Page MenuHomeHEPForge

No OneTemporary

Size
46 KB
Referenced Files
None
Subscribers
None
diff --git a/DipoleShower/Kernels/DipoleSplittingKernel.cc b/DipoleShower/Kernels/DipoleSplittingKernel.cc
--- a/DipoleShower/Kernels/DipoleSplittingKernel.cc
+++ b/DipoleShower/Kernels/DipoleSplittingKernel.cc
@@ -1,326 +1,362 @@
// -*- C++ -*-
//
// DipoleSplittingKernel.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2007 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the DipoleSplittingKernel class.
//
#include "DipoleSplittingKernel.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "Herwig/Shower/ShowerHandler.h"
using namespace Herwig;
DipoleSplittingKernel::DipoleSplittingKernel()
: HandlerBase(), theScreeningScale(0.0*GeV),
thePresamplingPoints(2000), theMaxtry(100000),
theFreezeGrid(500000),
theStrictLargeN(false),
theFactorizationScaleFactor(1.0),
theRenormalizationScaleFactor(1.0),
theRenormalizationScaleFreeze(1.*GeV),
theFactorizationScaleFreeze(1.*GeV),
theVirtualitySplittingScale(false),
presampling(false) {}
DipoleSplittingKernel::~DipoleSplittingKernel() {}
// If needed, insert default implementations of virtual function defined
// in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
void DipoleSplittingKernel::persistentOutput(PersistentOStream & os) const {
os << theAlphaS << ounit(theScreeningScale,GeV) << theSplittingKinematics << thePDFRatio
<< thePresamplingPoints << theMaxtry << theFreezeGrid
<< theFlavour << theMCCheck << theStrictLargeN
<< theFactorizationScaleFactor
<< theRenormalizationScaleFactor
<< ounit(theRenormalizationScaleFreeze,GeV)
<< ounit(theFactorizationScaleFreeze,GeV)
<< theVirtualitySplittingScale;
}
void DipoleSplittingKernel::persistentInput(PersistentIStream & is, int) {
is >> theAlphaS >> iunit(theScreeningScale,GeV) >> theSplittingKinematics >> thePDFRatio
>> thePresamplingPoints >> theMaxtry >> theFreezeGrid
>> theFlavour >> theMCCheck >> theStrictLargeN
>> theFactorizationScaleFactor
>> theRenormalizationScaleFactor
>> iunit(theRenormalizationScaleFreeze,GeV)
>> iunit(theFactorizationScaleFreeze,GeV)
>> theVirtualitySplittingScale;
}
double DipoleSplittingKernel::alphaPDF(const DipoleSplittingInfo& split,
Energy optScale,
double rScaleFactor,
double fScaleFactor) const {
Energy pt = optScale == ZERO ? split.lastPt() : optScale;
Energy2 scale = ZERO;
if ( !virtualitySplittingScale() ) {
scale = sqr(pt) + sqr(theScreeningScale);
} else {
scale = sqr(splittingKinematics()->QFromPt(pt,split)) + sqr(theScreeningScale);
}
Energy2 rScale = sqr(theRenormalizationScaleFactor*rScaleFactor)*scale;
rScale = rScale > sqr(renormalizationScaleFreeze()) ? rScale : sqr(renormalizationScaleFreeze());
Energy2 fScale = sqr(theFactorizationScaleFactor*fScaleFactor)*scale;
fScale = fScale > sqr(factorizationScaleFreeze()) ? fScale : sqr(factorizationScaleFreeze());
double alphas = 1.0;
double pdf = 1.0;
// check if we are potentially reweighting and cache evaluations
bool evaluatePDF = true;
bool evaluateAlphaS = true;
- bool variations = !ShowerHandler::currentHandler()->showerVariations().empty();
+ bool variations =
+ !ShowerHandler::currentHandler()->showerVariations().empty() &&
+ !presampling;
if ( variations ) {
+ /*
+ cerr << "--------------------------------------------------------------------------------\n"
+ << flush;
+ cerr << "variations ... central scale/GeV = "
+ << sqrt(scale/GeV2) << " r = "
+ << rScaleFactor << " f = " << fScaleFactor << "\n"
+ << flush;
+ */
map<double,double>::const_iterator pit = thePDFCache.find(fScaleFactor);
evaluatePDF = (pit == thePDFCache.end());
- if ( !evaluatePDF )
+ if ( !evaluatePDF ) {
+ //cerr << "PDF is cached: ";
pdf = pit->second;
+ //cerr << pdf << "\n" << flush;
+ }
map<double,double>::const_iterator ait = theAlphaSCache.find(rScaleFactor);
evaluateAlphaS = (ait == theAlphaSCache.end());
- if ( !evaluateAlphaS )
+ if ( !evaluateAlphaS ) {
+ //cerr << "alphas is cached: ";
alphas = ait->second;
+ //cerr << alphas << "\n" << flush;
+ }
}
if ( evaluateAlphaS )
alphas = alphaS()->value(rScale);
if ( evaluatePDF ) {
if ( split.index().initialStateEmitter() ) {
assert(pdfRatio());
pdf *=
split.lastEmitterZ() *
(*pdfRatio())(split.index().emitterPDF(), fScale,
split.index().emitterData(),split.emitterData(),
split.emitterX(),split.lastEmitterZ());
}
if ( split.index().initialStateSpectator() ) {
assert(pdfRatio());
pdf *=
split.lastSpectatorZ() *
(*pdfRatio())(split.index().spectatorPDF(), fScale,
split.index().spectatorData(),split.spectatorData(),
split.spectatorX(),split.lastSpectatorZ());
}
}
if ( evaluatePDF && variations ) {
+ //cerr << "caching PDF = " << pdf << "\n" << flush;
thePDFCache[fScaleFactor] = pdf;
}
if ( evaluateAlphaS && variations ) {
+ //cerr << "caching alphas = " << alphas << "\n" << flush;
theAlphaSCache[rScaleFactor] = alphas;
}
double ret = alphas*pdf / (2.*Constants::pi);
if ( ret < 0. )
ret = 0.;
return ret;
}
void DipoleSplittingKernel::accept(const DipoleSplittingInfo& split,
double, double,
map<string,double>& weights) const {
if ( ShowerHandler::currentHandler()->showerVariations().empty() )
return;
double reference = alphaPDF(split);
assert(reference > 0.);
for ( map<string,ShowerHandler::ShowerVariation>::const_iterator var =
ShowerHandler::currentHandler()->showerVariations().begin();
var != ShowerHandler::currentHandler()->showerVariations().end(); ++var ) {
if ( ( ShowerHandler::currentHandler()->firstInteraction() && var->second.firstInteraction ) ||
( !ShowerHandler::currentHandler()->firstInteraction() && var->second.secondaryInteractions ) ) {
+ /*
+ cerr << "reweighting in accept for: "
+ << var->first
+ << " using "
+ << var->second.renormalizationScaleFactor << " "
+ << var->second.factorizationScaleFactor << " "
+ << var->second.firstInteraction << " "
+ << var->second.secondaryInteractions << "\n" << flush;
+ */
double varied = alphaPDF(split,ZERO,
var->second.renormalizationScaleFactor,
var->second.factorizationScaleFactor);
if ( varied != reference ) {
map<string,double>::iterator wi = weights.find(var->first);
if ( wi != weights.end() )
wi->second *= varied/reference;
else
weights[var->first] = varied/reference;
}
}
}
}
void DipoleSplittingKernel::veto(const DipoleSplittingInfo& split,
double p, double r,
map<string,double>& weights) const {
if ( ShowerHandler::currentHandler()->showerVariations().empty() )
return;
double reference = alphaPDF(split);
// this is dangerous, but we have no other choice currently -- need to
// carefully check for the effects; the assumption is that if the central
// one ius zero, then so will be the variations.
