Page MenuHomeHEPForge

No OneTemporary

diff --git a/Exsample2/exsample/exponential_generator.icc b/Exsample2/exsample/exponential_generator.icc
--- a/Exsample2/exsample/exponential_generator.icc
+++ b/Exsample2/exsample/exponential_generator.icc
@@ -1,377 +1,378 @@
// -*- C++ -*-
//
// exponential_generator.icc is part of ExSample -- A Library for Sampling Sudakov-Type Distributions
//
// Copyright (C) 2008-2011 Simon Platzer -- simon.plaetzer@desy.de
//
// ExSample is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
namespace exsample {
template<class Function, class Random>
void exponential_generator<Function,Random>::initialize() {
adaption_info_.dimension = function_->dimension();
adaption_info_.lower_left = function_->support().first;
adaption_info_.upper_right = function_->support().second;
if (adaption_info_.adapt.empty())
adaption_info_.adapt = std::vector<bool>(adaption_info_.dimension,true);
evolution_variable_ = function_->evolution_variable();
evolution_cutoff_ = function_->evolution_cutoff();
sample_variables_ = function_->variable_flags();
sample_other_variables_ = sample_variables_;
sample_other_variables_[evolution_variable_] = false;
last_point_.resize(adaption_info_.dimension);
parametric_selector_ = parametric_selector(&last_point_,sample_other_variables_);
exponent_selector_ = parametric_selector(&last_point_,sample_variables_);
missing_accessor_ = parametric_missing_accessor(&last_parameter_bin_);
parametric_sampler_ = parametric_sampling_selector<rnd_generator<Random> >
(&last_point_,&last_parameter_bin_,sample_other_variables_,rnd_gen_);
if (initialized_) return;
splits_ = 0;
for ( std::size_t k = 0; k < adaption_info_.dimension; ++k ) {
if ( sample_other_variables_[k] )
continue;
parameter_splits_[k].push_back(adaption_info_.lower_left[k]);
parameter_splits_[k].push_back(adaption_info_.upper_right[k]);
}
root_cell_ =
binary_tree<cell>(cell(adaption_info_.lower_left,
adaption_info_.upper_right,
sample_other_variables_,
adaption_info_));
root_cell_.value().info().explore(rnd_gen_,adaption_info_,function_);
root_cell_.value().integral(root_cell_.value().info().volume() * root_cell_.value().info().overestimate());
last_exponent_integrand_.resize(1);
check_events_ = adaption_info_.presampling_points;
initialized_ = true;
}
template<class Function, class Random>
bool exponential_generator<Function,Random>::split () {
if (adaption_info_.freeze_grid == accepts_)
return false;
if (compensating_)
return false;
if (!(*last_cell_).info().bad(adaption_info_)) return false;
bool dosplit = false;
std::pair<std::size_t,double> sp =
(*last_cell_).info().get_split(adaption_info_,dosplit);
if (!dosplit) return false;
if (!adaption_info_.adapt[sp.first]) return false;
if (splits_ == parameter_hash_bits/2)
return false;
++splits_;
last_cell_.node().split((*last_cell_).split(sp,rnd_gen_,function_,adaption_info_,sample_other_variables_));
if ( !sample_other_variables_[sp.first] ) {
if ( std::find(parameter_splits_[sp.first].begin(),parameter_splits_[sp.first].end(),sp.second)
== parameter_splits_[sp.first].end() ) {
parameter_splits_[sp.first].push_back(sp.second);
std::sort(parameter_splits_[sp.first].begin(),parameter_splits_[sp.first].end());
if ( sp.first == evolution_variable_ ) {
last_exponent_integrand_.push_back(0.);
}
}
}
did_split_ = true;
last_point_ = function_->parameter_point();
root_cell_.tree_accumulate(parametric_selector_,integral_accessor_,std::plus<double>());
exponents_.clear();
get_exponent();
return true;
}
template<class Function, class Random>
void exponential_generator<Function,Random>::get_exponent () {
last_parameter_bin_.reset();
