Page MenuHomeHEPForge

No OneTemporary

diff --git a/FixedOrderGen/include/PhaseSpacePoint.hh b/FixedOrderGen/include/PhaseSpacePoint.hh
index 6d2e3be..330987d 100644
--- a/FixedOrderGen/include/PhaseSpacePoint.hh
+++ b/FixedOrderGen/include/PhaseSpacePoint.hh
@@ -1,215 +1,216 @@
/** \file PhaseSpacePoint.hh
* \brief Contains the PhaseSpacePoint Class
*/
#pragma once
#include <bitset>
#include <vector>
#include "HEJ/utility.hh"
#include "HEJ/Event.hh"
#include "HEJ/PDG_codes.hh"
#include "HEJ/PDF.hh"
#include "HEJ/RNG.hh"
#include "Status.hh"
#include "JetParameters.hh"
#include "ParticleProperties.hh"
namespace HEJFOG{
class Process;
using HEJ::Particle;
//! A point in resummation phase space
class PhaseSpacePoint{
public:
//! Default PhaseSpacePoint Constructor
PhaseSpacePoint() = default;
//! PhaseSpacePoint Constructor
/**
* @param proc The process to generate
* @param jet_properties Jet defintion & cuts
* @param pdf The pdf set (used for sampling)
* @param E_beam Energie of the beam
* @param subl_chance Chance to turn a potentially unordered
* emission into an actual one
* @param subl_channels Possible subleading channels.
* see HEJFOG::Subleading
* @param particle_properties Properties of producted boson
*
* Initially, only FKL phase space points are generated. subl_chance gives
* the change of turning one emissions into a subleading configuration,
* i.e. either unordered or central quark/anti-quark pair. Unordered
* emissions require that the most extremal emission in any direction is
* a quark or anti-quark and the next emission is a gluon. Quark/anti-quark
* pairs are only generated for W processes. At most one subleading
* emission will be generated in this way.
*/
PhaseSpacePoint(
Process const & proc,
JetParameters const & jet_properties,
HEJ::PDF & pdf, double E_beam,
double subl_chance,
unsigned int subl_channels,
ParticlesPropMap const & particles_properties,
HEJ::RNG & ran
);
//! Get Weight Function
/**
* @returns Weight of Event
*/
double weight() const{
return weight_;
}
Status status() const{
return status_;
}
//! Get Incoming Function
/**
* @returns Incoming Particles
*/
std::array<Particle, 2> const & incoming() const{
return incoming_;
}
//! Get Outgoing Function
/**
* @returns Outgoing Particles
*/
std::vector<Particle> const & outgoing() const{
return outgoing_;
}
std::unordered_map<size_t, std::vector<Particle>> const & decays() const{
return decays_;
}
private:
/**
* \internal
* \brief Generate LO parton momentum
*
* @param count Number of partons to generate
* @param is_pure_jets If true ensures momentum conservation in x and y
* @param jet_param Jet properties to fulfil
* @param max_pt max allowed pt for a parton (typically E_CMS)
* @param ran Random Number Generator
*
* @returns Momentum of partons
*
* Ensures that each parton is in its own jet.
* Generation is independent of parton flavour. Output is sorted in rapidity.
*/
std::vector<fastjet::PseudoJet> gen_LO_partons(
int count, bool is_pure_jets,
JetParameters const & jet_param,
double max_pt,
HEJ::RNG & ran
);
Particle gen_boson(
HEJ::ParticleID bosonid, double mass, double width,
HEJ::RNG & ran
);
template<class ParticleMomenta>
fastjet::PseudoJet gen_last_momentum(
ParticleMomenta const & other_momenta,
double mass_square, double y
) const;
bool jets_ok(
std::vector<fastjet::PseudoJet> const & Born_jets,
std::vector<fastjet::PseudoJet> const & partons
) const;
/**
* \internal
* \brief Generate incoming partons according to the PDF
*
* @param uf Scale used in the PDF
*/
void reconstruct_incoming(
- Process const & proc,
+ Process const & proc, unsigned int subl_channels,
HEJ::PDF & pdf, double E_beam,
double uf,
HEJ::RNG & ran
);
/**
* @internal
* @brief Returns list of all allowed initial states partons
*/
std::array<std::bitset<11>,2> filter_partons(
- Process const & proc,HEJ::RNG & ran
+ Process const & proc, unsigned int const subl_channels,
+ HEJ::RNG & ran
);
HEJ::ParticleID generate_incoming_id(
size_t beam_idx, double x, double uf, HEJ::PDF & pdf,
std::bitset<11> allowed_partons, HEJ::RNG & ran
);
bool momentum_conserved(double ep) const;
HEJ::Particle const & most_backward_FKL(
std::vector<HEJ::Particle> const & partons
) const;
HEJ::Particle const & most_forward_FKL(
std::vector<HEJ::Particle> const & partons
) const;
HEJ::Particle & most_backward_FKL(std::vector<HEJ::Particle> & partons) const;
HEJ::Particle & most_forward_FKL(std::vector<HEJ::Particle> & partons) const;
bool extremal_FKL_ok(
std::vector<fastjet::PseudoJet> const & partons
) const;
double random_normal(double stddev, HEJ::RNG & ran);
/**
* @internal
* @brief Turns a FKL configuration into a subleading one
*
* @param chance Change to switch to subleading configuration
* @param channels Allowed channels for subleading process
* @param proc Process to decide which subleading
* configurations are allowed
*
* With a chance of "chance" the FKL configuration is either turned into
* a unordered configuration or, for A/W/Z bosons, a configuration with
* a central quark/anti-quark pair.