if ( reference == 0.0 )
return;
for ( map<string,ShowerHandler::ShowerVariation>::const_iterator var =
ShowerHandler::currentHandler()->showerVariations().begin();
var != ShowerHandler::currentHandler()->showerVariations().end(); ++var ) {
if ( ( ShowerHandler::currentHandler()->firstInteraction() && var->second.firstInteraction ) ||
( !ShowerHandler::currentHandler()->firstInteraction() && var->second.secondaryInteractions ) ) {
+ /*
+ cerr << "reweighting in veto for: "
+ << var->first
+ << " using "
+ << var->second.renormalizationScaleFactor << " "
+ << var->second.factorizationScaleFactor << " "
+ << var->second.firstInteraction << " "
+ << var->second.secondaryInteractions << "\n" << flush;
+ */
double varied = alphaPDF(split,ZERO,
var->second.renormalizationScaleFactor,
var->second.factorizationScaleFactor);
if ( varied != reference ) {
map<string,double>::iterator wi = weights.find(var->first);
if ( wi != weights.end() )
wi->second *= (r - varied*p/reference) / (r-p);
else
weights[var->first] = (r - varied*p/reference) / (r-p);
}
}
}
}
AbstractClassDescription<DipoleSplittingKernel> DipoleSplittingKernel::initDipoleSplittingKernel;
// Definition of the static class description member.
void DipoleSplittingKernel::Init() {
static ClassDocumentation<DipoleSplittingKernel> documentation
("DipoleSplittingKernel is the base class for all kernels "
"used within the dipole shower.");
static Reference<DipoleSplittingKernel,AlphaSBase> interfaceAlphaS
("AlphaS",
"The strong coupling to be used by this splitting kernel.",
&DipoleSplittingKernel::theAlphaS, false, false, true, true, false);
static Parameter<DipoleSplittingKernel,Energy> interfaceScreeningScale
("ScreeningScale",
"A colour screening scale",
&DipoleSplittingKernel::theScreeningScale, GeV, 0.0*GeV, 0.0*GeV, 0*GeV,
false, false, Interface::lowerlim);
static Reference<DipoleSplittingKernel,DipoleSplittingKinematics> interfaceSplittingKinematics
("SplittingKinematics",
"The splitting kinematics to be used by this splitting kernel.",
&DipoleSplittingKernel::theSplittingKinematics, false, false, true, false, false);
static Reference<DipoleSplittingKernel,PDFRatio> interfacePDFRatio
("PDFRatio",
"Set the optional PDF ratio object to evaluate this kernel",
&DipoleSplittingKernel::thePDFRatio, false, false, true, true, false);
static Parameter<DipoleSplittingKernel,unsigned long> interfacePresamplingPoints
("PresamplingPoints",
"The number of points used to presample this kernel.",
&DipoleSplittingKernel::thePresamplingPoints, 2000, 1, 0,
false, false, Interface::lowerlim);
static Parameter<DipoleSplittingKernel,unsigned long> interfaceMaxtry
("Maxtry",
"The maximum number of attempts to generate a splitting.",
&DipoleSplittingKernel::theMaxtry, 10000, 1, 0,
false, false, Interface::lowerlim);
static Parameter<DipoleSplittingKernel,unsigned long> interfaceFreezeGrid
("FreezeGrid",
"",
&DipoleSplittingKernel::theFreezeGrid, 500000, 1, 0,
false, false, Interface::lowerlim);
static Reference<DipoleSplittingKernel,ParticleData> interfaceFlavour
("Flavour",
"Set the flavour to be produced if ambiguous.",
&DipoleSplittingKernel::theFlavour, false, false, true, true, false);
static Reference<DipoleSplittingKernel,DipoleMCCheck> interfaceMCCheck
("MCCheck",
"[debug option] MCCheck",
&DipoleSplittingKernel::theMCCheck, false, false, true, true, false);
interfaceMCCheck.rank(-1);
static Switch<DipoleSplittingKernel,bool> interfaceStrictLargeN
("StrictLargeN",
"Work in a strict large-N limit.",
&DipoleSplittingKernel::theStrictLargeN, false, false, false);
static SwitchOption interfaceStrictLargeNOn
(interfaceStrictLargeN,
"On",
"Replace C_F -> C_A/2 where present",
true);
static SwitchOption interfaceStrictLargeNOff
(interfaceStrictLargeN,
"Off",
"Keep C_F=4/3",
false);
interfaceStrictLargeN.rank(-2);
static Parameter<DipoleSplittingKernel,double> interfaceFactorizationScaleFactor
("FactorizationScaleFactor",
"The factorization scale factor.",
&DipoleSplittingKernel::theFactorizationScaleFactor, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
interfaceFactorizationScaleFactor.rank(-2);
static Parameter<DipoleSplittingKernel,double> interfaceRenormalizationScaleFactor
("RenormalizationScaleFactor",
"The renormalization scale factor.",
&DipoleSplittingKernel::theRenormalizationScaleFactor, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
interfaceRenormalizationScaleFactor.rank(-2);