root_cell_.subtree_hash (exponent_selector_,last_parameter_bin_);
last_exponent_ = exponents_.find(last_parameter_bin_);
if (last_exponent_ != exponents_.end())
return;
exponents_[last_parameter_bin_] = linear_interpolator();
last_exponent_ = exponents_.find(last_parameter_bin_);
double old_evo = last_point_[evolution_variable_];
std::vector<double>::iterator exp_it = last_exponent_integrand_.begin();
for (std::vector<double>::iterator esp = parameter_splits_[evolution_variable_].begin();
esp < prior(parameter_splits_[evolution_variable_].end()); ++esp, ++exp_it) {
last_point_[evolution_variable_] = (*esp + *next(esp))/2.;
*exp_it = root_cell_.accumulate(parametric_selector_,integral_accessor_,std::plus<double>());
}
exp_it = prior(last_exponent_integrand_.end());
double total = 0.;
for (std::vector<double>::iterator esp = prior(parameter_splits_[evolution_variable_].end());
esp > parameter_splits_[evolution_variable_].begin(); --esp, --exp_it) {
last_exponent_->second.set_interpolation(*esp,total);
total += (*exp_it) * ((*esp) - (*prior(esp)));
}
last_exponent_->second.set_interpolation(parameter_splits_[evolution_variable_].front(),total);
last_point_[evolution_variable_] = old_evo;
}
template<class Function, class Random>
std::set<std::vector<double> >
exponential_generator<Function,Random>::parameter_points() {
std::set<std::vector<double> > res;
std::vector<double> pt(adaption_info_.dimension,0.);
recursive_parameter_points(res,pt,0);
return res;
}
template<class Function, class Random>
void exponential_generator<Function,Random>::
recursive_parameter_points(std::set<std::vector<double> >& res,
std::vector<double>& pt,
size_t current) {
if ( current == adaption_info_.dimension ) {
res.insert(pt);
return;
}
if ( sample_variables_[current] ) {
recursive_parameter_points(res,pt,current+1);
return;
}
for ( std::vector<double>::const_iterator sp =
parameter_splits_[current].begin();
sp != prior(parameter_splits_[current].end()); ++sp ) {
pt[current] = (*sp + *next(sp))/2.;
recursive_parameter_points(res,pt,current+1);
}
}
template<class Function, class Random>
void exponential_generator<Function,Random>::compensate() {
if (!did_split_) {
exponents_.clear();
root_cell_.value().info().overestimate(last_value_,last_point_);
root_cell_.value().integral(root_cell_.value().info().volume() * root_cell_.value().info().overestimate());
last_point_ = function_->parameter_point();
get_exponent();
return;
}
std::vector<double> themaxpoint = last_point_;
std::set<std::vector<double> > id_points
= parameter_points();
for ( std::set<std::vector<double> >::const_iterator id =
id_points.begin(); id != id_points.end(); ++id ) {
last_point_ = *id;
get_exponent();
}
std::map<bit_container<parameter_hash_bits>,linear_interpolator >
old_exponents = exponents_;
double old_oe = last_cell_->info().overestimate();
last_cell_->info().overestimate(last_value_,themaxpoint);
last_cell_->integral(last_cell_->info().volume() * last_cell_->info().overestimate());
exponents_.clear();
for ( std::set<std::vector<double> >::const_iterator id =
id_points.begin(); id != id_points.end(); ++id ) {
last_point_ = *id;
get_exponent();
std::map<bit_container<parameter_hash_bits>,linear_interpolator >::iterator
old_exp = old_exponents.find(last_parameter_bin_);
std::map<bit_container<parameter_hash_bits>,linear_interpolator >::iterator
new_exp = exponents_.find(last_parameter_bin_);
assert(old_exp != old_exponents.end() && new_exp != exponents_.end());
double old_norm = 1. - std::exp(-(old_exp->second)(adaption_info_.lower_left[evolution_variable_]));
