay/Perturbative/SMHiggsGGHiggsPPDecayer.h b/Decay/Perturbative/SMHiggsGGHiggsPPDecayer.h
--- a/Decay/Perturbative/SMHiggsGGHiggsPPDecayer.h
+++ b/Decay/Perturbative/SMHiggsGGHiggsPPDecayer.h
@@ -1,189 +1,237 @@
// -*- C++ -*-
//
// SMHiggsGGHiggsPPDecayer.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_SMHiggsGGHiggsPPDecayer_H
#define HERWIG_SMHiggsGGHiggsPPDecayer_H
//
// This is the declaration of the SMHiggsGGHiggsPPDecayer class.
//
#include "Herwig/Decay/PerturbativeDecayer.h"
#include "Herwig/Decay/DecayPhaseSpaceMode.h"
#include "Herwig/Models/StandardModel/StandardModel.h"
#include "ThePEG/Helicity/Vertex/AbstractVVSVertex.h"
namespace Herwig {
using namespace ThePEG;
using namespace ThePEG::Helicity;
/**
* The <code>SMHiggsGGHiggsPPDecayer</code> class performs the
* of a Standard Model Higgs boson to: a pair
* of photons or a pair of gluons, or a \f$Z^0\f$ boson and a photon.
*
* @see PerturbativeDecayer
*/
class SMHiggsGGHiggsPPDecayer: public PerturbativeDecayer {
public:
/**
* The default constructor.
*/
- SMHiggsGGHiggsPPDecayer() : _h0wgt(3,1.) {}
+ SMHiggsGGHiggsPPDecayer() : _h0wgt(3,1.), _minloop(6), _maxloop(6), _massopt(0)
+ {}
/** @name Virtual functions required by the Decayer class. */
//@{
/**
* Return the matrix element squared for a given mode and phase-space channel.
* @param ichan The channel we are calculating the matrix element for.
* @param part The decaying Particle.
* @param decay The particles produced in the decay.
* @param meopt Option for the calculation of the matrix element
* @return The matrix element squared for the phase-space configuration.
*/
virtual double me2(const int ichan, const Particle & part,
const ParticleVector & decay, MEOption meopt) const;
/**
* Check if this decayer can perfom the decay for a particular mode.
* Uses the modeNumber member but can be overridden
* @param parent The decaying particle
* @param children The decay products
*/
virtual bool accept(tcPDPtr parent, const tPDVector & children) const;
/**
* Which of the possible decays is required
*/
virtual int modeNumber(bool &, tcPDPtr, const tPDVector & ) const {return -1;}
/**
* For a given decay mode and a given particle instance, perform the
* decay and return the decay products. As this is the base class this
* is not implemented.
* @return The vector of particles produced in the decay.
*/
virtual ParticleVector decay(const Particle & parent,const tPDVector & children) const;
/**
* Output the setup information for the particle database
* @param os The stream to output the information to
* @param header Whether or not to output the information for MySQL
*/
virtual void dataBaseOutput(ofstream & os,bool header) const;
+
+ /**
+ * Calculate matrix element ratio R/B
+ */
+ virtual double matrixElementRatio(const Particle & inpart, const ParticleVector & decay2,
+ const ParticleVector & decay3, MEOption meopt,
+ ShowerInteraction inter);
+
+ /**
+ * Has a POWHEG style correction
+ */
+ virtual POWHEGType hasPOWHEGCorrection() {return FSR;}
//@}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const {return new_ptr(*this);}
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const {return new_ptr(*this);}
//@}
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving and
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
/**
* Initialize this object. Called in the run phase just before
* a run begins.