static Parameter<DipoleSplittingKernel,Energy> interfaceRenormalizationScaleFreeze
("RenormalizationScaleFreeze",
"The freezing scale for the renormalization scale.",
&DipoleSplittingKernel::theRenormalizationScaleFreeze, GeV, 1.0*GeV, 0.0*GeV, 0*GeV,
false, false, Interface::lowerlim);
static Parameter<DipoleSplittingKernel,Energy> interfaceFactorizationScaleFreeze
("FactorizationScaleFreeze",
"The freezing scale for the factorization scale.",
&DipoleSplittingKernel::theFactorizationScaleFreeze, GeV, 1.0*GeV, 0.0*GeV, 0*GeV,
false, false, Interface::lowerlim);
static Switch<DipoleSplittingKernel,bool> interfaceVirtualitySplittingScale
("VirtualitySplittingScale",
"Use the virtuality as the splitting scale.",
&DipoleSplittingKernel::theVirtualitySplittingScale, false, false, false);
static SwitchOption interfaceVirtualitySplittingScaleYes
(interfaceVirtualitySplittingScale,
"Yes",
"Use vrituality.",
true);
static SwitchOption interfaceVirtualitySplittingScaleNo
(interfaceVirtualitySplittingScale,
"No",
"Use transverse momentum.",
false);
}
diff --git a/Shower/ShowerHandler.cc b/Shower/ShowerHandler.cc
--- a/Shower/ShowerHandler.cc
+++ b/Shower/ShowerHandler.cc
@@ -1,861 +1,900 @@
// -*- C++ -*-
//
// ShowerHandler.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ShowerHandler class.
//
#include "ShowerHandler.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/ParVector.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Command.h"
#include "ThePEG/PDF/PartonExtractor.h"
#include "ThePEG/PDF/PartonBinInstance.h"
#include "Herwig/PDT/StandardMatchers.h"
#include "ThePEG/Cuts/Cuts.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include "ThePEG/Utilities/Throw.h"
+#include "ThePEG/Utilities/StringUtils.h"
#include "Herwig/Shower/Base/Evolver.h"
#include "Herwig/Shower/Base/ShowerParticle.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "Herwig/Utilities/EnumParticles.h"
#include "Herwig/PDF/MPIPDF.h"
#include "Herwig/PDF/MinBiasPDF.h"
#include "ThePEG/Handlers/EventHandler.h"
#include "Herwig/Shower/Base/ShowerTree.h"
#include "Herwig/Shower/Base/HardTree.h"
#include "Herwig/Shower/Base/KinematicsReconstructor.h"
#include "Herwig/Shower/Base/PartnerFinder.h"
#include "Herwig/PDF/HwRemDecayer.h"
#include <cassert>
#include "ThePEG/Utilities/DescribeClass.h"
using namespace Herwig;
DescribeClass<ShowerHandler,CascadeHandler>
describeShowerHandler ("Herwig::ShowerHandler","HwShower.so");
ShowerHandler::~ShowerHandler() {}
ShowerHandler * ShowerHandler::currentHandler_ = 0;
void ShowerHandler::doinit() {
CascadeHandler::doinit();
// copy particles to decay before showering from input vector to the
// set used in the simulation
if ( particlesDecayInShower_.empty() )
particlesDecayInShower_.insert(inputparticlesDecayInShower_.begin(),
inputparticlesDecayInShower_.end());
ShowerTree::_decayInShower = particlesDecayInShower_;
ShowerTree::_vmin2 = vMin_;
ShowerTree::_spaceTime = includeSpaceTime_;
}
IBPtr ShowerHandler::clone() const {
return new_ptr(*this);
}
IBPtr ShowerHandler::fullclone() const {
return new_ptr(*this);
}
ShowerHandler::ShowerHandler() :
pdfFreezingScale_(2.5*GeV),
maxtry_(10),maxtryMPI_(10),maxtryDP_(10),
includeSpaceTime_(false), vMin_(0.1*GeV2), subProcess_(),
factorizationScaleFactor_(1.0),
renormalizationScaleFactor_(1.0),
hardScaleFactor_(1.0), scaleFactorOption_(0),
restrictPhasespace_(true), maxPtIsMuF_(false),
splitHardProcess_(true) {
inputparticlesDecayInShower_.push_back( 6 ); // top
inputparticlesDecayInShower_.push_back( 23 ); // Z0
inputparticlesDecayInShower_.push_back( 24 ); // W+/-
inputparticlesDecayInShower_.push_back( 25 ); // h0
}
void ShowerHandler::doinitrun(){
CascadeHandler::doinitrun();
//can't use isMPIOn here, because the EventHandler is not set at that stage
if(MPIHandler_){
MPIHandler_->initialize();
if(MPIHandler_->softInt())
remDec_->initSoftInteractions(MPIHandler_->Ptmin(), MPIHandler_->beta());
}
ShowerTree::_decayInShower = particlesDecayInShower_;
ShowerTree::_vmin2 = vMin_;
ShowerTree::_spaceTime = includeSpaceTime_;
}
void ShowerHandler::dofinish(){
CascadeHandler::dofinish();
if(MPIHandler_) MPIHandler_->finalize();
}
void ShowerHandler::persistentOutput(PersistentOStream & os) const {
os << evolver_ << remDec_ << ounit(pdfFreezingScale_,GeV) << maxtry_
<< maxtryMPI_ << maxtryDP_ << inputparticlesDecayInShower_
<< particlesDecayInShower_ << MPIHandler_ << PDFA_ << PDFB_
<< PDFARemnant_ << PDFBRemnant_
<< includeSpaceTime_ << ounit(vMin_,GeV2)