double new_norm = 1. - std::exp(-(new_exp->second)(adaption_info_.lower_left[evolution_variable_]));
for (binary_tree<cell>::iterator it = root_cell_.begin();
it != root_cell_.end(); ++it) {
if ( !it->info().contains_parameter(last_point_,sample_other_variables_) )
continue;
double old_int = 0.;
double new_int = 0.;
for ( std::vector<double>::const_iterator sp = parameter_splits_[evolution_variable_].begin();
sp != prior(parameter_splits_[evolution_variable_].end()); ++sp ) {
if ( *sp >= it->info().lower_left()[evolution_variable_] &&
*sp < it->info().upper_right()[evolution_variable_] ) {
double xl = *sp;
double xxl = *next(sp);
double old_al =
(old_exp->second.interpolation()[xxl] - old_exp->second.interpolation()[xl]) /
(xxl-xl);
double old_bl =
(xxl * old_exp->second.interpolation()[xl] -
xl * old_exp->second.interpolation()[xxl]) /
(xxl-xl);
double new_al =
(new_exp->second.interpolation()[xxl] - new_exp->second.interpolation()[xl]) /
(xxl-xl);
double new_bl =
(xxl * new_exp->second.interpolation()[xl] -
xl * new_exp->second.interpolation()[xxl]) /
(xxl-xl);
if ( std::abs(old_al) > std::numeric_limits<double>::epsilon() ) {
old_int += (exp(-(old_al*xl+old_bl)) - exp(-(old_al*xxl+old_bl)))/old_al;
} else {
old_int += (xxl-xl)*exp(-old_bl);
}
if ( std::abs(new_al) > std::numeric_limits<double>::epsilon() ) {
new_int += (exp(-(new_al*xl+new_bl)) - exp(-(new_al*xxl+new_bl)))/new_al;
} else {
new_int += (xxl-xl)*exp(-new_bl);
}
}
}
double scaling;
if (it != last_cell_) {
if (old_int > std::numeric_limits<double>::epsilon() &&
new_int > std::numeric_limits<double>::epsilon())
scaling = ((old_norm * new_int) /
(new_norm * old_int)) - 1.;
else
scaling = 0.;
} else {
if (old_int > std::numeric_limits<double>::epsilon() &&
new_int > std::numeric_limits<double>::epsilon())
scaling = ((last_value_ * old_norm * new_int) /
(old_oe * new_norm * old_int)) - 1.;
else
scaling = 0.;
}
it->info().parametric_missing(last_parameter_bin_,
it->info().parametric_missing(last_parameter_bin_) +
static_cast<int>(round(scaling * it->info().attempted())));
if (it->info().parametric_missing(last_parameter_bin_) != 0) {
compensating_ = true;
}
}
}
last_point_ = function_->parameter_point();
}
template<class Function, class Random>
double exponential_generator<Function,Random>::generate () {
if (compensating_) {
compensating_ = false;
for (binary_tree<cell>::iterator it = root_cell_.begin();
it != root_cell_.end(); ++it)
if (it->info().parametric_compensating()) {
compensating_ = true;
break;
}
parametric_sampler_.compensate(compensating_);
}
last_point_ = function_->parameter_point();
if (last_point_[evolution_variable_] < evolution_cutoff_) {
return 0.;
}
unsigned long n_hit_miss = 0;
unsigned long n_select = 0;
double minus_log_r;
root_cell_.tree_accumulate(parametric_selector_,integral_accessor_,std::plus<double>());
get_exponent();
while (true) {
n_select = 0;
minus_log_r = -std::log(rnd_gen_()) + last_exponent_->second(last_point_[evolution_variable_]);
if (!last_exponent_->second.invertible(minus_log_r)) {
return 0.;
}
try {
last_point_[evolution_variable_] = last_exponent_->second.unique_inverse(minus_log_r);
} catch (constant_interpolation& c) {
last_point_[evolution_variable_] = rnd_gen_(c.range.first,c.range.second);
}
assert(!std::isnan(last_point_[evolution_variable_]) &&
!std::isinf(last_point_[evolution_variable_]));
if (last_point_[evolution_variable_] < evolution_cutoff_) {
return 0.;
}
++attempts_;
if (compensating_) {
root_cell_.tree_accumulate(missing_accessor_,std::plus<int>());
}
if (parameter_splits_[evolution_variable_].size() > 2)
root_cell_.tree_accumulate(parametric_selector_,integral_accessor_,std::plus<double>());
if (did_split_)
while ((last_cell_ = root_cell_.select(parametric_sampler_)) == root_cell_.end()) {
root_cell_.tree_accumulate(missing_accessor_,std::plus<int>());
if(++n_select > adaption_info_.maxtry)
throw selection_maxtry();
}
else
last_cell_ = root_cell_.begin();
last_cell_->info().select(rnd_gen_,last_point_,sample_other_variables_);
last_value_ = function_->evaluate(last_point_);
assert(last_value_ >= 0.);
last_cell_->info().selected(last_point_,last_value_,adaption_info_);
if (last_value_ > last_cell_->info().overestimate()) {
if ( std::abs(last_value_)/last_cell_->info().overestimate() > 2. ) {
last_value_ =
- last_value_*(1.+exp(2.*(2.-std::abs(last_value_)/last_cell_->info().overestimate())));
+ last_cell_->info().overestimate()*
+ (1.+exp(2.*(2.-std::abs(last_value_)/last_cell_->info().overestimate())));
}
compensate();
throw exponential_regenerate();
}
if (last_cell_->info().attempted() % check_events_ == 0) {
if (split()) {
throw exponential_regenerate();
}
}
if (last_value_/last_cell_->info().overestimate() > rnd_gen_())
break;
if(++n_hit_miss > adaption_info_.maxtry)
throw hit_and_miss_maxtry();
}
if (last_value_ == 0.)
return 0.;
++accepts_;
++check_events_;
last_cell_->info().accept();
return 1.;
}
template<class Function, class Random>
template<class OStream>
void exponential_generator<Function,Random>::put (OStream& os) const {
os << check_events_; ostream_traits<OStream>::separator(os);
adaption_info_.put(os);
root_cell_.put(os);
os << did_split_; ostream_traits<OStream>::separator(os);
os << initialized_; ostream_traits<OStream>::separator(os);
os << evolution_variable_; ostream_traits<OStream>::separator(os);
os << evolution_cutoff_; ostream_traits<OStream>::separator(os);
os << sample_variables_; ostream_traits<OStream>::separator(os);
os << sample_other_variables_; ostream_traits<OStream>::separator(os);
os << parameter_splits_; ostream_traits<OStream>::separator(os);
// last_cell_ is selected new so we ignore it here
os << last_point_; ostream_traits<OStream>::separator(os);
os << last_value_; ostream_traits<OStream>::separator(os);
last_parameter_bin_.put(os);
os << exponents_.size(); ostream_traits<OStream>::separator(os);
for ( std::map<bit_container<parameter_hash_bits>,linear_interpolator >::const_iterator
ex = exponents_.begin(); ex != exponents_.end() ; ++ex ) {
ex->first.put(os);
ex->second.put(os);
}
os << last_exponent_integrand_; ostream_traits<OStream>::separator(os);
os << compensating_; ostream_traits<OStream>::separator(os);
os << attempts_; ostream_traits<OStream>::separator(os);
os << accepts_; ostream_traits<OStream>::separator(os);
os << splits_; ostream_traits<OStream>::separator(os);
}
template<class Function, class Random>
template<class IStream>
void exponential_generator<Function,Random>::get (IStream& is) {
is >> check_events_;
adaption_info_.get(is);
root_cell_.get(is);
is >> did_split_ >> initialized_ >> evolution_variable_
>> evolution_cutoff_ >> sample_variables_ >> sample_other_variables_
>> parameter_splits_;
// last_cell_ is selected new so we ignore it here
is >> last_point_ >> last_value_;
last_parameter_bin_.get(is);
size_t dim; is >> dim;
for ( size_t k = 0; k < dim ; ++k ) {
bit_container<parameter_hash_bits> key;
key.get(is);
exponents_[key].get(is);
}
is >> last_exponent_integrand_;
last_exponent_ = exponents_.find(last_parameter_bin_);
is >> compensating_ >> attempts_ >> accepts_ >> splits_;
}
}

File Metadata

Mime Type
text/x-diff
Expires
Mon, Jan 20, 11:21 PM (1 d, 12 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4242835
Default Alt Text
(15 KB)

Event Timeline