*/
void maybe_turn_to_subl(double chance, unsigned int channels,
Process const & proc, HEJ::RNG & ran);
void turn_to_uno(bool can_be_uno_backward, bool can_be_uno_forward, HEJ::RNG & ran);
void turn_to_qqx(bool allow_stange, HEJ::RNG & ran);
std::vector<Particle> decay_boson(
HEJ::Particle const & parent,
std::vector<Decay> const & decays,
HEJ::RNG & ran
);
/// @brief setup outgoing partons to ensure correct coupling to boson
void couple_boson(HEJ::ParticleID boson, HEJ::RNG & ran);
Decay select_decay_channel(
std::vector<Decay> const & decays,
HEJ::RNG & ran
);
double gen_hard_pt(
int np, double ptmin, double ptmax, double y,
HEJ::RNG & ran
);
double gen_soft_pt(int np, double ptmax, HEJ::RNG & ran);
double gen_parton_pt(
int count, JetParameters const & jet_param, double ptmax, double y,
HEJ::RNG & ran
);
double weight_;
Status status_;
std::array<Particle, 2> incoming_;
std::vector<Particle> outgoing_;
//! Particle decays in the format {outgoing index, decay products}
std::unordered_map<size_t, std::vector<Particle>> decays_;
};
HEJ::UnclusteredEvent to_UnclusteredEvent(PhaseSpacePoint const & psp);
}
diff --git a/FixedOrderGen/include/Subleading.hh b/FixedOrderGen/include/Subleading.hh
index 0edc565..57ea71a 100644
--- a/FixedOrderGen/include/Subleading.hh
+++ b/FixedOrderGen/include/Subleading.hh
@@ -1,14 +1,15 @@
#pragma once
namespace HEJFOG{
/**
* Bit position of different subleading channels
* e.g. (unsigned int) 1 => only unordered
*/
enum Subleading: unsigned {
none = 0u,
all = ~0u,
uno = 1u,
- unordered = uno
+ unordered = uno,
+ qqx = 2u
};
}
diff --git a/FixedOrderGen/src/PhaseSpacePoint.cc b/FixedOrderGen/src/PhaseSpacePoint.cc
index 0e984e7..b471662 100644
--- a/FixedOrderGen/src/PhaseSpacePoint.cc
+++ b/FixedOrderGen/src/PhaseSpacePoint.cc
@@ -1,650 +1,665 @@
#include "PhaseSpacePoint.hh"
#include <random>
#include <algorithm>
#include "HEJ/Constants.hh"
#include "HEJ/kinematics.hh"
#include "HEJ/utility.hh"
#include "HEJ/exceptions.hh"
#include "Process.hh"
#include "Subleading.hh"
#include <CLHEP/Random/Randomize.h>
#include <CLHEP/Random/RanluxEngine.h>
using namespace HEJ;
namespace HEJFOG{
static_assert(
std::numeric_limits<double>::has_quiet_NaN,
"no quiet NaN for double"
);
constexpr double NaN = std::numeric_limits<double>::quiet_NaN();
HEJ::UnclusteredEvent to_UnclusteredEvent(PhaseSpacePoint const & psp){
HEJ::UnclusteredEvent result;
result.incoming = psp.incoming();
std::sort(
begin(result.incoming), end(result.incoming),
[](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
);
assert(result.incoming.size() == 2);
result.outgoing = psp.outgoing();
assert(
std::is_sorted(
begin(result.outgoing), end(result.outgoing),
HEJ::rapidity_less{}
)
);
assert(result.outgoing.size() >= 2);
result.decays = psp.decays();
result.central.mur = NaN;
result.central.muf = NaN;
result.central.weight = psp.weight();
return result;
}
namespace{
bool can_swap_to_uno(
HEJ::Particle const & p1, HEJ::Particle const & p2
){
return is_parton(p1)
&& p1.type != pid::gluon
&& p2.type == pid::gluon;
}
size_t count_gluons(std::vector<Particle>::const_iterator first,
std::vector<Particle>::const_iterator last){
return std::count_if(first, last, [](Particle const & p)
{return p.type == pid::gluon;});
}
/** assumes FKL configurations between first and last,
* else there can be a quark in a non-extreme position
* e.g. uno configuration gqg would pass
*/
bool can_change_to_qqx(
std::vector<Particle>::const_iterator first,
std::vector<Particle>::const_iterator last){
return 1 < count_gluons(first,last);
}
bool is_AWZ_proccess(Process const & proc){
return proc.boson && is_AWZ_boson(*proc.boson);
}
bool is_up_type(Particle const & part){
return HEJ::is_anyquark(part) && !(abs(part.type)%2);
}
bool is_down_type(Particle const & part){
return HEJ::is_anyquark(part) && abs(part.type)%2;
}
/// true iff parton can couple to a W
bool can_couple_to_W(Particle const & part, int const sign_W){
return abs(part.type)<5
&& ( (sign_W*part.type > 0 && is_up_type(part))
|| (sign_W*part.type < 0 && is_down_type(part)) );
}
}
void PhaseSpacePoint::maybe_turn_to_subl(
double chance,
unsigned int const channels,
Process const & proc,
HEJ::RNG & ran
){
if(proc.njets <= 2) return;
assert(outgoing_.size() >= 2);
// decide what kind of subleading process is allowed
bool allow_uno = false;
bool allow_strange = true;
const size_t nout = outgoing_.size();
- const bool can_be_uno_backward = channels&Subleading::uno?can_swap_to_uno(
- outgoing_[0], outgoing_[1]
- ):false;
- const bool can_be_uno_forward = channels&Subleading::uno?can_swap_to_uno(
- outgoing_[nout-1], outgoing_[nout-2]
- ):false;
+ const bool can_be_uno_backward = channels&Subleading::uno?
+ can_swap_to_uno(outgoing_[0], outgoing_[1]):false;
+ const bool can_be_uno_forward = channels&Subleading::uno?
+ can_swap_to_uno(outgoing_[nout-1], outgoing_[nout-2]):false;
allow_uno = can_be_uno_backward || can_be_uno_forward;
bool allow_qqx = false;
if(is_AWZ_proccess(proc)) {
- allow_qqx = can_change_to_qqx(outgoing_.cbegin(), outgoing_.cend());
+ allow_qqx = channels&Subleading::qqx?