<< factorizationScaleFactor_ << renormalizationScaleFactor_
<< hardScaleFactor_ << scaleFactorOption_
<< restrictPhasespace_ << maxPtIsMuF_ << hardScaleProfile_
<< splitHardProcess_ << showerVariations_;
}
void ShowerHandler::persistentInput(PersistentIStream & is, int) {
is >> evolver_ >> remDec_ >> iunit(pdfFreezingScale_,GeV) >> maxtry_
>> maxtryMPI_ >> maxtryDP_ >> inputparticlesDecayInShower_
>> particlesDecayInShower_ >> MPIHandler_ >> PDFA_ >> PDFB_
>> PDFARemnant_ >> PDFBRemnant_
>> includeSpaceTime_ >> iunit(vMin_,GeV2)
>> factorizationScaleFactor_ >> renormalizationScaleFactor_
>> hardScaleFactor_ >> scaleFactorOption_
>> restrictPhasespace_ >> maxPtIsMuF_ >> hardScaleProfile_
>> splitHardProcess_ >> showerVariations_;
}
void ShowerHandler::Init() {
static ClassDocumentation<ShowerHandler> documentation
("Main driver class for the showering.",
"The Shower evolution was performed using an algorithm described in "
"\\cite{Marchesini:1983bm,Marchesini:1987cf,Gieseke:2003rz,Bahr:2008pv}.",
"%\\cite{Marchesini:1983bm}\n"
"\\bibitem{Marchesini:1983bm}\n"
" G.~Marchesini and B.~R.~Webber,\n"
" ``Simulation Of QCD Jets Including Soft Gluon Interference,''\n"
" Nucl.\\ Phys.\\ B {\\bf 238}, 1 (1984).\n"
" %%CITATION = NUPHA,B238,1;%%\n"
"%\\cite{Marchesini:1987cf}\n"
"\\bibitem{Marchesini:1987cf}\n"
" G.~Marchesini and B.~R.~Webber,\n"
" ``Monte Carlo Simulation of General Hard Processes with Coherent QCD\n"
" Radiation,''\n"
" Nucl.\\ Phys.\\ B {\\bf 310}, 461 (1988).\n"
" %%CITATION = NUPHA,B310,461;%%\n"
"%\\cite{Gieseke:2003rz}\n"
"\\bibitem{Gieseke:2003rz}\n"
" S.~Gieseke, P.~Stephens and B.~Webber,\n"
" ``New formalism for QCD parton showers,''\n"
" JHEP {\\bf 0312}, 045 (2003)\n"
" [arXiv:hep-ph/0310083].\n"
" %%CITATION = JHEPA,0312,045;%%\n"
);
static Reference<ShowerHandler,Evolver>
interfaceEvolver("Evolver",
"A reference to the Evolver object",
&Herwig::ShowerHandler::evolver_,
false, false, true, false);
static Reference<ShowerHandler,HwRemDecayer>
interfaceRemDecayer("RemDecayer",
"A reference to the Remnant Decayer object",
&Herwig::ShowerHandler::remDec_,
false, false, true, false);
static Parameter<ShowerHandler,Energy> interfacePDFFreezingScale
("PDFFreezingScale",
"The PDF freezing scale",
&ShowerHandler::pdfFreezingScale_, GeV, 2.5*GeV, 2.0*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<ShowerHandler,unsigned int> interfaceMaxTry
("MaxTry",
"The maximum number of attempts for the main showering loop",
&ShowerHandler::maxtry_, 10, 1, 100,
false, false, Interface::limited);
static Parameter<ShowerHandler,unsigned int> interfaceMaxTryMPI
("MaxTryMPI",
"The maximum number of regeneration attempts for an additional scattering",
&ShowerHandler::maxtryMPI_, 10, 0, 100,
false, false, Interface::limited);
static Parameter<ShowerHandler,unsigned int> interfaceMaxTryDP
("MaxTryDP",
"The maximum number of regeneration attempts for an additional hard scattering",
&ShowerHandler::maxtryDP_, 10, 0, 100,
false, false, Interface::limited);
static ParVector<ShowerHandler,long> interfaceDecayInShower
("DecayInShower",
"PDG codes of the particles to be decayed in the shower",
&ShowerHandler::inputparticlesDecayInShower_, -1, 0l, -10000000l, 10000000l,
false, false, Interface::limited);
static Reference<ShowerHandler,UEBase> interfaceMPIHandler
("MPIHandler",
"The object that administers all additional scatterings.",
&ShowerHandler::MPIHandler_, false, false, true, true);
static Reference<ShowerHandler,PDFBase> interfacePDFA
("PDFA",
"The PDF for beam particle A. Overrides the particle's own PDF setting."
"By default used for both the shower and forced splitting in the remnant",
&ShowerHandler::PDFA_, false, false, true, true, false);
static Reference<ShowerHandler,PDFBase> interfacePDFB
("PDFB",
"The PDF for beam particle B. Overrides the particle's own PDF setting."
"By default used for both the shower and forced splitting in the remnant",
&ShowerHandler::PDFB_, false, false, true, true, false);
static Reference<ShowerHandler,PDFBase> interfacePDFARemnant
("PDFARemnant",
"The PDF for beam particle A used to generate forced splittings of the remnant."
" This overrides both the particle's own PDF setting and the value set by PDFA if used.",
&ShowerHandler::PDFARemnant_, false, false, true, true, false);
static Reference<ShowerHandler,PDFBase> interfacePDFBRemnant
("PDFBRemnant",
"The PDF for beam particle B used to generate forced splittings of the remnant."
