Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7879477
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
77 KB
Subscribers
None
View Options
diff --git a/Shower/Base/SudakovFormFactor.cc b/Shower/Base/SudakovFormFactor.cc
--- a/Shower/Base/SudakovFormFactor.cc
+++ b/Shower/Base/SudakovFormFactor.cc
@@ -1,685 +1,714 @@
// -*- C++ -*-
//
// SudakovFormFactor.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SudakovFormFactor class.
//
#include "SudakovFormFactor.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ShowerKinematics.h"
#include "ShowerParticle.h"
#include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/SpinorBarWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/ScalarWaveFunction.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "Herwig/Shower/ShowerHandler.h"
using namespace Herwig;
DescribeAbstractClass<SudakovFormFactor,Interfaced>
describeSudakovFormFactor ("Herwig::SudakovFormFactor","");
void SudakovFormFactor::persistentOutput(PersistentOStream & os) const {
os << splittingFn_ << alpha_ << pdfmax_ << particles_ << pdffactor_
<< a_ << b_ << ounit(c_,GeV) << ounit(kinCutoffScale_,GeV) << cutOffOption_
<< ounit(vgcut_,GeV) << ounit(vqcut_,GeV)
<< ounit(pTmin_,GeV) << ounit(pT2min_,GeV2)
<< theFactorizationScaleFactor << theRenormalizationScaleFactor;
}
void SudakovFormFactor::persistentInput(PersistentIStream & is, int) {
is >> splittingFn_ >> alpha_ >> pdfmax_ >> particles_ >> pdffactor_
>> a_ >> b_ >> iunit(c_,GeV) >> iunit(kinCutoffScale_,GeV) >> cutOffOption_
>> iunit(vgcut_,GeV) >> iunit(vqcut_,GeV)
>> iunit(pTmin_,GeV) >> iunit(pT2min_,GeV2)
>> theFactorizationScaleFactor >> theRenormalizationScaleFactor;
}
void SudakovFormFactor::Init() {
static ClassDocumentation<SudakovFormFactor> documentation
("The SudakovFormFactor class is the base class for the implementation of Sudakov"
" form factors in Herwig");
static Reference<SudakovFormFactor,SplittingFunction>
interfaceSplittingFunction("SplittingFunction",
"A reference to the SplittingFunction object",
&Herwig::SudakovFormFactor::splittingFn_,
false, false, true, false);
static Reference<SudakovFormFactor,ShowerAlpha>
interfaceAlpha("Alpha",
"A reference to the Alpha object",
&Herwig::SudakovFormFactor::alpha_,
false, false, true, false);
static Parameter<SudakovFormFactor,double> interfacePDFmax
("PDFmax",
"Maximum value of PDF weight. ",
&SudakovFormFactor::pdfmax_, 35.0, 1.0, 100000.0,
false, false, Interface::limited);
static Switch<SudakovFormFactor,unsigned int> interfacePDFFactor
("PDFFactor",
"Include additional factors in the overestimate for the PDFs",
&SudakovFormFactor::pdffactor_, 0, false, false);
static SwitchOption interfacePDFFactorOff
(interfacePDFFactor,
"Off",
"Don't include any factors",
0);
static SwitchOption interfacePDFFactorOverZ
(interfacePDFFactor,
"OverZ",
"Include an additional factor of 1/z",
1);
static SwitchOption interfacePDFFactorOverOneMinusZ
(interfacePDFFactor,
"OverOneMinusZ",
"Include an additional factor of 1/(1-z)",
2);
static SwitchOption interfacePDFFactorOverZOneMinusZ
(interfacePDFFactor,
"OverZOneMinusZ",
"Include an additional factor of 1/z/(1-z)",
3);
static Switch<SudakovFormFactor,unsigned int> interfaceCutOffOption
("CutOffOption",
"The type of cut-off to use to end the shower",
&SudakovFormFactor::cutOffOption_, 0, false, false);
static SwitchOption interfaceCutOffOptionDefault
(interfaceCutOffOption,
"Default",
"Use the standard Herwig cut-off on virtualities with the minimum"
" virtuality depending on the mass of the branching particle",
0);
static SwitchOption interfaceCutOffOptionFORTRAN
(interfaceCutOffOption,
"FORTRAN",
"Use a FORTRAN-like cut-off on virtualities",
1);
static SwitchOption interfaceCutOffOptionpT
(interfaceCutOffOption,
"pT",
"Use a cut on the minimum allowed pT",
2);
static Parameter<SudakovFormFactor,double> interfaceaParameter
("aParameter",
"The a parameter for the kinematic cut-off",
&SudakovFormFactor::a_, 0.3, -10.0, 10.0,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,double> interfacebParameter
("bParameter",
"The b parameter for the kinematic cut-off",
&SudakovFormFactor::b_, 2.3, -10.0, 10.0,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfacecParameter
("cParameter",
"The c parameter for the kinematic cut-off",
&SudakovFormFactor::c_, GeV, 0.3*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy>
interfaceKinScale ("cutoffKinScale",
"kinematic cutoff scale for the parton shower phase"
" space (unit [GeV])",
&SudakovFormFactor::kinCutoffScale_, GeV,
2.3*GeV, 0.001*GeV, 10.0*GeV,false,false,false);
static Parameter<SudakovFormFactor,Energy> interfaceGluonVirtualityCut
("GluonVirtualityCut",
"For the FORTRAN cut-off option the minimum virtuality of the gluon",
&SudakovFormFactor::vgcut_, GeV, 0.85*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfaceQuarkVirtualityCut
("QuarkVirtualityCut",
"For the FORTRAN cut-off option the minimum virtuality added to"
" the mass for particles other than the gluon",
&SudakovFormFactor::vqcut_, GeV, 0.85*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfacepTmin
("pTmin",
"The minimum pT if using a cut-off on the pT",
&SudakovFormFactor::pTmin_, GeV, 1.0*GeV, ZERO, 10.0*GeV,
false, false, Interface::limited);
}
bool SudakovFormFactor::alphaSVeto(Energy2 pt2) const {
pt2 *= sqr(renormalizationScaleFactor());
return UseRandom::rnd() > ThePEG::Math::powi(alpha_->ratio(pt2),
splittingFn_->interactionOrder());
}
bool SudakovFormFactor::
PDFVeto(const Energy2 t, const double x,
const tcPDPtr parton0, const tcPDPtr parton1,
Ptr<BeamParticleData>::transient_const_pointer beam) const {
assert(pdf_);
Energy2 theScale = t * sqr(factorizationScaleFactor());
if (theScale < sqr(freeze_)) theScale = sqr(freeze_);
double newpdf(0.0), oldpdf(0.0);
//different treatment of MPI ISR is done via CascadeHandler::resetPDFs()
newpdf=pdf_->xfx(beam,parton0,theScale,x/z());
oldpdf=pdf_->xfx(beam,parton1,theScale,x);
if(newpdf<=0.) return true;
if(oldpdf<=0.) return false;
double ratio = newpdf/oldpdf;
double maxpdf(pdfmax_);
switch (pdffactor_) {
case 1:
maxpdf /= z();
break;
case 2:
maxpdf /= 1.-z();
break;
case 3:
maxpdf /= (z()*(1.-z()));
break;
}
// ratio / PDFMax must be a probability <= 1.0
if (ratio > maxpdf) {
generator()->log() << "PDFVeto warning: Ratio > " << name()
<< ":PDFmax (by a factor of "
<< ratio/maxpdf <<") for "
<< parton0->PDGName() << " to "
<< parton1->PDGName() << "\n";
}
return ratio < UseRandom::rnd()*maxpdf;
}
void SudakovFormFactor::addSplitting(const IdList & in) {
bool add=true;
for(unsigned int ix=0;ix<particles_.size();++ix) {
if(particles_[ix].size()==in.size()) {
bool match=true;
for(unsigned int iy=0;iy<in.size();++iy) {
if(particles_[ix][iy]!=in[iy]) {
match=false;
break;
}
}
if(match) {
add=false;
break;
}
}
}
if(add) particles_.push_back(in);
}
namespace {
LorentzRotation boostToShower(const vector<Lorentz5Momentum> & basis,
ShowerKinematics::Frame frame,
Lorentz5Momentum & porig) {
LorentzRotation output;
if(frame==ShowerKinematics::BackToBack) {
// we are doing the evolution in the back-to-back frame
// work out the boostvector
Boost boostv(-(basis[0]+basis[1]).boostVector());
// momentum of the parton
Lorentz5Momentum ptest(basis[0]);
// construct the Lorentz boost
output = LorentzRotation(boostv);
ptest *= output;
Axis axis(ptest.vect().unit());
// now rotate so along the z axis as needed for the splitting functions
if(axis.perp2()>1e-10) {
double sinth(sqrt(1.-sqr(axis.z())));
output.rotate(-acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
}
else if(axis.z()<0.) {
output.rotate(Constants::pi,Axis(1.,0.,0.));
}
porig = output*basis[0];
porig.setX(ZERO);
porig.setY(ZERO);
}
else {
output = LorentzRotation(-basis[0].boostVector());
porig = output*basis[0];
porig.setX(ZERO);
porig.setY(ZERO);
porig.setZ(ZERO);
}
return output;
}
RhoDMatrix bosonMapping(ShowerParticle & particle,
const Lorentz5Momentum & porig,
VectorSpinPtr vspin,
const LorentzRotation & rot) {
// rotate the original basis
vector<LorentzPolarizationVector> sbasis;
for(unsigned int ix=0;ix<3;++ix) {
sbasis.push_back(vspin->getProductionBasisState(ix));
sbasis.back().transform(rot);
}
// splitting basis
vector<LorentzPolarizationVector> fbasis;
bool massless(particle.id()==ParticleID::g||particle.id()==ParticleID::gamma);
VectorWaveFunction wave(porig,particle.dataPtr(),outgoing);
for(unsigned int ix=0;ix<3;++ix) {
if(massless&&ix==1) {
fbasis.push_back(LorentzPolarizationVector());
}
else {
wave.reset(ix);
fbasis.push_back(wave.wave());
}
}
// work out the mapping
RhoDMatrix mapping=RhoDMatrix(PDT::Spin1,false);
for(unsigned int ix=0;ix<3;++ix) {
for(unsigned int iy=0;iy<3;++iy) {