+ can_change_to_qqx(outgoing_.cbegin(), outgoing_.cend()):false;
const int sign_W = *proc.boson>0?1:-1;
if(std::none_of(outgoing_.cbegin(), outgoing_.cend(),
[sign_W](Particle const & p){ return can_couple_to_W(p, sign_W);})) {
+ if(!(channels&Subleading::qqx))
+ throw std::logic_error(
+ "Invalid configuration, require qqx pair but channel forbidden");
// enforce qqx if A/W/Z can't couple somewhere else
allow_uno = false;
chance = 1.;
// strange not allowed for W
if(abs(*proc.boson)== pid::Wp) allow_strange = false;
}
}
if(!allow_uno && !allow_qqx) return;
if(ran.flat() < chance){
weight_ /= chance;
if(allow_uno && !allow_qqx){
turn_to_uno(can_be_uno_backward, can_be_uno_forward, ran);
} else if (!allow_uno && allow_qqx) {
turn_to_qqx(allow_strange, ran);
} else {
assert( allow_uno && allow_qqx);
if(ran.flat() < 0.5) turn_to_uno(can_be_uno_backward, can_be_uno_forward, ran);
else turn_to_qqx(allow_strange, ran);
weight_ *= 2.;
}
} else weight_ /= 1 - chance;
}
void PhaseSpacePoint::turn_to_uno(
const bool can_be_uno_backward, const bool can_be_uno_forward,
HEJ::RNG & ran
){
if(!can_be_uno_backward && !can_be_uno_forward) return;
const size_t nout = outgoing_.size();
if(can_be_uno_backward && can_be_uno_forward){
if(ran.flat() < 0.5){
std::swap(outgoing_[0].type, outgoing_[1].type);
} else {
std::swap(outgoing_[nout-1].type, outgoing_[nout-2].type);
}
weight_ *= 2.;
} else if(can_be_uno_backward){
std::swap(outgoing_[0].type, outgoing_[1].type);
} else {
assert(can_be_uno_forward);
std::swap(outgoing_[nout-1].type, outgoing_[nout-2].type);
}
}
void PhaseSpacePoint::turn_to_qqx(const bool allow_stange, HEJ::RNG & ran){
/// find first and last gluon in FKL chain
auto first = std::find_if(outgoing_.begin(), outgoing_.end(),
[](Particle const & p){return p.type == pid::gluon;});
std::vector<Particle*> FKL_gluons;
for(auto p = first; p<outgoing_.end(); ++p){
if((*p).type == pid::gluon) FKL_gluons.push_back(&*p);
else if(is_quark(*p) || is_antiquark(*p)) break;
}
const size_t ng = FKL_gluons.size();
if(ng < 2)
throw std::logic_error("not enough gluons to create qqx");
// select flavour of quark
const double r1 = 2.*ran.flat()-1.;
const double max_flavour = allow_stange?n_f:n_f-1;
weight_ *= max_flavour*2;
int flavour = pid::down;
for (double sum = 1./max_flavour; sum < std::abs(r1); sum += 1./max_flavour)
++flavour;
flavour*=r1<0.?-1:1;
// select gluon for switch
const size_t idx = floor((ng-1) * ran.flat());
weight_ *= (ng-1);
FKL_gluons[idx]->type = ParticleID(flavour);
FKL_gluons[idx+1]->type = ParticleID(-flavour);
}
template<class ParticleMomenta>
fastjet::PseudoJet PhaseSpacePoint::gen_last_momentum(
ParticleMomenta const & other_momenta,
const double mass_square, const double y
) const {
std::array<double,2> pt{0.,0.};
for (auto const & p: other_momenta) {
pt[0]-= p.px();
pt[1]-= p.py();
}
const double mperp = sqrt(pt[0]*pt[0]+pt[1]*pt[1]+mass_square);
const double pz=mperp*sinh(y);
const double E=mperp*cosh(y);
return {pt[0], pt[1], pz, E};
}
PhaseSpacePoint::PhaseSpacePoint(
Process const & proc,
JetParameters const & jet_param,
HEJ::PDF & pdf, double E_beam,
double const subl_chance,
unsigned int const subl_channels,
ParticlesPropMap const & particles_properties,
HEJ::RNG & ran
)
{
assert(proc.njets >= 2);
if(proc.boson
&& particles_properties.find(*(proc.boson))
== particles_properties.end())
throw HEJ::missing_option("Boson "
+std::to_string(*(proc.boson))+" can't be generated: missing properties");
status_ = good;
weight_ = 1;
const int nout = proc.njets + (proc.boson?1:0);
outgoing_.reserve(nout);
// generate parton momenta
const bool is_pure_jets = !proc.boson;
auto partons = gen_LO_partons(
proc.njets, is_pure_jets, jet_param, E_beam, ran
);
// pre fill flavour with gluons
for(auto&& p_out: partons) {
outgoing_.emplace_back(Particle{pid::gluon, std::move(p_out)});
}
if(status_ != good) return;
// create boson
if(proc.boson){
const auto & boson_prop = particles_properties.at(*proc.boson);
auto boson(gen_boson(*proc.boson, boson_prop.mass, boson_prop.width, ran));
const auto pos = std::upper_bound(
begin(outgoing_),end(outgoing_),boson,rapidity_less{}
);
outgoing_.insert(pos, std::move(boson));
if(! boson_prop.decays.empty()){
const size_t boson_idx = std::distance(begin(outgoing_), pos);
decays_.emplace(
boson_idx,
decay_boson(outgoing_[boson_idx], boson_prop.decays, ran)
);
}
}
// normalisation of momentum-conserving delta function
weight_ *= pow(2*M_PI, 4);
- reconstruct_incoming(proc, pdf, E_beam, jet_param.min_pt, ran);
+ reconstruct_incoming(proc, subl_channels, pdf,E_beam,jet_param.min_pt, ran);
if(status_ != good) return;
// set outgoing states
most_backward_FKL(outgoing_).type = incoming_[0].type;
most_forward_FKL(outgoing_).type = incoming_[1].type;
maybe_turn_to_subl(subl_chance, subl_channels, proc, ran);
if(proc.boson) couple_boson(*proc.boson, ran);
}
double PhaseSpacePoint::gen_hard_pt(
int np , double ptmin, double ptmax, double y,
HEJ::RNG & ran
) {
// heuristic parameters for pt sampling
const double ptpar = ptmin + np/5.;
const double arg_small_y = atan((ptmax - ptmin)/ptpar);
const double y_cut = 3.;
const double r1 = ran.flat();
if(y < y_cut){
const double pt = ptmin + ptpar*tan(r1*arg_small_y);
const double temp = cos(r1*arg_small_y);
weight_ *= pt*ptpar*arg_small_y/(temp*temp);
return pt;
}
const double ptpar2 = ptpar/(1 + 5*(y-y_cut));
const double temp = 1. - std::exp((ptmin-ptmax)/ptpar2);
const double pt = ptmin - ptpar2*std::log(1-r1*temp);
weight_ *= pt*ptpar2*temp/(1-r1*temp);
return pt;
}
double PhaseSpacePoint::gen_soft_pt(int np, double max_pt, HEJ::RNG & ran) {
constexpr double ptpar = 4.;
const double r = ran.flat();
const double pt = max_pt + ptpar/np*std::log(r);
weight_ *= pt*ptpar/(np*r);
return pt;
}
double PhaseSpacePoint::gen_parton_pt(
int count, JetParameters const & jet_param, double max_pt, double y,
HEJ::RNG & ran
) {
constexpr double p_small_pt = 0.02;
if(! jet_param.peak_pt) {
return gen_hard_pt(count, jet_param.min_pt, max_pt, y, ran);
}
const double r = ran.flat();
if(r > p_small_pt) {
weight_ /= 1. - p_small_pt;