" This overrides both the particle's own PDF setting and the value set by PDFB if used.",
&ShowerHandler::PDFBRemnant_, false, false, true, true, false);
static Switch<ShowerHandler,bool> interfaceIncludeSpaceTime
("IncludeSpaceTime",
"Whether to include the model for the calculation of space-time distances",
&ShowerHandler::includeSpaceTime_, false, false, false);
static SwitchOption interfaceIncludeSpaceTimeYes
(interfaceIncludeSpaceTime,
"Yes",
"Include the model",
true);
static SwitchOption interfaceIncludeSpaceTimeNo
(interfaceIncludeSpaceTime,
"No",
"Only include the displacement from the particle-s lifetime for decaying particles",
false);
static Parameter<ShowerHandler,Energy2> interfaceMinimumVirtuality
("MinimumVirtuality",
"The minimum virtuality for the space-time model",
&ShowerHandler::vMin_, GeV2, 0.1*GeV2, 0.0*GeV2, 1000.0*GeV2,
false, false, Interface::limited);
static Parameter<ShowerHandler,double> interfaceFactorizationScaleFactor
("FactorizationScaleFactor",
"The factorization scale factor.",
&ShowerHandler::factorizationScaleFactor_, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
static Parameter<ShowerHandler,double> interfaceRenormalizationScaleFactor
("RenormalizationScaleFactor",
"The renormalization scale factor.",
&ShowerHandler::renormalizationScaleFactor_, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
static Parameter<ShowerHandler,double> interfaceHardScaleFactor
("HardScaleFactor",
"The hard scale factor.",
&ShowerHandler::hardScaleFactor_, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
static Switch<ShowerHandler,int> interfaceScaleFactorOption
("ScaleFactorOption",
"Where to apply scale factors.",
&ShowerHandler::scaleFactorOption_, 0, false, false);
static SwitchOption interfaceScaleFactorOptionAll
(interfaceScaleFactorOption,
"All",
"Apply in first and secondary scatterings.",
0);
static SwitchOption interfaceScaleFactorOptionHard
(interfaceScaleFactorOption,
"Hard",
"Only apply for the hard process.",
1);
static SwitchOption interfaceScaleFactorOptionSecondary
(interfaceScaleFactorOption,
"Secondary",
"Only apply to secondary scatterings.",
2);
static Reference<ShowerHandler,HardScaleProfile> interfaceHardScaleProfile
("HardScaleProfile",
"The hard scale profile to use.",
&ShowerHandler::hardScaleProfile_, false, false, true, true, false);
static Switch<ShowerHandler,bool> interfaceMaxPtIsMuF
("MaxPtIsMuF",
"",
&ShowerHandler::maxPtIsMuF_, false, false, false);
static SwitchOption interfaceMaxPtIsMuFYes
(interfaceMaxPtIsMuF,
"Yes",
"",
true);
static SwitchOption interfaceMaxPtIsMuFNo
(interfaceMaxPtIsMuF,
"No",
"",
false);
static Switch<ShowerHandler,bool> interfaceRestrictPhasespace
("RestrictPhasespace",
"Switch on or off phasespace restrictions",
&ShowerHandler::restrictPhasespace_, true, false, false);
static SwitchOption interfaceRestrictPhasespaceOn
(interfaceRestrictPhasespace,
"On",
"Perform phasespace restrictions",
true);
static SwitchOption interfaceRestrictPhasespaceOff
(interfaceRestrictPhasespace,
"Off",
"Do not perform phasespace restrictions",
false);
static Switch<ShowerHandler,bool> interfaceSplitHardProcess
("SplitHardProcess",
"Whether or not to try and split the hard process into production and decay processes",
&ShowerHandler::splitHardProcess_, true, false, false);
static SwitchOption interfaceSplitHardProcessYes
(interfaceSplitHardProcess,
"Yes",
"Split the hard process",
true);
static SwitchOption interfaceSplitHardProcessNo
(interfaceSplitHardProcess,
"No",
"Don't split the hard process",
false);
static Command<ShowerHandler> interfaceAddVariation
("AddVariation",
"Add a shower variation.",
&ShowerHandler::doAddVariation, false);
}
Energy ShowerHandler::hardScale() const {
return evolver_->hardScale();
}
void ShowerHandler::cascade() {
tcPDFPtr first = firstPDF().pdf();
tcPDFPtr second = secondPDF().pdf();
if ( PDFA_ ) first = PDFA_;
if ( PDFB_ ) second = PDFB_;
resetPDFs(make_pair(first,second));
if( ! rempdfs_.first)
rempdfs_.first = PDFARemnant_ ? PDFPtr(PDFARemnant_) : const_ptr_cast<PDFPtr>(first);
if( ! rempdfs_.second)
rempdfs_.second = PDFBRemnant_ ? PDFPtr(PDFBRemnant_) : const_ptr_cast<PDFPtr>(second);
// get the incoming partons
tPPair incomingPartons =
eventHandler()->currentCollision()->primarySubProcess()->incoming();
// and the parton bins
PBIPair incomingBins =
make_pair(lastExtractor()->partonBinInstance(incomingPartons.first),
lastExtractor()->partonBinInstance(incomingPartons.second));
// and the incoming hadrons
tPPair incomingHadrons =
eventHandler()->currentCollision()->incoming();
remDec_->setHadronContent(incomingHadrons);
// check if incoming hadron == incoming parton
// and get the incoming hadron if exists or parton otherwise
incoming_ = make_pair(incomingBins.first ?
incomingBins.first ->particle() : incomingPartons.first,
incomingBins.second ?