mapping(ix,iy)= sbasis[iy].dot(fbasis[ix].conjugate());
if(particle.id()<0)
mapping(ix,iy)=conj(mapping(ix,iy));
}
}
// \todo need to fix this
mapping = RhoDMatrix(PDT::Spin1,false);
if(massless) {
mapping(0,0) = 1.;
mapping(2,2) = 1.;
}
else {
mapping(0,0) = 1.;
mapping(1,1) = 1.;
mapping(2,2) = 1.;
}
return mapping;
}
RhoDMatrix fermionMapping(ShowerParticle & particle,
const Lorentz5Momentum & porig,
FermionSpinPtr fspin,
const LorentzRotation & rot) {
// extract the original basis states
vector<LorentzSpinor<SqrtEnergy> > sbasis;
for(unsigned int ix=0;ix<2;++ix) {
sbasis.push_back(fspin->getProductionBasisState(ix));
sbasis.back().transform(rot);
}
// calculate the states in the splitting basis
vector<LorentzSpinor<SqrtEnergy> > fbasis;
SpinorWaveFunction wave(porig,particle.dataPtr(),
particle.id()>0 ? incoming : outgoing);
for(unsigned int ix=0;ix<2;++ix) {
wave.reset(ix);
fbasis.push_back(wave.dimensionedWave());
}
RhoDMatrix mapping=RhoDMatrix(PDT::Spin1Half,false);
for(unsigned int ix=0;ix<2;++ix) {
if(fbasis[0].s2()==complex<SqrtEnergy>()) {
mapping(ix,0) = sbasis[ix].s3()/fbasis[0].s3();
mapping(ix,1) = sbasis[ix].s2()/fbasis[1].s2();
}
else {
mapping(ix,0) = sbasis[ix].s2()/fbasis[0].s2();
mapping(ix,1) = sbasis[ix].s3()/fbasis[1].s3();
}
}
return mapping;
}
FermionSpinPtr createFermionSpinInfo(ShowerParticle & particle,
const Lorentz5Momentum & porig,
const LorentzRotation & rot,
Helicity::Direction dir) {
// calculate the splitting basis for the branching
// and rotate back to construct the basis states
LorentzRotation rinv = rot.inverse();
SpinorWaveFunction wave;
if(particle.id()>0)
wave=SpinorWaveFunction(porig,particle.dataPtr(),incoming);
else
wave=SpinorWaveFunction(porig,particle.dataPtr(),outgoing);
FermionSpinPtr fspin = new_ptr(FermionSpinInfo(particle.momentum(),dir==outgoing));
for(unsigned int ix=0;ix<2;++ix) {
wave.reset(ix);
LorentzSpinor<SqrtEnergy> basis = wave.dimensionedWave();
basis.transform(rinv);
fspin->setBasisState(ix,basis);
fspin->setDecayState(ix,basis);
}
particle.spinInfo(fspin);
return fspin;
}
VectorSpinPtr createVectorSpinInfo(ShowerParticle & particle,
const Lorentz5Momentum & porig,
const LorentzRotation & rot,
Helicity::Direction dir) {
// calculate the splitting basis for the branching
// and rotate back to construct the basis states
LorentzRotation rinv = rot.inverse();
bool massless(particle.id()==ParticleID::g||particle.id()==ParticleID::gamma);
VectorWaveFunction wave(porig,particle.dataPtr(),dir);
VectorSpinPtr vspin = new_ptr(VectorSpinInfo(particle.momentum(),dir==outgoing));
for(unsigned int ix=0;ix<3;++ix) {
LorentzPolarizationVector basis;
if(massless&&ix==1) {
basis = LorentzPolarizationVector();
}
else {
wave.reset(ix);
basis = wave.wave();
}
basis *= rinv;
vspin->setBasisState(ix,basis);
vspin->setDecayState(ix,basis);
}
particle.spinInfo(vspin);
vspin-> DMatrix() = RhoDMatrix(PDT::Spin1);
vspin->rhoMatrix() = RhoDMatrix(PDT::Spin1);
if(massless) {
vspin-> DMatrix()(0,0) = 0.5;
vspin->rhoMatrix()(0,0) = 0.5;
vspin-> DMatrix()(2,2) = 0.5;
vspin->rhoMatrix()(2,2) = 0.5;
}
return vspin;
}
}
bool SudakovFormFactor::getMapping(SpinPtr & output, RhoDMatrix & mapping,
ShowerParticle & particle,ShoKinPtr showerkin) {
// if the particle is not from the hard process
if(!particle.perturbative()) {
// mapping is the identity
output=particle.spinInfo();
mapping=RhoDMatrix(particle.dataPtr()->iSpin());
if(output) {
return false;
}
else {
Lorentz5Momentum porig;
LorentzRotation rot = boostToShower(showerkin->getBasis(),showerkin->frame(),porig);
Helicity::Direction dir = particle.isFinalState() ? outgoing : incoming;
if(particle.dataPtr()->iSpin()==PDT::Spin0) {
assert(false);
}
else if(particle.dataPtr()->iSpin()==PDT::Spin1Half) {
output = createFermionSpinInfo(particle,porig,rot,dir);
}
else if(particle.dataPtr()->iSpin()==PDT::Spin1) {
output = createVectorSpinInfo(particle,porig,rot,dir);
}
else {
assert(false);
}
return false;
}
}
// if particle is final-state and is from the hard process
else if(particle.isFinalState()) {
assert(particle.perturbative()==1 || particle.perturbative()==2);
// get transform to shower frame
Lorentz5Momentum porig;
LorentzRotation rot = boostToShower(showerkin->getBasis(),showerkin->frame(),porig);
// the rest depends on the spin of the particle
PDT::Spin spin(particle.dataPtr()->iSpin());
mapping=RhoDMatrix(spin,false);
// do the spin dependent bit
if(spin==PDT::Spin0) {
ScalarSpinPtr sspin=dynamic_ptr_cast<ScalarSpinPtr>(particle.spinInfo());
if(!sspin) {
ScalarWaveFunction::constructSpinInfo(&particle,outgoing,true);
}
output=particle.spinInfo();
return false;
}
else if(spin==PDT::Spin1Half) {
FermionSpinPtr fspin=dynamic_ptr_cast<FermionSpinPtr>(particle.spinInfo());
// spin info exists get information from it
if(fspin) {
output=fspin;
mapping = fermionMapping(particle,porig,fspin,rot);
return true;
}
// spin info does not exist create it
else {
output = createFermionSpinInfo(particle,porig,rot,outgoing);
return false;
}
}
else if(spin==PDT::Spin1) {
VectorSpinPtr vspin=dynamic_ptr_cast<VectorSpinPtr>(particle.spinInfo());
// spin info exists get information from it
if(vspin) {
output=vspin;
mapping = bosonMapping(particle,porig,vspin,rot);
return true;
}
else {
output = createVectorSpinInfo(particle,porig,rot,outgoing);
return false;
}
}
// not scalar/fermion/vector
else
assert(false);
}
// incoming to hard process
else if(particle.perturbative()==1 && !particle.isFinalState()) {
// get the basis vectors
// get transform to shower frame
Lorentz5Momentum porig;
LorentzRotation rot = boostToShower(showerkin->getBasis(),showerkin->frame(),porig);
porig *= particle.x();
// the rest depends on the spin of the particle
PDT::Spin spin(particle.dataPtr()->iSpin());
mapping=RhoDMatrix(spin);
// do the spin dependent bit
if(spin==PDT::Spin0) {
cerr << "testing spin 0 not yet implemented " << endl;
assert(false);
}
// spin-1/2
else if(spin==PDT::Spin1Half) {
FermionSpinPtr fspin=dynamic_ptr_cast<FermionSpinPtr>(particle.spinInfo());
// spin info exists get information from it
if(fspin) {
output=fspin;
mapping = fermionMapping(particle,porig,fspin,rot);
return true;
}
// spin info does not exist create it
else {
output = createFermionSpinInfo(particle,porig,rot,incoming);
return false;
}
}
// spin-1
else if(spin==PDT::Spin1) {
VectorSpinPtr vspin=dynamic_ptr_cast<VectorSpinPtr>(particle.spinInfo());
// spinInfo exists map it
if(vspin) {
output=vspin;
mapping = bosonMapping(particle,porig,vspin,rot);
return true;
}
// create the spininfo
else {
output = createVectorSpinInfo(particle,porig,rot,incoming);
return false;
}
}
assert(false);
}
// incoming to decay
else if(particle.perturbative() == 2 && !particle.isFinalState()) {
// get the basis vectors
Lorentz5Momentum porig;
LorentzRotation rot=boostToShower(showerkin->getBasis(),
showerkin->frame(),porig);
// the rest depends on the spin of the particle
PDT::Spin spin(particle.dataPtr()->iSpin());
mapping=RhoDMatrix(spin);
// do the spin dependent bit
if(spin==PDT::Spin0) {
cerr << "testing spin 0 not yet implemented " << endl;
assert(false);
}
// spin-1/2
else if(spin==PDT::Spin1Half) {
// FermionSpinPtr fspin=dynamic_ptr_cast<FermionSpinPtr>(particle.spinInfo());
// // spin info exists get information from it
// if(fspin) {
// output=fspin;
// mapping = fermionMapping(particle,porig,fspin,rot);
// return true;
// // spin info does not exist create it
// else {
// output = createFermionSpinInfo(particle,porig,rot,incoming);
// return false;
// }
// }
assert(false);
}
// // spin-1
// else if(spin==PDT::Spin1) {
// VectorSpinPtr vspin=dynamic_ptr_cast<VectorSpinPtr>(particle.spinInfo());
// // spinInfo exists map it
// if(vspin) {
// output=vspin;
// mapping = bosonMapping(particle,porig,vspin,rot);
// return true;
// }
// // create the spininfo
// else {
// output = createVectorSpinInfo(particle,porig,rot,incoming);
// return false;
// }
// }
// assert(false);
assert(false);
}
else
assert(false);
return true;
}
void SudakovFormFactor::removeSplitting(const IdList & in) {
for(vector<IdList>::iterator it=particles_.begin();
it!=particles_.end();++it) {
if(it->size()==in.size()) {
bool match=true;
for(unsigned int iy=0;iy<in.size();++iy) {
if((*it)[iy]!=in[iy]) {
match=false;
break;
}
}
if(match) {
vector<IdList>::iterator itemp=it;
--itemp;
particles_.erase(it);
it = itemp;
}
}
}
}
Energy2 SudakovFormFactor::guesst(Energy2 t1,unsigned int iopt,
const IdList &ids,
double enhance,bool ident) const {
unsigned int pdfopt = iopt!=1 ? 0 : pdffactor_;
double c =
1./((splittingFn_->integOverP(zlimits_.second,ids,pdfopt) -
splittingFn_->integOverP(zlimits_.first ,ids,pdfopt))*
alpha_->overestimateValue()/Constants::twopi*enhance);