return gen_hard_pt(count, *jet_param.peak_pt, max_pt, y, ran);
}
weight_ /= p_small_pt;
const double pt = gen_soft_pt(count, *jet_param.peak_pt, ran);
if(pt < jet_param.min_pt) {
weight_=0.0;
status_ = not_enough_jets;
return jet_param.min_pt;
}
return pt;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::gen_LO_partons(
int np, bool is_pure_jets,
JetParameters const & jet_param,
double max_pt,
HEJ::RNG & ran
){
if (np<2) throw std::invalid_argument{"Not enough partons in gen_LO_partons"};
weight_ /= pow(16.*pow(M_PI,3),np);
weight_ /= std::tgamma(np+1); //remove rapidity ordering
std::vector<fastjet::PseudoJet> partons;
partons.reserve(np);
for(int i = 0; i < np; ++i){
const double y = -jet_param.max_y + 2*jet_param.max_y*ran.flat();
weight_ *= 2*jet_param.max_y;
const bool is_last_parton = i+1 == np;
if(is_pure_jets && is_last_parton) {
constexpr double parton_mass_sq = 0.;
partons.emplace_back(gen_last_momentum(partons, parton_mass_sq, y));
break;
}
const double phi = 2*M_PI*ran.flat();
weight_ *= 2.0*M_PI;
const double pt = gen_parton_pt(np, jet_param, max_pt, y, ran);
if(weight_ == 0.0) return {};
partons.emplace_back(fastjet::PtYPhiM(pt, y, phi));
assert(jet_param.min_pt <= partons[i].pt());
assert(partons[i].pt() <= max_pt+1e-5);
}
// Need to check that at LO, the number of jets = number of partons;
fastjet::ClusterSequence cs(partons, jet_param.def);
auto cluster_jets=cs.inclusive_jets(jet_param.min_pt);
if (cluster_jets.size()!=unsigned(np)){
weight_=0.0;
status_ = not_enough_jets;
return {};
}
std::sort(begin(partons), end(partons), rapidity_less{});
return partons;
}
Particle PhaseSpacePoint::gen_boson(
HEJ::ParticleID bosonid, double mass, double width,
HEJ::RNG & ran
){
// Usual phase space measure
weight_ /= 16.*pow(M_PI, 3);
// Generate a y Gaussian distributed around 0
/// @TODO: magic number only for Higgs
/// @TODO better sampling for W
const double y = random_normal(1.6, ran);
const double r1 = ran.flat();
const double sH = mass*(
mass + width*tan(M_PI/2.*r1 + (r1-1.)*atan(mass/width))
);
auto p = gen_last_momentum(outgoing_, sH, y);
return Particle{bosonid, std::move(p)};
}
Particle const & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> const & partons
) const{
if(!HEJ::is_parton(partons[0])) return partons[1];
return partons[0];
}
Particle const & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> const & partons
) const{
const size_t last_idx = partons.size() - 1;
if(!HEJ::is_parton(partons[last_idx])) return partons[last_idx-1];
return partons[last_idx];
}
Particle & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> & partons
) const{
if(!HEJ::is_parton(partons[0])) return partons[1];
return partons[0];
}
Particle & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> & partons
) const{
const size_t last_idx = partons.size() - 1;
if(!HEJ::is_parton(partons[last_idx])) return partons[last_idx-1];
return partons[last_idx];
}
namespace {
/// partons are ordered: even = anti, 0 = gluon
ParticleID index_to_pid(size_t i){
if(!i) return pid::gluon;
return static_cast<ParticleID>(i%2?(i+1)/2:-i/2);
}
/// partons are ordered: even = anti, 0 = gluon
size_t pid_to_index(ParticleID id){
if(id==pid::gluon) return 0;
return id>0?id*2-1:abs(id)*2;
}
std::bitset<11> init_allowed(ParticleID const id){
if(abs(id) == pid::proton)
return ~0;
std::bitset<11> out = 0;
if(is_parton(id))
out[pid_to_index(id)] = 1;
return out;
}
/// decides which "index" (see index_to_pid) are allowed for process
std::bitset<11> allowed_quarks(ParticleID const boson){
std::bitset<11> allowed = ~0;
if(abs(boson) == pid::Wp){
// special case W:
// Wp: anti-down or up-type quark, no b/t -> 0001100110(1) = 205
// Wm: down or anti-up-type quark, no b/t -> 0010011001(1) = 307
allowed = boson>0?205:307;
}
return allowed;
}
}
+ /**
+ * checks which partons are allowed as initial state:
+ * 1. only allow what is given in the Runcard (p -> all)
+ * 2. A/W/Z require something to couple to
+ * a) no qqx => no incoming gluon
+ * b) 2j => no incoming gluon
+ * c) 3j => can couple OR is gluon => 2 gluons become qqx later
+ */
std::array<std::bitset<11>,2> PhaseSpacePoint::filter_partons(
- Process const & proc, HEJ::RNG & ran
+ Process const & proc, unsigned int const subl_channels, HEJ::RNG & ran
){
std::array<std::bitset<11>,2> allowed_partons{
init_allowed(proc.incoming[0]),
init_allowed(proc.incoming[1])
};
- // special case A/W/Z + 2/3 jets
- if(is_AWZ_proccess(proc) && (proc.njets < 4)){
+ bool const allow_qqx = subl_channels&Subleading::qqx;
+ // special case A/W/Z
+ if(is_AWZ_proccess(proc) && ((proc.njets < 4) || !allow_qqx)){
+ // all possible incoming states
auto allowed(allowed_quarks(*proc.boson));
- if(proc.njets == 2) allowed[0]=0; // no initial gluon for 2j
+ if(proc.njets == 2 || !allow_qqx) allowed[0]=0;
+
+ // possible states per leg
std::array<std::bitset<11>,2> const maybe_partons{
allowed_partons[0]&allowed, allowed_partons[1]&allowed};
if(maybe_partons[0].any() && maybe_partons[1].any()){
// two options to get allowed initial state => choose one at random
const size_t idx = ran.flat() < 0.5;
allowed_partons[idx] = maybe_partons[idx];
} else if(maybe_partons[0].any()) {
// only first possible => choose
allowed_partons[0] = maybe_partons[0];
} else if(maybe_partons[1].any()) {
// only second possible => choose
allowed_partons[1] = maybe_partons[1];
} else{
throw std::invalid_argument{"Incoming state not allowed."};
}
}
return allowed_partons;
}
void PhaseSpacePoint::reconstruct_incoming(
- Process const & proc,
+ Process const & proc, unsigned int const subl_channels,
HEJ::PDF & pdf, double E_beam,
double uf,
HEJ::RNG & ran
){
std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_);
// calculate xa, xb
const double sqrts=2*E_beam;
const double xa=(incoming_[0].p.e()-incoming_[0].p.pz())/sqrts;
const double xb=(incoming_[1].p.e()+incoming_[1].p.pz())/sqrts;
// abort if phase space point is outside of collider energy reach
if (xa>1. || xb>1.){
weight_=0;
status_ = too_much_energy;
return;
}
// pick pdfs
/** @TODO
* ufa, ufb don't correspond to our final scale choice.