incomingBins.second->particle() : incomingPartons.second);
// check the collision is of the beam particles
// and if not boost collision to the right frame
// i.e. the hadron-hadron CMF of the collision
bool btotal(false);
LorentzRotation rtotal;
if(incoming_.first != incomingHadrons.first ||
incoming_.second != incomingHadrons.second ) {
btotal = true;
boostCollision(false);
}
// set the current ShowerHandler
currentHandler_ = this;
// first shower the hard process
useMe();
try {
SubProPtr sub = eventHandler()->currentCollision()->primarySubProcess();
incomingPartons = cascade(sub,lastXCombPtr());
}
catch(ShowerTriesVeto &veto){
throw Exception() << "Failed to generate the shower after "
<< veto.tries
<< " attempts in ShowerHandler::cascade()"
<< Exception::eventerror;
}
if(showerHardProcessVeto()) throw Veto();
// if a non-hadron collision return (both incoming non-hadronic)
if( ( !incomingBins.first||
!isResolvedHadron(incomingBins.first ->particle()))&&
( !incomingBins.second||
!isResolvedHadron(incomingBins.second->particle()))) {
// boost back to lab if needed
if(btotal) boostCollision(true);
// unset the current ShowerHandler
currentHandler_ = 0;
return;
}
// get the remnants for hadronic collision
pair<tRemPPtr,tRemPPtr> remnants(getRemnants(incomingBins));
// set the starting scale of the forced splitting to the PDF freezing scale
remDec_->initialize(remnants, incoming_, *currentStep(), pdfFreezingScale());
// do the first forcedSplitting
try {
remDec_->doSplit(incomingPartons, make_pair(rempdfs_.first,rempdfs_.second), true);
}
catch (ExtraScatterVeto) {
throw Exception() << "Remnant extraction failed in "
<< "ShowerHandler::cascade() from primary interaction"
<< Exception::eventerror;
}
// if no MPI return
if( !isMPIOn() ) {
remDec_->finalize();
// boost back to lab if needed
if(btotal) boostCollision(true);
// unset the current ShowerHandler
currentHandler_ = 0;
return;
}
// generate the multiple scatters use modified pdf's now:
setMPIPDFs();
// additional "hard" processes
unsigned int tries(0);
// This is the loop over additional hard scatters (most of the time
// only one, but who knows...)
for(unsigned int i=1; i <= getMPIHandler()->additionalHardProcs(); i++){
//counter for regeneration
unsigned int multSecond = 0;
// generate the additional scatters
while( multSecond < getMPIHandler()->multiplicity(i) ) {
// generate the hard scatter
tStdXCombPtr lastXC = getMPIHandler()->generate(i);
SubProPtr sub = lastXC->construct();
// add to the Step
newStep()->addSubProcess(sub);
// increment the counters
tries++;
multSecond++;
if(tries == maxtryDP_)
throw Exception() << "Failed to establish the requested number "
<< "of additional hard processes. If this error "
<< "occurs often, your selection of additional "
<< "scatter is probably unphysical"
<< Exception::eventerror;
// Generate the shower. If not possible veto the event
try {
incomingPartons = cascade(sub,lastXC);
}
catch(ShowerTriesVeto &veto){
throw Exception() << "Failed to generate the shower of "
<< "a secondary hard process after "
<< veto.tries
<< " attempts in Evolver::showerHardProcess()"
<< Exception::eventerror;
}
try {
// do the forcedSplitting
remDec_->doSplit(incomingPartons, make_pair(remmpipdfs_.first,remmpipdfs_.second), false);
}
catch(ExtraScatterVeto){
//remove all particles associated with the subprocess
newStep()->removeParticle(incomingPartons.first);
newStep()->removeParticle(incomingPartons.second);
//remove the subprocess from the list
newStep()->removeSubProcess(sub);
//regenerate the scattering
multSecond--;
continue;
}
// connect with the remnants but don't set Remnant colour,
// because that causes problems due to the multiple colour lines.
if ( !remnants.first ->extract(incomingPartons.first , false) ||
!remnants.second->extract(incomingPartons.second, false) )
throw Exception() << "Remnant extraction failed in "
<< "ShowerHandler::cascade() for additional scatter"
<< Exception::runerror;
}
}
// the underlying event processes
unsigned int ptveto(1), veto(0);
unsigned int max(getMPIHandler()->multiplicity());
for(unsigned int i=0; i<max; i++) {
// check how often this scattering has been regenerated
if(veto > maxtryMPI_) break;
//generate PSpoint
tStdXCombPtr lastXC = getMPIHandler()->generate();
SubProPtr sub = lastXC->construct();
//If Algorithm=1 additional scatters of the signal type
// with pt > ptmin have to be vetoed
//with probability 1/(m+1), where m is the number of occurances in this event
if( getMPIHandler()->Algorithm() == 1 ){
//get the pT
Energy pt = sub->outgoing().front()->momentum().perp();
if(pt > getMPIHandler()->PtForVeto() && UseRandom::rnd() < 1./(ptveto+1) ){
ptveto++;
i--;
continue;
}
}
// add to the SubProcess to the step
newStep()->addSubProcess(sub);
// Run the Shower. If not possible veto the scattering
try {
incomingPartons = cascade(sub,lastXC);
}
// discard this extra scattering, but try the next one
catch(ShowerTriesVeto) {
newStep()->removeSubProcess(sub);
//regenerate the scattering
veto++;
i--;
continue;
}
try{
//do the forcedSplitting
remDec_->doSplit(incomingPartons, make_pair(remmpipdfs_.first,remmpipdfs_.second), false);
}
catch (ExtraScatterVeto) {
//remove all particles associated with the subprocess
newStep()->removeParticle(incomingPartons.first);
newStep()->removeParticle(incomingPartons.second);
//remove the subprocess from the list
newStep()->removeSubProcess(sub);
//regenerate the scattering
veto++;
i--;
continue;
}
//connect with the remnants but don't set Remnant colour,
//because that causes problems due to the multiple colour lines.