assert(iopt<=2);
if(iopt==1) {
c/=pdfmax_;
//symmetry of FS gluon splitting
if(ident) c*=0.5;
}
else if(iopt==2) c*=-1.;
if(splittingFn_->interactionOrder()==1) {
double r = UseRandom::rnd();
if(iopt!=2 || c*log(r)<log(Constants::MaxEnergy2/t1)) {
return t1*pow(r,c);
}
else
return Constants::MaxEnergy2;
}
else {
assert(false && "Units are dubious here.");
int nm(splittingFn()->interactionOrder()-1);
c/=Math::powi(alpha_->overestimateValue()/Constants::twopi,nm);
return t1 / pow (1. - nm*c*log(UseRandom::rnd())
* Math::powi(t1*UnitRemoval::InvE2,nm)
,1./double(nm));
}
}
double SudakovFormFactor::guessz (unsigned int iopt, const IdList &ids) const {
unsigned int pdfopt = iopt!=1 ? 0 : pdffactor_;
double lower = splittingFn_->integOverP(zlimits_.first,ids,pdfopt);
return splittingFn_->invIntegOverP
(lower + UseRandom::rnd()*(splittingFn_->integOverP(zlimits_.second,ids,pdfopt) -
lower),ids,pdfopt);
}
void SudakovFormFactor::doinit() {
Interfaced::doinit();
pT2min_ = cutOffOption()==2 ? sqr(pTmin_) : ZERO;
}
const vector<Energy> & SudakovFormFactor::virtualMasses(const IdList & ids) {
static vector<Energy> output;
output.clear();
if(cutOffOption() == 0) {
for(unsigned int ix=0;ix<ids.size();++ix)
output.push_back(getParticleData(ids[ix])->mass());
Energy kinCutoff=
kinematicCutOff(kinScale(),*std::max_element(output.begin(),output.end()));
for(unsigned int ix=0;ix<output.size();++ix)
output[ix]=max(kinCutoff,output[ix]);
}
else if(cutOffOption() == 1) {
for(unsigned int ix=0;ix<ids.size();++ix) {
output.push_back(getParticleData(ids[ix])->mass());
output.back() += ids[ix]==ParticleID::g ? vgCut() : vqCut();
}
}
else if(cutOffOption() == 2) {
for(unsigned int ix=0;ix<ids.size();++ix)
output.push_back(getParticleData(ids[ix])->mass());
}
else {
throw Exception() << "Unknown option for the cut-off"
<< " in SudakovFormFactor::virtualMasses()"
<< Exception::runerror;
}
return output;
}
+
+RhoDMatrix SudakovFormFactor::extractRhoMatrix(ShowerParticle & particle,
+ ShoKinPtr kinematics,bool forward) {
+ // get the spin density matrix and the mapping
+ RhoDMatrix mapping;
+ SpinPtr inspin;
+ bool needMapping = getMapping(inspin,mapping,particle,kinematics);
+ // set the decayed flag
+ inspin->decay();
+ // get the spin density matrix
+ RhoDMatrix rho = forward ? inspin->rhoMatrix() : inspin->DMatrix();
+ // map to the shower basis if needed
+ if(needMapping) {
+ RhoDMatrix rhop(rho.iSpin(),false);
+ for(int ixa=0;ixa<rho.iSpin();++ixa) {
+ for(int ixb=0;ixb<rho.iSpin();++ixb) {
+ for(int iya=0;iya<rho.iSpin();++iya) {
+ for(int iyb=0;iyb<rho.iSpin();++iyb) {
+ rhop(ixa,ixb) += rho(iya,iyb)*mapping(iya,ixa)*conj(mapping(iyb,ixb));
+ }
+ }
+ }
+ }
+ rhop.normalize();
+ rho = rhop;
+ }
+ return rho;
+}
+
diff --git a/Shower/Base/SudakovFormFactor.h b/Shower/Base/SudakovFormFactor.h
--- a/Shower/Base/SudakovFormFactor.h
+++ b/Shower/Base/SudakovFormFactor.h
@@ -1,701 +1,704 @@
// -*- C++ -*-
//
// SudakovFormFactor.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_SudakovFormFactor_H
#define HERWIG_SudakovFormFactor_H
//
// This is the declaration of the SudakovFormFactor class.
//
#include "ThePEG/Interface/Interfaced.h"
#include "Herwig/Shower/SplittingFunctions/SplittingFunction.h"
#include "Herwig/Shower/Couplings/ShowerAlpha.h"
#include "Herwig/Shower/SplittingFunctions/SplittingGenerator.fh"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/PDF/BeamParticleData.h"
#include "ThePEG/EventRecord/RhoDMatrix.h"
#include "ThePEG/EventRecord/SpinInfo.h"
#include "ShowerKinematics.fh"
#include "SudakovFormFactor.fh"
namespace Herwig {
using namespace ThePEG;
/**
* A typedef for the BeamParticleData
*/
typedef Ptr<BeamParticleData>::transient_const_pointer tcBeamPtr;
/** \ingroup Shower
*
* This is the definition of the Sudakov form factor class. In general this
* is the base class for the implementation of Sudakov form factors in Herwig.
* The methods generateNextTimeBranching(), generateNextDecayBranching() and
* generateNextSpaceBranching need to be implemented in classes inheriting from this
* one.
*
* In addition a number of methods are implemented to assist with the calculation
* of the form factor using the veto algorithm in classes inheriting from this one.
*
* In general the Sudakov form-factor, for final-state radiation, is given
* by
* \f[\Delta_{ba}(\tilde{q}_{i+1},\tilde{q}_i)=
* \exp\left\{
* -\int^{\tilde{q}^2_i}_{\tilde{q}^2_{i+1}}
* \frac{{\rm d}\tilde{q}^2}{\tilde{q}^2}
* \int\frac{\alpha_S(z,\tilde{q})}{2\pi}
* P_{ba}(z,\tilde{q})\Theta(p_T)
* \right\}.
* \f]
* We can solve this to obtain the next value of the scale \f$\tilde{q}_{i+1}\f$
* given the previous value \f$\tilde{q}_i\f$
* in the following way. First we obtain a simplified form of the integrand
* which is greater than or equal to the true integrand for all values of
* \f$\tilde{q}\f$.
*
* In practice it is easiest to obtain this over estimate in pieces. The ShowerAlpha
* object contains an over estimate for \f$\alpha_S\f$, the splitting function
* contains both an over estimate of the spltting function and its integral
* which is needed to compute the over estimate of the \f$\tilde{q}\f$ integrand,
* together with an over estimate of the limit of the \f$z\f$ integral.
*
* This gives an overestimate of the integrand
* \f[g(\tilde{q}^2) = \frac{c}{\tilde{q}^2}, \f]
* where because the over estimates are chosen to be independent of \f$\tilde{q}\f$ the
* parameter
* \f[c = \frac{\alpha_{\rm over}}{2\pi}\int^{z_1}_{z_0}P_{\rm over}(z),\f]
* is a constant independent of \f$\tilde{q}\f$.
*
* The guesst() member can then be used to generate generate the value of
* \f$\tilde{q}^2\f$ according to this result. This is done by solving the Sudakov
* form factor, with the over estimates, is equal to a random number
* \f$r\f$ in the interval \f$[0,1]\f$. This gives
* \f[\tilde{q}^2_{i+1}=G^{-1}\left[G(\tilde{q}^2_i)+\ln r\right],\f]
* where \f$G(\tilde{q}^2)=c\ln(\tilde{q}^2)\f$ is the infinite integral
* of \f$g(\tilde{q}^2)\f$ and \f$G^{-1}(x)=\exp\left(\frac{x}c\right)\f$
* is its inverse.
* It this case we therefore obtain
* \f[\tilde{q}^2_{i+1}=\tilde{q}^2_ir^{\frac1c}.\f]
* The value of \f$z\f$ can then be calculated in a similar way
* \f[z = I^{-1}\left[I(z_0)+r\left(I(z_1)-I(z_0)\right)\right],\f]
* using the guessz() member,
* where \f$I=\int P(z){\rm d}z\f$ and \f$I^{-1}\f$ is its inverse.
*
* The veto algorithm then uses rejection using the ratio of the
* true value to the overestimated one to obtain the original distribution.
* This is accomplished using the
* - alphaSVeto() member for the \f$\alpha_S\f$ veto
* - SplittingFnVeto() member for the veto on the value of the splitting function.
* in general there must also be a chech that the emission is in the allowed
* phase space but this is left to the inheriting classes as it will depend
* on the ordering variable.
*
* The Sudakov form factor for the initial-scale shower is different because
* it must include the PDF which guides the backward evolution.
* It is given by
* \f[\Delta_{ba}(\tilde{q}_{i+1},\tilde{q}_i)=
* \exp\left\{
* -\int^{\tilde{q}^2_i}_{\tilde{q}^2_{i+1}}
* \frac{{\rm d}\tilde{q}^2}{\tilde{q}^2}
* \int\frac{\alpha_S(z,\tilde{q})}{2\pi}
* P_{ba}(z,\tilde{q})\frac{x'f_a(\frac{x}z,\tilde{q}^2)}{xf_b(x,\tilde{q^2})}
* \right\},
* \f]
* where \f$x\f$ is the fraction of the beam momentum the parton \f$b\f$ had before
* the backward evolution.
* This can be solve in the same way as for the final-state branching but the constant
* becomes
* \f[c = \frac{\alpha_{\rm over}}{2\pi}\int^{z_1}_{z_0}P_{\rm over}(z)PDF_{\rm max},\f]
* where
* \f[PDF_{\rm max}=\max\frac{x'f_a(\frac{x}z,\tilde{q}^2)}{xf_b(x,\tilde{q^2})},\f]
* which can be set using an interface.
* In addition the PDFVeto() member then is needed to implement the relevant veto.
*
* @see SplittingGenerator
* @see SplittingFunction
* @see ShowerAlpha
* @see \ref SudakovFormFactorInterfaces "The interfaces"
* defined for SudakovFormFactor.
*/
class SudakovFormFactor: public Interfaced {
/**
* The SplittingGenerator is a friend to insert the particles in the
* branchings at initialisation
*/
friend class SplittingGenerator;
public:
/**
* The default constructor.
*/
SudakovFormFactor() : pdfmax_(35.0), pdffactor_(0),
cutOffOption_(0), a_(0.3), b_(2.3), c_(0.3*GeV),
kinCutoffScale_( 2.3*GeV ), vgcut_(0.85*GeV),
vqcut_(0.85*GeV), pTmin_(1.*GeV), pT2min_(ZERO),
z_( 0.0 ),phi_(0.0), pT_(),
theFactorizationScaleFactor(1.0),
theRenormalizationScaleFactor(1.0) {}
/**
* Members to generate the scale of the next branching
*/
//@{
/**
* Return the scale of the next time-like branching. If there is no
* branching then it returns ZERO.