* The HEJ scale generators currently expect a full event as input,
* so fixing this is not completely trivial
*/
auto const & ids = proc.incoming;
- std::array<std::bitset<11>,2> allowed_partons(filter_partons(proc, ran));
+ std::array<std::bitset<11>,2> allowed_partons(
+ filter_partons(proc, subl_channels, ran));
for(size_t i = 0; i < 2; ++i){
if(ids[i] == pid::proton || ids[i] == pid::p_bar){
incoming_[i].type =
generate_incoming_id(i, i?xb:xa, uf, pdf, allowed_partons[i], ran);
} else {
assert(allowed_partons[i][pid_to_index(ids[i])]);
incoming_[i].type = ids[i];
}
}
assert(momentum_conserved(1e-7));
}
HEJ::ParticleID PhaseSpacePoint::generate_incoming_id(
size_t const beam_idx, double const x, double const uf,
HEJ::PDF & pdf, std::bitset<11> allowed_partons, HEJ::RNG & ran
){
std::array<double,11> pdf_wt;
pdf_wt[0] = allowed_partons[0]?fabs(pdf.pdfpt(beam_idx,x,uf,pid::gluon)):0.;
double pdftot = pdf_wt[0];
for(size_t i = 1; i < pdf_wt.size(); ++i){
pdf_wt[i] = allowed_partons[i]?4./9.*fabs(pdf.pdfpt(beam_idx,x,uf,index_to_pid(i))):0;
pdftot += pdf_wt[i];
}
const double r1 = pdftot * ran.flat();
double sum = 0;
for(size_t i=0; i < pdf_wt.size(); ++i){
if (r1 < (sum+=pdf_wt[i])){
weight_*= pdftot/pdf_wt[i];
return index_to_pid(i);
}
}
std::cerr << "Error in choosing incoming parton: "<<x<<" "<<uf<<" "
<<sum<<" "<<pdftot<<" "<<r1<<std::endl;
throw std::logic_error{"Failed to choose parton flavour"};
}
void PhaseSpacePoint::couple_boson(
HEJ::ParticleID const boson, HEJ::RNG & ran
){
if(abs(boson) != pid::Wp) return; // only matters for W
// find all possible quarks
const int sign_W = boson>0?1:-1;
std::vector<Particle*> allowed_parts;
for(auto & part: outgoing_){
// Wp -> up OR anti-down, Wm -> anti-up OR down, no bottom
if ( can_couple_to_W(part, sign_W) )
allowed_parts.push_back(&part);
}
if(allowed_parts.size() == 0){
- throw std::logic_error{"Found not parton for coupling to boson"};
+ throw std::logic_error{"Found no parton for coupling with boson"};
}
// select one and flip it
size_t idx = 0;
if(allowed_parts.size() > 1){
/// @TODO more efficient sampling
/// old code: probability[i] = exp(parton[i].y - W.y)
idx = floor(ran.flat()*allowed_parts.size());
weight_ *= allowed_parts.size();
}
allowed_parts[idx]->type =
static_cast<ParticleID>( allowed_parts[idx]->type - sign_W );
}
double PhaseSpacePoint::random_normal(
double stddev,
HEJ::RNG & ran
){
const double r1 = ran.flat();
const double r2 = ran.flat();
const double lninvr1 = -log(r1);
const double result = stddev*sqrt(2.*lninvr1)*cos(2.*M_PI*r2);
weight_ *= exp(result*result/(2*stddev*stddev))*sqrt(2.*M_PI)*stddev;
return result;
}
bool PhaseSpacePoint::momentum_conserved(double ep) const{
fastjet::PseudoJet diff;
for(auto const & in: incoming()) diff += in.p;
for(auto const & out: outgoing()) diff -= out.p;
return nearby_ep(diff, fastjet::PseudoJet{}, ep);
}
Decay PhaseSpacePoint::select_decay_channel(
std::vector<Decay> const & decays,
HEJ::RNG & ran
){
double br_total = 0.;
for(auto const & decay: decays) br_total += decay.branching_ratio;
// adjust weight
// this is given by (channel branching ratio)/(chance to pick channel)
// where (chance to pick channel) =
// (channel branching ratio)/(total branching ratio)
weight_ *= br_total;
const double r1 = br_total*ran.flat();
double br_sum = 0.;
for(auto const & decay: decays){
br_sum += decay.branching_ratio;
if(r1 < br_sum) return decay;
}
throw std::logic_error{"unreachable"};
}
std::vector<Particle> PhaseSpacePoint::decay_boson(
HEJ::Particle const & parent,
std::vector<Decay> const & decays,
HEJ::RNG & ran
){
const auto channel = select_decay_channel(decays, ran);
if(channel.products.size() != 2){
throw HEJ::not_implemented{
"only decays into two particles are implemented"
};
}
std::vector<Particle> decay_products(channel.products.size());
for(size_t i = 0; i < channel.products.size(); ++i){
decay_products[i].type = channel.products[i];
}
// choose polar and azimuth angle in parent rest frame
const double E = parent.m()/2;
const double theta = 2.*M_PI*ran.flat();
const double cos_phi = 2.*ran.flat()-1.;
const double sin_phi = sqrt(1. - cos_phi*cos_phi); // Know 0 < phi < pi
const double px = E*cos(theta)*sin_phi;
const double py = E*sin(theta)*sin_phi;
const double pz = E*cos_phi;
decay_products[0].p.reset(px, py, pz, E);
decay_products[1].p.reset(-px, -py, -pz, E);
for(auto & particle: decay_products) particle.p.boost(parent.p);
return decay_products;
}
}
diff --git a/FixedOrderGen/src/config.cc b/FixedOrderGen/src/config.cc
index 7fdca38..42db1eb 100644
--- a/FixedOrderGen/src/config.cc
+++ b/FixedOrderGen/src/config.cc
@@ -1,358 +1,360 @@
#include "config.hh"
#include <cctype>
#include "Subleading.hh"
#include "HEJ/config.hh"
#include "HEJ/YAMLreader.hh"
namespace HEJFOG{
using HEJ::set_from_yaml;
using HEJ::set_from_yaml_if_defined;
namespace{
//! Get YAML tree of supported options
/**
* The configuration file is checked against this tree of options
* in assert_all_options_known.