*/
virtual void doinitrun();
//@}
+
+protected:
+
+ /**
+ * Calculate the NLO real emission piece of ME
+ */
+ double realME(const vector<cPDPtr> & partons,
+ const vector<Lorentz5Momentum> & momenta) const;
+
+ /**
+ * Calculate the LO ME
+ */
+ Energy2 loME(Energy mh) const;
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
SMHiggsGGHiggsPPDecayer & operator=(const SMHiggsGGHiggsPPDecayer &);
/**
* Pointer to h->gluon,gluon vertex
*/
AbstractVVSVertexPtr _hggvertex;
/**
* Pointer to h->gamma,gamma vertex
*/
AbstractVVSVertexPtr _hppvertex;
/**
* Pointer to h->gamma,gamma vertex
*/
AbstractVVSVertexPtr _hzpvertex;
/**
* Maximum weight for integration
*/
vector<double> _h0wgt;
/**
* Spin density matrix
*/
mutable RhoDMatrix _rho;
/**
* Scalar wavefunction
*/
mutable ScalarWaveFunction _swave;
/**
* Vector wavefunctions
*/
mutable vector<VectorWaveFunction> _vwave[2];
+
+private:
+
+ /**
+ * Parameters for the real POWHEG correction
+ */
+ //@{
+ /**
+ * Minimum flavour of quarks to include in the loops
+ */
+ int _minloop;
+
+ /**
+ * Maximum flavour of quarks to include in the loops
+ */
+ int _maxloop;
+
+ /**
+ * Option for treatment of the fermion loops
+ */
+ unsigned int _massopt;
+ //@}
};
}
#endif /* HERWIG_SMHiggsGGHiggsPPDecayer_H */
diff --git a/Utilities/HiggsLoopFunctions.h b/Utilities/HiggsLoopFunctions.h
--- a/Utilities/HiggsLoopFunctions.h
+++ b/Utilities/HiggsLoopFunctions.h
@@ -1,129 +1,138 @@
#include "ThePEG/Config/Constants.h"
namespace Herwig {
using namespace ThePEG;
/** \ingroup Utilities
* This is a namespace which provides the loop functions
* from NPB297 (1988) 221-243 which are used to
* calculate Higgs production with an additional jet
* and the real correction to \f$h^0\to gg\f$.
*/
namespace HiggsLoopFunctions {
/**
* Epsilon parameter
*/
const Complex epsi = Complex(0.,-1.e-20);
/**
* The \f$W_1(s)\f$ function of NPB297 (1988) 221-243.
* @param s The invariant
* @param mf2 The fermion mass squared
*/
Complex W1(Energy2 s,Energy2 mf2) {
double root = sqrt(abs(1.-4.*mf2/s));
if(s<ZERO) return 2.*root*asinh(0.5*sqrt(-s/mf2));
else if(s<4.*mf2) return 2.*root*asin(0.5*sqrt( s/mf2));
else return root*(2.*acosh(0.5*sqrt(s/mf2))
-Constants::pi*Complex(0.,1.));
}
/**
* The \f$W_2(s)\f$ function of NPB297 (1988) 221-243.
* @param s The invariant
* @param mf2 The fermion mass squared
*/
Complex W2(Energy2 s,Energy2 mf2) {
double root=0.5*sqrt(abs(s)/mf2);
if(s<ZERO) return 4.*sqr(asinh(root));
else if(s<4.*mf2) return -4.*sqr(asin(root));
else return 4.*sqr(acosh(root))-sqr(Constants::pi)
-4.*Constants::pi*acosh(root)*Complex(0.,1.);
}
/**
* The \f$I_3(s,t,u,v)\f$ function of NPB297 (1988) 221-243.
* @param s The \f$s\f$ invariant
* @param t The \f$t\f$ invariant
* @param u The \f$u\f$ invariant
* @param v The \f$v\f$ invariant
* @param mf2 The fermion mass squared
*/
Complex I3(Energy2 s, Energy2 t, Energy2 u, Energy2 v, Energy2 mf2) {
double ratio=(4.*mf2*t/(u*s)),root(sqrt(1+ratio));
if(v==ZERO) return 0.;
Complex y=0.5*(1.+sqrt(1.-4.*(mf2+epsi*MeV*MeV)/v));
Complex xp=0.5*(1.+root),xm=0.5*(1.-root);
Complex output =
Math::Li2(xm/(xm-y))-Math::Li2(xp/(xp-y))+
Math::Li2(xm/(y-xp))-Math::Li2(xp/(y-xm))+
log(-xm/xp)*log(1.-epsi-v/mf2*xp*xm);
return output*2./root;
}
/**
* The \f$W_3(s,t,u,v)\f$ function of NPB297 (1988) 221-243.
* @param s The \f$s\f$ invariant
* @param t The \f$t\f$ invariant
* @param u The \f$u\f$ invariant
* @param v The \f$u\f$ invariant
* @param mf2 The fermion mass squared.
*/
Complex W3(Energy2 s, Energy2 t, Energy2 u, Energy2 v, Energy2 mf2) {
return I3(s,t,u,v,mf2)-I3(s,t,u,s,mf2)-I3(s,t,u,u,mf2);
}
/**
* The \f$b_2(s,t,u)\f$ function of NPB297 (1988) 221-243.
* @param s The \f$s\f$ invariant
* @param t The \f$t\f$ invariant
* @param u The \f$u\f$ invariant
* @param mf2 The fermion mass squared.
*/
Complex b2(Energy2 s, Energy2 t, Energy2 u, Energy2 mf2) {
Energy2 mh2(s+u+t);
complex<Energy2> output=s*(u-s)/(s+u)+2.*u*t*(u+2.*s)/sqr(s+u)*(W1(t,mf2)-W1(mh2,mf2))
+(mf2-0.25*s)*(0.5*(W2(s,mf2)+W2(mh2,mf2))-W2(t,mf2)+W3(s,t,u,mh2,mf2))
+sqr(s)*(2.*mf2/sqr(s+u)-0.5/(s+u))*(W2(t,mf2)-W2(mh2,mf2))
+0.5*u*t/s*(W2(mh2,mf2)-2.*W2(t,mf2))
+0.125*(s-12.*mf2-4.*u*t/s)*W3(t,s,u,mh2,mf2);
return output*mf2/sqr(mh2);
}
/**
* The \f$b_2(s,t,u)\f$ function of NPB297 (1988) 221-243.
* @param s The \f$s\f$ invariant
* @param t The \f$t\f$ invariant
* @param u The \f$u\f$ invariant
* @param mf2 The fermion mass squared.
*/
Complex b4(Energy2 s, Energy2 t, Energy2 u, Energy2 mf2) {
Energy2 mh2(s+t+u);
return mf2/mh2*(-2./3.+(mf2/mh2-0.25)*(W2(t,mf2)-W2(mh2,mf2)+W3(s,t,u,mh2,mf2)));
}
/**
+ * The \f$A_1(m_h^2)\f$ function of NPB297 (1988) 221-243.
+ * @param mh2 The Higgs mass squared
+ * @param mf2 The fermion mass squared.
+ */
+ Complex A1(Energy2 mh2, Energy2 mf2) {
+ return mf2/mh2*(4.-W2(mh2,mf2)*(1.-4.*mf2/mh2));
+ }
+
+ /**
* The \f$A_2(s,t,u)\f$ function of NPB297 (1988) 221-243.
* @param s The \f$s\f$ invariant
* @param t The \f$t\f$ invariant
* @param u The \f$u\f$ invariant
* @param mf2 The fermion mass squared.
*/
Complex A2(Energy2 s, Energy2 t, Energy2 u, Energy2 mf2) {
return b2(s,t,u,mf2)+b2(s,u,t,mf2);
}
/**
* The \f$A_4(s,t,u)\f$ function of NPB297 (1988) 221-243.
* @param s The \f$s\f$ invariant
* @param t The \f$t\f$ invariant
* @param u The \f$u\f$ invariant
* @param mf2 The fermion mass squared.
*/
Complex A4(Energy2 s, Energy2 t, Energy2 u, Energy2 mf2) {
return b4(s,t,u,mf2)+b4(u,s,t,mf2)+b4(t,u,s,mf2);
}
}
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 8:09 PM (1 d, 7 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805977
Default Alt Text
(25 KB)
Attached To
R563 testingHerwigHG
Event Timeline
Log In to Comment