* @param startingScale starting scale for the evolution
* @param ids The PDG codes of the particles in the splitting
* @param cc Whether this is the charge conjugate of the branching
* @param enhance The radiation enhancement factor
* @param maxQ2 The maximum \f$Q^2\f$ for the emission
*/
virtual ShoKinPtr generateNextTimeBranching(const Energy startingScale,
const IdList &ids,const bool cc,
double enhance, Energy2 maxQ2)=0;
/**
* Return the scale of the next space-like decay branching. If there is no
* branching then it returns ZERO.
* @param startingScale starting scale for the evolution
* @param stoppingScale stopping scale for the evolution
* @param minmass The minimum mass allowed for the spake-like particle.
* @param ids The PDG codes of the particles in the splitting
* @param cc Whether this is the charge conjugate of the branching
* defined.
* @param enhance The radiation enhancement factor
*/
virtual ShoKinPtr generateNextDecayBranching(const Energy startingScale,
const Energy stoppingScale,
const Energy minmass,
const IdList &ids,
const bool cc,
double enhance)=0;
/**
* Return the scale of the next space-like branching. If there is no
* branching then it returns ZERO.
* @param startingScale starting scale for the evolution
* @param ids The PDG codes of the particles in the splitting
* @param x The fraction of the beam momentum
* @param cc Whether this is the charge conjugate of the branching
* defined.
* @param beam The beam particle
* @param enhance The radiation enhancement factor
*/
virtual ShoKinPtr generateNextSpaceBranching(const Energy startingScale,
const IdList &ids,double x,
const bool cc,double enhance,
tcBeamPtr beam)=0;
//@}
/**
* Generate the azimuthal angle of the branching for forward evolution
* @param particle The branching particle
* @param ids The PDG codes of the particles in the branchings
* @param The Shower kinematics
*/
virtual double generatePhiForward(ShowerParticle & particle,const IdList & ids,
ShoKinPtr kinematics)=0;
/**
* Generate the azimuthal angle of the branching for backward evolution
* @param particle The branching particle
* @param ids The PDG codes of the particles in the branchings
* @param The Shower kinematics
*/
virtual double generatePhiBackward(ShowerParticle & particle,const IdList & ids,
ShoKinPtr kinematics)=0;
/**
* Generate the azimuthal angle of the branching for ISR in decays
* @param particle The branching particle
* @param ids The PDG codes of the particles in the branchings
* @param The Shower kinematics
*/
virtual double generatePhiDecay(ShowerParticle & particle,const IdList & ids,
ShoKinPtr kinematics)=0;
/**
* Methods to provide public access to the private member variables
*/
//@{
/**
* Return the pointer to the SplittingFunction object.
*/
tSplittingFnPtr splittingFn() const { return splittingFn_; }
/**
* Return the pointer to the ShowerAlpha object.
*/
tShowerAlphaPtr alpha() const { return alpha_; }
/**
* The type of interaction
*/
inline ShowerInteraction::Type interactionType() const
{return splittingFn_->interactionType();}
//@}
public:
/**
* Methods to access the kinematic variables for the branching
*/
//@{
/**
* The energy fraction
*/
double z() const { return z_; }
/**
* The azimuthal angle
*/
double phi() const { return phi_; }
/**
* The transverse momentum
*/
Energy pT() const { return pT_; }
//@}
/**
* Access the maximum weight for the PDF veto
*/
double pdfMax() const { return pdfmax_;}
/**
* Method to return the evolution scale given the
* transverse momentum, \f$p_T\f$ and \f$z\f$.
*/
virtual Energy calculateScale(double z, Energy pt, IdList ids,unsigned int iopt)=0;
/**
* Method to create the ShowerKinematics object for a final-state branching
*/
virtual ShoKinPtr createFinalStateBranching(Energy scale,double z,
double phi, Energy pt)=0;
/**
* Method to create the ShowerKinematics object for an initial-state branching
*/
virtual ShoKinPtr createInitialStateBranching(Energy scale,double z,
double phi, Energy pt)=0;
/**
* Method to create the ShowerKinematics object for a decay branching
*/
virtual ShoKinPtr createDecayBranching(Energy scale,double z,
double phi, Energy pt)=0;
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
//@}
protected:
/**
* Methods to implement the veto algorithm to generate the scale of
* the next branching
*/
//@{
/**
* Value of the energy fraction for the veto algorithm
* @param iopt The option for calculating z
* @param ids The PDG codes of the particles in the splitting
* - 0 is final-state
* - 1 is initial-state for the hard process
* - 2 is initial-state for particle decays
*/
double guessz (unsigned int iopt, const IdList &ids) const;
/**
* Value of the scale for the veto algorithm
* @param t1 The starting valoe of the scale
* @param iopt The option for calculating t
* @param ids The PDG codes of the particles in the splitting
* - 0 is final-state
* - 1 is initial-state for the hard process
* - 2 is initial-state for particle decays
* @param enhance The radiation enhancement factor
* @param identical Whether or not the outgoing particles are identical
*/
Energy2 guesst (Energy2 t1,unsigned int iopt, const IdList &ids,
double enhance, bool identical) const;
/**
* Veto on the PDF for the initial-state shower
* @param t The scale
* @param x The fraction of the beam momentum
* @param parton0 Pointer to the particleData for the
* new parent (this is the particle we evolved back to)
* @param parton1 Pointer to the particleData for the
* original particle
* @param beam The BeamParticleData object
*/
bool PDFVeto(const Energy2 t, const double x,
const tcPDPtr parton0, const tcPDPtr parton1,
tcBeamPtr beam) const;
/**
* The veto on the splitting function.
* @param t The scale
* @param ids The PDG codes of the particles in the splitting
* @param mass Whether or not to use the massive splitting functions
* @return true if vetoed
*/
bool SplittingFnVeto(const Energy2 t,
const IdList &ids,
const bool mass) const {
return UseRandom::rnd()>splittingFn_->ratioP(z_, t, ids,mass);
}
/**
* The veto on the coupling constant
* @param pt2 The value of ther transverse momentum squared, \f$p_T^2\f$.
* @return true if vetoed
*/
bool alphaSVeto(Energy2 pt2) const;
//@}
/**
* Methods to set the kinematic variables for the branching
*/
//@{
/**
* The energy fraction
*/
void z(double in) { z_=in; }
/**
* The azimuthal angle
*/
void phi(double in) { phi_=in; }
/**
* The transverse momentum
*/
void pT(Energy in) { pT_=in; }
//@}
/**
* Set/Get the limits on the energy fraction for the splitting
*/
//@{
/**
* Get the limits
*/
pair<double,double> zLimits() const { return zlimits_;}
/**
* Set the limits
*/
void zLimits(pair<double,double> in) { zlimits_=in; }
//@}
/**
* Set the particles in the splittings
*/
void addSplitting(const IdList &);
/**
* Delete the particles in the splittings
*/
void removeSplitting(const IdList &);
/**
* Access the potential branchings
*/
const vector<IdList> & particles() const { return particles_; }
/**
* For a particle which came from the hard process get the spin density and
* the mapping required to the basis used in the Shower
* @param rho The \f$\rho\f$ matrix
* @param mapping The mapping
* @param particle The particle
* @param showerkin The ShowerKinematics object
*/
bool getMapping(SpinPtr &, RhoDMatrix & map,
ShowerParticle & particle,ShoKinPtr showerkin);
+ RhoDMatrix extractRhoMatrix(ShowerParticle & particle,
+ ShoKinPtr kinematics, bool forward);
+
public:
/**
* @name Methods for the cut-off
*/
//@{
/**
* The option being used
*/
unsigned int cutOffOption() const { return cutOffOption_; }
/**
* The kinematic scale
*/
Energy kinScale() const {return kinCutoffScale_;}
/**
* The virtuality cut-off on the gluon \f$Q_g=\frac{\delta-am_q}{b}\f$
* @param scale The scale \f$\delta\f$
* @param mq The quark mass \f$m_q\f$.
*/
Energy kinematicCutOff(Energy scale, Energy mq) const
{return max((scale -a_*mq)/b_,c_);}
/**
* The virtualilty cut-off for gluons
*/
Energy vgCut() const { return vgcut_; }
/**
* The virtuality cut-off for everything else
*/
Energy vqCut() const { return vqcut_; }
/**
* The minimum \f$p_T\f$ for the branching
*/
Energy pTmin() const { return pTmin_; }
/**
* The square of the minimum \f$p_T\f$
*/
Energy2 pT2min() const { return pT2min_; }
/**
* Calculate the virtual masses for a branchings
*/
const vector<Energy> & virtualMasses(const IdList & ids);
//@}
/**
* Set the PDF
*/
void setPDF(tcPDFPtr pdf, Energy scale) {
pdf_ = pdf;
freeze_ = scale;
}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
SudakovFormFactor & operator=(const SudakovFormFactor &);
private:
/**
* Pointer to the splitting function for this Sudakov form factor
*/
SplittingFnPtr splittingFn_;
/**
* Pointer to the coupling for this Sudakov form factor
*/
ShowerAlphaPtr alpha_;
/**
* Maximum value of the PDF weight
*/
double pdfmax_;
/**
* List of the particles this Sudakov is used for to aid in setting up
* interpolation tables if needed
*/
vector<IdList> particles_;
/**
* Option for the inclusion of a factor \f$1/(1-z)\f$ in the PDF estimate
*/
unsigned pdffactor_;
private:
/**
* Option for the type of cut-off to be applied
*/
unsigned int cutOffOption_;
/**
* Parameters for the default Herwig cut-off option, i.e. the parameters for
* the \f$Q_g=\max(\frac{\delta-am_q}{b},c)\f$ kinematic cut-off
*/
//@{
/**
* The \f$a\f$ parameter
*/
double a_;
/**
* The \f$b\f$ parameter
*/
double b_;
/**
* The \f$c\f$ parameter
*/
Energy c_;
/**
* Kinematic cutoff used in the parton shower phase space.
*/
Energy kinCutoffScale_;
//@}
/**
* Parameters for the FORTRAN-like cut-off
*/
//@{
/**
* The virtualilty cut-off for gluons
*/
Energy vgcut_;
/**
* The virtuality cut-off for everything else
*/
Energy vqcut_;
//@}
/**
* Parameters for the \f$p_T\f$ cut-off
*/
//@{
/**
* The minimum \f$p_T\f$ for the branching
*/
Energy pTmin_;
/**
* The square of the minimum \f$p_T\f$
*/
Energy2 pT2min_;
//@}
private:
/**
* Member variables to keep the shower kinematics information
* generated by a call to generateNextTimeBranching or generateNextSpaceBranching
*/
//@{
/**
* The energy fraction
*/
double z_;
/**
* The azimuthal angle
*/
double phi_;
/**
* The transverse momentum
*/
Energy pT_;
//@}
/**
* The limits of \f$z\f$ in the splitting
*/
pair<double,double> zlimits_;
/**
* Stuff for the PDFs
*/
//@{
/**
* PDf
*/
tcPDFPtr pdf_;
/**
* Freezing scale
*/
Energy freeze_;
//@}
public:
/**
* Get the factorization scale factor
*/
double factorizationScaleFactor() const { return theFactorizationScaleFactor; }
/**
* Set the factorization scale factor
*/
void factorizationScaleFactor(double f) { theFactorizationScaleFactor = f; }
/**
* Get the renormalization scale factor
*/
double renormalizationScaleFactor() const { return theRenormalizationScaleFactor; }
/**
* Set the renormalization scale factor
*/
void renormalizationScaleFactor(double f) { theRenormalizationScaleFactor = f; }
private:
/**
* The factorization scale factor.