if ( !remnants.first ->extract(incomingPartons.first , false) ||
!remnants.second->extract(incomingPartons.second, false) )
throw Exception() << "Remnant extraction failed in "
<< "ShowerHandler::cascade() for MPI hard scattering"
<< Exception::runerror;
//reset veto counter
veto = 0;
}
// finalize the remnants
remDec_->finalize(getMPIHandler()->colourDisrupt(),
getMPIHandler()->softMultiplicity());
// boost back to lab if needed
if(btotal) boostCollision(true);
// unset the current ShowerHandler
currentHandler_ = 0;
getMPIHandler()->clean();
}
void ShowerHandler::fillEventRecord() {
// create a new step
StepPtr pstep = newStep();
assert(!done_.empty());
assert(done_[0]->isHard());
// insert the steps
for(unsigned int ix=0;ix<done_.size();++ix) {
done_[ix]->fillEventRecord(pstep,
evolver_->isISRadiationON(),
evolver_->isFSRadiationON());
}
}
void ShowerHandler::prepareCascade(tSubProPtr sub) {
current_ = currentStep();
subProcess_ = sub;
for ( map<string,double>::iterator w = currentWeights_.begin();
w != currentWeights_.end(); ++w ) {
w->second = 1.0;
}
}
void ShowerHandler::combineWeights() {
tEventPtr event = eventHandler()->currentEvent();
for ( map<string,double>::const_iterator w =
currentWeights_.begin(); w != currentWeights_.end(); ++w ) {
map<string,double>::iterator ew = event->optionalWeights().find(w->first);
if ( ew != event->optionalWeights().end() )
ew->second *= w->second;
else
event->optionalWeights()[w->first] = w->second;
}
}
-string ShowerHandler::ShowerVariation::fromInFile(const string&) {
- // need agree on a syntax to steer this
- assert(false && "implementation missing");
+string ShowerHandler::ShowerVariation::fromInFile(const string& in) {
+ // pretty simple for the moment, just to try
+ // TODO make this better
+ istringstream read(in);
+ string where;
+ read >> renormalizationScaleFactor >> factorizationScaleFactor >> where;
+ if ( !read )
+ return "something went wrong with: " + in;
+ if ( where == "FirstInteraction" || where == "AllInteractions" )
+ firstInteraction = true;
+ else
+ firstInteraction = false;
+ if ( where == "SecondaryInteractions" || where == "AllInteractions" )
+ secondaryInteractions = true;
+ else
+ secondaryInteractions = false;
return "";
}
void ShowerHandler::ShowerVariation::put(PersistentOStream& os) const {
os << renormalizationScaleFactor << factorizationScaleFactor
<< firstInteraction << secondaryInteractions;
}
void ShowerHandler::ShowerVariation::get(PersistentIStream& is) {
is >> renormalizationScaleFactor >> factorizationScaleFactor
>> firstInteraction >> secondaryInteractions;
}
-string ShowerHandler::doAddVariation(string) {
- // need agree on a syntax to steer this
- assert(false && "implementation missing");
+string ShowerHandler::doAddVariation(string in) {
+ if ( in.empty() )
+ return "expecting a name and a variation specification";
+ string name = StringUtils::car(in);
+ ShowerVariation var;
+ string res = var.fromInFile(StringUtils::cdr(in));
+ if ( res.empty() ) {
+ if ( !var.firstInteraction && !var.secondaryInteractions ) {
+ // TODO what about decay showers?
+ return "variation does not apply to any shower";
+ }
+ if ( var.renormalizationScaleFactor == 1.0 &&
+ var.factorizationScaleFactor == 1.0 ) {
+ return "variation does not vary anything";
+ }
+ /*
+ Repository::clog() << "adding a variation with tag '" << name << "' using\nxir = "
+ << var.renormalizationScaleFactor
+ << " xif = "
+ << var.factorizationScaleFactor
+ << "\napplying to:\n"
+ << "first interaction = " << var.firstInteraction << " "
+ << "secondary interactions = " << var.secondaryInteractions << "\n"
+ << flush;
+ */
+ showerVariations()[name] = var;
+ }
+ return res;
}
tPPair ShowerHandler::cascade(tSubProPtr sub,
XCPtr xcomb) {
prepareCascade(sub);
// set the scale variation factors; needs to go after prepareCascade
// to trigger possible different variations for hard and secondary
// scatters
evolver()->renormalizationScaleFactor(renormalizationScaleFactor());
evolver()->factorizationScaleFactor(factorizationScaleFactor());
evolver()->restrictPhasespace(restrictPhasespace());
evolver()->hardScaleIsMuF(hardScaleIsMuF());
// start of the try block for the whole showering process
unsigned int countFailures=0;
while (countFailures<maxtry_) {
try {
decay_.clear();
done_.clear();
ShowerTree::constructTrees(currentSubProcess(),hard_,decay_,
firstInteraction() ? tagged() :
tPVector(currentSubProcess()->outgoing().begin(),
currentSubProcess()->outgoing().end()),
splitHardProcess_);
// if no hard process
if(!hard_) throw Exception() << "Shower starting with a decay"
<< "is not implemented"
<< Exception::runerror;
// perform the shower for the hard process
evolver_->showerHardProcess(hard_,xcomb);
done_.push_back(hard_);
hard_->updateAfterShower(decay_);
// if no decaying particles to shower break out of the loop
if(decay_.empty()) break;
// shower the decay products
while(!decay_.empty()) {
// find particle whose production process has been showered
ShowerDecayMap::iterator dit = decay_.begin();
while(!dit->second->parent()->hasShowered() && dit!=decay_.end()) ++dit;
assert(dit!=decay_.end());
// get the particle
ShowerTreePtr decayingTree = dit->second;
// remove it from the multimap
decay_.erase(dit);
// make sure the particle has been decayed
decayingTree->decay(decay_);
// now shower the decay
evolver_->showerDecay(decayingTree);
done_.push_back(decayingTree);
decayingTree->updateAfterShower(decay_);
}
// suceeded break out of the loop
break;
}
catch (KinematicsReconstructionVeto) {
++countFailures;
}
}
// if loop exited because of too many tries, throw event away
if (countFailures >= maxtry_) {
hard_=ShowerTreePtr();
decay_.clear();
done_.clear();
throw Exception() << "Too many tries for main while loop "
<< "in ShowerHandler::cascade()."
<< Exception::eventerror;
}
//enter the particles in the event record
fillEventRecord();
// clear storage
hard_=ShowerTreePtr();
decay_.clear();
done_.clear();
// non hadronic case return
if (!isResolvedHadron(incoming_.first ) &&
!isResolvedHadron(incoming_.second) )
return incoming_;
// remake the remnants (needs to be after the colours are sorted
// out in the insertion into the event record)
if ( firstInteraction() ) return remakeRemnant(sub->incoming());
//Return the new pair of incoming partons. remakeRemnant is not
//necessary here, because the secondary interactions are not yet
//connected to the remnants.
return make_pair(findFirstParton(sub->incoming().first ),
findFirstParton(sub->incoming().second));
}
ShowerHandler::RemPair
ShowerHandler::getRemnants(PBIPair incomingBins) {
RemPair remnants;
// first beam particle
if(incomingBins.first&&!incomingBins.first->remnants().empty()) {
remnants.first =
dynamic_ptr_cast<tRemPPtr>(incomingBins.first->remnants()[0] );
if(remnants.first) {
ParticleVector children=remnants.first->children();
for(unsigned int ix=0;ix<children.size();++ix) {
if(children[ix]->dataPtr()==remnants.first->dataPtr())
remnants.first = dynamic_ptr_cast<RemPPtr>(children[ix]);
}
//remove existing colour lines from the remnants
if(remnants.first->colourLine())
remnants.first->colourLine()->removeColoured(remnants.first);
if(remnants.first->antiColourLine())
remnants.first->antiColourLine()->removeAntiColoured(remnants.first);
}
}
// seconnd beam particle
if(incomingBins.second&&!incomingBins. second->remnants().empty()) {
remnants.second =
dynamic_ptr_cast<tRemPPtr>(incomingBins.second->remnants()[0] );
if(remnants.second) {
ParticleVector children=remnants.second->children();
for(unsigned int ix=0;ix<children.size();++ix) {
if(children[ix]->dataPtr()==remnants.second->dataPtr())
remnants.second = dynamic_ptr_cast<RemPPtr>(children[ix]);
}
//remove existing colour lines from the remnants
if(remnants.second->colourLine())
remnants.second->colourLine()->removeColoured(remnants.second);
if(remnants.second->antiColourLine())
remnants.second->antiColourLine()->removeAntiColoured(remnants.second);
}
}
assert(remnants.first || remnants.second);
return remnants;
}
tPPair ShowerHandler::remakeRemnant(tPPair oldp){
// get the parton extractor
PartonExtractor & pex = *lastExtractor();
// get the new partons
tPPair newp = make_pair(findFirstParton(oldp.first ),
findFirstParton(oldp.second));
// if the same do nothing
if(newp == oldp) return oldp;
// Creates the new remnants and returns the new PartonBinInstances
// ATTENTION Broken here for very strange configuration
PBIPair newbins = pex.newRemnants(oldp, newp, newStep());
newStep()->addIntermediate(newp.first);
newStep()->addIntermediate(newp.second);
// return the new partons
return newp;
}
PPtr ShowerHandler::findFirstParton(tPPtr seed) const{
if(seed->parents().empty()) return seed;
tPPtr parent = seed->parents()[0];
//if no parent there this is a loose end which will
//be connected to the remnant soon.
if(!parent || parent == incoming_.first ||
parent == incoming_.second ) return seed;
else return findFirstParton(parent);
}
namespace {
void addChildren(tPPtr in,set<tPPtr> & particles) {
particles.insert(in);
for(unsigned int ix=0;ix<in->children().size();++ix)
addChildren(in->children()[ix],particles);
}
}
void ShowerHandler::boostCollision(bool boost) {
// calculate boost from lab to rest
if(!boost) {
Lorentz5Momentum ptotal=incoming_.first ->momentum()+incoming_.second->momentum();
boost_ = LorentzRotation(-ptotal.boostVector());
Axis axis((boost_*incoming_.first ->momentum()).vect().unit());
if(axis.perp2()>0.) {
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
boost_.rotate(-acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
}
}
// first call performs the boost and second inverse
// get the particles to be boosted
set<tPPtr> particles;
addChildren(incoming_.first,particles);
addChildren(incoming_.second,particles);
// apply the boost
for(set<tPPtr>::const_iterator cit=particles.begin();
cit!=particles.end();++cit) {
(*cit)->transform(boost_);
}
if(!boost) boost_.invert();
}
void ShowerHandler::setMPIPDFs() {
if ( !mpipdfs_.first ) {
// first have to check for MinBiasPDF
tcMinBiasPDFPtr first = dynamic_ptr_cast<tcMinBiasPDFPtr>(firstPDF().pdf());
if(first)
mpipdfs_.first = new_ptr(MPIPDF(first->originalPDF()));
else
mpipdfs_.first = new_ptr(MPIPDF(firstPDF().pdf()));
}
if ( !mpipdfs_.second ) {
tcMinBiasPDFPtr second = dynamic_ptr_cast<tcMinBiasPDFPtr>(secondPDF().pdf());
if(second)
mpipdfs_.second = new_ptr(MPIPDF(second->originalPDF()));
else
mpipdfs_.second = new_ptr(MPIPDF(secondPDF().pdf()));
}
if( !remmpipdfs_.first ) {
tcMinBiasPDFPtr first = dynamic_ptr_cast<tcMinBiasPDFPtr>(rempdfs_.first);
if(first)
remmpipdfs_.first = new_ptr(MPIPDF(first->originalPDF()));
else
remmpipdfs_.first = new_ptr(MPIPDF(rempdfs_.first));
}
if( !remmpipdfs_.second ) {
tcMinBiasPDFPtr second = dynamic_ptr_cast<tcMinBiasPDFPtr>(rempdfs_.second);
if(second)
remmpipdfs_.second = new_ptr(MPIPDF(second->originalPDF()));
else
remmpipdfs_.second = new_ptr(MPIPDF(rempdfs_.second));
}
// reset the PDFs stored in the base class
resetPDFs(mpipdfs_);
}
bool ShowerHandler::isResolvedHadron(tPPtr particle) {
if(!HadronMatcher::Check(particle->data())) return false;
for(unsigned int ix=0;ix<particle->children().size();++ix) {
if(particle->children()[ix]->id()==ParticleID::Remnant) return true;
}
return false;
}
HardTreePtr ShowerHandler::generateCKKW(ShowerTreePtr ) const {
return HardTreePtr();
}

File Metadata

Mime Type
text/x-diff
Expires
Tue, Sep 30, 5:42 AM (1 h, 10 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
6566262
Default Alt Text
(46 KB)

Event Timeline