Page MenuHomeHEPForge

No OneTemporary

diff --git a/Decay/HeavyMeson/HQETStrongDecayer.cc b/Decay/HeavyMeson/HQETStrongDecayer.cc
--- a/Decay/HeavyMeson/HQETStrongDecayer.cc
+++ b/Decay/HeavyMeson/HQETStrongDecayer.cc
@@ -1,439 +1,439 @@
// -*- C++ -*-
//
// This is the implementation of the non-inlined, non-templated member
// functions of the HQETStrongDecayer class.
//
#include "HQETStrongDecayer.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/ParVector.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Helicity/WaveFunction/TensorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/ScalarWaveFunction.h"
#include "Herwig/Decay/TwoBodyDecayMatrixElement.h"
#include "Herwig/Utilities/Kinematics.h"
#include "ThePEG/Helicity/epsilon.h"
#include "ThePEG/Helicity/HelicityFunctions.h"
using namespace Herwig;
HQETStrongDecayer::HQETStrongDecayer()
- : fPi_(130.2*MeV), g_(0.565), h_(0.565), f_(0.565/3.), deltaEta_(1./43.7), Lambda_(1.*GeV), psi_(0.),
+ : fPi_(130.2*MeV), g_(0.565208), h_(0.000763), f_(0.465464), deltaEta_(1./43.7), Lambda_(1.*GeV), psi_(-2.792963),
incoming_ ({413,413,423,433, //D* decay modes: VtoSS
415,415,425,425,435,435, //D*_2 decay modes: TtoSS
415,415,425,425,435,435, //D*_2 decay modes: TtoVS
10413,10413,10423,10423,10433,10433, //D_1 decay modes: VtoVS
10411,10411,10421,10421,10431, //D*_0 decay modes: StoSS
20413,20413,20423,20423,20433}), //D'_1 decay modes: VtoVS
outgoingH_({421,411,421,431,
411,421,411,421,411,421,
413,423,413,423,413,423,
413,423,413,423,413,423,
411,421,411,421,431,
413,423,413,423,433}),
outgoingL_({211,111,111,111,
111,211,-211,111,311,321,
111,211,-211,111,311,321,
111,211,-211,111,311,321,
111,211,-211,111,111,
111,211,-211,111,111}),
type_ ({1, 1, 1, -1,
2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5,
6, 6, 6, 6, 6}),
maxWeight_({1., 1., 1., 1.,
1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1.,
1., 1., 1., 1., 1.})
{}
void HQETStrongDecayer::doinit() {
DecayIntegrator::doinit();
// check consistence of the parameters
unsigned int isize=incoming_.size();
if(isize!=outgoingH_.size()||isize!=outgoingL_.size()||
isize!=maxWeight_.size()||isize!=type_ .size())
throw InitException() << "Inconsistent parameters in HQETStrongDecayer"
<< Exception::abortnow;
// set up the integration channels
PhaseSpaceModePtr mode;
for(unsigned int ix=0;ix<incoming_.size();++ix) {
tPDPtr in = getParticleData(incoming_[ix]);
tPDVector out = {getParticleData(outgoingH_[ix]),
getParticleData(outgoingL_[ix])};
if(in&&out[0]&&out[1])
mode=new_ptr(PhaseSpaceMode(in,out,maxWeight_[ix]));
else
mode=PhaseSpaceModePtr();
addMode(mode);
}
}
void HQETStrongDecayer::doinitrun() {
DecayIntegrator::doinitrun();
if(initialize()) {
for(unsigned int ix=0;ix<incoming_.size();++ix)
if(mode(ix)) maxWeight_[ix] = mode(ix)->maxWeight();
}
}
IBPtr HQETStrongDecayer::clone() const {
return new_ptr(*this);
}
IBPtr HQETStrongDecayer::fullclone() const {
return new_ptr(*this);
}
void HQETStrongDecayer::persistentOutput(PersistentOStream & os) const {
os << ounit(fPi_,MeV) << g_ << h_ << f_<< deltaEta_ << ounit(Lambda_,GeV) << maxWeight_;
}
void HQETStrongDecayer::persistentInput(PersistentIStream & is, int) {
is >> iunit(fPi_,MeV) >> g_ >> h_ >> f_ >> deltaEta_ >> iunit(Lambda_,GeV) >> maxWeight_;
}
// The following static variable is needed for the type
// description system in ThePEG.
DescribeClass<HQETStrongDecayer,DecayIntegrator>
describeHerwigHQETStrongDecayer("Herwig::HQETStrongDecayer", "HwHMDecay.so");
void HQETStrongDecayer::Init() {
static ClassDocumentation<HQETStrongDecayer> documentation
("The HQETStrongDecayer class performs the strong decays of excited heavy mesons using HQET results.");
static Parameter<HQETStrongDecayer,Energy> interfacefPi
("fPi",
"The pion decay constant",
&HQETStrongDecayer::fPi_, MeV, 130.2*MeV, 100.0*MeV, 200.0*MeV,
false, false, Interface::limited);
static Parameter<HQETStrongDecayer,double> interfaceg
("g",
"The coupling for D* decays",
- &HQETStrongDecayer::g_, 0.565, 0.0, 1.0,
+ &HQETStrongDecayer::g_, 0.565208, 0.0, 1.0,
false, false, Interface::limited);
static Parameter<HQETStrongDecayer,double> interfaceh
("h",
"The coupling for D_1, D*_2 and D*_2s decays",
- &HQETStrongDecayer::h_, 0.565, 0.0, 1.0,
+ &HQETStrongDecayer::h_, 0.000763, 0.0, 1.0,
false, false, Interface::limited);
static Parameter<HQETStrongDecayer,double> interfacef
("f",
"The coupling for D*_0 and D'_1 decays",
- &HQETStrongDecayer::f_, 0.565/3., 0.0, 1.0,
+ &HQETStrongDecayer::f_, 0.465464, 0.0, 1.0,
false, false, Interface::limited);
static ParVector<HQETStrongDecayer,double> interfaceMaxWeight
("MaxWeight",
"The maximum weight for the decay mode",
&HQETStrongDecayer::maxWeight_,
0, 0, 0, 0., 100000., false, false, true);
static Parameter<HQETStrongDecayer,double> interfaceDeltaEta
("DeltaEta",
"The mixing parameter for eta-pi0 of isospin violating decays",
&HQETStrongDecayer::deltaEta_, 1./43.7, 0.0, 1.,
false, false, Interface::limited);
static Parameter<HQETStrongDecayer,Energy> interfacefLambda
("Lambda",
"Strong decays momentum scale",
&HQETStrongDecayer::Lambda_, GeV, 1.*GeV, .1*GeV, 2.*GeV,
false, false, Interface::limited);
static Parameter<HQETStrongDecayer,double> interfacefpsi
("psi",
"D_1 mixing angle",
- &HQETStrongDecayer::psi_, 0., -M_PI/2., M_PI/2.,
+ &HQETStrongDecayer::psi_, -2.792963, -M_PI/2., M_PI/2.,
false, false, Interface::limited);
}
int HQETStrongDecayer::modeNumber(bool & cc,tcPDPtr parent,
const tPDVector & children) const {
if(children.size()!=2) return -1;
int id(parent->id());
int idbar = parent->CC() ? parent->CC()->id() : id;
int id1(children[0]->id());
int id1bar = children[0]->CC() ? children[0]->CC()->id() : id1;
int id2(children[1]->id());
int id2bar = children[1]->CC() ? children[1]->CC()->id() : id2;
int imode(-1);
unsigned int ix(0);
cc=false;
do {
if(id ==incoming_[ix]) {
if((id1 ==outgoingH_[ix]&&id2 ==outgoingL_[ix])||
(id2 ==outgoingH_[ix]&&id1 ==outgoingL_[ix])) imode=ix;
}
if(idbar==incoming_[ix]) {
if((id1bar==outgoingH_[ix]&&id2bar==outgoingL_[ix])||
(id2bar==outgoingH_[ix]&&id1bar==outgoingL_[ix])) {
imode=ix;
cc=true;
}
}
++ix;
}
while(ix<incoming_.size()&&imode<0);
return imode;
}
void HQETStrongDecayer::
constructSpinInfo(const Particle & part, ParticleVector decay) const {
switch (part.dataPtr()->iSpin()) {
case PDT::Spin0:
Helicity::ScalarWaveFunction::constructSpinInfo(const_ptr_cast<tPPtr>(&part),
Helicity::incoming,true);
break;
case PDT::Spin1:
Helicity::VectorWaveFunction::constructSpinInfo(vecIn_,const_ptr_cast<tPPtr>(&part),
Helicity::incoming,true,false);
break;
case PDT::Spin2:
Helicity::TensorWaveFunction::constructSpinInfo(tensorIn_,const_ptr_cast<tPPtr>(&part),
Helicity::incoming,true,false);
break;
default:
assert(false);
}
// set up the spin information for the decay products
for(unsigned int ix=0;ix<decay.size();++ix) {
switch (decay[ix]->dataPtr()->iSpin()) {
case PDT::Spin1:
Helicity::VectorWaveFunction::constructSpinInfo(vecOut_,decay[ix],
Helicity::outgoing,true,false);
break;
case PDT::Spin0:
Helicity::ScalarWaveFunction::constructSpinInfo(decay[ix],Helicity::outgoing,true);
break;
default:
assert(false);
}
}
}
// matrix elememt for the process
double HQETStrongDecayer::me2(const int, const Particle & part,
const tPDVector & outgoing,
const vector<Lorentz5Momentum> & momenta,
MEOption meopt) const {
if(!ME()) {
if(abs(type_[imode()])==1) {
ME(new_ptr(TwoBodyDecayMatrixElement(PDT::Spin1,PDT::Spin0,PDT::Spin0)));
}
if(abs(type_[imode()])==2) {
ME(new_ptr(TwoBodyDecayMatrixElement(PDT::Spin2,PDT::Spin0,PDT::Spin0)));
}
if(abs(type_[imode()])==3) {
ME(new_ptr(TwoBodyDecayMatrixElement(PDT::Spin2,PDT::Spin1,PDT::Spin0)));
}
if(abs(type_[imode()])==4 || abs(type_[imode()])==6) {
ME(new_ptr(TwoBodyDecayMatrixElement(PDT::Spin1,PDT::Spin1,PDT::Spin0)));
}
if(abs(type_[imode()])==5) {
ME(new_ptr(TwoBodyDecayMatrixElement(PDT::Spin0,PDT::Spin0,PDT::Spin0)));
}
}
// stuff for incoming particle
if(meopt==Initialize) {
if(abs(type_[imode()])==1 || abs(type_[imode()])==4 || abs(type_[imode()])==6) {
rho_ = RhoDMatrix(PDT::Spin1);
Helicity::VectorWaveFunction::calculateWaveFunctions(vecIn_,rho_,const_ptr_cast<tPPtr>(&part),
Helicity::incoming,false);
}
else if(abs(type_[imode()])==2 || abs(type_[imode()])==3) {
rho_ = RhoDMatrix(PDT::Spin2);
Helicity::TensorWaveFunction::calculateWaveFunctions(tensorIn_,rho_,const_ptr_cast<tPPtr>(&part),
Helicity::incoming,false);
}
else if(abs(type_[imode()])==5) {
rho_ = RhoDMatrix(PDT::Spin0);
Helicity::ScalarWaveFunction::calculateWaveFunctions(rho_,const_ptr_cast<tPPtr>(&part),
Helicity::incoming);
}
else {
cerr << "Unknown decay mode: type " << type_[imode()] << " for " << part << "\n";
assert(false);
}
}
// calculate the matrix element
Energy pcm = Kinematics::pstarTwoBodyDecay(part.mass(),momenta[0].mass(),
momenta[1].mass()); //test subject
double test(0.);
// HeavyVectorMeson to PScalarMeson + PScalarMeson
if(abs(type_[imode()])==1) {
InvEnergy fact = -2.*g_/fPi_*sqrt(momenta[0].mass()/part.mass());
for(unsigned int ix=0;ix<3;++ix) {
(*ME())(ix,0,0) = fact*(vecIn_[ix]*momenta[1]);
}
// analytic test of the answer
test = 4.*sqr(g_)*momenta[0].mass()*sqr(pcm)/3./sqr(fPi_)/part.mass();
}
// HeavyTensorMeson to PScalarMeson + PScalarMeson
else if(abs(type_[imode()])==2) {
InvEnergy2 fact = -2.*h_/fPi_*sqrt(momenta[0].mass()/part.mass())/Lambda_;
for(unsigned int ix=0;ix<5;++ix) {
(*ME())(ix,0,0) = fact*(tensorIn_[ix]*momenta[1]*momenta[0]);
}
// analytic test of the answer
test = 8.*sqr(h_)*momenta[0].mass()*sqr(sqr(pcm))/15./sqr(fPi_)/sqr(Lambda_)/part.mass();
}
// HeavyTensorMeson to VectorMeson + PScalarMeson
else if(abs(type_[imode()])==3) {
// get the polarization vectors
vecOut_={
HelicityFunctions::polarizationVector(-momenta[0],0,Helicity::outgoing),
HelicityFunctions::polarizationVector(-momenta[0],1,Helicity::outgoing),
HelicityFunctions::polarizationVector(-momenta[0],2,Helicity::outgoing)};
InvEnergy3 fact = -2.*h_/fPi_*sqrt(momenta[0].mass()/part.mass())/Lambda_/part.mass();
for(unsigned int ix=0;ix<5;++ix) {
for(unsigned int iy=0;iy<3;++iy) {
LorentzVector<complex<InvEnergy> > vtemp =
fact*epsilon(momenta[0],vecOut_[iy],momenta[1]);
(*ME())(ix,iy,0) = (momenta[1]*tensorIn_[ix]).dot(vtemp);
}
}
// analytic test of the answer
test = 4.*sqr(h_)*momenta[0].mass()*sqr(sqr(pcm))/5./sqr(fPi_)/sqr(Lambda_)/part.mass();
}
// PVectorMeson to VectorMeson + PScalarMeson
else if(abs(type_[imode()])==4 || abs(type_[imode()])==6) {
// get the polarization vectors
vecOut_={HelicityFunctions::polarizationVector(-momenta[0],0,Helicity::outgoing),
HelicityFunctions::polarizationVector(-momenta[0],1,Helicity::outgoing),
HelicityFunctions::polarizationVector(-momenta[0],2,Helicity::outgoing)};
if(abs(type_[imode()])==4) {
InvEnergy2 factD1 = sqrt(2./3.)*(h_/fPi_)*sqrt(momenta[0].mass()/part.mass())
/Lambda_*momenta[0].mass()/part.mass();
InvEnergy factD1prim = -(f_/fPi_)*sqrt(momenta[0].mass()/part.mass());
for(unsigned int ix=0;ix<3;++ix) {
for(unsigned int iy=0;iy<3;++iy) {
(*ME())(ix,iy,0) = cos(psi_)*Complex(factD1*(vecOut_[iy].dot(vecIn_[ix])
*(momenta[1].mass2()-sqr(part.momentum()*momenta[1]/part.mass()))
- 3.*(vecIn_[ix]*momenta[1])*(vecOut_[iy]*momenta[1])));
(*ME())(ix,iy,0) += sin(psi_)*Complex(factD1prim*(momenta[1]*(part.momentum()/part.mass()
+ momenta[0]/momenta[0].mass())*vecIn_[ix].dot(vecOut_[iy])
- vecOut_[iy].dot(part.momentum())*vecIn_[ix].dot(momenta[1])/part.mass()
- vecOut_[iy].dot(momenta[1] )*vecIn_[ix].dot(momenta[0])/momenta[0].mass()));
}
}
// analytic test of the answer
test = 4.*sqr(h_)*momenta[0].mass()*sqr(sqr(pcm))/3./sqr(fPi_)/sqr(Lambda_)/part.mass()*
(25.-2.*sqr(momenta[0].mass()/part.mass())+10.*sqr(momenta[1].mass()/part.mass())
+sqr((sqr(momenta[0].mass())-sqr(momenta[1].mass()))/sqr(part.mass())))/24.;
}
else if(abs(type_[imode()])==6) {
InvEnergy fact = -(f_/fPi_)*sqrt(momenta[0].mass()/part.mass());
for(unsigned int ix=0;ix<3;++ix) {
for(unsigned int iy=0;iy<3;++iy) {
(*ME())(ix,iy,0)=
Complex(fact*(momenta[1]*(part.momentum()/part.mass() + momenta[0]/momenta[0].mass())
* vecIn_[ix].dot(vecOut_[iy])
- vecOut_[iy].dot(part.momentum())*vecIn_[ix].dot(momenta[1])/part.mass()
- vecOut_[iy].dot(momenta[1] )*vecIn_[ix].dot(momenta[0])/momenta[0].mass()));
}
}
// analytic test of the answer
test = sqr(f_)/(4.*sqr(fPi_))*sqr(part.mass()-momenta[0].mass())
* sqr(part.mass()+momenta[0].mass()-momenta[1].mass())
* sqr(part.mass()+momenta[0].mass()+momenta[1].mass())
/ (part.mass()*momenta[0].mass())/sqr(part.mass());
}
}
// ScalarMeson to ScalarMeson + ScalarMeson
else if(abs(type_[imode()])==5) {
InvEnergy fact = f_/fPi_*sqrt(momenta[0].mass()/part.mass());
(*ME())(0,0,0) = fact*momenta[1]*(part.momentum()/part.mass() + momenta[0]/momenta[0].mass());
// analytic test of the answer
test = sqr(f_)/(4.*sqr(fPi_))*(momenta[0].mass()/part.mass())
* sqr(part.mass()-momenta[0].mass())
* sqr(part.mass()+momenta[0].mass()-momenta[1].mass())
* sqr(part.mass()+momenta[0].mass()+momenta[1].mass())
/ part.mass()/momenta[0].mass()/sqr(part.mass());
}
else {
assert(false);
}
double output = ME()->contract(rho_).real();
// testing
double ratio = (output-test)/(output+test);
generator()->log() << "testing matrix element for " << part.PDGName() << " -> "
<< outgoing[0]->PDGName() << " " << outgoing[1]->PDGName() << " "
<< output << " " << test << " " << ratio << endl;
// isospin factors
if(abs(outgoing[1]->id())==ParticleID::pi0) {
output *= type_[imode()]>0 ? 0.5 : 0.125*sqr(deltaEta_);
}
// return the answer
return output;
}
bool HQETStrongDecayer::twoBodyMEcode(const DecayMode & dm,int & mecode,
double & coupling) const {
// int imode(-1);
// int id(dm.parent()->id());
// int idbar = dm.parent()->CC() ? dm.parent()->CC()->id() : id;
// ParticleMSet::const_iterator pit(dm.products().begin());
// int id1((**pit).id());
// int id1bar = (**pit).CC() ? (**pit).CC()->id() : id1;
// ++pit;
// int id2((**pit).id());
// int id2bar = (**pit).CC() ? (**pit).CC()->id() : id2;
// unsigned int ix(0); bool order(false);
// do {
// if(id ==incoming_[ix]) {
// if(id1==outgoingH_[ix]&&id2==outgoingL_[ix]) {
// imode=ix;
// order=true;
// }
// if(id2==outgoingH_[ix]&&id1==outgoingL_[ix]) {
// imode=ix;
// order=false;
// }
// }
// if(idbar==incoming_[ix]&&imode<0) {
// if(id1bar==outgoingH_[ix]&&id2bar==outgoingL_[ix]) {
// imode=ix;
// order=true;
// }
// if(id2bar==outgoingH_[ix]&&id1bar==outgoingL_[ix]) {
// imode=ix;
// order=false;
// }
// }
// ++ix;
// }
// while(ix<incoming_.size()&&imode<0);
// coupling=_coupling[imode]*dm.parent()->mass();
// mecode=7;
// return order;
}
void HQETStrongDecayer::dataBaseOutput(ofstream & output,
bool header) const {
if(header) output << "update decayers set parameters=\"";
// parameters for the DecayIntegrator base class
DecayIntegrator::dataBaseOutput(output,false);
// the rest of the parameters
// couplings
output << "newdef " << name() << ":fPi " << fPi_/MeV << "\n";
output << "newdef " << name() << ":g " << g_ << "\n";
if(header) output << "\n\" where BINARY ThePEGName=\""
<< fullName() << "\";" << endl;
for(unsigned int ix=0;ix<incoming_.size();++ix) {
output << "newdef " << name() << ":MaxWeight " << ix << " " << maxWeight_[ix] << "\n";
}
}

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 3:46 PM (1 d, 20 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3803224
Default Alt Text
(17 KB)

Event Timeline