*/
double theFactorizationScaleFactor;
/**
* The renormalization scale factor.
*/
double theRenormalizationScaleFactor;
};
}
#endif /* HERWIG_SudakovFormFactor_H */
diff --git a/Shower/Default/QTildeSudakov.cc b/Shower/Default/QTildeSudakov.cc
--- a/Shower/Default/QTildeSudakov.cc
+++ b/Shower/Default/QTildeSudakov.cc
@@ -1,981 +1,939 @@
// -*- C++ -*-
//
// QTildeSudakov.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the QTildeSudakov class.
//
#include "QTildeSudakov.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/PDT/ParticleData.h"
#include "ThePEG/EventRecord/Event.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Repository/CurrentGenerator.h"
#include "ThePEG/PDT/EnumParticles.h"
#include "Herwig/Shower/Default/FS_QTildeShowerKinematics1to2.h"
#include "Herwig/Shower/Default/IS_QTildeShowerKinematics1to2.h"
#include "Herwig/Shower/Default/Decay_QTildeShowerKinematics1to2.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "Herwig/Shower/Base/ShowerVertex.h"
#include "Herwig/Shower/Base/ShowerParticle.h"
#include "Herwig/Shower/ShowerHandler.h"
#include "Herwig/Shower/Base/Evolver.h"
#include "Herwig/Shower/Base/PartnerFinder.h"
#include "Herwig/Shower/Base/ShowerModel.h"
#include "Herwig/Shower/Base/KinematicsReconstructor.h"
using namespace Herwig;
DescribeNoPIOClass<QTildeSudakov,Herwig::SudakovFormFactor>
describeQTildeSudakov ("Herwig::QTildeSudakov","HwShower.so");
void QTildeSudakov::Init() {
static ClassDocumentation<QTildeSudakov> documentation
("The QTildeSudakov class implements the Sudakov form factor for ordering it"
" qtilde");
}
bool QTildeSudakov::guessTimeLike(Energy2 &t,Energy2 tmin,double enhance) {
Energy2 told = t;
// calculate limits on z and if lower>upper return
if(!computeTimeLikeLimits(t)) return false;
// guess values of t and z
t = guesst(told,0,ids_,enhance,ids_[1]==ids_[2]);
z(guessz(0,ids_));
// actual values for z-limits
if(!computeTimeLikeLimits(t)) return false;
if(t<tmin) {
t=-1.0*GeV2;
return false;
}
else
return true;
}
bool QTildeSudakov::guessSpaceLike(Energy2 &t, Energy2 tmin, const double x,
double enhance) {
Energy2 told = t;
// calculate limits on z if lower>upper return
if(!computeSpaceLikeLimits(t,x)) return false;
// guess values of t and z
t = guesst(told,1,ids_,enhance,ids_[1]==ids_[2]);
z(guessz(1,ids_));
// actual values for z-limits
if(!computeSpaceLikeLimits(t,x)) return false;
if(t<tmin) {
t=-1.0*GeV2;
return false;
}
else
return true;
}
bool QTildeSudakov::PSVeto(const Energy2 t,
const Energy2 maxQ2) {
// still inside PS, return true if outside
// check vs overestimated limits
if(z() < zLimits().first || z() > zLimits().second) return true;
Energy2 q2 = z()*(1.-z())*t;
if(ids_[0]!=ParticleID::g &&
ids_[0]!=ParticleID::gamma ) q2 += masssquared_[0];
if(q2>maxQ2) return true;
// compute the pts
Energy2 pt2 = z()*(1.-z())*q2 - masssquared_[1]*(1.-z()) - masssquared_[2]*z();
// if pt2<0 veto
if(pt2<pT2min()) return true;
// otherwise calculate pt and return
pT(sqrt(pt2));
return false;
}
ShoKinPtr QTildeSudakov::generateNextTimeBranching(const Energy startingScale,
const IdList &ids,const bool cc,
double enhance, Energy2 maxQ2) {
// First reset the internal kinematics variables that can
// have been eventually set in the previous call to the method.
q_ = ZERO;
z(0.);
phi(0.);
// perform initialization
Energy2 tmax(sqr(startingScale)),tmin;
initialize(ids,tmin,cc);
// check max > min
if(tmax<=tmin) return ShoKinPtr();
// calculate next value of t using veto algorithm
Energy2 t(tmax);
do {
if(!guessTimeLike(t,tmin,enhance)) break;
}
while(PSVeto(t,maxQ2) || SplittingFnVeto(z()*(1.-z())*t,ids,true) ||
alphaSVeto(splittingFn()->angularOrdered() ? sqr(z()*(1.-z()))*t : z()*(1.-z())*t));
q_ = t > ZERO ? Energy(sqrt(t)) : -1.*MeV;
if(q_ < ZERO) return ShoKinPtr();
// return the ShowerKinematics object
return createFinalStateBranching(q_,z(),phi(),pT());
}
ShoKinPtr QTildeSudakov::
generateNextSpaceBranching(const Energy startingQ,
const IdList &ids,
double x,bool cc,
double enhance,
Ptr<BeamParticleData>::transient_const_pointer beam) {
// First reset the internal kinematics variables that can
// have been eventually set in the previous call to the method.
q_ = ZERO;
z(0.);
phi(0.);
// perform the initialization
Energy2 tmax(sqr(startingQ)),tmin;
initialize(ids,tmin,cc);
// check max > min
if(tmax<=tmin) return ShoKinPtr();
// extract the partons which are needed for the PDF veto
// Different order, incoming parton is id = 1, outgoing are id=0,2
tcPDPtr parton0 = getParticleData(ids[0]);
tcPDPtr parton1 = getParticleData(ids[1]);
if(cc) {
if(parton0->CC()) parton0 = parton0->CC();
if(parton1->CC()) parton1 = parton1->CC();
}
// calculate next value of t using veto algorithm
Energy2 t(tmax),pt2(ZERO);
do {
if(!guessSpaceLike(t,tmin,x,enhance)) break;
pt2=sqr(1.-z())*t-z()*masssquared_[2];
}
while(z() > zLimits().second ||
SplittingFnVeto((1.-z())*t/z(),ids,true) ||
alphaSVeto(splittingFn()->angularOrdered() ? sqr(1.-z())*t : (1.-z())*t) ||
PDFVeto(t,x,parton0,parton1,beam) || pt2 < pT2min() );
if(t > ZERO && zLimits().first < zLimits().second) q_ = sqrt(t);
else return ShoKinPtr();
pT(sqrt(pt2));
// create the ShowerKinematics and return it
return createInitialStateBranching(q_,z(),phi(),pT());
}
void QTildeSudakov::initialize(const IdList & ids, Energy2 & tmin,const bool cc) {
ids_=ids;
if(cc) {
for(unsigned int ix=0;ix<ids.size();++ix) {
if(getParticleData(ids[ix])->CC()) ids_[ix]*=-1;
}
}
tmin = cutOffOption() != 2 ? ZERO : 4.*pT2min();
masses_ = virtualMasses(ids);
masssquared_.clear();
for(unsigned int ix=0;ix<masses_.size();++ix) {
masssquared_.push_back(sqr(masses_[ix]));
if(ix>0) tmin=max(masssquared_[ix],tmin);
}
}
ShoKinPtr QTildeSudakov::generateNextDecayBranching(const Energy startingScale,
const Energy stoppingScale,
const Energy minmass,
const IdList &ids,
const bool cc,
double enhance) {
// First reset the internal kinematics variables that can
// have been eventually set in the previous call to this method.
q_ = Constants::MaxEnergy;
z(0.);
phi(0.);
// perform initialisation
Energy2 tmax(sqr(stoppingScale)),tmin;
initialize(ids,tmin,cc);
tmin=sqr(startingScale);
// check some branching possible
if(tmax<=tmin) return ShoKinPtr();
// perform the evolution
Energy2 t(tmin),pt2(-MeV2);
do {
if(!guessDecay(t,tmax,minmass,enhance)) break;
pt2 = sqr(1.-z())*(t-masssquared_[0])-z()*masssquared_[2];
}
while(SplittingFnVeto((1.-z())*t/z(),ids,true)||
alphaSVeto(splittingFn()->angularOrdered() ? sqr(1.-z())*t : (1.-z())*t ) ||
pt2<pT2min() ||
t*(1.-z())>masssquared_[0]-sqr(minmass));
if(t > ZERO) {
q_ = sqrt(t);
pT(sqrt(pt2));
}
else return ShoKinPtr();
phi(0.);
// create the ShowerKinematics object
return createDecayBranching(q_,z(),phi(),pT());
}
bool QTildeSudakov::guessDecay(Energy2 &t,Energy2 tmax, Energy minmass,
double enhance) {
// previous scale
Energy2 told = t;
// overestimated limits on z
if(tmax<masssquared_[0]) {
t=-1.0*GeV2;
return false;
}
Energy2 tm2 = tmax-masssquared_[0];
Energy tm = sqrt(tm2);
pair<double,double> limits=make_pair(sqr(minmass/masses_[0]),
1.-sqrt(masssquared_[2]+pT2min()+
0.25*sqr(masssquared_[2])/tm2)/tm
+0.5*masssquared_[2]/tm2);
zLimits(limits);
if(zLimits().second<zLimits().first) {
t=-1.0*GeV2;
return false;
}
// guess values of t and z
t = guesst(told,2,ids_,enhance,ids_[1]==ids_[2]);
z(guessz(2,ids_));
// actual values for z-limits
if(t<masssquared_[0]) {
t=-1.0*GeV2;
return false;
}
tm2 = t-masssquared_[0];
tm = sqrt(tm2);
limits=make_pair(sqr(minmass/masses_[0]),
1.-sqrt(masssquared_[2]+pT2min()+
0.25*sqr(masssquared_[2])/tm2)/tm
+0.5*masssquared_[2]/tm2);
zLimits(limits);
if(t>tmax||zLimits().second<zLimits().first) {
t=-1.0*GeV2;
return false;
}
else
return true;
}
bool QTildeSudakov::computeTimeLikeLimits(Energy2 & t) {
if (t < 1e-20 * GeV2) {
t=-1.*GeV2;
return false;
}
// special case for gluon radiating
pair<double,double> limits;
if(ids_[0]==ParticleID::g||ids_[0]==ParticleID::gamma) {
// no emission possible
if(t<16.*(masssquared_[1]+pT2min())) {
t=-1.*GeV2;
return false;
}
// overestimate of the limits
limits.first = 0.5*(1.-sqrt(1.-4.*sqrt((masssquared_[1]+pT2min())/t)));
limits.second = 1.-limits.first;
}
// special case for radiated particle is gluon
else if(ids_[2]==ParticleID::g||ids_[2]==ParticleID::gamma) {
limits.first = sqrt((masssquared_[1]+pT2min())/t);
limits.second = 1.-sqrt((masssquared_[2]+pT2min())/t);
}
else if(ids_[1]==ParticleID::g||ids_[1]==ParticleID::gamma) {
limits.second = sqrt((masssquared_[2]+pT2min())/t);
limits.first = 1.-sqrt((masssquared_[1]+pT2min())/t);
}
else {
limits.first = (masssquared_[1]+pT2min())/t;
limits.second = 1.-(masssquared_[2]+pT2min())/t;
}
if(limits.first>=limits.second) {
t=-1.*GeV2;
return false;
}
zLimits(limits);
return true;
}
bool QTildeSudakov::computeSpaceLikeLimits(Energy2 & t, double x) {
if (t < 1e-20 * GeV2) {
t=-1.*GeV2;
return false;
}
pair<double,double> limits;
// compute the limits
limits.first = x;
double yy = 1.+0.5*masssquared_[2]/t;
limits.second = yy - sqrt(sqr(yy)-1.+pT2min()/t);
// return false if lower>upper
zLimits(limits);
if(limits.second<limits.first) {
t=-1.*GeV2;
return false;
}
else
return true;
}
namespace {
tShowerParticlePtr findCorrelationPartner(ShowerParticle & particle,
bool forward,
ShowerInteraction::Type inter) {
tPPtr child = &particle;
tShowerParticlePtr mother;
if(forward) {
mother = !particle.parents().empty() ?