*/
YAML::Node const & get_supported_options(){
const static YAML::Node supported = [](){
YAML::Node supported;
static const auto opts = {
"process", "events", "subleading fraction","subleading channels",
"scales", "scale factors", "max scale ratio", "pdf",
"event output", "analysis", "import scales"
};
// add subnodes to "supported" - the assigned value is irrelevant
for(auto && opt: opts) supported[opt] = "";
for(auto && jet_opt: {"min pt", "peak pt", "algorithm", "R", "max rapidity"}){
supported["jets"][jet_opt] = "";
}
for(auto && particle_type: {"Higgs", "Wp", "Wm", "Z"}){
for(auto && particle_opt: {"mass", "width"}){
supported["particle properties"][particle_type][particle_opt] = "";
}
supported["particle properties"][particle_type]["decays"]["into"] = "";
supported["particle properties"][particle_type]["decays"]["branching ratio"] = "";
}
for(auto && opt: {"mt", "use impact factors", "include bottom", "mb"}){
supported["Higgs coupling"][opt] = "";
}
for(auto && beam_opt: {"energy", "particles"}){
supported["beam"][beam_opt] = "";
}
for(auto && unweight_opt: {"sample size", "max deviation"}){
supported["unweight"][unweight_opt] = "";
}
for(auto && opt: {"name", "seed"}){
supported["random generator"][opt] = "";
}
return supported;
}();
return supported;
}
JetParameters get_jet_parameters(
YAML::Node const & node, std::string const & entry
){
const auto p = HEJ::get_jet_parameters(node, entry);
JetParameters result;
result.def = p.def;
result.min_pt = p.min_pt;
set_from_yaml(result.max_y, node, entry, "max rapidity");
set_from_yaml_if_defined(result.peak_pt, node, entry, "peak pt");
return result;
}
Beam get_Beam(
YAML::Node const & node, std::string const & entry
){
Beam beam;
std::vector<HEJ::ParticleID> particles;
set_from_yaml(beam.energy, node, entry, "energy");
set_from_yaml_if_defined(particles, node, entry, "particles");
if(! particles.empty()){
for(HEJ::ParticleID particle: particles){
if(particle != HEJ::pid::p && particle != HEJ::pid::p_bar){
throw std::invalid_argument{
"Unsupported value in option " + entry + ": particles:"
" only proton ('p') and antiproton ('p_bar') beams are supported"
};
}
}
if(particles.size() != 2){
throw std::invalid_argument{"Not exactly two beam particles"};
}
beam.particles.front() = particles.front();
beam.particles.back() = particles.back();
}
return beam;
}
std::vector<std::string> split(
std::string const & str, std::string const & delims
){
std::vector<std::string> result;
for(size_t begin, end = 0; end != str.npos;){
begin = str.find_first_not_of(delims, end);
if(begin == str.npos) break;
end = str.find_first_of(delims, begin + 1);
result.emplace_back(str.substr(begin, end - begin));
}
return result;
}
std::invalid_argument invalid_incoming(std::string const & what){
return std::invalid_argument{
"Incoming particle type " + what + " not supported,"
" incoming particles have to be 'p', 'p_bar' or partons"
};
}
std::invalid_argument invalid_outgoing(std::string const & what){
return std::invalid_argument{
"Outgoing particle type " + what + " not supported,"
" outgoing particles have to be 'j', 'photon', 'W+', 'W-', 'Z', 'H'"
};
}
Process get_process(
YAML::Node const & node, std::string const & entry
){
Process result;
std::string process_string;
set_from_yaml(process_string, node, entry);
assert(! process_string.empty());
const auto particles = split(process_string, " \n\t\v=>");
if(particles.size() < 3){
throw std::invalid_argument{
"Bad format in option process: '" + process_string
+ "', expected format is 'in1 in2 => out1 ...'"
};
}
result.incoming.front() = HEJ::to_ParticleID(particles[0]);
result.incoming.back() = HEJ::to_ParticleID(particles[1]);
for(size_t i = 0; i < result.incoming.size(); ++i){
const HEJ::ParticleID in = result.incoming[i];
if(
in != HEJ::pid::proton && in != HEJ::pid::p_bar
&& !HEJ::is_parton(in)
){
throw invalid_incoming(particles[i]);
}
}
result.njets = 0;
for(size_t i = result.incoming.size(); i < particles.size(); ++i){
assert(! particles[i].empty());
if(particles[i] == "j") ++result.njets;
else if(std::isdigit(particles[i].front())
&& particles[i].back() == 'j')
result.njets += std::stoi(particles[i]);
else{
const auto pid = HEJ::to_ParticleID(particles[i]);
if(!HEJ::is_AWZH_boson(pid)){
throw invalid_outgoing(particles[i]);
}
if(result.boson){
throw std::invalid_argument{
"More than one outgoing boson is not supported"
};
}
result.boson = pid;
}
}
if(result.njets < 2){
throw std::invalid_argument{
"Process has to include at least two jets ('j')"
};
}
return result;
}
HEJFOG::Subleading to_subleading_channel(YAML::Node const & yaml){
std::string name;
using HEJFOG::Subleading;
set_from_yaml(name, yaml);
if(name == "none")
return none;
if(name == "all")
return all;
if(name == "unordered" || name == "uno")
return uno;
+ if(name == "qqx")
+ return qqx;
throw HEJ::unknown_option("Unknown subleading channel '"+name+"'");
}
unsigned int get_subleading_channels(YAML::Node const & node){
using YAML::NodeType;
using HEJFOG::Subleading;
// all channels allowed by default
if(!node) return all;
switch(node.Type()){
case NodeType::Undefined:
return all;
case NodeType::Null:
return none;
case NodeType::Scalar:
return to_subleading_channel(node);
case NodeType::Map:
throw HEJ::invalid_type{"map is not a valid option for subleading channels"};
case NodeType::Sequence:
unsigned int channels = HEJFOG::Subleading::none;
for(auto && channel_node: node){
channels |= get_subleading_channels(channel_node);
}
return channels;
}
throw std::logic_error{"unreachable"};
}
Decay get_decay(YAML::Node const & node){
Decay decay;
set_from_yaml(decay.products, node, "into");
set_from_yaml(decay.branching_ratio, node, "branching ratio");
return decay;
}
std::vector<Decay> get_decays(YAML::Node const & node){
using YAML::NodeType;
if(!node) return {};
switch(node.Type()){
case NodeType::Null:
case NodeType::Undefined:
return {};
case NodeType::Scalar:
throw HEJ::invalid_type{"value is not a list of decays"};
case NodeType::Map:
return {get_decay(node)};
case NodeType::Sequence:
std::vector<Decay> result;
for(auto && decay_str: node){
result.emplace_back();
set_from_yaml(result.back().products, decay_str, "into");
set_from_yaml(result.back().branching_ratio, decay_str, "branching ratio");
}
return result;
}
throw std::logic_error{"unreachable"};
}
ParticleProperties get_particle_properties(
YAML::Node const & node, std::string const & entry
){
ParticleProperties result;
set_from_yaml(result.mass, node, entry, "mass");
set_from_yaml(result.width, node, entry, "width");
try{
result.decays = get_decays(node[entry]["decays"]);
}
catch(HEJ::missing_option const & ex){
throw HEJ::missing_option{entry + ": decays: " + ex.what()};
}
catch(HEJ::invalid_type const & ex){
throw HEJ::invalid_type{entry + ": decays: " + ex.what()};
}
return result;
}
ParticlesPropMap get_all_particles_properties(YAML::Node const & node){
ParticlesPropMap result;
using namespace HEJ;
// @TODO allow more synonyms
if(node["Higgs"])
result[pid::Higgs] = get_particle_properties(node,"Higgs");
if(node["Wp"])
result[pid::Wp] = get_particle_properties(node,"Wp");
if(node["Wm"])
result[pid::Wm] = get_particle_properties(node,"Wm");
if(node["Z"])
result[pid::Z] = get_particle_properties(node,"Z");
return result;
}
UnweightSettings get_unweight(
YAML::Node const & node, std::string const & entry
){
UnweightSettings result;
set_from_yaml(result.sample_size, node, entry, "sample size");
if(result.sample_size <= 0){
throw std::invalid_argument{
"negative sample size " + std::to_string(result.sample_size)
};
}
set_from_yaml(result.max_dev, node, entry, "max deviation");
return result;
}
Config to_Config(YAML::Node const & yaml){
try{
HEJ::assert_all_options_known(yaml, get_supported_options());
}
catch(HEJ::unknown_option const & ex){
throw HEJ::unknown_option{std::string{"Unknown option '"} + ex.what() + "'"};
}
Config config;
config.process = get_process(yaml, "process");
set_from_yaml(config.events, yaml, "events");
config.jets = get_jet_parameters(yaml, "jets");
config.beam = get_Beam(yaml, "beam");
for(size_t i = 0; i < config.process.incoming.size(); ++i){
const auto & in = config.process.incoming[i];
using namespace HEJ::pid;
if( (in == p || in == p_bar) && in != config.beam.particles[i]){
throw std::invalid_argument{
"Particle type of beam " + std::to_string(i+1) + " incompatible"
+ " with type of incoming particle " + std::to_string(i+1)
};
}
}
set_from_yaml(config.pdf_id, yaml, "pdf");
set_from_yaml(config.subleading_fraction, yaml, "subleading fraction");
if(config.subleading_fraction < 0 || config.subleading_fraction > 1){
throw std::invalid_argument{
"subleading fraction has to be between 0 and 1"
};
}
if(config.subleading_fraction == 0)
config.subleading_channels = Subleading::none;
else
config.subleading_channels = get_subleading_channels(yaml["subleading channels"]);
if(!config.process.boson && config.subleading_channels != Subleading::none)
throw HEJ::not_implemented("Subleading processes for pure Jet production not implemented yet");
if(yaml["particle properties"]){
config.particles_properties = get_all_particles_properties(
yaml["particle properties"]);
}
if(config.process.boson
&& config.particles_properties.find(*(config.process.boson))
== config.particles_properties.end())
throw HEJ::missing_option("Process wants to generate boson "
+std::to_string(*(config.process.boson))+", but boson properties are missing");
set_from_yaml_if_defined(config.analysis_parameters, yaml, "analysis");
config.scales = HEJ::to_ScaleConfig(yaml);
set_from_yaml_if_defined(config.output, yaml, "event output");
config.rng = HEJ::to_RNGConfig(yaml, "random generator");
config.Higgs_coupling = HEJ::get_Higgs_coupling(yaml, "Higgs coupling");
if(yaml["unweight"]) config.unweight = get_unweight(yaml, "unweight");
return config;
}
} // namespace anonymous
Config load_config(std::string const & config_file){
try{
return to_Config(YAML::LoadFile(config_file));
}
catch(...){
std::cerr << "Error reading " << config_file << ":\n ";
throw;
}
}
}
diff --git a/FixedOrderGen/t/W_nj_classify.cc b/FixedOrderGen/t/W_nj_classify.cc
index ed6ba7b..b3cb317 100644
--- a/FixedOrderGen/t/W_nj_classify.cc
+++ b/FixedOrderGen/t/W_nj_classify.cc
@@ -1,131 +1,177 @@
#ifdef NDEBUG
#undef NDEBUG
#endif
#include <algorithm>
#include "JetParameters.hh"
#include "ParticleProperties.hh"
#include "PhaseSpacePoint.hh"
#include "Process.hh"
#include "Subleading.hh"
#include "HEJ/Event.hh"
#include "HEJ/Mixmax.hh"
#include "HEJ/PDF.hh"
#include "HEJ/utility.hh"
using namespace HEJFOG;
using namespace HEJ;
namespace {
void print_psp(PhaseSpacePoint const & psp){
std::cerr << "Process:\n"
<< psp.incoming()[0].type << " + "<< psp.incoming()[1].type << " -> ";
for(auto const & out: psp.outgoing()){
std::cerr << out.type << " ";
}
std::cerr << "\n";
}
void bail_out(PhaseSpacePoint const & psp, std::string msg){
print_psp(psp);
throw std::logic_error{msg};
}
}
int main(){
constexpr size_t n_psp_base = 19375;
const JetParameters jet_para{
fastjet::JetDefinition(fastjet::JetAlgorithm::antikt_algorithm, 0.4), 30, 5, 30};
PDF pdf(11000, pid::proton, pid::proton);
constexpr double E_cms = 13000.;
constexpr double subl_change = 0.8;
const ParticlesPropMap boson_prop{
{pid::Wp, {91.1876, 2.085, {Decay{ {pid::e_bar, pid::nu_e}, 1.}} }},
{pid::Wm, {91.1876, 2.085, {Decay{ {pid::e, pid::nu_e_bar}, 1.}} }}
};
HEJ::Mixmax ran{};
- constexpr auto subl_channels = Subleading::all;
+ auto subl_channels = Subleading::all;
std::vector<event_type::EventType> allowed_types{event_type::FKL,
event_type::unob, event_type::unof, event_type::qqxexb, event_type::qqxexf};
+ std::cout << "Wp3j" << std::endl;
// Wp3j
Process proc {{pid::proton,pid::proton}, 3, pid::Wp};
size_t n_psp = n_psp_base;
- std::map<event_type::EventType, size_t> type_counter;
+ std::unordered_map<event_type::EventType, size_t> type_counter;
for( size_t i = 0; i<n_psp; ++i){
const PhaseSpacePoint psp{proc,jet_para,pdf,E_cms, subl_change,subl_channels,
boson_prop, ran};
if(psp.status()==good){
const Event ev(to_UnclusteredEvent(psp), jet_para.def, jet_para.min_pt);
++type_counter[ev.type()];
if( std::find(allowed_types.cbegin(), allowed_types.cend(), ev.type())
== allowed_types.cend()) {
bail_out(psp, "Found not allowed event of type "
+std::string(event_type::names[ev.type()]));
}
} else { // bad process -> try again
++n_psp;
}
}
std::cout << "Wp+3j: Took " << n_psp << " to generate "
<< n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl;
std::cout << "States by classification:\n";
for(auto const & entry: type_counter){
const double fraction = static_cast<double>(entry.second)/n_psp_base;
const int percent = std::round(100*fraction);
std::cout << std::left << std::setw(25)
<< (event_type::names[entry.first] + std::string(":"))
<< entry.second << " (" << percent << "%)\n";
}
for(auto const & t: allowed_types){
if(type_counter[t] < 0.05 * n_psp_base){
std::cerr << "Less than 5% of the events are of type " << event_type::names[t] << std::endl;
return EXIT_FAILURE;
}
}
+ // Wm3j - only uno
+ proc = Process{{pid::proton,pid::proton}, 3, pid::Wm};
+ n_psp = n_psp_base;
+
+ subl_channels = Subleading::uno;
+ allowed_types = {event_type::FKL, event_type::unob, event_type::unof};
+ type_counter.clear();
+
+ for( size_t i = 0; i<n_psp; ++i){
+ const PhaseSpacePoint psp{proc,jet_para,pdf,E_cms, subl_change,subl_channels,
+ boson_prop, ran};
+ if(psp.status()==good){
+ const Event ev(to_UnclusteredEvent(psp), jet_para.def, jet_para.min_pt);
+ ++type_counter[ev.type()];
+ if( std::find(allowed_types.cbegin(), allowed_types.cend(), ev.type())
+ == allowed_types.cend()) {
+ bail_out(psp, "Found not allowed event of type "
+ +std::string(event_type::names[ev.type()]));
+ }
+ } else { // bad process -> try again
+ ++n_psp;
+ }
+ }
+ std::cout << "Wm+3j (only uno): Took " << n_psp << " to generate "
+ << n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl;
+ std::cout << "States by classification:\n";
+ for(auto const & entry: type_counter){
+ const double fraction = static_cast<double>(entry.second)/n_psp_base;
+ const int percent = std::round(100*fraction);
+ std::cout << std::left << std::setw(25)
+ << (event_type::names[entry.first] + std::string(":"))
+ << entry.second << " (" << percent << "%)\n";
+
+ }
+ for(auto const & t: allowed_types){
+ if(type_counter[t] < 0.05 * n_psp_base){
+ std::cerr << "Less than 5% of the events are of type " << event_type::names[t] << std::endl;
+ return EXIT_FAILURE;
+ }
+ }
+
// Wm4j
proc = Process{{pid::proton,pid::proton}, 4, pid::Wm};
n_psp = n_psp_base;
- allowed_types.push_back(event_type::qqxmid);
- for(auto & entry: type_counter)
- entry.second = 0;
+
+ subl_channels = Subleading::all;
+ allowed_types = {event_type::FKL,
+ event_type::unob, event_type::unof, event_type::qqxexb, event_type::qqxexf,
+ event_type::qqxmid};
+ type_counter.clear();
+
for( size_t i = 0; i<n_psp; ++i){
const PhaseSpacePoint psp{proc,jet_para,pdf,E_cms, subl_change,subl_channels,
boson_prop, ran};
if(psp.status()==good){
const Event ev(to_UnclusteredEvent(psp), jet_para.def, jet_para.min_pt);
++type_counter[ev.type()];
if( std::find(allowed_types.cbegin(), allowed_types.cend(), ev.type())
== allowed_types.cend()) {
bail_out(psp, "Found not allowed event of type "
+std::string(event_type::names[ev.type()]));
}
} else { // bad process -> try again
++n_psp;
}
}
std::cout << "Wm+4j: Took " << n_psp << " to generate "
<< n_psp_base << " successfully PSP (" << 1.*n_psp/n_psp_base << " trials/PSP)" << std::endl;
std::cout << "States by classification:\n";
for(auto const & entry: type_counter){
const double fraction = static_cast<double>(entry.second)/n_psp_base;
const int percent = std::round(100*fraction);
std::cout << std::left << std::setw(25)
<< (event_type::names[entry.first] + std::string(":"))
<< entry.second << " (" << percent << "%)\n";
}
for(auto const & t: allowed_types){
if(type_counter[t] < 0.03 * n_psp_base){
std::cerr << "Less than 3% of the events are of type " << event_type::names[t] << std::endl;
return EXIT_FAILURE;
}
}
std::cout << "All processes passed." << std::endl;
return EXIT_SUCCESS;
}

File Metadata

Mime Type
text/x-diff
Expires
Mon, Jan 20, 10:25 PM (1 d, 14 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4234697
Default Alt Text
(50 KB)

Event Timeline