dynamic_ptr_cast<tShowerParticlePtr>(particle.parents()[0]) : tShowerParticlePtr();
}
else {
mother = particle.children().size()==2 ?
dynamic_ptr_cast<tShowerParticlePtr>(&particle) : tShowerParticlePtr();
}
tShowerParticlePtr partner;
while(mother) {
tPPtr otherChild;
if(forward) {
for (unsigned int ix=0;ix<mother->children().size();++ix) {
if(mother->children()[ix]!=child) {
otherChild = mother->children()[ix];
break;
}
}
}
else {
otherChild = mother->children()[1];
}
tShowerParticlePtr other = dynamic_ptr_cast<tShowerParticlePtr>(otherChild);
if((inter==ShowerInteraction::QCD && otherChild->dataPtr()->coloured()) ||
(inter==ShowerInteraction::QED && otherChild->dataPtr()->charged())) {
partner = other;
break;
}
if(forward && !other->isFinalState()) {
partner = dynamic_ptr_cast<tShowerParticlePtr>(mother);
break;
}
child = mother;
if(forward) {
mother = ! mother->parents().empty() ?
dynamic_ptr_cast<tShowerParticlePtr>(mother->parents()[0]) : tShowerParticlePtr();
}
else {
if(mother->children()[0]->children().size()!=2)
break;
tShowerParticlePtr mtemp =
dynamic_ptr_cast<tShowerParticlePtr>(mother->children()[0]);
if(!mtemp)
break;
else
mother=mtemp;
}
}
if(!partner) {
if(forward) {
partner = dynamic_ptr_cast<tShowerParticlePtr>( child)->partner();
}
else {
if(mother) {
tShowerParticlePtr parent;
if(!mother->children().empty()) {
parent = dynamic_ptr_cast<tShowerParticlePtr>(mother->children()[0]);
}
if(!parent) {
parent = dynamic_ptr_cast<tShowerParticlePtr>(mother);
}
partner = parent->partner();
}
else {
partner = dynamic_ptr_cast<tShowerParticlePtr>(&particle)->partner();
}
}
}
return partner;
}
pair<double,double> softPhiMin(double phi0, double phi1, double A, double B, double C, double D) {
double c01 = cos(phi0 - phi1);
double s01 = sin(phi0 - phi1);
double s012(sqr(s01)), c012(sqr(c01));
double A2(A*A), B2(B*B), C2(C*C), D2(D*D);
if(abs(B/A)<1e-10 && abs(D/C)<1e-10) return make_pair(phi0,phi0+Constants::pi);
double root = sqr(B2)*C2*D2*sqr(s012) + 2.*A*B2*B*C2*C*D*c01*s012 + 2.*A*B2*B*C*D2*D*c01*s012
+ 4.*A2*B2*C2*D2*c012 - A2*B2*C2*D2*s012 - A2*B2*sqr(D2)*s012 - sqr(B2)*sqr(C2)*s012
- sqr(B2)*C2*D2*s012 - 4.*A2*A*B*C*D2*D*c01 - 4.*A*B2*B*C2*C*D*c01 + sqr(A2)*sqr(D2)
+ 2.*A2*B2*C2*D2 + sqr(B2)*sqr(C2);
if(root<0.) return make_pair(phi0,phi0+Constants::pi);
root = sqrt(root);
double denom = (-2.*A*B*C*D*c01 + A2*D2 + B2*C2);
double denom2 = (-B*C*c01 + A*D);
double num = B2*C*D*s012;
return make_pair(atan2(B*s01*(-C*(num + root) / denom + D) / denom2, -(num + root ) / denom) + phi0,
atan2(B*s01*(-C*(num - root) / denom + D) / denom2, -(num - root ) / denom) + phi0);
}
}
double QTildeSudakov::generatePhiForward(ShowerParticle & particle,
const IdList & ids,
ShoKinPtr kinematics) {
// no correlations, return flat phi
if(! ShowerHandler::currentHandler()->evolver()->correlations())
return Constants::twopi*UseRandom::rnd();
// get the kinematic variables
double z = kinematics->z();
Energy2 t = z*(1.-z)*sqr(kinematics->scale());
Energy pT = kinematics->pT();
// if soft correlations
Energy2 pipj,pik;
bool canBeSoft[2] = {ids[1]==ParticleID::g || ids[1]==ParticleID::gamma,
ids[2]==ParticleID::g || ids[2]==ParticleID::gamma };
vector<Energy2> pjk(3,ZERO);
vector<Energy> Ek(3,ZERO);
Energy Ei,Ej;
Energy2 m12(ZERO),m22(ZERO);
InvEnergy2 aziMax(ZERO);
bool softAllowed = ShowerHandler::currentHandler()->evolver()->softCorrelations()&&
(canBeSoft[0] || canBeSoft[1]);
if(softAllowed) {
// find the partner for the soft correlations
tShowerParticlePtr partner=findCorrelationPartner(particle,true,splittingFn()->interactionType());
// remember we want the softer gluon
bool swapOrder = !canBeSoft[1] || (canBeSoft[0] && canBeSoft[1] && z < 0.5);
double zFact = !swapOrder ? (1.-z) : z;
// compute the transforms to the shower reference frame
// first the boost
vector<Lorentz5Momentum> basis = kinematics->getBasis();
Lorentz5Momentum pVect = basis[0], nVect = basis[1];
Boost beta_bb;
if(kinematics->frame()==ShowerKinematics::BackToBack) {
beta_bb = -(pVect + nVect).boostVector();
}
else if(kinematics->frame()==ShowerKinematics::Rest) {
beta_bb = -pVect.boostVector();
}
else
assert(false);
pVect.boost(beta_bb);
nVect.boost(beta_bb);
Axis axis;
if(kinematics->frame()==ShowerKinematics::BackToBack) {
axis = pVect.vect().unit();
}
else if(kinematics->frame()==ShowerKinematics::Rest) {
axis = nVect.vect().unit();
}
else
assert(false);
// and then the rotation
LorentzRotation rot;
if(axis.perp2()>0.) {
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
rot.rotate(acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
}
else if(axis.z()<0.) {
rot.rotate(Constants::pi,Axis(1.,0.,0.));
}
rot.invert();
pVect *= rot;
nVect *= rot;
// shower parameters
Energy2 pn = pVect*nVect, m2 = pVect.m2();
double alpha0 = particle.showerParameters().alpha;
double beta0 = 0.5/alpha0/pn*
(sqr(particle.dataPtr()->mass())-sqr(alpha0)*m2+sqr(particle.showerParameters().pt));
Lorentz5Momentum qperp0(particle.showerParameters().ptx,
particle.showerParameters().pty,ZERO,ZERO);
assert(partner);
Lorentz5Momentum pj = partner->momentum();
pj.boost(beta_bb);
pj *= rot;
// compute the two phi independent dot products
pik = 0.5*zFact*(sqr(alpha0)*m2 - sqr(particle.showerParameters().pt) + 2.*alpha0*beta0*pn )
+0.5*sqr(pT)/zFact;
Energy2 dot1 = pj*pVect;
Energy2 dot2 = pj*nVect;
Energy2 dot3 = pj*qperp0;
pipj = alpha0*dot1+beta0*dot2+dot3;
// compute the constants for the phi dependent dot product
pjk[0] = zFact*(alpha0*dot1+dot3-0.5*dot2/pn*(alpha0*m2-sqr(particle.showerParameters().pt)/alpha0))
+0.5*sqr(pT)*dot2/pn/zFact/alpha0;
pjk[1] = (pj.x() - dot2/alpha0/pn*qperp0.x())*pT;
pjk[2] = (pj.y() - dot2/alpha0/pn*qperp0.y())*pT;
m12 = sqr(particle.dataPtr()->mass());
m22 = sqr(partner->dataPtr()->mass());
if(swapOrder) {
pjk[1] *= -1.;
pjk[2] *= -1.;
}
Ek[0] = zFact*(alpha0*pVect.t()-0.5*nVect.t()/pn*(alpha0*m2-sqr(particle.showerParameters().pt)/alpha0))
+0.5*sqr(pT)*nVect.t()/pn/zFact/alpha0;
Ek[1] = -nVect.t()/alpha0/pn*qperp0.x()*pT;
Ek[2] = -nVect.t()/alpha0/pn*qperp0.y()*pT;
if(swapOrder) {
Ek[1] *= -1.;
Ek[2] *= -1.;
}
Energy mag2=sqrt(sqr(Ek[1])+sqr(Ek[2]));
Ei = alpha0*pVect.t()+beta0*nVect.t();
Ej = pj.t();
double phi0 = atan2(-pjk[2],-pjk[1]);
if(phi0<0.) phi0 += Constants::twopi;
double phi1 = atan2(-Ek[2],-Ek[1]);
if(phi1<0.) phi1 += Constants::twopi;
double xi_min = pik/Ei/(Ek[0]+mag2), xi_max = pik/Ei/(Ek[0]-mag2), xi_ij = pipj/Ei/Ej;
if(xi_min>xi_max) swap(xi_min,xi_max);
if(xi_min>xi_ij) softAllowed = false;
Energy2 mag = sqrt(sqr(pjk[1])+sqr(pjk[2]));
if(ShowerHandler::currentHandler()->evolver()->softCorrelations()==1) {
aziMax = -m12/sqr(pik) -m22/sqr(pjk[0]+mag) +2.*pipj/pik/(pjk[0]-mag);
}
else if(ShowerHandler::currentHandler()->evolver()->softCorrelations()==2) {
double A = (pipj*Ek[0]- Ej*pik)/Ej/sqr(Ej);
double B = -sqrt(sqr(pipj)*(sqr(Ek[1])+sqr(Ek[2])))/Ej/sqr(Ej);
double C = pjk[0]/sqr(Ej);
double D = -sqrt(sqr(pjk[1])+sqr(pjk[2]))/sqr(Ej);
pair<double,double> minima = softPhiMin(phi0,phi1,A,B,C,D);
aziMax = 0.5/pik/(Ek[0]-mag2)*(Ei-m12*(Ek[0]-mag2)/pik + max(Ej*(A+B*cos(minima.first -phi1))/(C+D*cos(minima.first -phi0)),
Ej*(A+B*cos(minima.second-phi1))/(C+D*cos(minima.second-phi0))));
}
else
assert(false);
}
// if spin correlations
vector<pair<int,Complex> > wgts;
if(ShowerHandler::currentHandler()->evolver()->spinCorrelations()) {
- // get the spin density matrix and the mapping
- RhoDMatrix mapping;
- SpinPtr inspin;
- bool needMapping = getMapping(inspin,mapping,particle,kinematics);
- // set the decayed flag
- inspin->decay();
- // get the spin density matrix
- RhoDMatrix rho=inspin->rhoMatrix();
- // map to the shower basis if needed
- if(needMapping) {
- RhoDMatrix rhop(rho.iSpin(),false);
- for(int ixa=0;ixa<rho.iSpin();++ixa) {
- for(int ixb=0;ixb<rho.iSpin();++ixb) {
- for(int iya=0;iya<rho.iSpin();++iya) {
- for(int iyb=0;iyb<rho.iSpin();++iyb) {
- rhop(ixa,ixb) += rho(iya,iyb)*mapping(iya,ixa)*conj(mapping(iyb,ixb));
- }
- }
- }
- }
- rhop.normalize();
- rho = rhop;
- }
+ RhoDMatrix rho = extractRhoMatrix(particle,kinematics,true);
// calculate the weights
wgts = splittingFn()->generatePhiForward(z,t,ids,rho);
}
else {
wgts = vector<pair<int,Complex> >(1,make_pair(0,1.));
}
// generate the azimuthal angle
double phi,wgt;
static const Complex ii(0.,1.);
unsigned int ntry(0);
double phiMax(0.),wgtMax(0.);
do {
phi = Constants::twopi*UseRandom::rnd();
// first the spin correlations bit (gives 1 if correlations off)
Complex spinWgt = 0.;
for(unsigned int ix=0;ix<wgts.size();++ix) {
if(wgts[ix].first==0)
spinWgt += wgts[ix].second;
else
spinWgt += exp(double(wgts[ix].first)*ii*phi)*wgts[ix].second;
}
wgt = spinWgt.real();
if(wgt-1.>1e-10) {
generator()->log() << "Forward spin weight problem " << wgt << " " << wgt-1.
<< " " << ids[0] << " " << ids[1] << " " << ids[2] << " " << " " << phi << "\n";
generator()->log() << "Weights \n";
for(unsigned int ix=0;ix<wgts.size();++ix)
generator()->log() << wgts[ix].first << " " << wgts[ix].second << "\n";
}
// soft correlations bit
double aziWgt = 1.;
if(softAllowed) {
Energy2 dot = pjk[0]+pjk[1]*cos(phi)+pjk[2]*sin(phi);
Energy Eg = Ek[0]+Ek[1]*cos(phi)+Ek[2]*sin(phi);
if(pipj*Eg>pik*Ej) {
if(ShowerHandler::currentHandler()->evolver()->softCorrelations()==1) {
aziWgt = (-m12/sqr(pik) -m22/sqr(dot) +2.*pipj/pik/dot)/aziMax;
}
else if(ShowerHandler::currentHandler()->evolver()->softCorrelations()==2) {
aziWgt = max(ZERO,0.5/pik/Eg*(Ei-m12*Eg/pik + (pipj*Eg - Ej*pik)/dot)/aziMax);
}
if(aziWgt-1.>1e-10||aziWgt<-1e-10) {
generator()->log() << "Forward soft weight problem " << aziWgt << " " << aziWgt-1.
<< " " << ids[0] << " " << ids[1] << " " << ids[2] << " " << " " << phi << "\n";
}
}
else {
aziWgt = 0.;
}
}
wgt *= aziWgt;
if(wgt>wgtMax) {
phiMax = phi;
wgtMax = wgt;
}
++ntry;
}
while(wgt<UseRandom::rnd()&&ntry<10000);
if(ntry==10000) {
generator()->log() << "Too many tries to generate phi in forward evolution\n";
phi = phiMax;
}
// return the azimuthal angle
return phi;
}
double QTildeSudakov::generatePhiBackward(ShowerParticle & particle,
const IdList & ids,
ShoKinPtr kinematics) {
// no correlations, return flat phi
if(! ShowerHandler::currentHandler()->evolver()->correlations())
return Constants::twopi*UseRandom::rnd();
// get the kinematic variables
double z = kinematics->z();
Energy2 t = (1.-z)*sqr(kinematics->scale())/z;
Energy pT = kinematics->pT();
// if soft correlations
bool softAllowed = ShowerHandler::currentHandler()->evolver()->softCorrelations() &&
(ids[2]==ParticleID::g || ids[2]==ParticleID::gamma);
Energy2 pipj,pik,m12(ZERO),m22(ZERO);
vector<Energy2> pjk(3,ZERO);
Energy Ei,Ej,Ek;
InvEnergy2 aziMax(ZERO);
if(softAllowed) {
// find the partner for the soft correlations
tShowerParticlePtr partner=findCorrelationPartner(particle,false,splittingFn()->interactionType());
double zFact = (1.-z);
// compute the transforms to the shower reference frame
// first the boost
vector<Lorentz5Momentum> basis = kinematics->getBasis();
Lorentz5Momentum pVect = basis[0];
Lorentz5Momentum nVect = basis[1];
assert(kinematics->frame()==ShowerKinematics::BackToBack);
Boost beta_bb = -(pVect + nVect).boostVector();
pVect.boost(beta_bb);
nVect.boost(beta_bb);
Axis axis = pVect.vect().unit();
// and then the rotation
LorentzRotation rot;
if(axis.perp2()>0.) {
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
rot.rotate(acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
}
else if(axis.z()<0.) {
rot.rotate(Constants::pi,Axis(1.,0.,0.));
}
rot.invert();
pVect *= rot;
nVect *= rot;
// shower parameters
Energy2 pn = pVect*nVect;
Energy2 m2 = pVect.m2();
double alpha0 = particle.x();
double beta0 = -0.5/alpha0/pn*sqr(alpha0)*m2;
Lorentz5Momentum pj = partner->momentum();
pj.boost(beta_bb);
pj *= rot;
double beta2 = 0.5*(1.-zFact)*(sqr(alpha0*zFact/(1.-zFact))*m2+sqr(pT))/alpha0/zFact/pn;
// compute the two phi independent dot products
Energy2 dot1 = pj*pVect;
Energy2 dot2 = pj*nVect;
pipj = alpha0*dot1+beta0*dot2;
pik = alpha0*(alpha0*zFact/(1.-zFact)*m2+pn*(beta2+zFact/(1.-zFact)*beta0));
// compute the constants for the phi dependent dot product
pjk[0] = alpha0*zFact/(1.-zFact)*dot1+beta2*dot2;
pjk[1] = pj.x()*pT;
pjk[2] = pj.y()*pT;
m12 = ZERO;
m22 = sqr(partner->dataPtr()->mass());
Energy2 mag = sqrt(sqr(pjk[1])+sqr(pjk[2]));
if(ShowerHandler::currentHandler()->evolver()->softCorrelations()==1) {
aziMax = -m12/sqr(pik) -m22/sqr(pjk[0]+mag) +2.*pipj/pik/(pjk[0]-mag);
}
else if(ShowerHandler::currentHandler()->evolver()->softCorrelations()==2) {
Ek = alpha0*zFact/(1.-zFact)*pVect.t()+beta2*nVect.t();
Ei = alpha0*pVect.t()+beta0*nVect.t();
Ej = pj.t();
if(pipj*Ek> Ej*pik) {
aziMax = 0.5/pik/Ek*(Ei-m12*Ek/pik + (pipj*Ek- Ej*pik)/(pjk[0]-mag));
}
else {
aziMax = 0.5/pik/Ek*(Ei-m12*Ek/pik);
}
}
else {
assert(ShowerHandler::currentHandler()->evolver()->softCorrelations()==0);
}
}
// if spin correlations
vector<pair<int,Complex> > wgts;
if(ShowerHandler::currentHandler()->evolver()->spinCorrelations()) {
// get the spin density matrix and the mapping
- RhoDMatrix mapping;
- SpinPtr inspin;
- bool needMapping = getMapping(inspin,mapping,particle,kinematics);
- // set the decayed flag (counterintuitive but going backward)
- inspin->decay();
- // get the spin density matrix
- RhoDMatrix rho=inspin->DMatrix();
- // map to the shower basis if needed
- if(needMapping) {
- RhoDMatrix rhop(rho.iSpin(),false);
- for(int ixa=0;ixa<rho.iSpin();++ixa) {
- for(int ixb=0;ixb<rho.iSpin();++ixb) {
- for(int iya=0;iya<rho.iSpin();++iya) {
- for(int iyb=0;iyb<rho.iSpin();++iyb) {
- rhop(ixa,ixb) += rho(iya,iyb)*mapping(iya,ixa)*conj(mapping(iyb,ixb));
- }
- }
- }
- }
- rhop.normalize();
- rho = rhop;
- }
+ RhoDMatrix rho = extractRhoMatrix(particle,kinematics,false);
+ // get the weights
wgts = splittingFn()->generatePhiBackward(z,t,ids,rho);
}
else {
wgts = vector<pair<int,Complex> >(1,make_pair(0,1.));
}
// generate the azimuthal angle
double phi,wgt;
static const Complex ii(0.,1.);
unsigned int ntry(0);
double phiMax(0.),wgtMax(0.);
do {
phi = Constants::twopi*UseRandom::rnd();
Complex spinWgt = 0.;
for(unsigned int ix=0;ix<wgts.size();++ix) {
if(wgts[ix].first==0)
spinWgt += wgts[ix].second;
else
spinWgt += exp(double(wgts[ix].first)*ii*phi)*wgts[ix].second;
}
wgt = spinWgt.real();
if(wgt-1.>1e-10) {
generator()->log() << "Backward weight problem " << wgt << " " << wgt-1.
<< " " << ids[0] << " " << ids[1] << " " << ids[2] << " " << " " << z << " " << phi << "\n";
generator()->log() << "Weights \n";
for(unsigned int ix=0;ix<wgts.size();++ix)
generator()->log() << wgts[ix].first << " " << wgts[ix].second << "\n";
}
// soft correlations bit
double aziWgt = 1.;
if(softAllowed) {
Energy2 dot = pjk[0]+pjk[1]*cos(phi)+pjk[2]*sin(phi);
if(ShowerHandler::currentHandler()->evolver()->softCorrelations()==1) {
aziWgt = (-m12/sqr(pik) -m22/sqr(dot) +2.*pipj/pik/dot)/aziMax;
}
else if(ShowerHandler::currentHandler()->evolver()->softCorrelations()==2) {
aziWgt = max(ZERO,0.5/pik/Ek*(Ei-m12*Ek/pik + pipj*Ek/dot - Ej*pik/dot)/aziMax);
}
if(aziWgt-1.>1e-10||aziWgt<-1e-10) {
generator()->log() << "Backward soft weight problem " << aziWgt << " " << aziWgt-1.
<< " " << ids[0] << " " << ids[1] << " " << ids[2] << " " << " " << phi << "\n";
}
}
wgt *= aziWgt;
if(wgt>wgtMax) {
phiMax = phi;
wgtMax = wgt;
}
++ntry;
}
while(wgt<UseRandom::rnd()&&ntry<10000);
if(ntry==10000) {
generator()->log() << "Too many tries to generate phi in backward evolution\n";
phi = phiMax;
}
// return the azimuthal angle
return phi;
}
double QTildeSudakov::generatePhiDecay(ShowerParticle & particle,
const IdList & ids,
ShoKinPtr kinematics) {
// only soft correlations in this case
// no correlations, return flat phi
if( !(ShowerHandler::currentHandler()->evolver()->softCorrelations() &&
(ids[2]==ParticleID::g || ids[2]==ParticleID::gamma )))
return Constants::twopi*UseRandom::rnd();
// get the kinematic variables
double z = kinematics->z();
Energy pT = kinematics->pT();
// if soft correlations
// find the partner for the soft correlations
tShowerParticlePtr partner = findCorrelationPartner(particle,true,splittingFn()->interactionType());
double zFact(1.-z);
vector<Lorentz5Momentum> basis = kinematics->getBasis();
// compute the transforms to the shower reference frame
// first the boost
Lorentz5Momentum pVect = basis[0];
Lorentz5Momentum nVect = basis[1];
assert(kinematics->frame()==ShowerKinematics::Rest);
Boost beta_bb = -pVect.boostVector();
pVect.boost(beta_bb);
nVect.boost(beta_bb);
Axis axis = nVect.vect().unit();
// and then the rotation
LorentzRotation rot;
if(axis.perp2()>0.) {
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
rot.rotate(acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
}
else if(axis.z()<0.) {
rot.rotate(Constants::pi,Axis(1.,0.,0.));
}
rot.invert();
pVect *= rot;
nVect *= rot;
// shower parameters
Energy2 pn = pVect*nVect;
Energy2 m2 = pVect.m2();
double alpha0 = particle.showerParameters().alpha;
double beta0 = 0.5/alpha0/pn*
(sqr(particle.dataPtr()->mass())-sqr(alpha0)*m2+sqr(particle.showerParameters().pt));
Lorentz5Momentum qperp0(particle.showerParameters().ptx,
particle.showerParameters().pty,ZERO,ZERO);
Lorentz5Momentum pj = partner->momentum();
pj.boost(beta_bb);
pj *= rot;
// compute the two phi independent dot products
Energy2 pik = 0.5*zFact*(sqr(alpha0)*m2 - sqr(particle.showerParameters().pt) + 2.*alpha0*beta0*pn )
+0.5*sqr(pT)/zFact;
Energy2 dot1 = pj*pVect;
Energy2 dot2 = pj*nVect;
Energy2 dot3 = pj*qperp0;
Energy2 pipj = alpha0*dot1+beta0*dot2+dot3;
// compute the constants for the phi dependent dot product
vector<Energy2> pjk(3,ZERO);
pjk[0] = zFact*(alpha0*dot1+dot3-0.5*dot2/pn*(alpha0*m2-sqr(particle.showerParameters().pt)/alpha0))
+0.5*sqr(pT)*dot2/pn/zFact/alpha0;
pjk[1] = (pj.x() - dot2/alpha0/pn*qperp0.x())*pT;
pjk[2] = (pj.y() - dot2/alpha0/pn*qperp0.y())*pT;
Energy2 m12 = sqr(particle.dataPtr()->mass());
Energy2 m22 = sqr(partner->dataPtr()->mass());
Energy2 mag = sqrt(sqr(pjk[1])+sqr(pjk[2]));
InvEnergy2 aziMax;
vector<Energy> Ek(3,ZERO);
Energy Ei,Ej;
if(ShowerHandler::currentHandler()->evolver()->softCorrelations()==1) {
aziMax = -m12/sqr(pik) -m22/sqr(pjk[0]+mag) +2.*pipj/pik/(pjk[0]-mag);
}
else if(ShowerHandler::currentHandler()->evolver()->softCorrelations()==2) {
Ek[0] = zFact*(alpha0*pVect.t()+-0.5*nVect.t()/pn*(alpha0*m2-sqr(particle.showerParameters().pt)/alpha0))
+0.5*sqr(pT)*nVect.t()/pn/zFact/alpha0;
Ek[1] = -nVect.t()/alpha0/pn*qperp0.x()*pT;
Ek[2] = -nVect.t()/alpha0/pn*qperp0.y()*pT;
Energy mag2=sqrt(sqr(Ek[1])+sqr(Ek[2]));
Ei = alpha0*pVect.t()+beta0*nVect.t();
Ej = pj.t();
aziMax = 0.5/pik/(Ek[0]-mag2)*(Ei-m12*(Ek[0]-mag2)/pik + pipj*(Ek[0]+mag2)/(pjk[0]-mag) - Ej*pik/(pjk[0]-mag) );
}
else
assert(ShowerHandler::currentHandler()->evolver()->softCorrelations()==0);
// generate the azimuthal angle
double phi,wgt(0.);
unsigned int ntry(0);
double phiMax(0.),wgtMax(0.);
do {
phi = Constants::twopi*UseRandom::rnd();
Energy2 dot = pjk[0]+pjk[1]*cos(phi)+pjk[2]*sin(phi);
if(ShowerHandler::currentHandler()->evolver()->softCorrelations()==1) {
wgt = (-m12/sqr(pik) -m22/sqr(dot) +2.*pipj/pik/dot)/aziMax;
}
else if(ShowerHandler::currentHandler()->evolver()->softCorrelations()==2) {
if(qperp0.m2()==ZERO) {
wgt = 1.;
}
else {
Energy Eg = Ek[0]+Ek[1]*cos(phi)+Ek[2]*sin(phi);
wgt = max(ZERO,0.5/pik/Eg*(Ei-m12*Eg/pik + (pipj*Eg - Ej*pik)/dot)/aziMax);
}
}
if(wgt-1.>1e-10||wgt<-1e-10) {
generator()->log() << "Decay soft weight problem " << wgt << " " << wgt-1.
<< " " << ids[0] << " " << ids[1] << " " << ids[2] << " " << " " << phi << "\n";
}
if(wgt>wgtMax) {
phiMax = phi;
wgtMax = wgt;
}
++ntry;
}
while(wgt<UseRandom::rnd()&&ntry<10000);
if(ntry==10000) {
phi = phiMax;
generator()->log() << "Too many tries to generate phi\n";
}
// return the azimuthal angle
return phi;
}
Energy QTildeSudakov::calculateScale(double zin, Energy pt, IdList ids,
unsigned int iopt) {
Energy2 tmin;
initialize(ids,tmin,false);
// final-state branching
if(iopt==0) {
Energy2 scale=(sqr(pt)+masssquared_[1]*(1.-zin)+masssquared_[2]*zin);
if(ids[0]!=ParticleID::g) scale -= zin*(1.-zin)*masssquared_[0];
scale /= sqr(zin*(1-zin));
return scale<=ZERO ? sqrt(tmin) : sqrt(scale);
}
else if(iopt==1) {
Energy2 scale=(sqr(pt)+zin*masssquared_[2])/sqr(1.-zin);
return scale<=ZERO ? sqrt(tmin) : sqrt(scale);
}
else if(iopt==2) {
Energy2 scale = (sqr(pt)+zin*masssquared_[2])/sqr(1.-zin)+masssquared_[0];
return scale<=ZERO ? sqrt(tmin) : sqrt(scale);
}
else {
throw Exception() << "Unknown option in QTildeSudakov::calculateScale() "
<< "iopt = " << iopt << Exception::runerror;
}
}
ShoKinPtr QTildeSudakov::createFinalStateBranching(Energy scale,double z,
double phi, Energy pt) {
ShoKinPtr showerKin = new_ptr(FS_QTildeShowerKinematics1to2());
showerKin->scale(scale);
showerKin->z(z);
showerKin->phi(phi);
showerKin->pT(pt);
showerKin->SudakovFormFactor(this);
return showerKin;
}
ShoKinPtr QTildeSudakov::createInitialStateBranching(Energy scale,double z,
double phi, Energy pt) {
ShoKinPtr showerKin = new_ptr(IS_QTildeShowerKinematics1to2());
showerKin->scale(scale);
showerKin->z(z);
showerKin->phi(phi);
showerKin->pT(pt);
showerKin->SudakovFormFactor(this);
return showerKin;
}
ShoKinPtr QTildeSudakov::createDecayBranching(Energy scale,double z,
double phi, Energy pt) {
ShoKinPtr showerKin = new_ptr(Decay_QTildeShowerKinematics1to2());
showerKin->scale(scale);
showerKin->z(z);
showerKin->phi(phi);
showerKin->pT(pt);
showerKin->SudakovFormFactor(this);
return showerKin;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 8:31 PM (1 d, 5 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3806046
Default Alt Text
(77 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment